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Digital Twins- A new paradigm for water supply
and distribution networks

By Fernando Martinez Alzamora, Pilar Conejos, Mario Castro-Gama and Ina Vertommen

A digital twin (DT) is a virtual copy (a digital model) of a real system continuously fed with data to mimic
the systems’ past, present and future behaviour. This makes it possible to detect anomalies, test new
ideas and changes in the virtual system and assess how it reacts, minimizing the risks to the real system.
In this sense, the DT can be seen as a playground to explore the effects of different scenarios and to
practice how to best react and operate the physical system under these circumstances. The concept of
DT has been used traditionally in the industry field" but it can also be developed and exploited in a city
management context, and in particular in Water Supply and Distribution Networks (WSDN), where it can

be applied to all aspects of the system?.

How DTs help for better management of WSDN
A DT can help to make short and long-term informed decisions
in order to improve water distribution systems management.
In the system design phase, it can be applied to:

- Develop masterplans by simulating the system behaviour
under long-term demand projections and new scenarios.
This allows for new infrastructure to be designed considering
different needs for water, the most appropriate components
to be added or replaced, and test the system resilience as
a whole.

* Planning reengineering projects aimed at saving energy,
integrating new water sources or improving the resilience
of the network.

- Design the future operation of the system and determine
the new infrastructure commissioning stages.

- Develop a sectorization plan for anomaly detection and
gain insight into the performance of the system.

+ Determine the best places where to locate the isolation,
washout and purge valves for maintenance of the network
with minimal disturbance to users.

+ Plan the progressive implementation of Automatic Meter
Reading (AMR).

For operation and maintenance, a DT can be applied to:

+ Achieve a better understanding of the performance of the
whole system.

« Train the operators by familiarizing them with the response
of the system under different failure scenarios.

 Help operators make the best decisions in real time by
simulating the effects of any operation before taking the
action in the real system.

* Optimize the operation of the system, minimizing energy
consumption and maximizing the quality of the service.
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« Plan flushing operations to guarantee good water quality.

* Predict the behaviour of the system under short term
demand forecasting.

+ Detect anomalies in the system by comparing the observed
values with those expected and simulated by the DT, e.g.,
leaks, valve failures or malfunctioning of other elements.

- Develop emergency response plans, simulating the beha-
viour of the system under emergency conditions.

* Develop an early warning system against possible attacks
or contamination into the network.

+ Improve predictive maintenance (i.e., maintenance of compo-
nents before they fail) taking into account the stresses each
component is submitted to and its role in ensuring service.

The components of a DT

Hydraulic model

A detailed and accurate representation of the WSDN, in the
form of a hydraulic model, is the basis of a DT. The model should
include all elements of the system, from pipes, junctions, demand
nodes, reservoirs, pumps, valves and other minor components,
to current water demands. Manually building and keeping such
a hydraulic model up to date is a laborious task.

The availability and maturity of these models vary between
water utilities and around the world. Nowadays, some utilities
have detailed models and in general, these are updated annually,
regarding water demand (average and peak demand) and new
elements in the network. Models are often not updated during
maintenance or repair works. This means that, for instance,
valve statuses in the real system and the model differ.

The purpose of a DT imposes different requirements on
the hydraulic model. For instance, for operation and anomaly
detection (water quality or quantity) the hydraulic models need
to be continuously updated and paired with the physical systems.
In other words, a DT has to include, at every moment, changes
made during maintenance/repair, variations in demands and
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control rules in the operation. To reproduce an isolated segment
during a repair all valves must be included in the model, and
if the emptying time is to be calculated then the discharge and
air release valves must be also included.

Water demand

In addition to the physical elements, to accurately model the
flows in the network it is important to correctly assign the
demands to the nodes of the model, as well as their evolution
over time. Most utilities measure water consumption for the
purpose of billing. It can be measured with different levels of
aggregation and frequency. In some utilities, for instance, con-
sumption is measured directly at service connections, while in
others it is measured through domestic meters. The frequency
can also vary from daily, or monthly to once a year. The DT
must incorporate the greatest amount of information available
in this regard (at least daily, preferably hourly).

Currently, there are WSDN that have digital water meters
to read daily or hourly users’ demands, like in the city of Valencia
(Spain). Incorporating this information into the DT makes it
possible to have a more reliable hydraulic model since demands
are assigned at the house connection level. In addition, demand
patterns can be established depending on the type and number
of users supplied, which is of great help in, for instance, locating
leaks, regulating the system and managing demand in situations
of scarcity.

