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Summary

Microbial biotechnology has a long history of pro-
ducing feeds and foods. The key feature of today’s
market economy is that protein production by con-
ventional agriculture based food supply chains is
becoming a major issue in terms of global environ-
mental pollution such as diffuse nutrient and green-
house gas emissions, land use and water footprint.
Time has come to re-assess the current potentials of
producing protein-rich feed or food additives in the
form of algae, yeasts, fungi and plain bacterial cellu-
lar biomass, producible with a lower environmental
footprint compared with other plant or animal-based
alternatives. A major driver is the need to no longer
disintegrate but rather upgrade a variety of low-value
organic and inorganic side streams in our current
non-cyclic economy. In this context, microbial bio-
conversions of such valuable matters to nutritive
microbial cells and cell components are a powerful
asset. The worldwide market of animal protein is of
the order of several hundred million tons per year,
that of plant protein several billion tons of protein
per year; hence, the expansion of the production of
microbial protein does not pose disruptive chal-
lenges towards the process of the latter. Besides
protein as nutritive compounds, also other cellular
components such as lipids (single cell oil), polyhy-
droxybuthyrate, exopolymeric saccharides,

carotenoids, ectorines, (pro)vitamins and essential
amino acids can be of value for the growing domain
of novel nutrition. In order for microbial protein as
feed or food to become a major and sustainable
alternative, addressing the challenges of creating
awareness and achieving public and broader regula-
tory acceptance are real and need to be addressed
with care and expedience.

Introduction

From the times when our ancestors decided to settle,
growing crops and domesticating animals became con-
solidated practices allowing constant feed and food pro-
duction. As human civilization proceeded, new strategies
of securing food supply have continuously been discov-
ered, consolidated and improved. The major driver of
such process was the need to provide resilience towards
the changing elements of nature, continuously threaten-
ing food supply (Berglund, 2003).
The current anthropogenic pressure on earth’s finite

resources and the concomitant dynamics of climate
change, generate serious concerns about the resilience
of the contemporary agricultural feed/food chains (God-
fray et al., 2010). In view of the still growing world popu-
lation towards 10 billion in 2050 (Ezeh et al., 2012), it
has been calculated that the world will need to produce
about 70% more food calories than in 2006 (Ran-
ganathan, 2013). Therefore, there is a need to find reli-
able alternative solutions, able to strengthen future food
security while minimizing the impact on the global
sustainability.
Microorganisms have always been central in basic

food processing techniques, for instance converting
fibres into edible food when fermenting dough to pro-
duce bread, or milk into cheese, allowing its long-term
preservation (Caplice and Fitzgerald, 1999). They have
been often used as direct food source, as it is the case
for yeast or algae. The latter, together with bacteria, con-
stitute the microbial actors involved in processing food.
They can also be used directly as feed or food source
(Anupama and Ravindra, 2000). The term ‘microbe’ is
used here in the broad connotation of bacteria, fungi,
yeast and algae.
In the early 1960s, when public awareness grew in

respect to the impeding global demographic boom, the
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need to search for alternatives to sustainably feed a
growing population corresponded in major efforts to
develop alternative feed and food sources (Goldberg,
1985). Several attempts were made to develop and bring
to practice the production of high-quality protein additives
from microorganisms, known as microbial protein (MP),
or single cell protein (SCP), mainly by using abundant
and low cost hydrocarbon substrates such as methanol
and methane (Goldberg, 1985). The Imperial Chemical
Industries (ICI) were the first to bring to full scale produc-
tion and commercialization a MP product called Pru-
teen�, produced from methanol oxidation by means of
Methylophilus methylotrphus (Westlake, 1986). Besides
industrially developed hydrocarbon-based MP, research-
ers investigated a whole range of other possibilities to
produce MP, including the use of natural or artificial light,
molecular hydrogen and many different organic sub-
strates such as by-products from the sugar industry as
well as other food processing residues or even food
wastes (Anupama and Ravindra, 2000). Despite being
well accepted and successful in many feed trials with
livestock, the actual and definitive breakthrough of MP in
the animal feed market was hampered by the low prices
achieved by more conventional protein sources such as
soybean and fishmeal in the late 1970s as well as the
fairly underdeveloped state of fermentation technology.
Concomitantly, the rising oil prices in the subsequent
decades led to the end of the ICI enterprise because of
the relatively high costs of MP production and the conse-
quent competitive disadvantage towards other cheaper
more ‘natural’ alternatives (Øverland et al., 2010).
In recent years, however, research and development

