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Managementsamenvatting 

Bioassays gebaseerd op functionele omics technieken zijn de moeite waard om verder te 

ontwikkelen voor het gebruik bij het monitoren van drinkwaterkwaliteit  

Auteurs Tessa Pronk PhD, Anne Zwartsen PhD, Nienke Meekel MSc, Milou Dingemans PhD 

De voordelen van het gebruik van bioassays op basis van functionele omics technieken maken het de moeite waard 

om een specifiek raamwerk op te gaan bouwen voor de beoordeling van de mengseltoxiciteit in 

drinkwater(bronnen). Dit blijkt uit een studie naar de stand van zaken rond functionele omics technieken voor het 

monitoren en duiden van de drinkwaterkwaliteit. Functionele omics is een verzamelnaam voor een aantal 

biochemische technieken (transcriptomics, proteomics, metabolomics) die veel biomoleculen tegelijk kunnen 

meten die een rol spelen in de mechanismen waarmee een organisme reageert op veranderende omstandigheden. 

Hiermee geven deze technieken inzicht in de mogelijke toxische effecten van stoffen op moleculair niveau. Door te 

analyseren op moleculair niveau zijn -omics technieken zeer gevoelig, zodat effecten na kortdurende blootstelling 

aan lage stofconcentraties kunnen worden gedetecteerd, zelfs wanneer nog geen fysieke toxische effecten te 

verwachten zijn. In een modelorganisme kunnen deze technieken de invloed van aanwezige stoffen op veel 

verschillende biologische mechanismen tegelijk vaststellen. Dit maakt functionele omics technieken een 

interessante kandidaat om individuele traditionele bioassays – die vaak een enkel eindpunt meten – te vervangen. 

Daarbij is het voor het inschatten van een risico wel belangrijk de reactie van biomoleculen op een stof te linken is 

aan het fysieke humaan toxische eindpunt dat met deze stof is geassocieerd. De grootste hindernis voor de 

toepassing van -omics technieken op de monitoring van de drinkwater(bronnen) kwaliteit is dan ook het gebrek aan 

onderzoek naar de expressie van biomoleculen in relatie tot het toxisch eindpunt dat wordt geïnduceerd door 

chemicaliën. 

 

 
 

Visualisatie van het concept om na blootstelling van een modelorganisme aan water met een mengsel aan 

onbekende stoffen bij lage concentraties op basis van de functionele omics data mogelijke risico’s voor de humane 

gezondheid te voorspellen. Met gericht onderzoek kan dit concept worden gerealiseerd. 

Belang: breder testen op effecten met 

gedetailleerde meetresultaten  

Vanwege de veelheid van mogelijke effecten die 

mengsels van stoffen bij lage concentraties op 

moleculair niveau kunnen veroorzaken, is het niet 

waarschijnlijk dat deze allemaal in traditionele 

bioassays kunnen worden gedetecteerd. Functionele 

omics technieken bieden een meer gedetailleerde, 

op mechanismen gebaseerde diagnose over 

toxiciteit. 

Methode: een advies voor een aanpak gebaseerd 

op recente literatuur  

In dit rapport onderzoeken we de stand van zaken 

rond het testen van humaan relevante toxiciteit in 

water met functionele omics technieken en bevelen 
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we op onderwerpen (methode, modelorganisme, 

raamwerk) een aanpak aan.  

Resultaten: aanbevelingen voor een bioassay voor 

waterkwaliteit gebaseerd op functionele omics 

Het aanbevolen raamwerk is gebaseerd op een dosis 

respons curve voor de expressie van biomoleculen 

die geassocieerd zijn met diverse ‘modes of action’ 

die op hun beurt weer indicatief zijn voor toxische 

eindpunten. Dit wordt gecombineerd met een 

‘trigger value’ om risico’s te kunnen beheersen. Het 

raamwerk zal gestandaardiseerd moeten zijn om 

variabiliteit in resultaten te voorkomen. De 

biomoleculen die gemeten worden met 

metabolomics (metabolieten) zijn met relatief weinig 

ruis te meten, zijn vaak hetzelfde tussen organismen 

en staan relatief dicht bij een fenotype waardoor de 

voorspellende waarde van een raamwerk met deze 

techniek naar verwachting robuust kan zijn. Daphnia 

en Nematoden zijn veelbelovende modelorganismen 

omdat ze relatief gevoelig zijn voor toxische stoffen, 

met weinig middelen in een laboratorium gekweekt 

kunnen worden, en potentieel veel verschillende 

reacties op toxiciteit kunnen laten zien. 

 

Implementatie: raamwerk voor het bepalen van 

het effectpotentieel van stofmengsels 

Het onderzoeksveld rond functionele omics 

ontwikkelt zich nog volop en er is veel potentie voor 

de inzet hiervan in een universele bioassay. Op dit 

moment kan er nog geen link gelegd worden tussen 

gemeten biomoleculen via -omics technieken en 

relevante toxiciteit maar de mogelijkheid hiertoe zal 

wel komen, naar verwachting tussen 5-10 jaar. Op dit 

moment worden in bestaande onderzoeken vooral 

expressiepatronen van biomoleculen voor bekende 

effecten vastgesteld, zoals de ‘mode of action’ van 

stoffen, en wordt gekeken naar mogelijke verbanden 

met effecten in ecotoxicologische modelorganismen. 

Onderzoek naar de voorspellende waarde voor de 

aanwezigheid van stoffen met humaan relevante 

toxicologische effecten is nog schaars. Voordat 

sprake kan zijn van implementatie zijn dan ook 

gerichte analyses en experimenten nodig die 

vaststellen wat het diagnosticerend vermogen van de 

voorgestelde methode is voor stoffenmengsels met 

humaan relevante toxicologische effecten. 

 

Het Rapport 

Dit onderzoek is beschreven in het rapport 

Functional omics techniques for drinking water 

quality monitoring (BTO-2021.008). 
 
Dit rapport is gerelateerd aan: Schriks M., van der 
Oost R., Houtman C. (2011). The application of 
toxicogenomics for (drinking) water quality 
assessment. KWR Water Research Institute (BTO 
2011.049)  
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1 Introduction 

Clean and safe drinking water is of the highest importance for the global population. However, water quality is in 

danger of being affected by the large number of chemicals produced and used which may ultimately end up in the 

environment (Kools et al., 2019; van Wezel et al., 2017). In addition, long periods of droughts decrease the volume 

of water bodies, concentrating the chemicals therein (Kümmerer et al., 2018).  

To guard the quality of surface water and drinking water, drinking water companies and regional water authorities 

traditionally monitor waterbodies using targeted chemical analyses. Using these methods, the concentrations of on 

selected target chemicals are determined and evaluated against (drinking) water quality guidelines. Of the thousands 

of chemicals in water, targeted analyses only detect a limited number of the chemicals as specific methods have to 

be run for each chemical (group) of interest. However, the occurrence of chemicals in water sources beyond the 

regulated list of targeted chemicals needs to be monitored to ensure safe drinking water. To be able to get a better 

view on water quality, suspect and non-target screening methodologies were developed in which many chemicals 

can be detected based on comparable chemical properties (known registered chemicals, as well as unknown 

compounds) using high resolution mass spectrometry (HRMS), even if these chemicals were not identified yet. 

Identification of the suspects is possible, but it is time and cost consuming to select promising patterns to further 

identify among the many thousands possible. If suspects are identified, chemicals can be evaluated in terms of target 

concentrations such as health-based guideline values (hGLVs) (Baken et al., 2018). If these are not available, 

concentrations can be compared to generic signalling values, and drinking water companies can take action if these 

values are exceeded. These guideline values are based on the toxicological effects of individual chemicals in official 

guideline studies. However, because in practice there are many  different low-level concentration chemicals present 

in water it is difficult  to detect all with methods for non-target screening (NTS) or target screening (TS). Also, for 

many emerging chemicals there is a lack of toxicological information, as well as on potential mixture toxicity (EFSA 

scientific committee, 2019). Therefore it is not possible to monitor, identify and characterize the hazards of all 

chemicals detected in water. 

Water quality managers are challenged to assess the presence and effects of large numbers of chemicals in water. 

Therefore, chemical analyses are more often combined with effect measurements using in vitro bioassays (Brunner 

et al., 2020; Dingemans et al., 2019). Using such bioassays, the biological effects of all chemicals in an unknown 

mixture, like in surface water, effluent, or groundwater, can be measured for a specific endpoint without the need 

for identification of the chemicals. The total effect of the mixture can be interpreted quantitatively (e.g. trends), or 

can be related to effect-based trigger values, which signal the need for further investigation of the potential risk of 

the mixture when exceeded (Béen et al., 2020). With the recent development of effect-directed analysis (EDA), 

chemicals in mixtures exceeding trigger values can be identified by fractionation of the mixture before application to 

the bioassay, to reduce complexity (Houtman et al., 2020). The fraction that induces an increased bioassay response 

can be analysed to identify the effect-inducing chemical(s). As chemicals can induce a large variety of effects, a 

bioassay battery is generally recommended to cover multiple endpoints of interest. Due to cost constraints, usually, 

a limited number of bioassays are applied (such as genotoxicity, endocrine activity and reactivity assays). Even if all 

available bioassays would be used, the toxicity of some (classes of) compounds would not be detected. For several 

(complex) endpoints, like neurotoxicity and reproduction toxicity, there are no assays routinely applicable for water 

quality. So, it is not (yet) possible to detect the total effect of each chemical mixture in water on each possible 

endpoints with in vitro bioassays. 