When information from digital water meters is not available
(which is currently expected to be the case for most water
utilities around the world), it is necessary to find an alternative
way of feeding current demands to a DT, in an accurate and
dynamic way. There are several water demand models available
in the literature. However, the DT requires more than a model
for the average consumption of a typical user, but the actual
water demand in a given area at a given moment in time. Besides
understanding how consumers use water, it is necessary to
know where they are at different moments. External information
to grasp people movement throughout the day, like, for instance,
data from traffic, use of public transport, energy consumption,
and mobile phone data can be used to this end. As an example,
KWR Water Research Institute in the Netherlands followed an
approach wherein mobile phone data is used to capture popula-
tion dynamics and couples this information to the water demand
model SIMDEUM?®*“. SIMDEUM is an end-use model that simu-
lates stochastic residential and non-residential water demand
patterns, based on statistical data on water appliances and
users. In this way, the water demand is dynamically estimated
over time based on the actual number of users present at each
node of the network. This approach offers an additional advan-
tage: SIMDEUM is able to estimate water demand on very short
time steps (up to one second), while smart meters often provide
information only at an hourly or daily basis due to battery res-
trictions. For some applications, such as water quality modelling,
one-hour time steps are too coarse. Hence, even in cases where
smart meters are available, it could be beneficial to combine
both methods by using live measurements to calibrate a
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SIMDEUM model and then proceed to use such patterns to
model demand at shorter time steps.

Real-time data

One of the most important characteristics of DTs is their conti-
nuous use of field data to reproduce the real state of the system.
We refer here to those variables that change continuously and
are registered by Supervisory Control And Data Acquisition
(SCADA) systems and sensors in general, such as tank levels,
flow meters, pressures, etc. It must be taken into account that
these signals can be registered and sent at different times.
Connecting them with a DT is therefore not straightforward.
In addition, a data management system is necessary to filter
and replace incorrect information, which can be a challenge ™.

Computerized maintenance management system

(CMMS) services

One of the most outstanding features of DTs is their ability to
manage the maintenance of an industrial product or an insta-
llation, by continuously monitoring its behaviour and evolution
through the measurement of the most relevant variables and
subsequent analysis. Unlike classic predictive maintenance
systems, which are based solely on statistical data analysis, a
DT provides the additional ability to reproduce past, present
and future dynamic behaviour of the system as it is a virtual
replica of the real system continuously updated and calibrated
from a reduced number of measurements. For that, the hydraulic
model must incorporate all the maintenance operations carried
out since they affect the state of its elements. This is possible
if the hydraulic model is linked to the CMMS. In this way, the
maintenance management can be improved with the capability
of incorporating predictive maintenance, based not only on the
expected use of the different components, but its real behaviour
as part of the system.

Additional information sources

A DT has to incorporate also complementary information that
affects its behaviour or decision making, such as topography,
availability and quality of water sources, type of dwellings and
local facilities, types of consumers, electricity tariffs, weather
forecast, and social behaviour, amongst others.

Calibrating a DT
A DT has to behave like the real system, so the calibration of
the hydraulic model is crucial to achieving a reliable DT. There
are different techniques and methodologies for calibrating a
hydraulic model. It is useful to develop an initial pre-calibration
stage, reviewing and correcting all possible errors in the infor-
mation, and only afterwards calibrate the model parameters.
Fortunately, with the DT many scenarios are continuously
available, which allows for frequent calibration of the hydraulic
model, instead of using only for single situations or days, as
it has traditionally been done.

One of the aspects which is commonly challenging for
model calibration is the demand allocation. In cases where smart
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water meters are available, such as in Valencia (Spain), these
data can be used to calibrate the model. Internal pipe diameters
and roughness coefficients are the most relevant parameters
bound to uncertainty. In other countries, such as in the Nether-
lands, the calibration of water distribution network models is
an iterative process of updating of assets, demands and operation
criteria. For most utilities, these updates are scheduled at an
annual or bi-annual basis. Almost all systems in the Netherlands
are operated as a single zone, for that reason most data are
known at the booster stations, and only a few flow meters and
pressure loggers are located within the network. While industrial
and 'large’ users, such as sports facilities, carwashes and hos-
pitals, are monitored using digital water meters, this is not the
norm at the household level, introducing a serious challenge to
model calibration.