around MP is regaining momentum both in the scientific
and industrial domains. The steep increase in the prices
of fishmeal (from about $500 per ton in the 1990s to
$1500 to $2500 in recent years), together with the envi-
ronmental pressure of soybean production on land and
water use in the tropical areas of the globe justify the re-
examination of the microbial alternative (Kupferschmidt,
2015).
In the present article, we align the possibilities offered

as well as the challenges to be faced by the use of MP
production as a biotechnological tool to help securing
nutritive protein supply in the years to come. Threatened
by forthcoming population growth, climate change and
agricultural unsustainability, mankind must seek, once
more, new forms of adaptation to safeguard itself.

Microbial protein: feed, food and further

MP as feed

The main driver leading to the renaissance of MP as a
source of feed is indubitably the aquaculture sector.
Fish farming currently provides about 50% of world’s

fish food supply, and it is projected to grow further,
becoming a key sector in the supply of high-quality pro-
tein for the global population. In this context, scientific
research and the industrial applications have found in
MP a powerful ally. Aquaculture accounts nowadays for
more than 73% of the global fishmeal consumption,
with wild fish capture clearly unable to provide enough
high-quality feed for such a fast growing sector (The
World Bank, 2013). Production of MP from natural gas
has recently received a great deal of attention, with
innovative fermentation processes allowing high volu-
metric productivities (3–4 kg MP dry matter (DM) per
m3 reactor volume per hour) by continuous cultures of
Methylococcus capsulatus, marketed under the name of
FeedKind� (Unibio, 2016). The latter level of productiv-
ity has a physical footprint which is a factor 1000, or
more, smaller than any conventional vegetable protein
production system (Matassa et al., 2015a). Besides
achieving feasible industrial scale production and costs
competitiveness with fishmeal, the final MP product is
comparable to fishmeal in terms of essential amino acid
profile and overall nutritive value (Øverland et al.,
2010). Being tested in numerous feed trials with differ-
ent fish species, resulting in promising perspectives,
full-scale production is currently ongoing, with a produc-
tion of up to 80 000 ton DM/year foreseen in the near
future (see Table 2).
In addition to aquaculture, the MP product has also

been successfully tested in feed trials with terrestrial ani-
mals including major livestock like ruminants, pigs and
chickens, broadening its potential market applications
(Øverland et al., 2010). In this case though, the relatively
low price of soybean meal and the abundant and well-
established use as main protein additive in livestock pro-
duction of the latter, still counteract the application of
natural gas-based MP as replacement of substantial per-
centages of feed composed by fishmeal.
An alternative route to produce MP consists of recov-

ering valuable nutrients from various side streams of the
food industry, for instance feed and food processing
water (Lee et al., 2015). In this case, the use of hetero-
trophic microorganisms such as yeast and bacteria
allows to convert the organic carbon and the nutrients
(N, P) in the waste or processing waters into MP (Anu-
pama and Ravindra, 2000). Microbial protein produced
along this line might constitute a valuable and competi-
tive route to produce a substitute for soy protein for ani-
mal feed. Indeed it should be possible to generate such
MP at costs which take into account the revenue from
the avoidance of the treatment of the mineral nutrients
(N, P) present in side (waste) streams. As a matter of
fact, dissipation of reactive nitrogen back to atmosphere
as dinitrogen gas by means of the conventional nitrifica-
tion–denitrification pathway comes to a cost of about 2–
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3 Euro per kg nitrogen-N, while capture of phosphorous
in the wastewater line costs of the order of 7 Euro per
kg P (Levlin and Hultman, 2003). Note that the market
value of proteinaceous nitrogen from vegetable sources
is at the current price of some 1.1–1.6 Euro per kg dry
weight protein (see Table 1) corresponding to some 6
Euro per kg proteinaceous N. When this microbial pro-
teinaceous N is converted to high-value animal protein,
one can attain an end-value of the same order and even
up to 14 Euro per kg dry weight protein, in case of fish.
An example of the implementation of such approach