There are a few model organisms that are applied as whole organism bioassays to monitor the (mixture) effects of 

(environmental) chemicals, like in water quality monitoring. The concentration or dilution factor at which 50 percent 

of the animals dies (LC50, lethal concentration for 50% of test population) or other endpoints (EC50, Effect 
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concentration for 50% of the population) is often used to describe the ecotoxicological effect of single chemicals or 

mixtures. Other endpoints can be for instance movement, reproduction rate, and development of organs after visual 

inspection, or overall growth (i.e. Spaan et al., 2019).  

The use of a whole organism bioassay (‘in vivo’) has the advantage that a range of physiological functions and organs 

can be studied in one single model, opposite to the single endpoints that are targeted in in vitro bioassays. However, 

very specific subtle effects are often not tested for, while more prominent endpoints such as growth, reproduction 

are only affected either at high concentrations of after long exposure that exceed the duration of most tests.   

Therefore, a potentially very useful model would be a whole organism in which specific effects at more detailed 

molecular level events that occur can be detected. A possibility is evaluating the response of the exposed organism 

at the molecular level. This can be achieved by using ‘functional omics’ techniques that measure the components of 

such molecular responses. The different functional omics techniques are able to detect, characterize and (semi-

)quantify a large set of biomolecules in a single run. In this way they can measure biomolecules that are expressed as 

a functional response to a change in internal or external circumstances for the organism. Combined with the concept 

of whole organism bioassays, this can be described as a bioassay based on functional omics.  

This study investigates whether current functional omics techniques can be used for quality monitoring of drinking 

water (sources). This report builds upon earlier work in the BTO of Schriks et al. (2011). This earlier report focused 

on one particular functional omics technique, transcriptomics, as a technique for use in water quality assessment 

and assessment of risks of individual chemicals. The current report provides information on several other functional 

omics techniques, prospective model organisms and which setup would be the most suitable for use of these 

techniques in risk assessment. Available functional omics data in the literature and from databases are inventoried. 

Sensitivities of different model organisms to exposure to chemicals with specific toxicological endpoints and toxicity 

mechanisms are assessed. The report also highlights the current opportunities and shortcomings regarding the use 

of these techniques for water quality monitoring. It describes the viability of implementing a functional omics assay 

that will aid the drinking water utilities in surveillance of risk associated with mixtures of low-level chemicals in water. 

 

2 Potential application of -omics techniques in 

drinking water quality assessment 

2.1 Explanation of different -omics techniques  

In the cascade from genotype (DNA) to phenotype (Figure 1), there are four common -omics techniques that we will 

discuss here: genomics, transcriptomics, proteomics and metabolomics. Each technique address a stage in the 

metabolic response cascade of genotype to phenotype. In short, the genome (all DNA in one organism) is the 

blueprint for the transcription of RNA. Transcribed RNA, specifically messenger RNA (mRNA) is the RNA that is 

translated into proteins. Proteins induce metabolic changes.  

The first -omics technique, genomics, studies the whole genome of one organism (genomics) or multiple organisms 

(metagenomics) by identifying and measuring DNA sequences. This technique is not considered a functional omics 

technique because the genome of an organism itself does not respond to chemicals in the environment, or other 

influences, it merely encodes the potential of an organism. In water quality monitoring this technique is used to 

detect changes in the composition of ecological communities and potential functions. An example is detecting the 



 

8 

 

different microbial communities in different water bodies (Timmers et al., 2020). These differences in compositions 

of communities can be indicative of the long term chemical status of these water bodies. 

The expression of different biomolecules in the cascade following the genome can be analysed with techniques that 

are used to study functional responses to the environment. That is why these techniques are called ‘functional’ omics. 

Three main techniques are used in general. For measuring the expression of biomolecules, transcriptomics is using 

next-generation sequencing or DNA microarrays to measure RNA, proteomics is using mass spectrometry or two-

dimensional electrophoresis to measure proteins and metabolomics is using nuclear magnetic resonance or other 

chemical techniques to measure biomolecules that are formed as products in normal physiological processes 

(Martins et al., 2019) (Figure 1). When studies use functional omics techniques to analyse and interpret changes on 

biomolecular levels as a response to exposure to potentially hazardous chemical substances this is called 

toxicogenomics (Feussner and Polle 2015). Due to recent technical advances, these functional omics techniques have 

increased output, sensitivity and accuracy, and require only small sample sizes (Martins, Dreij et al. 2019). Below, we 

discuss these three different functional omics techniques in more detail. 

 

Figure 1. Overview of -omics techniques and their proximity in relation to genotype and phenotype (Steuer et al., 

2019). 

2.1.1 Transcriptomics 

Transcriptomic methods can assess thousands of single ribonucleic acids (RNAs) in a single run, making the 

technique more cost-effective compared to traditional quantitative reverse transcription polymerase chain reaction 

(qRT-PCR) techniques if many RNAs have to be characterized. In the past decade, transcription studies have 

progressed from using microarrays to next generation sequencing of RNA. This technique sequences all RNA 

present, giving a semi-quantitative measure of expression. Studying transcriptomes can provide indications of initial 

responses of cellular mechanisms affected by stressors. Effects induced by chemicals can be assessed for all 

standard model organisms with sequenced genomes (Martins et al., 2019). All RNA that does not code for genes 

can be digitally removed from the dataset prior to analysis, leaving only gene-coding messenger RNA (mRNA). 

García-Ortega and Martínez (2015) estimated that transcriptomics could cover 90-95 percent of the genes detected 

in mammals, which makes transcriptomics stand out in completeness.  

 

One difficulty with transcriptomics is that not all genes that are transcribed are translated into proteins, and for that 

reason the reaction of a system or organism to chemicals can only be partially understood (Fernie and Stitt 2012). 
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Translational and post-translational effects affect the resulting composition of the proteome (Canzler et al. 2020). 

Also, the RNA expression is very sensitive to laboratory circumstances and expression can be upregulated and again 

downregulated in a matter of minutes to hours. This makes transcriptomics a technique that has a fleeting response 

that is prone to noise and inter-laboratory variations. Also, what would be a monotonic response to the chemical 

may produce a non-monotonic dose-response for a given snapshot in time. For example, the time-course of dynamic 

transcriptional response may differ between doses, such that at higher doses, the transcript abundance may have 

peaked earlier and have fallen by the time of measurement. Alternatively, there could be a developmental delay in 

an in vivo assay at the higher doses, associated with triggering more and more adverse outcome pathways (AOP) in 

the organism, thereby causing more and more disruption of normal development. It would seem nothing much 

happens in a process at a higher dose, however the expected peak in expression is, in that case, delayed.  

Nevertheless, it has been shown in many different in vitro and in vivo bioassays that transcriptomics can provide 

biomarkers to distinguish the impact of different chemical classes, by transcriptome signatures exhibited in bioassays 

after exposure to chemicals (e.g. Hermsen et al., 2011; Antczak et al., 2013). Transcriptomics and proteomics may 

convey similar information on overall pathway responses. However, transcriptomics may include information on 

regulatory RNAs as well and for that reason can be much more complete than proteomics (Canzler et al., 2020). In 

the context of drug discovery, many compounds have been tested on model organisms and these transcriptomics 

responses have also been recorded in publicly available databases like the Comparative toxicogenomics database 

(http://ctdbase.org/), the DrugMatrix database (can be accessed via various applications), OpenTGgates, Connectivity 

map (Cmap), iLINCS (https://lincsproject.org/) (Alexander-Dann et al., 2018).  

2.1.2 Proteomics 

Proteomics studies the set of proteins and peptides (proteome; the final product of gene expression) that have a 

function in many processes in living organisms, like metabolic signalling, transport and defence (Martins, Dreij et al. 

2019). Changes in cell phenotype occur when transcripts are translated into protein. This functional omics 

technique is often used, especially for assessing potential human health effects. The primary technique applied for 

proteomics is mass spectrometry using electrospray ionisation (ESI) or matrix-assisted laser desorption ionization 

(MALDI) or LC-MS. Proteomics can be performed in three different ways; top-down (analysis of intact proteins), 

bottom-up (analysis of peptides after protein digestion) and middle-down (analysis of larger peptides after limited 

digestion), depending on the question to be answered. Quantification in proteomics can be done using labelled 

techniques or label-free techniques. Developments in proteomics are still ongoing. Timp et al. (2020) discuss 

scalable techniques that could sequence the amino acids in proteins rather than classifying proteins based on 

spectra.  