The existence of a large number of valves in the distribution
system poses an additional challenge for modelling. Although
most valve manipulations are registered, it is estimated that at
least 2-3% of the valves are not properly displayed or their
status is changed (i.e., partially opened). This requires a large
amount of effort as these mis-registrations are not easy to de-
tect until additional operations in the surroundings are performed.
Likewise, the presence of numerous regulation elements can
significantly complicate the calibration of the model®.

DTs, Decision Support Systems and Artificial Intelligence

One of the most important reasons that justify the development
and maintenance of a DT is to use a replica of reality as Decision
Support System (DSS). The concept of DSS has usually been
linked to optimization techniques, aimed at minimizing one or
more objectives, whether technical or economical, by modifying
the values of the decision variables subject to certain restrictions;
sometimes some of these restrictions can be relaxed by being
incorporated as additional objectives. Among the most important
applications of DSS in the field of the WSDN that can be cited
are those used to determine the adjustment parameters in a
calibration process, for optimal sizing of pipes and control
elements, for optimal location of valves and other accessories
to facilitate the network maintenance, for optimal identification
of Demand Metered Areas (DMA's) in a sectorization plan, for
optimal sensor location to identify leaks or for the early detection
of contaminant intrusion, for optimal operation of the system
to reduce energy consumption or the associated cost, to design
optimal strategies to renew water in stagnant areas or to reduce
the retention time in tanks, to plan preventive maintenance
operations, to plan investments in asset management, etc.
Methods used by optimizers to achieve these goals range from
classical Linear Programing (LP), Mixed-Integer Linear Pro-
gramming (MILP) and Non-linear programming (NLP) to the
most advanced Evolutionary Algorithms (EA), depending on the
nature and complexity of the problem, and the type of variables
involved. For some of these applications a simplified model of
the network may be sufficient, but in others cases it is very
important to take into account each and every one of the
elements that make up the real network as per a DT, for example
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in asset management, maintenance issues, network sectorization,
etc. When simplified models are enough, they can also be deri-
ved from a DT.

Another field in which DTs can play a relevant role is to
exploit the capabilities offered by modern advanced analytics
techniques and Artificial Intelligence (Al)®. Optimization should
not be confused with them. They are fundamentally based on
the data observation of a large number of real situations and
on learning about the system behavior from these data, which
usually come from field sensors but not limited to them. In its
application to WSDN management, the signals will come from
the SCADA system, from the maintenance management system
or from the remote readings of consumption. But if we have
a well-calibrated DT, the training variables can also be synthe-
sized from the results provided by the DT under certain scenarios,
with the advantage of its low acquisition cost and the high
quality of the data, in contrast to the data taken from the actual
operation of the system. Al uses Machine Learning (ML) algo-
rithms to achieve its purposes. In a first instance, they can be
arranged in supervised, unsupervised, mixed, or reinforced,
being the latter the most promising for future.

In supervised learning, sets of paired values for the input
and output variables are given. The algorithm must be able to
reproduce the outputs from the inputs with the minimum error.
Actually, the classical regression techniques would fall in this
group, but in the last decades other much more powerful me-
thods have been developed to tackle more complex problems
having a high number of input/output variables with strongly
non-linear relationships, such as k-Nearest Neighbors, Logistic
Regression, Support Vector Machines (SVM), Decision Trees
(DT), Random Forest (RF) and particularly Artificial Neural
Networks (ANN), initially developed around the concept of the
Multilayer Perceptron (MLP). In recent years ANN have been
developed greatly with the introduction of new architectures
under the concept of Deep Learning, like the Convolutional
Neural Networks (CNN) and the Recurrent Neural Networks
(RNN), with results as astonishing as facial or speech recognition.

Unsupervised learning instead tries either to group the
set of data (observed or synthetic) into differentiated classes
using cluster analysis techniques, to reduce the size of the pro-
blem, or to discover behavior laws among the data set, in an
attempt in all cases to abstract the information and synthesize
it, which constitutes one of the pillars of the development of
human intelligence. Compared with the classical statistical tech-
niques used for this purpose such as k-Means, Hierarchical
Cluster Analysis (HCA), Expectation Minimization (EM) or Principal
Component Analysis (PCA), the ANNs, and in particular the
architectures associated with Deep Learning such as the Auto-
encoders and the Reinforced Learning (RL), seem very promising.