to food processing water is the study published by Lee
et al. (2015), where the effluent of a brewery is used as
feedstock for the production of SCP-MP. The latter study
relates to a technology implemented by Nutrinsic, deal-
ing with a production volume of 5000 ton DM/year from
a brewery effluent (see Table 2). Also, at present in Bel-
gium, a first full-scale MP production installation is under
construction dealing with the upgrading of potato pro-
cess waters. It should be in production by 2016 at the
level of 5000 ton MP per year (Valpromic NV, pers.
comm.). Yet, for the latter bacterial-based MP products,
there are so far no clear cut data in terms of their

putative market size or market values. Nevertheless, the
sector is attracting growing interests from investors deal-
ing with novel aspects of the cyclic economy (Nutrinsic,
2014).

MP as food

Microbial protein is an alternative source of high-quality
protein able to replace animal protein like fishmeal in live-
stock nutrition and aquaculture. Going one step higher in
the food chain, MP is meeting the FAO/WHO require-
ments in terms of essential amino acid scoring pattern for
human nutrition (Fig. 1) and therefore, also humans could
benefit greatly from the use of MP directly as food.
Algae are reported to have supported the life of

ancient populations living close to the sea for millennia,
providing a constant source of protein and vitamins.
Algae and microalgae are currently used as food and
food supplements in food industry (Anupama and Ravin-
dra, 2000; Becker, 2007), with a global production
achieving 9000 ton DM/year (see Table 2) with a market
value estimated about 2.4 billion Euro with a projected
yearly growth of 10%.

Table 1. Production volumes and price of various animal and vegetable protein sources.

Protein source
Production volume
(Mton DM/y)

Farm gate price
($/kg DM)

Average protein
content (% DW)

Price per unit protein
($/kg protein DM) Ref

Animal
Fish 66.7 2.07 15–20 10–14 Waite et al. (2014)
Pork 108.5 1.54 20 7.7 Waite et al. (2014)
Chicken 92.7 1.43 31 4.6 Waite et al. (2014)
Beef 62.7 2.70 25 10.8 Waite et al. (2014)

Vegetable
Soybean 320.2 0.37 35 1.1 Indexmundi (2016a); USDA (2015)
Wheat 712.7 0.19 12 1.6 FAO, 2015; Indexmundi (2016b)

Table 2. Overview of current production volumes and market sizes for different microbial protein. Hyphens indicate that values were not
available.

Organisms

Production
volume
(ton DM/y)

Production costs
(Euro/kg DM)

Global
market value
(Billion Euro)

Yearly growth
(% per year) Remarks Ref

Yeast 3 000 000 – 9.2 7.9 Mostly commercialized as baker’s
yeast and for ethanol fermentation.
Global market value projected to 2019

Kellershohn and
Russell (2015)

Algae
(microalgae)

9000 4–25 2.4 10 Besides feed and food, derivatives
are also used

Enzing et al. (2014)

Mycoprotein
(Quorn�)

25 000 – 0.214 20 Investments for a plant of 22000 tons
per year were done in 2015

Beer (2015)

Bacteria
(Profloc�)

5000 1–1.1 – – Nutrinsic (2015)

Bacteria
(FeedKind�)

80 000 – – – Commercial production foreseen
on 2016

Byrne (2016)

Valpromic 5000 – – – Personal
communication
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Yeast, being at the base of food processing since the
first bread was baked, or grapes fermented, can also be
used as direct food source, as it was the case e.g. with
the massive campaign of yeast production and supply,
first to the army, then to the whole population during
World War II (Khachatourians and Arora, 2002). Cur-
rently, yeast is a major player in the microbial derived
production of products for food as well as for other appli-
cations. Baker’s yeast and alcohols fermentation are the
two main processes employing yeast, with a projected
global market value for 2019 of up to 9.2 billion Euro
and an annual growth forecast of 7.9% (see Table 2).
Fungi are also a suitable alternative and have also

made their way as human food. QuornTM is the most suc-
cessful example of the so called mycoprotein, which is
commercialized and sold in some 15 countries worldwide
(Wiebe, 2004). Mycoproteins are particularly suited to
reproduce the taste and consistency of meat; this
explains their success as alternative to conventional ani-
mal-based products. Currently, mycoprotein production
supporting QuornTM products manufacturing amounts to
25 000 ton DM/year, with a global market value of about
214 million Euro, prospected to grow with 20% annually
in the coming years.