 

Compared to transcriptomics, the techniques are somewhat less cost-effective as the number of molecules that are 

assessed is less (Martins et al., 2019). Proteins do however have a stronger link to the phenotype because their 

expression directly influences the phenotype. Proteomics groups several regulatory principles that may lead to 

changes on the protein level, sometimes even without remarkable changes on the transcriptome level (Canzler et al., 

2020). Multiple studies stressed that there are limitations with the proteomic approach due to the lack of 

comprehensive proteomic databases and technical barriers, hindering the identification of differentially expressed 

proteins and biomarkers (e.g. Trapp et al., 2014; Buesen et al., 2017).  

2.1.3 Metabolomics 

Metabolomics is still less commonly used than transcriptomics and proteomics to study the effects of chemicals on 

tissues or organisms. Metabolomics studies biomolecules occurring later in the cascade of events of the 

toxicological mechanisms affected by chemical exposures, namely the metabolome. The metabolome consists of 

highly heterogeneous and small (<1500Da) molecules (metabolites) found in cells, tissues, organs and organisms 

(Wishart 2007). Metabolomics studies use separation techniques like liquid chromatography, gas chromatography 

or sometimes capillary electrophoresis to separate the metabolites prior to detection with mass spectrometry. 

http://ctdbase.org/
https://lincsproject.org/
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Another commonly applied technique in metabolomics is nuclear magnetic resonance (NMR) which does not 

require separation of the metabolites but has a much lower sensitivity than mass spectrometry. A challenge in 

metabolomics is to detect, quantify and identify metabolites present at different concentration levels. In non-

targeted metabolomics there is no analytical method yet available that can determine all metabolites due to the 

current limitations of the analysers and chromatographic separation techniques. A critical point in the use of liquid 

chromatography mass spectrometry (LC-MS) is the choice of a suitable column to retain certain metabolites. 

Several studies have stressed the usefulness of applying different types of columns in metabolomics (Booij et al., 

2014). 

 

One advantage of metabolomics is that it is less fleeting than transcriptomics and proteomics and can detect 

molecules at various points in a pathway at the same time, while also detecting instantaneous or slow changes 

(Canzler, Schor et al. 2020). As in proteomics, the metabolome is not only regulated by gene expression, but also by 

post-transcriptional and post-translational effects. Changes in the metabolome due to exposure are often amplified 

compared to changes in the transcriptome. The metabolome is the closest link to the phenotype induced by 

chemical exposure (Tan et al., 2009). Metabolites are also well conserved across all living organisms. This makes the 

use of non-model species less challenging (Martyniuk and Simmons, 2016; Sahlin, 2018; Tan et al., 2009). 

Databases for the identification of small biomolecules from the metabolome are increasing, and the use of 

metabolomics in toxicogenomic studies are on the rise (Martins et al., 2019). However, interpretation remains a 

challenge since a significant number of metabolites have not been identified or referenced (Poynton et al., 2008).   

 

2.1.4 Integrated functional omics 

Combining functional omics methods can give an even more complete view of the effects of chemical exposure 

(Martins et al., 2019). Next to interpreting individual transcriptomics, proteomics or metabolomics analyses, the 

integration of measurements and chemical analysis will allow to explore potential cause-effect relationships (Sahlin, 

2018). Even though transcriptomics and proteomics results often show remarkably limited overlap, a study of 

Simões et al. (2018) found that specific functional categories at protein and transcriptome levels were concordant 

with each other, despite overall limited correlations between datasets. Combining methods can also give insight in 

possible interactions between the transcriptome, proteome and metabolome (Martins et al., 2019). There are not 

many examples yet of successful combinations of the functional omics techniques.  

 

Table 1. Qualitative assessment of different functional omics techniques, based on the text in this paragraph. 

 

 Chemical 

exposure data 

available 

Number of 

biomolecules 

addressed 

High throughput 

(ease of measuring) 

Robust 

patterns 

Relation to 

phenotype 

Transcriptomics ++ +++ +++ + + 

Proteomics + ++ + ++ ++ 

Metabolomics + ++ + +++ +++ 

Explanation of the symbols: +++ optimal, ++ less than optimal, + far less than optimal 
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2.2 Advantages of the application of functional omics in water quality monitoring 

The use of functional omics based bioassays in monitoring of drinking water (sources) quality is relatively new. 

Functional omics techniques already are being used to assess the toxicological effects of single chemicals on health 

such as in drug development, or to assess adverse effects of environmental mixtures on ecology. The U.S. EPA accepts 

data from such techniques for establishing mechanisms of toxicity for chemicals (McCarroll et al., 2009). 

One advantage of functional omics, in contrast to traditional toxicity testing, is that it allows to understand the 

mechanisms that cause toxicity (Sahlin, 2018). Functional omics techniques can be applied to establish toxicological 

pathways and toxicity mechanisms of chemicals by combining molecular with phenotypic responses. Functional 

omics can also be used to expand detailed knowledge of toxicity mechanisms by identifying novel features 

(biomolecular responses) induced in response to chemical exposures, for example in metal homeostasis or 

detoxification (Hägerbäumer et al., 2015). Specific profiles (‘signatures’) of molecular responses that are associated 

with chemicals and their effects on specific endpoints can be deducted from an -omics measurement. In potential, 

such functional omics signatures are predictive, as signatures for specific exposures or toxicity can be identified. 

These signatures can be used to identify specific effects of unknown chemicals or chemical classes. In that way 

functional omics techniques can be applied as  a diagnostic tool.  

Compared to traditional bioassays, which will react in one particular way depending on the tested endpoint, 

bioassays based on functional omics will thus provide a broader overview of all molecular changes in an organism 

or tissue (Schriks et al. 2011). This is important because water will typically not contain a single compound but a 

mixture of chemicals inducing different toxicological effects. There is evidence that chemicals with a similar mode 

of action can have additive effects. This means such chemicals together could cause an adverse effect, even though 

their individual concentrations may be under the threshold for this effect (Altenburger et al., 2004; Kar et al., 2019). 

There is also evidence regarding the additive toxicity of contaminants with different mode of action. Chemicals with 

a similar toxicological endpoint can have additive effects, on the endpoint. This suggests that the combination of 

different chemical classes could explain the overall toxicity of a water sample (Altenburger et al., 2004). Different 

combinations of chemicals (acting by different mechanisms and/or interacting with different endpoints) may result 

in additive effects on gene expression profiles in an organism (Schriks et al., 2011). Omics techniques have the 

potential to detect effects on the molecular level caused by low-dose interactions of mixtures, they can even 

provide a picture of the prospective effect after a short exposure (Ankley et al., 2009; Poynton et al. 2008). Because 

genes, proteins, metabolites are expressed within minutes to hours, insight in which cellular mechanisms are 

stimulated or inhibited could be gained after a short exposure (Soong et al, 2015). 

The insight in mechanisms, the sensitivity, the potential for detection of a broad range of detailed early stage effects 

of overall toxicity makes functional omics techniques an interesting candidate to replace or complement traditional 

whole organism bioassays. Moreover, they could potentially replace commonly used batteries of in vitro bioassays 

that each address a specific endpoint, at least for a part (Fang et al., 2020), by detecting simultaneously different 

effects of low-level chemical mixtures in water. At the same time, functional omics can be used to obtain a more 

detailed knowledge on the expected effects of chemicals in mixtures. In this way, functional omics approaches can 

be used for broad-based surveillance monitoring where complex mixtures and unknown stressors may be present 

(Sahlin, 2018). Functional omics can thus be an informative approach to detect early warning signals of water 

pollution and help to prioritise when drinking water (sources) need to be further characterised and studied. The use 

of -omics can on the one hand help formulate hypothesis concerning possible (health) effects and responsible 

chemicals when evaluating the water on its suitability for the production of drinking water (Schroeder et al. 2017). 

On the other hand, it may be used to exclude any possible indications of an impairment or risks associated with 

drinking water quality. 
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2.3 Assessing water containing chemical mixtures with functional omics data 

When a functional omics based assay is applied to assess potential health implications of drinking water sources 

containing unknown mixtures of chemicals, an important question is whether the investigated response in 

biomolecules (‘features’) in a model organism reflects the combined influence of the individual compounds. There is 

potential to link environmental functional omics studies to current risk assessment procedures if an impact on 

adverse toxicity endpoints as considered in guideline toxicity studies can be distinguished. Several studies suggest 

that this is possible.  

The ability of any bioassay to adequately detect effects of mixtures can be assessed by comparing observed effects 

with calculated effects, based on known mixtures and mixture models. In environmental mixtures, concentrations 

are generally too low to expect any interactive effects such as synergism or antagonism (Cedergreen et al., 2014). 

Therefore the dose or concentration addition (CA) model for chemicals with a similar working mechanism is generally 

considered as the most relevant and applicable for complex environmental mixtures. However, as functional omics 

may reveal an overview of dissimilar working mechanisms that may still result in combined toxicity, this may support 

the application of the independent action (IA) or response addition model, applying to chemicals causing the same 

adverse outcome with dissimilar working mechanisms. 