To finish this brief description of the state of the art of
Al, it should be noted that in any application it is necessary to
differentiate whether the variables managed are continuous or
discrete, if the data set is static or dynamic (real-time systems),
and in the latter case, if the goal of the algorithm is to properly
reproduce the recent past or to forecast the future.
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All these techniques have applications to WSDN management,
although most of them are still incipient compared to other
areas such as image recognition, marketing or business. The
first applications have been aimed at characterizing and classi-
fying demand patterns, by differentiating the type of consumers
or the effect of exogenous factors such as the day of the week,
the season or the temperature. Past data and unsupervised
methods are used for this purpose. These patterns could be
used later to detect deviations from the expected values, due
to the occurrence of a leak for example, and to issue the corres-
ponding warnings.

Other applications try to directly predict the demand in
the coming hours, either at consumer or sector level, based on
past and recent data. In contrast to the classic Box-Jenkins
techniques, which assume a linear behavior of the time series,
Recurrent Neural Networks (RNN), and in particular Long Short
Term Memory (LSTM) networks characterized by progressively
reducing the weight of the oldest readings, have provided so
far the best results. The RNN is fed in this case with continuous
and dynamic data to carry out a supervised training.

Al techniques can also be used to detect sudden anomalies,
such as a pipe break, a sensor failure, or a contaminant intrusion
into the network. Supervised methods fed by synthetic data
provided by DT can be used to train convolutional ANNs for
this purpose. However, when the nature of the anomaly is not
anticipated, unsupervised methods would be more appropriate.

Regarding predictive maintenance, the use of Al techniques
can lead also to significant advances to improve WSDN manage-
ment. Supervised training techniques such as Decision Trees
(DT) or Random Forest (RF) have been mainly applied for this
purpose, but using the Gradient Boosting, a variant of RF more
suitable when the number of leaves on the tree is reduced, or
the LSTM already discussed above, are more promising in the
future. The source of data in this case must be real data because
it is very difficult to physically model a fault. In WSDN is common
to have a lack of recorded data concerning faults and mainte-
nance operations, so a greater sensorization is needed in the
future to take full advantage of these techniques. One of the
most important applications along this line would be the capa-
bility to anticipate new leaks.

By considering the power of Al, new applications for im-
proving WSDN management are constantly arising. For example,
Al can be used to fast respond in emergency situations, to
reduce the daily energy consumption, to manage the pressure
in DMAs in order to reduce leaks or to control demand, to
manage DMAs in case of unforeseen incidents, and to detect
incipient leaks by observing the drift of certain signals in a zone.
All these applications require huge data for training the Al
algorithms, but fortunately DTs working upon well calibrated
models can produce such data automatically at low cost, by
subjecting them to multiple randomly generated scenarios. A
training data set can be built just with the results of the simula-
tions or with the outcomes of a subsequent optimization process
looking for the best solution for each scenario, thus combining
optimization with Al techniques. In the future it is possible that,

IAHR.org

hydrolink 2| 2021

thanks to the power of Reinforced Learning (RL) algorithms,
ANNSs can reach by themselves the optimal solution to each
situation posed thanks to a previous self-training process aid
by DTs, just as AlphaGO Zero learned to play GO on his own,
defeating the world champion in 2017, without the need for a
prior supervised training.

Viewers and User Interface

For a DT to be used by water utilities, it is necessary to build
a user-friendly and intuitive graphical user interface. The inter-
face has to be interactive and fine-tuned to its use (daily ope-
ration or long-term design for instance).

As a DT manages a significant amount of information of
different nature and origin it can be useful to use a combination
of different products and interfaces, such as Application Pro-
gramming Interfaces (APIs), web services, map-based interfaces,
GIS integration, dashboards, and web interfaces.

Applications

In this section, two application cases (at different maturity
levels) are presented to illustrate the possibilities, benefits
and challenges of DTs applied to WSDN. These cases refer
to the DTs of Valencia, Spain and Eindhoven, The Netherlands
(Figure 1).

The DT of Valencia

Today Global Omnium (GO) operates a DT for the water distri-
bution network of Valencia Metropolitan Area. The DT works
upon a hydraulic model connected with the main sources of
the information provided by the physical system. The addition
of advanced analytics like Al starts to exploit the potential of
the DT, particularly to identify demand patterns, to forecast
demands and to detect anomalies in the hydraulic variables.
In a near future much more applications are envisaged.