Added value applications

Besides being rich in nutritive protein, microorganisms
offer the possibility of producing a broad variety of
added-value products, suitable for both animal and
human nutrition (Vandamme and Revuelta, 2016).
Table 3 summarizes the average amount of protein pro-
ducible by algae, fungi and bacteria, as well as other
possible added-value products already investigated or
produced from microorganisms.
Certain microalgae and cyanobacteria are primary pro-

ducers of microbial oil, suitable as substitutes for

vegetable oil in food supplements. Particularly, the high
concentration of fatty acids can replace fatty acids other-
wise derived from rape seed, soy, sunflower oil and
palm oil. The purification of omega-3 fatty acid can offer
even higher value applications, e.g. for clinical purposes,
eicosapentanoic acid and decosahexaenoic acid, nor-
mally obtained from fish oil, can be also concentrated
and purified from naturally omega-3-accumulating
microalgae. Vitamins such as vitamin B12 and provita-
min A are also important high-value products obtainable
from edible algae, conferring additional nutritional bene-
fits in livestock production. Carbohydrates, which can be
accumulated up to 70% of the cell dry weight by many
algal species are also of nutritional value, but the major
research effort so far was directed towards the use of
algae for biofuel, biogas or biohydrogen generation
(Jones and Mayfield, 2012; Draaisma et al., 2013).
Fungi, mainly yeast-like fungi are the main agents

involved in the saccharification of fibres from corn, as
well as fermentation of other organic substrates. While
processing corn fibre with yeast like Aureobasidium,
xylose, arabinose and glucose can be produced at differ-
ent relative concentrations depending on the pre-treat-
ment of the fibres feedstock. The sugars can then be
further fermented in bioethanol, xylitol and pullulan. Xyli-
tol and pullulan find particularly application as food addi-
tive for their specific property of flavour-enhancing and
binding agents. Besides sugars and sugar-derivatives,
yeasts like Phaffa rhodozyma (now Xanthophyllomyces
rodochrous) can be used to produce valuable carotenoid
pigments like astaxanthin, mainly used in aquaculture as
feed supplement for salmon (Leathers, 2003).
Bacteria are a versatile group of microorganisms able

to produce a large array of added-value bio-products.
Biopolymers such as polyhydroxyalkanes (PHA) are
named to be biological alternatives to petroleum-based
chemicals to produce plastics. Yet, so far large-scale
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Fig. 1. Essential amino acid scoring pattern of microbial protein from bacteria (Pseudomonas/Methylophilus spp.) ( ), yeast (Candida spp.)
( ), algae (Spirulina maxima ( ), compared with the high-quality animal protein from fishmeal ( ) as well as to the FAO/WHO standard
( ) for amino acid scoring pattern for human nutrition. Source: Harper (1981); Tacon (1987)
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applications are to the best of our knowledge, not indus-
trially established. Recently, other applications for PHA/
polyhydroxybuthyrate (PHB) such as in the medical field
are emerging. Of interest for aquaculture is the ongoing
research on the prebiotic effects of PHB when used as
feed supplement, offering an interesting alternative to
antibiotics (Defoirdt et al., 2007; De Schryver et al.,
2010). Another interesting niche product which can be
derived from bacteria is osmo-protectants such as gluta-
mate and ectoine (Lentzen and Schwarz, 2006). The lat-
ter is a high-value cyclic imino acid used in cosmetic
formulation, but which has found application also in
aquaculture as highly active protectant against oxidative
stress. Bacteria can also produce relevant amounts of
lipids, commonly employed in biofuel production. High-
quality membrane-derived lipids can also be employed
as human health supplement, being already tested as
effective in reducing plasma cholesterol during animal
tests (Strong et al., 2015).