Dardenne et al. (2008) investigated the effects of individual substances and binary mixtures on 14 biomarkers for 

stress. Mixture responses were fitted applying both CA and IA models. In many cases both models were able to 

predict the mixture response from the individual compound responses. In another study, for two mixtures of 12 

compounds, mixture effects per molecular pathway were generally as large as expected if calculated by 

concentration addition (Xia et al., 2020; Wang et al., 2018). Krasnov et al. (2007) found in their study in which trout 

were exposed to three compounds at low level exposure, the expression profiles were additive and that two of three 

compounds could even be distinguished from the mixture profile.  

2.4 Linking functional omics responses to diagnose potential adverse outcomes from 
chemical exposure  

When profiles of expressed functional omics features differ between water containing unknown chemical mixtures 

and unaffected water, an important question is what potential risk this may imply for human or environmental 

health. An interpretation is needed. Therefore a major challenge with omics for health risk detection in (sources 

for) drinking water is to define clear links between functional omics responses to phenotypic observations and their 

relevance to human relevant endpoints. Is there a risk for endocrine disruption, kidney toxicity, reproductive 

toxicity or another type of toxicity associated with the water? It has been shown with toxicogenomics that such 

high level endpoints can, for individual chemicals, be distinguished to a reasonable level in functional omics 

bioassays (e.g Antczak et al., 2013; Hermsen et al., 2011). These methods rely on overlapping expression patterns 

between chemicals that are associated with a specific endpoint. See Figure 2 for an example to illustrate the 

necessity for the derivation of a common signature. Based on their complete gene expression pattern the 

compounds of similar chemical class do not necessarily cluster together (Figure 2). A selection of a common pattern 

of expressed genes is necessary to achieve this.  
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Figure 2. From Antczak et al. (2013). Gene expression clusters in Daphnia for 36 contaminants of environmental 

concern of diverse chemical structure. The clustering of non-related compounds based on overall gene expression 

is exemplary for the need to extract specific, robust signatures that indicate specific similarities between 

contaminants. While each gene expression profile is unique, Antczak et al. take advantage of similarities in 

expression profiles between related contaminants in order to develop predictive models that can distinguish 

between different groups of contaminants (not shown).  

 

While the applicability of these models based on chemical class-based profiling to distinguish between chemical 

classes does not require any knowledge of the function of these genes, a biological framework to understand 

differences would increase interpretability of the models (Antczak et al., 2013). This biological framework could be 

adverse outcome pathways (AOP). Such an approach has an added advantage. If the expressed features are part of 

an AOP (see Box 1), concentration addition or independent action (Altenburger et al., 2004; Kar et al., 2019) for that 

specific pathway can be assumed for a mixture. In this way the type of combined adverse effects can be taken into 

account in the interpretation of the expressed features. Currently, more than 350 AOPs describing endpoints relevant 

to both human health and the environment are organised and available in the AOP wiki (Ankley and Edwards, 2018) 

in various states of completeness. 
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Molecular initiating events (MIE) occur at the start of an AOP (see Box 1). Detecting effects that relate to a MIE could 

mean an earlier detection of potential adverse effects (Bahamonde et al., 2016). Mode of Action (MoA) follows MIE 

in the chain of events following chemical exposure (see Box 1). MoA has been loosely defined in both human health 

and ecotoxicology as a functional change at the cellular level, in contrast to the mechanism of action or MIE. MoA 

represents an intermediate level of complexity between molecular mechanisms and physiological or organismal 

outcomes (Kienzer et al., 2017). A MoA provides information on underlying toxicity pathways. Groupings across 

multiple chemical classes can be done based on MoA (Barron et al., 2015; Kienzer et al, 2017). MoA-based model 

development can be an alternative to chemical class-based profiling. The MoA concept allows for predicting effects 

caused by chemical mixtures with additive (same MoA) or individual action (different MoA).  

Applicability of the assignment of MoA across diverse species is still an area for which more research is needed 

(Barron et al., 2015; Lee et al., 2015). Interspecies variability may have caused an alteration of the function of certain 

genes, and some functional pathways may not be conserved between species. On the other hand, MoAs may be 

similar across taxa, because the basic biochemical systems and molecular targets affected can be generally conserved 

across many animal species (LaLone et al., 2013).  

We can conclude that integrating functional omics with adverse outcome pathways (AOPs) provides a way to predict 

particular and chronic adverse effects on higher levels of biological complexity, e.g. humans (Sahlin, 2018). 

Nevertheless, however useful the concept of an adverse outcome pathway for classes of chemicals with a common 

toxicity endpoint is, chemically induced adverse outcomes are not always reached by a single and defining pathway. 

In a recent study on chemicals used in agriculture that induced treatment-related non-genotoxic tumours, the 

majority of the tumour types formed could be linked to six MoA or MoA networks via descriptions in public safety 

reports (Heusink et al., 2020). Spaan et al. (2019) identified several pathways towards thyroid hormone disruption. 

Also for flame retardants, different MoA were established (Scanlan et al., 2015). Moreover, single chemicals can have 

BOX 1. Terms in toxicology.  
Toxicity can be defined as the degree or capacity of chemicals to affect physiological processes in humans or 

other organisms depending on the dose, exposure route(s) and exposure window. An endpoint is defined as a 

physiological function on which a potential effect of exposure to a chemical or chemicals is studied in toxicological 

studies. The organism, organ, tissue, cell or molecule that interacts with a xenobiotic chemical is defined as the 

target. Endpoints and targets are functionally related to physiological processes or organ systems, such as 

reproduction (reproductive toxicity) or the immune system (immunotoxicity). The response is defined as the size 

of the studied effect in the applied model related to a certain exposure time and exposure concentration or dose. 

Chemical-induced effects can be in the adaptive range if they are counteracted by physiological processes. If the 

chemical-induced effect is more intense or of longer duration, it can reach the adverse range, in which more 

stress is encountered and irreversible physiological changes occur. The response resulting from exposure to 

chemicals can be described by the mode of action whereas the (toxic) mechanism of action describes the more 

detailed underlying molecular chain of responses. This chain of effects can also be described as Adverse Outcome 

Pathways (AOPs), which describe the sequence of linked events at different levels of biological organization, i.e. 

from chemical properties of the toxicant to individual or population responses that may eventually lead to an 

adverse effect on human or ecosystem health. Generally, all AOP start with a Molecular Initiating Event, which 

consists of a reaction between a xenobiotic molecule and endogenous molecules. Physiological changes that are 

toxicologically associated with the adverse outcome at an organ, individual or population level are defined in the 

AOP as key events. Much knowledge on AOPs can be found on https://aopwiki.org/ and the OECD’s AOP 

Knowledge Base (https://aopkb.oecd.org/). 

https://aopwiki.org/
https://aopkb.oecd.org/
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several MoAs, inducing different adverse effects. This means that it is not always possible to link a single MoA 

exclusively to one endpoint. Moreover, chemicals inducing different effects will be present in a mixture. These 

chemicals can induce effects with overlapping pathways. This can have additive effects on parts of these pathways. 

This means it may not be feasible to univocally assign measured biomolecular feature signatures to a single MoA. 

There is currently a shortage of information on this issue. In a literature study by Sahlin (2018) it was found that only 

in very few studies the responses of functional omics assays were connected to possible adverse outcomes at higher 

levels (e.g. reproduction, impaired growth) in a predictive approach. This means that more work is needed before 

this link can be firmly established. In Chapter 3 we take a closer look at the possibilities to link the known MoA to 

toxicological endpoints of chemicals. 

2.5 Options for whole organism model species for –omics assays 

The bioassay model species is an important determinant of the potential of application for the quality assessment of 

(sources for) drinking water. The chemical impact can be described more completely if the bioassay covers multiple 

human-relevant toxicological endpoints and MoAs, thereby providing a linkage between chemical and health effects 

status (Brack et al., 2018; Sahlin, 2018). 

For instance, in a study of Schaap et al. (2015) it was found that in vitro primary mouse hepatocytes did not detect 

all MoA of non-genotoxic carcinogens, and a second in vitro test was required to complement this. It is likely that 

higher and more complex whole organisms exhibit a wider range of effects than a single cell type or tissue in vitro 

model. Even so, an organism that is less similar to humans will have less chance of exhibiting effects that can be used 

to predict potential effects on human health. Bacteria, even though they are whole organisms and their application 

would mean an ease of operation, would be arguably less suitable for this aim. The use of an aquatic model organism 

requiring only a small volume of water has the best potential based on practical considerations. With such organisms, 

dose response effects of water extracts can be studied, even if only small amounts of extract are available. 

Invertebrate species can be used as alternatives to vertebrate species for testing chemicals known to act through 

similar pathways across species (Schriks et al, 2011). Functional omics can provide a mechanistic understanding of 

toxicity and this can be put to use in cross-species extrapolation in risk assessment studies.   