The first strategic model of the city of Valencia was
created in 1993 in collaboration between GO and the Universitat
Politécnica de Valencia (UPV) and since then, significant pro-
gress has been made. In 2007 the hydraulic model was connec-
ted to SCADA for the first time” in order to run live simulations
and help the operators make decisions in the Network Control
Center. The AMR implementation in Valencia opened up new
opportunities, so in 2016 GO and UPV began the ambitious
project of building a full DT for the system by connecting the
hydraulic model with all information sources: SCADA, sensors,
GIS, CMMS, AMR, etc. The DT had to be interoperable with
new IT platforms and be scalable to any size of the supply
system. The result was the Digital Twin developed with GoAigua,
a smart water platform by Idrica, a Spanish company that
provides technological services. It is now fully operational and
in use in the Control Room of the water supply system of
Valencia and its metropolitan area. The model is connected
in real time with 600 sensors and replicates the real behaviour
of the network with a 95% accuracy for flows and 98% for
pressures®. It is now a vital tool in support of decision-making
for both daily operations and planning tasks®.
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Valencia
1,700,000 inhabitants | 101,300 junctions | 113,267 pipes | 46,801 manual valves

Eindhoven
223,300 inhabitants’ | 29,444 junctions | 57,194 pipes | 13,828 manual valves

Figure 1| Characteristics of the WSDN of Valencia and Eindhoven.

How the DT is built and maintained: detailed and strategic models
The Valencia DT uses the GoAigua platform to integrate infor-
mation from various sources. From there a set of algorithms
configuring the application GO2HydNet, builds automatically
from scratch and by querying different sources for the required
information, an EPANET-based detailed model for the whole
network or a selected area, which reproduces with accuracy
its behaviour for a certain time period. This detailed model
includes all the pipes, operating elements and auxiliary elements
that affect water flows, and is connected with the SCADA infor-
mation to make live simulations. Hence, it can be used as an
assistant to test and make real-time decisions. Building the
detailed 24-hour model of Valencia, including service connections
with their corresponding consumption pattern when available,
to reach a complete model of 325,000 nodes takes about 1
minute of computation time on a standard PC i7-3.2 GHz (the
time required for data pre-processing is not included). Thus, as
data sources are updated, the model is also updated. However,
depending on the use, a strategic model containing only the
main elements is more useful to have a general view of the
systems' behaviour. For this reason, the Control Center works

go-aigia
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.

Figure 2 | The DT of Valencia WSDN connected in real time with field data.
Real-time data are compared with simulated ones next to each box. The pro-
posed actions can be simulated before carrying them out in the real system.
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with a 10,000 nodes strategic model—-a simplified model obtai-
ned from the detailed model, and always connected to it. This
strategy makes it possible to perform every operation with either
the detailed or the strategic model, in such a way that, both
models together constitute the DT of Global Omnium (Figure 2).

Use cases

GoAigua's DT is used in GO for planning, design and management
of the daily operations in the Valencia Metropolitan Area since
it provides a complete overview of the network in real time,
along with informative and actionable dashboards 24/7. Valencia's
DT provides operational teams with:

« Simulation of past, present and future scenarios under all
kinds of operating conditions.

+ On-the-fly analysis of what-if situations for both present
and the future, facilitating support decision-making on the
best time for network maintenance and other operations.

+ Anomaly detection: the DT calculates in real time pressures
and flows at all nodes and pipes of the strategic model, pro-
viding a great understanding of the performance of the sys-
tem and allowing the fast detection of incidents (Figure 3).

- Forecast of the network behaviour in the next 24 hours,
which facilitates the prediction of potential events.

« A playground for training new staff in network operations.

Valencia's DT is also used for planning tasks such as:

- Development of contingency plans for emergencies.

- Designing the new infrastructure required according to the
network needs.

- Defining, in advance, the operation of the new infrastructure
and determine the network commissioning stages.

+ Planning long-term actions, including investments to optimize
Capex and risk levels.
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Figure 3 | With 600 measurements (pressures, flows and levels), it is possible to know in real time all flows (right) and pressures (left) of a 10,000 nodes strategic model.