Forthcoming challenges

The extensive use of MP products as partial replace-
ment of conventional protein feed additives such as soy-
bean and fishmeal can offer the opportunity of
decreasing part of the environmental pressure that these
products exert on land and water use. A recent report of
the British Carbon Trust evaluated the environmental
impact of FeedKind� protein, a bacterial MP feed addi-
tive produced from natural gas (see MP as feed). The
report evaluated two FeedKind� commercial products in
terms of greenhouse gas, land and water use, compar-
ing them with soybean and fishmeal (Cumberlege et al.,

2016). In terms of freshwater consumption, the report
shows an average value of about 29 m3 per ton MP pro-
duced. A more detailed analysis shows that this 29 m3

is for about 80% determined by the vegetable oil used
as binding agent to produce a MP-pelletized product. If
the latter major contribution is excluded by producing a
simple straightforward protein powder, the actual fresh-
water requirement comes down to the order of 1 m3 per
ton MP. From Fig. 2, it can be derived that this value
about water foot print is about 20 and 140 times lower
than fishmeal and soybean meal respectively.
The same trend is observable for the required land.

The value of 52 m2 per ton MP is in fact due to veg-
etable oil for the production of the pelletized form,
whereas no arable land is required in case of the pow-
dered MP. Compared with the 6655 m2 land per ton pro-
tein required for the production of soybean meal
concentrate, the value of quasi zero land foot print
reveals how the land footprint of MP production is a
major benefit in respect to conventional agricultural-
based protein production. Fishmeal of course requires
minimal amount of land for its processing, yet the dra-
matic impact of wild fish capture on ocean ecosystems
is well known and documented (Pauly et al., 2005).
Finally, the above-mentioned report also analyses the

carbon footprint of FeedKind�. The value of 5.8 ton
CO2eq/ton MP is mainly due to the natural gas necessary
for the metabolism of the bacteria involved in the biologi-
cal fermentation process. This value would be as low as
1.7 ton CO2eq/ton MP in case biogas and renewable
energy is used in place of fossil fuels to power the reac-
tor-based production and downstream processing of the
final MP product. For fishmeal and soybean meal

Table 3. Overview of different microorganism for MP and added-value product formation.

Microorganism

Average crude
protein content
(% CDW) Nutritional value

Added value
by-products (% CDW) Remarks Ref.

Algae 40–60 Compares favourably
to egg, soy and
what protein. Cell wall
digestibility is an issue

• Microbial oil (50–70%)
• Carbohydrates

(up to 70%)
• Vitamins
• . . .

Triacylglycerides (TAG) can
replace partly vegetable oils in
food products. Poly unsaturated
fatty acids (PUFA) are of interest
for health applications

Draaisma
et al. (2013);
Harun et al.
(2010)

Fungi
(Filamentous
and Yeast)

30–70 Amino acids and
digestibility of
mycoprotein is similar
to egg and milk

• Carbohydrates
• Pullulan
• Xylitol
• Astaxanthin
• . . .

High unsaturated/saturated fatty
acids and low fat content makes
them highly suitable for
human nutrition

Thrane
(2007)

Bacteria 50–83 Amino acids and
digestibility
is similar to those
of fishmeal

• Internal storage
polymers (PHB)

• Ectoine
• Lipids
• Extracellular

polysaccharides
• Growth media

and vitamins
• . . .

Strong
et al. (2015)
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concentrate, the report indicates values of 2.6 and 0.8
ton CO2eq/ton protein respectively. Nevertheless, if the
spared agricultural land in case of MP production would
be accounted for its recovered carbon capture potential,
the overall benefit in avoided carbon emissions from MP
production could possibly be much higher.
In this context, an interesting alternative to natural gas-

based MP is represented by autotrophic microorganisms
such as algae or hydrogen-oxidizing bacteria. If algae
offer the great advantage of being able to use sun light to
fix carbon dioxide into biomass, the main drawbacks of
such process are the high land footprint required together
with the technical challenges of downstream processing
of poorly concentrated algal biomass (Majid et al., 2014).
On the other hand, the hydrogen gas needed to fix carbon
dioxide into bacterial biomass by means of hydrogen-oxi-
dizing bacteria is more expensive resource, but the land
footprint and the biomass concentrations achievable with
modern fermentation technologies outscore those of the
algal platform. In case the production of the latter is con-
nected to hydrogen generated by means of renewable
energies (solar, wind, etc.), this allows an elegant platform
for MP production and concomitant carbon dioxide cap-
ture (Matassa et al., 2015b).
To the scientific community, it is evident how a dedi-