An example of a suitable model organism are nematodes (see Figure 3); they are small but have specific organs and 

a nerve system. Furthermore,  they have been extensively used in scientific fields such as developmental biology and 

neurobiology because they have neuronal systems and signal pathways together with molecular networks that are 

comparable to mammals. Moreover, they are easy to keep in a laboratory and suitable for testing of multiple 

endpoints (Queirós et al., 2019). The overall gene expression in the nematode C. elegans upon exposure to various 

chemicals has been assessed in multiple studies using DNA microarrays (Hägerbäumer et al., 2015). In a study of 

Menzel et al. (2009), nematode metabolism, functional pathways and developmental processes were found to be 

differentially regulated in response to contaminated sediment. In general, it has a proven sensitivity to metals and 

pesticides, similar to that of other model organisms (e.g. Daphnia magna). However, most studies are in the 

biomedical domain. The possibilities to apply C. elegans in environmental studies need to be further established 

(Queirós et al., 2019).  
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Figure 3. Three promising candidate model species. In order from left to right: Nematode (picture source: 

https://www.flickr.com/photos/scotnelson/39013404045/in/album-72157635415455383/, CC0), Daphnia (picture 

source: doi:10.1371/journal.pbio.0030219), Zebrafish embryo (picture source: Ho-Wen Chen, Flickr, zebrafish 

embryo 50hpf_01, CCBYNC).  

 

Daphnia (see Figure 3) and other small crustacean invertebrates have a small body size and short and cyclic 

parthenogenetic (reproduction without fertilization) life-cycles, making them suitable as model organisms for studies 

on large populations in various environmental conditions while maintaining the same genotype. Daphnia species are 

commonly used for the indication of water quality and environmental health (Antczak et al., 2015; Soong et al., 2015). 

They have a high sensitivity to environmental change (Wagner et al., 2017; Jeong et al., 2019).  

 

Another important model species is the zebrafish (Danio rerio) (see Figure 3) whose development is highly similar to 

humans and other vertebrates. Zebrafish development from fertilization to free swimming larvae takes 2 to 3 days, 

while morphological development can be monitored since the embryos are transparent (Tufi et al., 2016). The 

zebrafish are small and have a high reproduction rate making them suitable for high-throughput screening. Wang et 

al. (2018) have shown that zebrafish embryos can be more sensitive to changes of basic processes such as oxidative 

phosphorylation, than a single cell-type in vitro system. However, zebrafish bioassays require expensive zebrafish 

laboratory facilities. Also, zebrafish are vertebrates, and 120 hours post fertilisation these tests requires the approval 

of an ethical committee. 

Table 2. Qualitative assessment of model species, based on the literature in the text in this paragraph. 

 

 Chemical 

exposure 

data 

available  

Sensitivity 

to many 

endpoints 

Easy to 

culture 

Whole life 

cycle 

endpoints 

Remark 

Daphnia ++ + +++ +++ Not all human organ systems are 

represented in Daphnia 

Zebrafish +++ +++ + + The use of zebrafish is considered 

animal free testing only up to 120 

hours post fertilisation  

Nematode + + +++ +++ Not all human organ systems are 

represented in nematodes 

Explanation of the symbols: +++ optimal, ++ less than optimal, + far less than optimal 

 

https://www.flickr.com/photos/scotnelson/39013404045/in/album-72157635415455383/
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2.6 Progress on challenges since 2011 

Poynton et al. (2008) noted the main challenges in application of functional omics technologies in 2008, and these 

were commented on in the report by Schriks et al. (2011). These challenges were in model system complexity, 

confounding factors, mixtures, limited sequence data, bioinformatics and costs. In this section we discuss how 

these challenges are still relevant and note possible solutions. 

Model system complexity 

The model system complexity point of Poynton et al. (2008) concerned the fact that not all chemicals are triggering 

the same effects in different bioassays. Although this is true, the measured effects can still be meaningful if 

expressed features are found that can (statistically) be linked to a relevant endpoint. A whole organism assay will 

have a potential to detect different and more than one adverse effect after exposure to a mixture of different 

chemicals. It is probable that not all possible endpoints of interest can be detected in a single whole organism 

bioassay. If this is established, another bioassay may be able to detect this. A combination of bioassays may be 

necessary to cover all relevant effects.  

Another consequence of model system complexity is the variability in the expression of features. Slight differences 

in exposure conditions can change the expression of features. To mitigate the variability in expression of features, 

the use of defined groups of features may be more robust than using individual features. Features are expressed as 

part of a molecular pathway. It was shown earlier that, whereas pathways may, as a whole, be regulated by 

compounds of a particular MoA, chemical class, or toxicity endpoint, the individual features expressed within these 

pathways may differ with each individual compound (Hermsen et al., 2013). Therefore, aside from individual 

biomarkers, pathway regulation may be a useful starting point for defining biomarkers for predicting toxicity 

endpoints (Hermsen et al., 2013). Metabolomics has the best chance to overcome the sensitivity of expressed 

features, as this technique integrate a sequence of events rather than provide a snapshot of the situation such as 

transcriptomics and to a lesser degree proteomics do. 

Confounding factors 

Confounding factors mainly concern aspects in field experiments, and field water samples. They include nutrient 

levels, acidity, temperature, salinity, dissolved organic carbon (DOC) and water hardness, which may modulate 

gene expression in an organism. The application of functional omics to water quality monitoring for drinking water 

(sources) has most potential as standardized assay. This reduces complexity of interpretation of the expressed 

biomolecules. In this way results can be compared between waters of different quality. In the laboratory, solid-

phase extraction (SPE) can be applied to field water samples to extract only the chemicals. Confounding factors 

such as mentioned above are no longer an issue in that way. 

Mixtures 

Another challenge noted by Poynton et al. (2008) related to the question if the features expressed as a result of 

exposure to a mixture could still yield interpretable signatures for determining risks for different endpoints. The 

linkage of genomic responses to relevant endpoints (e.g. behaviour, reproduction and development) has to be 

achieved, by the combined effect of chemicals in the mixture. This will require a better identification of relevant 

adverse outcome pathways (AOP) (Schriks et al., 2011) and linking molecular responses to these AOP. Several 

studies have shown promising results to detect additive, independent, and possibly even synergistic effects 

(Dardenne et al., 2008b; Xia et al., 2020; Wang et al., 2018; Krasnov et al., 2007). 

Limited sequence data and bioinformatics 

There was a challenge with the limited availability of sequence data for constructing microarrays at the time of 

Poynton et al. (2008). However with increasingly cheap next generation sequencing techniques this is no longer a 

problem. With a relatively small investment, complete genomes of different organisms can be sequenced. These 
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data are also publicly available at NCBI (https://www.ncbi.nlm.nih.gov/genome/) or the European Nucleotide 

Archive (ENA) https://www.ebi.ac.uk/ena/browser/home.  

Also other bioinformatics resources have increased in the last ten years. Among others, open source gene ontology 

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway databases are available. Also 

open source initiatives exist to combine such pathway databases. These can be used for transcripts and proteins (as 

these are the translated products of transcripts). For metabolomics, the bottleneck has been known metabolites in 

databases. In the meanwhile, progress has been made. The online Metabolomics Databases DrugBank contains 

information about 1,240 metabolites and 1,550 drugs, including drug–drug interactions. The Human Metabolome 

Database has details on more than 40,000 quantified, detected, and expected metabolites in humans and their 

known roles in health and disease. The Toxic Exposome Database describes 3,670 metabolites, including toxic 

drugs, pesticides, herbicides, endocrine disrupters, carcinogens, solvents, Polychlorinated biphenyls, and furans 

(SOURCE: Wishart workshop presentation, https://bioinformatics.ca/workshops/2020-informatics-and-statistics-

for-metabolomics/).  

Standardization 

The issue of a lack of standardization of protocols and the sensitivity of expressed features to experimental 

conditions between labs remains a challenge. The lack of standardization is a result of the fact that most functional 

omics studies do not focus on the development of a functional assay, rather they are focused on discovery of 

mechanisms and effects. A paradigm shift from mechanism discovery towards the development of assays to 

monitor water quality and their uptake in regulation would aid to further standardize methods and protocols. So, 

the expectation is that standardization will increase with a change in application to water quality monitoring. 

Costs 

The costs for applying omics methods are still considerable (Martins et al., 2019). However, these could weigh up to 

the use of a complete battery of bioassays to test each possible effect that water with an unknown mixture of 

chemicals could trigger. What can be cost efficient is that the same experiment could provide information on 

toxicity classes, MoA, and indications for possible effects on human toxic endpoints. This could even be the case for 

chemicals that remain unknown and unseen. The collection of omics fingerprints in databases (similar to the LC-

HRMS chromatograms in the NORMAN Digital Sample Freezing Platform) may even allow retrospective analyses of 

water quality. The use of a reduced transcriptome or metabolome with only genes or metabolites of established 

toxicological interest reduces costs of analyses. Although this does not exploit the full capabilities of omics’ 

techniques, particularly not allowing discovery of unexpected changes (Van Aggelen et al., 2010), this is adequate 

for an interpretable standardized whole organism –omics bioassay (i.e. Xia et al., 2020; Wang et al., 2018). 