The DT of Eindhoven

Recently KWR took the first steps in building a DT of the WSDN
serving the city of Eindhoven with about 223,300 inhabitants®.
The WSDN, operated by Brabant Water, is fed by a total of five
pumping stations. One of the aspects to consider is that the
topography of the city is reasonably flat. For that reason, this
network is operated as a single pressure management zone.
This means that no sectors, like district or pressure metered
areas, are implemented, and the available flow measurements
regard the total area. The assets registration is in general of
excellent quality and continuously updated by the Brabant Water
operators. The network model is coupled to different data sour-
ces, in particular, data from mobile phones (i.e. how many mobile
phones present in a given area at a given moment in time) are
used to capture population dynamics, and together with weather,
land use and population data (ranging from numbers of inhabi-

Events (e.g.
leaks)

Scenarios

Digital Twin

Demographics
Repair &
maintenance
activities

Water demand
model

Hydraulic
network model

Dynamic people
location (mobile
phones)

Operations
/control room

Figure 4 | Conceptual design of DT using different data sources in the Netherlands.
Demographics and land use are based on large governmental databases (Kadaster,
CBS). Weather data is available from the meteorological organization (KNMI).
Dynamic population information is obtained using mobile phone data (third-party
vendor). The water demand model is fed with this information using a stochastic
demand simulator (SIMDEUM®), while the hydraulic network model is obtained
from the water utility (Brabant Water). Several scenarios can be simulated based
on this information.

tants to household size and composition), which feed the water
demand model SIMDEUM. Maintenance and repair activities,
as well as unplanned events such as leakages, offer additional
relevant information. By linking all the aforementioned data,
the DT was used to model water demand, pressure and flow
in the WSDN of Eindhoven, at three different times in the year:
a regular week, a week with warm temperatures and a week
during the vacation period. From the obtained results it is clear
there is a correlation between the number of users in an area
(estimated with the mobile phones) and the water consumption
measured in the same period.

Moreover, it was possible to model the effects of leakages
and wrongly registered valve statuses on the network perfor-
mance, for both regular, warm and vacation periods, identifying
for instance areas with lower pressures. This information is
valuable for water utilities to help them identify sensitive areas
and to anticipate how to best operate the network when facing
particular conditions.

The conceptual design of the DT (Figure 4) is suitable for
both (near) real-time modelling and scenario analysis. The use
of mobile data as input for consumer demands suggests that
aspects of population dynamics can be integrated into a DT.
However, at the time being, mobile phone data are not (yet)
available on a real-time basis in the Netherlands, making the
proposed approach more suitable for scenario studies. Once
the data of mobile phones can be fetched in a timely manner,
the DT could be used for real-time modelling as well.

The conducted research shows the potential of DTs for
the Dutch drinking water industry. In the Dutch context, DTs
can be developed in the short-term, as water utilities have good
network models, and multiple data sources are already available.
In the upcoming months, the Eindhoven DT will be further deve-
loped to include additional data, such as traffic information, and
to better model non-household water demand. Dutch water uti-
lities want to use DTs to understand the effects of the lockdown
and other governmental measures imposed in control the spread
of Covid 19 in combination with the drought.

1 For privacy reasons the smallest area for which data is available is the 4-number postcode used in the Netherlands (more detailed postcodes include 4 numbers and 2 letters). If less than 10 mobile phones
are available in the area, the data is not shared. Only the number/amount of mobile phones is shared, data about the mobile phones such as the number/owner is not. Data treatment takes 2 weeks' time.
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Conclusions

The introduction of DTs in the reality of water utilities requires
a paradigm shift in the way of managing WSDN. The current
capabilities of computers to simulate the behaviour of networks
in real-time is beyond debate, even using a standard PC. The
main challenges lie in sensor deployment of the networks and
the collection and treatment of a large amount of data, ranging
from SCADA signals to consumption data and maintenance
operation. The potential results of this complex effort are consi-
derable in improving the service provided to customers, as has
been shown in the case of the DT of Valencia. While sensor data
is not widely available (the shift towards smart water metering,
for instance, can take years), one can think of alternative data
sources and modelling approaches, such as those used in the
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Netherlands taking advantage of mobile phone data in combina-
tion with SIMDEUM to better model water demand. The cost of
mobile phone data is lower than that for large-scale implemen-
tation of digital water metering. However, a complete analysis
of the relationship between mobile phone data and water con-
sumption during different seasons must be performed in order
to reduce the uncertainty of their use within DTs.

The current coronavirus pandemic imposes new short-
term challenges to water utilities as consumers change their
habits. In combination with other factors such as drought and
ageing infrastructure, DTs are a powerful tool to provide insight
into network behaviour under new circumstances and into how
to best operate it in the long and short term. For many operators,
a WSDN is a black box. DTs are a key step in unravelling it.
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