cated industrial production of MP can represent a key
biotechnological tool to curb down the environmental
impact of the current feed and food chain assuring the
necessary amounts of nutritive protein for mankind.
Clearly, significant efforts are warranted to bring this to
practice at relevant scales. A key feature is to deal with
the aspects of public awareness. At present, the mere
economic market rules justify the application of MP in
feed for livestock only in some niche applications such
as aquaculture. Yet, if the externalized environmental

costs of the current feed/food production system would
be taken into account and made clear to the broader
public (including decision makers in political institutions),
the MP route would result in a more rational alternative,
able to offer immediate advantages in terms of water
and land use, with direct consequences on increased
carbon capture potential of ecosystems restored by bet-
ter agricultural land use (Galloway and Leach, 2016). An
important aspect, in this sense, relates to nutrients flows,
and principally the excessive input in our biosphere of
reactive nitrogen species (NH4

+, NO2
�, NO3

�) produced
by fixing atmospheric N2 gas by means of the Haber–
Bosch process. Compared with the proposed sustainable
boundary of 35 Mton N2 fixed per year, the current 121
Mton actually converted into reactive nitrogen surpass
the sustainability boundary of almost 3.5 times (Rock-
strom et al., 2009). Moreover, if the economic benefit in
agricultural production ranges between 20 and 80 billion
Euro per year, the annual costs (including damages to
both environment and human health) of N pollution by
agriculture have been estimated in the range of 35–230
billion Euro per year (Van Grinsven et al., 2013). It has
been recently demonstrated how the high nitrogen ineffi-
ciency of the soil–plant system could be mitigated by
MP production (Matassa et al., 2015a), decreasing sig-
nificantly the impact of eutrophication, nitrous oxide
emissions and ecosystems disturbance due to unbal-
anced anthropogenic nitrogen inputs.
Besides the awareness of the overall environmental

benefit of MP production for feed and food, the develop-
ment of higher value by-products will allow boosting and
bolstering the MP biotech platform. Thus, a more power-
ful penetration into the market of microbial-based product
as replacement of chemically derived ones, as discussed
above, will be possible. This will play in favour of estab-
lishing a public mindset more open and prone to accep-
tance towards microbial derived products.
Obviously, barriers must be overcome in order to allow

a widespread adoption of the MP biotechnology. Besides
the official legal recognition of some MP products as
feed and food (Øverland et al., 2010), further openings
are warranted in terms of used carbon and nutrient
sources recovery and their up-cycling into edible MP
products as part of the cyclic economy. This will impact
drastically on how efficiently our current society makes
use of its precious primary resources.

Conclusions

• Microbial protein qualifies as an excellent source of
nutritive proteins, but other cellular components can
also be of increasing importance, driving new develop-
ments for microbial-based by-products. In the context

Fig. 2. Land ( ) and freshwater ( ) requirements of MP compared
with fishmeal and soy protein concentrate. The values are normal-
ized to the protein content of each product. Source: Cumberlege
et al. (2016)
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of the need to generate new biotechnological pro-
cesses and products, this line of research and devel-
opment, particularly in countries where new
opportunities are warranted, should be explored with
great care (Timmis et al., 2014).

• The current conventional agricultural based supply
route for nutritive animal proteins have a high environ-
mental impact; they should be reconsidered and their
externalized environmental costs should be assessed
and benchmarked to those of MP.

• Upgrading various valuable nutrients (N, P) and nutri-
tive resources (organic carbon), the production of het-
erotrophic microbes as food and feed certainly has
gaining renewed industrial interest, particularly in the
context of the cyclic economy.

• The overall transition of the public mindset towards
widespread acceptance and appreciation of MP as
main supply route for feed and food needs to be pre-
pared in the near future with care and foresight partic-
ularly in terms of quality and regulatory issues.
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