 

3 Data analyses to support selections 

In this chapter we assess three aspects of currently available data. These are aspects that can aid in the selection of 

interesting MoA, and in assessing the potential of different organisms and omics techniques to use as a functional 

omics bioassay. 

Firstly, we perform an analysis to establish whether known MoA of chemicals can be statistically linked to known 

human relevant toxicity endpoints of chemicals. If this is the case, biomarkers linked to the MoA of a chemical can 

be predictive for its human toxicity endpoint. If this is not the case, specific (other) biomarkers will have to be 

selected. This would mean we are further removed from easy application of -omics techniques to predict water 

https://www.ncbi.nlm.nih.gov/genome/
https://www.ebi.ac.uk/ena/browser/home
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quality with respect to human toxicity endpoints. So far, this aspect of linking the MoA of chemicals to high level 

toxicological endpoints has been underexposed (Sahlin, 2018). We use two datasets, one with MoA of chemicals 

(Barron et al., 2015) and one dataset with human toxicity endpoints per chemical that we constructed (see 

Appendix I).  

Secondly, we assess for which -omics technique and organism there expectedly is enough data on expressed 

biomolecular features during exposure to individual chemicals. These data are needed to be able to anchor 

biomolecular features to a MoA. Such data on biomolecular features can also be used to directly link to 

toxicological endpoints induced by chemicals. If for a particular -omics technique or model organism chemicals with 

a particular toxicity endpoint have not been tested, this will mean that applicability of the model organism or 

technique to provide a prediction of those endpoints based on signatures of features will need more investigation. 

Organisms for which evidence on their expression of biomolecular features after chemical exposure for different 

toxicity endpoints is available, will have a preference because less study is needed.   

Thirdly, we asses which organism is most sensitive to chemicals with a particular MoA and human toxicity endpoint. 

For MoA of chemicals we again use the dataset of Barron et al. (2015). For sensitivity we use acute toxicity 

(expressed as the dose in an aqueous solution at which 50% of a response is exhibited, EC/LC50) for different 

chemicals for three fish species, fish in general, Daphnia and invertebrates in general, taken from the same dataset 

(Barron et al., 2015). If an organism is very sensitive, we expect a reaction will be measurable at low concentrations 

of chemicals.  

3.1 Linking assigned MoA and Toxicity Endpoint for chemicals 

MoA represents an intermediate level of complexity between molecular mechanisms and physiological or organismal 

outcomes (Kienzer et al., 2017). A goal of a functional omics assay for drinking water quality monitoring could be to 

link the signature of expressed biomolecules belonging to a particular MoA to a potential human relevant toxicity 

endpoint. This requires that the studied MoA has some 

predictive power for a particular human-relevant toxicity 

endpoint. We looked at the chemicals having both known 

MoA and defined toxicity endpoints, and investigated 

whether chemicals with a particular MoA were significantly 

overrepresented in the group of chemicals with a 

particular human relevant toxicity endpoint. 

Overrepresentation means that chemicals with a particular 

toxicity endpoint also have a particular MoA, more than 

can be expected by random overlap. The 

overrepresentation was limited to be based on at least 

three chemicals, to avoid chance effects.  

Several institutes and organisations have lists of chemicals 

that are known to induce one or several human relevant 

toxicological endpoints. From such different publicly 

available sources a collection was made of 1763 chemicals 

that induce one or more of eleven different common toxicity endpoints (Appendix I). These toxicological endpoints 

are: carcinogenicity, cardiotoxicity, developmental/reproductive toxicity, endocrine disruptors, hematotoxicity, 

immunotoxicity, kidney toxicity, liver toxicity, neurotoxicity, spleen toxicity and thyroid toxicity. For a list of chemicals 

with a known MoA the list of Barron et al. (2015) was used. This list contains MoAs for 1208 different chemicals. A 

broad MoA as well as a detailed MoA is listed. Detailed MoA are listed as a subcategory under the broad MoA. The 

Figure 4. The overlap for chemicals with established 

MoA (Barron et al., 2015) and human relevant 

toxicological endpoint (Appendix I list) 
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six broad MoA are: AChE inhibition, Iono/osmoregulatory/circulatory impairment, Narcosis, Neurotoxicity, Reactivity, 

Electron transport inhibition (Barron et al., 2015). 

The U.S. Environmental Protection Agency’s ecotoxicity database (https://cfpub.epa.gov/ecotox/) also contains 

information on chemicals, test animals and endpoints. However, the distinguished endpoints are less mechanism 

based. We tried extracting data for two noted endpoints, reproduction and intoxication. In the first category, mainly 

Daphnia were tested. The second category is very broad and covers a lot of physical endpoints rather than 

toxicological mechanisms (anorexia, immobility, convulsion, etc.). For this reason we did not further explore or use 

the ecotoxicity database for the analysis. 

Result 

When combining the two lists it was noticeable that the compounds for which both toxicological concepts were 

derived (MoA and Toxicity Endpoint) had relatively little overlap (Figure 4). This means from the chemicals with 

known human toxicological endpoint often little is known on the MoA, and vice versa. This is probably a result of the 

selection of the chemicals, based on the relevance for either list. The MoA were derived for chemicals that are 

relevant by their presence in an ecotoxicology context (Barron et al., 2015). The toxicological endpoints were derived 

for chemicals collected from diverse sources, probably according to their relevance of exposure risk to humans, e.g. 

via work, food, drink, pharmaceuticals or usage.  

With regard to the link between MoA and toxicity endpoint, only “Hematotoxicity” was overrepresented with 

chemicals that had broad MoA “Narcosis" (Table 3). This MoA is a non-specific reversible baseline mode of whole 

organism toxicity (Barron et al., 2015). For the detailed MoAs more overrepresentations were found and these are 

in Table 3. For a description of the specific MoA, see Barron et al. (2015).                                                    

Table 3. Significant associations between toxicity endpoints* and MoA (broad and specific, see Barron et al., 2015 

for an explanation on the MoA). If the cell is empty, no MoA was statistically linked to the Toxicity endpoint. 

 

Toxicity endpoint Broad MoA (Barron et al, 

2015) 

Specific MoA (Barron et al., 2015) 

Liver toxicity       Acrylate (broad MoA: Reactivity) 

Chromate (broad MoA: Reactivity) 

Arsenical respiratory inhibition  (broad MoA: 

Electron transport inhibition) 

Immunotoxicity    Alicyclic GABA antagonism (broad MoA:      

Neurotoxicity)    

Hematotoxicity Narcosis Anticoagulation (broad MoA: 

Iono/osmoregulatory/circulatory impairment) 

Carbonyl (broad MoA: Reactivity) 

Endocrine disruptor  GABA agonism (broad MoA: Neurotoxicity) 

Carbonyl (broad MoA: Reactivity) 

Neurotoxin     Diphenyl sodium channel modulation (broad 

MoA: Neurotoxicity) 

* Other toxicity endpoints that did not have a MoA associated: carcinogenicity, cardiotoxicity, developmental/reproductive toxicity, kidney 

toxicity, spleen toxicity and thyroid toxicity. 

 

No MoA was found significantly associated for chemicals for six of the eleven considered toxicity endpoints in these 

datasets. One specific MoA, Carbonyl, was associated to both “Hematoxicity” and “Endocrine disruptor”.  
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The analysis reveals that a clear link between (these) MoA and toxicity endpoint is not readily available or univocal. 

This means that some toxicity endpoints will require having (new) MoA established for chemicals that induce that 

toxicity endpoint. Because chemically induced toxicity endpoints have been shown to occur via multiple MoAs (e.g. 

Heusink et al., 2020; Spaan et al., 2019; Scanlan et al., 2015) this information may be necessary as well in future 

analyses. In the dataset of Barron et al. (2015) one MoA per chemical is established. 

3.2 Historical functional omics data available for individual chemicals 

In order to anchor expressed biomolecular features to MoA or toxicity endpoint of a particular type of chemical, data 

on expressed biomolecular features in a test organism during exposure to individual chemicals are needed. If for a 

particular omics technique or model organism chemicals with a particular toxicity endpoint have not been tested, 

this will mean that before the model organism can provide a prediction of those endpoints more investigation is 

needed. Organisms for which evidence on their effects from chemical exposure for different toxicity endpoints is 

available will have a preference because less study is needed.   

For this report we did a search in literature to find which chemicals with certain toxicity endpoints are tested with 

different -omics methods and different model organisms. In Appendix II the literature search is explained. The search 

string applied will not find all studies that applied functional omics to assays after chemical exposure. However 

because we apply the same search string between organisms and techniques, it provides an equal basis to find studies 

on the different organisms and techniques. In this way results can be compared on a qualitative note. A much more 

elaborate search would be necessary to uncover all available studies, this is beyond the scope of this report. 

3.2.1 Chemicals tested in organisms 

Using the search queries listed in Appendix I, 1147 articles were selected for further evaluation. Articles were selected 

when the following queries were found in the title, abstracts or keywords, namely variants of the terms 

metabolomics, transcriptomics, proteomics, exposure and chemical, and when a variant of the term monitoring was 

found. Reviews were excluded if they did not contain original data. Of the selected articles, omics techniques were 

represented in equal numbers (457, 412 and 377 for metabolomics, proteomics and transcriptomics, respectively). 

In total 99 articles contained a study with multiple omics techniques.  

To establish which organism is frequently used in environmental monitoring studies using omics techniques, the 

various species were listed (Table 4). Most articles used omics techniques on human tissues (424 articles), followed 

by fish (293 articles) and rodents (mice 128 articles and rat 114 articles). In total 86 articles were found to refer to 

bacteria. While bacteria would be relatively easy and cheap to use as bioassays in laboratories, most studies refer to 

the gut bacteria in other organisms and not to in vitro cultured bacteria that could be used for water quality 

monitoring. In total 69 articles referred to mussels. Mussels were studied mostly in salt water with respect to their 

economic value and disadvantageous effects of harmful chemicals on growth, their ability to bioaccumulate 

substances, and their association with producing toxic substances. The main benefit regarding the use of bivalves in 

exposure studies are due to that they are filter feeders and therefore capable of accumulating potentially high levels 

of contaminants, thus providing temporally and spatially integrated levels of contaminations (Campos et al., 2012). 

These are not directly useable for a standardized short term bioassay based on functional omics for fresh water 

quality monitoring. They could be used though as a functional omics based bioassay to monitor long term water 

quality. One of the three useful model species identified in paragraph 2.5, nematodes, was not found often in this 

literature search.  
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Table 4. Studies resulting from the literature search, divided into species. The number of articles linked to certain 

species were determined using search queries as listed in Appendix I. The selected species of interest for water 

quality monitoring are highlighted in blue. For selected organisms (zebrafish, daphnia) it was established how many 

studies contained data, this is between brackets. Organisms with less than twenty hits are not listed in the table.  

 

Organism Number of articles 

human 424 

fish 293 

mice 128 

rat 114 

of fish  zebrafish 104 (95 omics) 

in vitro 103 

bacteria 86 

mussel  69 

daphnia 34 (30 omics) 

of fish  fathead minnow 30 

of fish  shell fish 24 

oyster 26 

clam 29 

algae 24 

 

Since this study focuses on identifying possible whole organism models for water quality monitoring, zebrafish and 

Daphnia were selected as organisms of interest for further investigation. These are organisms that are often used as 

model species and live in the aqueous environment, giving the opportunity to relate omics to in situ responses if 

required.  

A total of 104 zebrafish articles were selected, of which 95 articles included an omics study and chemical exposure. 

In more detail, in 60, 23 and 24 articles, respectively transcriptomics, proteomics and metabolomics studies were 

described. In 11 articles multiple omics techniques were used. A total of 198 chemicals, 7 nanomaterials and 1 

microplastic component were tested in these articles.   

Of the 34 Daphnia articles, 30 included an omics study and one or more chemicals to which the organisms were 

exposed. A total of 18 transcriptomics studies, 3 proteomics studies and 10 metabolomics studies were included (1 

article contained multiple omics). In total, 28 articles exposed Daphnia magna, whilst two exposed Daphnia pulex. 

Most studies exposed Daphnia to several single chemicals as in total 74 chemicals and one type of nanoparticles were 

included in the 30 articles selected.  

3.2.2 Most tested human toxicological endpoint 

When linking the chemicals to which the selected organisms were exposed (nanoparticles, microplastics and 

particulate matter excluded) to CAS numbers, toxicological endpoints could be appointed based on the list of 

collected human toxicological endpoints described in Appendix I. Using this list, 38% and 50% of all chemicals used 

in zebrafish and Daphnia could be linked to an endpoint. In total 15 chemicals in the zebrafish studies, and 2 in the 

Daphnia studies could not be linked to a CAS number. In Table 5, the most frequently represented endpoints are 

listed per organism. If an endpoint is relatively frequently tested this could mean that the model species are 

responsive to these endpoints. Otherwise, such chemicals would not be chosen repeatedly in studies to test effects. 

The endpoints that were tested more often than could be expected based on their occurrence in the list of human 

endpoints, are indicated in blue. In Table 6 and 7, the studies in zebrafish and Daphnia, respectively, are divided 

between omics techniques. 
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Table 5. Overview of the human toxic endpoints associated with the chemicals used in the omics studies. The 

amount of chemicals linked to a human endpoint is stated between brackets. The percentage of chemicals capable 

of affecting certain endpoints are listed for each organism. The percentages do not add up to 100% because most 

chemicals are associated with multiple endpoints. Endpoints tested >10% more frequently than expected 

(compared to their occurrence in the human endpoint list) are indicated in blue.  

 

Endpoint Danio rerio  
(200 of 402 chemicals 
could be linked to a 
human relevant 
endpoint) 

Daphnia (all)  
(124 of 183 chemicals 
could be linked to a 
human relevant 
endpoint) 

Percentage in human 
endpoint list 

Carcinogenic 28% 37% 36% 

Cardiotoxicity 4% 6% 1% 

Developmental/reproductive 
toxicity 

30% 42% 15% 

Endocrine disruptor 42% 27% 16% 

Hematotoxicity 5% 14% 4% 

Immunotoxicity 9% 25% 3% 

Kidney toxicity 22% 26% 12% 

Liver toxicity 35% 27% 14% 

Neurotoxicity 28% 43% 33% 

Spleen toxicity 3% 2% 1% 

Thyroid toxicity 6% 2% 2% 

 

 

Table 6. Overview of the human toxic endpoints associated with the chemicals used in Danio rerio studies. The 

amount of chemicals linked to a human endpoint is stated between brackets. The percentage of chemicals capable 

of affecting certain endpoints are listed for omics technique. For the transcriptomics, proteomics and 

metabolomics, respectively 47%, 68% and 50% of all chemicals investigated are linked to endpoint using the human 

endpoint list. Endpoints tested >10% more frequently than expected (compared to their occurrence in the human 

endpoint list) are indicated in blue. 

 

Endpoint Transcriptomics  
(162 of 343 
chemicals linked to a 
human relevant 
endpoint) 

Proteomics  
(19 of 28 
chemicals 
linked to a 
human relevant 
endpoint) 

Metabolomics  
(15 of 30 
chemicals linked 
to a human 
relevant endpoint) 

Percentage in 
human endpoint 
list 

Carcinogenic 27% 42% 27% 36% 

Cardiotoxicity 3% 11% 0% 1% 

Developmental/reproductive 
toxicity 

27% 47% 47% 15% 

Endocrine disruptor 43% 47% 33% 16% 

Hematotoxicity 5% 5% 0% 4% 

Immunotoxicity 9% 11% 13% 3% 

Kidney toxicity 22% 26% 20% 12% 

Liver toxicity 35% 42% 33% 14% 

Neurotoxicity 28% 21% 40% 33% 

Spleen toxicity 4% 0% 0% 1% 

Thyroid toxicity 6% 5% 13% 2% 

 

 



 

24 

 

Table 7. Overview of the human toxic endpoints associated with the chemicals used in Daphnia studies. The 

amount of chemicals linked to a human endpoint is stated between brackets. The percentage of chemicals capable 

of affecting certain endpoints are listed for each omics technique. For the transcriptomics, proteomics and 

metabolomics studies, respectively 66%, 54% and 64% of all chemicals investigated are linked to endpoint using the 

human endpoint list. Endpoints tested >10% more frequently than expected (compared to their occurrence in the 

human endpoint list) are indicated in blue. 

 

Endpoint Transcriptomics 
(104 of 157 
chemicals linked to 
a human relevant 
endpoint) 

Proteomics (7 of 
13 chemicals 
linked to a 
human relevant 
endpoint) 

Metabolomics (18 
of 28 chemicals 
linked to a human 
relevant endpoint) 

Percentage of 
chemicals in 
human endpoint 
list 

Carcinogenic 42% 14% 6% 36% 

Cardiotoxicity 5% 14% 6% 1% 

Developmental/reproductive 
toxicity 

41% 57% 50% 15% 

Endocrine disruptor 27% 29% 28% 16% 

Hematotoxicity 16% 0% 0% 4% 

Immunotoxicity 28% 14% 6% 3% 

Kidney toxicity 29% 14% 6% 12% 

Liver toxicity 25% 29% 50% 14% 

Neurotoxicity 48% 43% 22% 33% 

Spleen toxicity 0% 0% 0% 1% 

Thyroid toxicity 0% 0% 17% 2% 

 

Remarkably, more than 50% of tested chemicals had multiple toxicity endpoints (not shown). Of all chemicals with 

endpoints in the list only 22% had multiple endpoints, so it seems that chemicals with multiple endpoints are favoured 

in -omics experiments. This would confound the assignment of MoA to toxicity endpoints. Additionally, results 

indicate that preferably chemicals with human relevance for developmental/reproductive toxicity, endocrine 

disruption, and liver toxicity are studied (endpoints in Table 5, 6, 7 indicated in blue). In Daphnia, in addition to those, 

immunotoxicity and kidney toxicity were relatively often studied (Table 5).  In both zebrafish and Daphnia, from all 

chemicals that could be used in the study, around 60% had an endpoint associated in the human toxicity endpoint 

list (see Table 6 and 7 headers). There is no remarkable difference in the use of chemicals with a particular human 

endpoint between proteomics, metabolomics, and transcriptomics in either Daphnia or Danio (Table 6 and 7). 

Because of the relative low amount of chemicals tested in proteomics and metabolomics, these numbers are also 

more vulnerable for chance effects and these numbers should therefore not be overinterpreted.  

3.2.3  Experimental setups used in studies 

As it is known that the experimental setup can influence results, such differences were determined for all 

metabolomics experiments for the two selected organisms, as an example. These were differences in the age/life 

stage of exposure, the duration of exposure, and the tissues used for extraction of the biomarkers. In Danio rerio 

studies, 37.5% of the metabolomics studies were performed on larvae or embryos at ≤120 hours post fertilization 

(hpf), this is the cut-off beneath which the organisms are not considered experimental animals. Exposure durations 

varied heavily from 6 h to 118 h. Studies using ≤120 hpf Danio rerio, all extracted the biomarkers from the whole 

body. This is most probably due the difference in size (3.9 mm at 120 hpf vs. 4-5 cm for adults). Of the studies using 

>120 hpf Danio rerio, 60% extracted specific tissues; liver (78%), muscles (11%), intestines (11%), head (11%), or 

blood serum (11%). Exposure durations in studies investigating the metabolomics profiles in specific tissues are 

usually 7 days, but 4 and 90 days were also seen. The studies using the whole zebrafish body (40%), often extract at 

7 days post fertilization (dpf), and expose for either the full period or 2-3 days.  
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Almost all Daphnia magna studies extracted metabolites using the whole body. 70% of the studies used adult (10-28 

day old) Daphnia’s versus 30% of the studies using <24 h old neonates at the start of the experiment). Several studies 

stated that, depending on the chemical studied, diverging responses were seen for neonates and adults (Wagner et 

al., 2017). More specifically, Daphnia over 8 days of age were deemed more appropriate for monitoring purposes as 

they had lower metabolomics variation compared to younger Daphnia’s (Jeong et al., 2019). Almost all studies, 

followed an acute exposure protocol with exposure durations between 24-48 h. One neonate study exposed their 

Daphnia’s for 21 days to determine developmental effects (Wang et al., 2018a), and one study explicitly shortened 

the exposure duration to 6 h for monitoring purposes (Jeong et al., 2019).  

This implies that the use of model species in experimental set-ups is not standardized as of yet. Results on expressed 

features cannot be directly compared for most studies. This is confirmed by a study of Schüttler et al. (2017) for 

transcriptomics. In their re-analysis of zebrafish embryo data they found that overlap of differentially transcribed 

genes in response to chemical stress across independent studies is generally low. The most commonly differentially 

transcribed genes appear in less than 50% of all treatments across studies. 

3.3 Sensitivity of model organisms to MoA and Toxicological endpoint 

A sensitive species will be more likely to respond to the low concentrations of chemicals in (sources for) drinking 

water. In addition to providing a list with chemicals and their established MoA, the MoAtox database also lists acute 

toxicity. This is expressed as the dose in an aqueous solution at which 50% of a response is exhibited, EC/LC50. The 

acute toxicity is listed for different chemicals for three fish species, fish in general, Daphnia and invertebrates in 

general (Barron et al., 2015). Zebrafish is not present. Therefore, instead of comparing zebrafish and Daphnia, we 

make a general statement whether different fish species were more, or less sensitive than Daphnia. We linked 

established toxicological endpoints (Appendix I) and MoA of chemicals (Barron et al., 2015) to the acute toxicity data 

of Barron et al. (2015) of those chemicals. For nematodes, there is no data available in these databases. Queirós et 

al. (2019) showed that C. elegans was more sensitive to Mercury (Hg) than Daphnia but otherwise for several other 

metals less sensitive. We did not find a comprehensive database in which chemicals are linked to formal MIE (see 

Box 1).  

Figure 5 and 6 show that for the MoA and toxicity endpoints, Daphnia shows in general higher and in some cases 

significantly higher sensitivity than (one of) the fish species. In other words, Daphnia is affected at lower 

concentrations of chemicals for several MoAs and toxicity endpoints. It can be observed that the fathead minnow is 

least sensitive and this coincides with the fact that this species is robust to pollution and is therefore regularly used 

to test heavily polluted water like wastewater. For some MoAs all species showed low sensitivity (e.g. narcosis 

chemicals, spleen toxicity) and for others all species showed high sensitivity (e.g. neurotoxicity, cardiotoxicity, liver 

toxicity related chemicals). It is noticeable that all median LC/EC50 effects took place above the 10 μg/l concentration 

level. From these results we cannot deduct if the sensitivity for chemicals at low concentrations is similar. This is 

relevant because concentrations in water may be lower. 
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Figure 5. The sensitivity of three different fish species and Daphnia for chemicals associated to broad mode of 

action. Between brackets is the number of chemicals that the data is based on. On the y-axis are reported EC/LC50 

concentrations in natural logarithm (µg/l). The black line is 1 μg/l. The red lines are respectively 10 μg/l and 1000 

μg/l. A red box indicates a significant difference in sensitivity from Daphnia. Green boxes are not significantly 

different. 
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Figure 6. The sensitivity of fish species and Daphnia for chemicals associated to human toxicity endpoints. Between 

brackets is the number of chemicals that the data is based on. On the y-axis are reported EC/LC50 concentrations in 

natural logarithm (µg/l). The black line is 1 μg/l. The red lines are respectively 10 μg/l and 1000 μg/l. A red box 

indicates a significant difference in sensitivity from Daphnia. Green boxes are not significant. 

 

The question remains open whether this sensitivity to chemicals in terms of EC/LC50 is also reflected  in the 

expression of relevant and distinguishing features. Such features are needed as biomarkers to predict MoA, 

chemical class, or human toxicological endpoints at environmentally relevant concentrations.  
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4 Options for use of -omics techniques in risk 

assessment 

4.1 Possibilities in a regulatory context 

Both human health and ecological risk assessment are needed to determine the environmental safety of chemicals.  

In Europe, the Registration, Evaluation, Authorization and restriction of Chemicals (REACH) regulation assures that 

substances, mixtures of substances and articles containing substances placed on the EU market do not cause 

adverse effects on human health and on the environment (Queirós et al. 2019). This regulation however concerns 

individual products and chemicals. In the aquatic environment including drinking water sources, countless possible 

combinations of chemicals can be present, with possible additive adverse effects. Environmental policy makers 

have recognised mixture toxicity as a major issue in environmental risk assessment of chemicals, also realizing that 

it is not feasible to assess the risk of each possible combination separately (Ankley and Edwards 2018; Sahlin 2018). 

The Water Framework Directive, Europe’s most comprehensive instrument for water policy, stresses the necessity 

of a ‘good ecological and chemical status’ of water. The chemical status, however, is monitored by comparing 

concentrations of individual priority chemicals with environmental quality standards (EQS). Considering this, effect-

based monitoring should be advocated and considered when the Water Framework Directive will be revised (Brack 

et al. 2017).  

 

Regulatory bodies increasingly see the advantages of whole-organism assays to do an effect-based evaluation of 

risk. The U.S. EPA accepts toxicogenomics data for establishing mechanisms of toxicity for chemicals (Queirós et al., 

2019). The EFSA panel recommends the use of specific aquatic and sediment-dwelling organisms. Additionally, the 

nematode species Caenorhabditis elegans has been recognized as a meaningful add-on to the ecotoxicological test 

battery in pesticides environmental risk assessment at least in the EU (EFSA, 2017), considering the availability of 

standard test guidelines to assess both acute (ASTM International 2014) and chronic (ISO 2010) toxicity. Still, C. 

elegans has yet to be routinely included in environmental risk assessment test batteries (Queirós et al., 2019). 

Daphnia and fish already are a part of test batteries, although not routinely included.  

To be used as risk assessment instrument for water quality related to human health, -omics signatures that link to 

impacts on human toxicity endpoints will be very important. It is reasonable that proteomics and metabolomics will 

receive increased regulatory acceptance compared to transcriptomics as it measures impacts on a higher level 

closer to the phenotype (Sahlin, 2018). Metabolomics has the added advantage that metabolites are relatively 

often not species-specific (Martyniuk and Simmons, 2016) and this will benefit the inter-species extrapolation of 

results (Sahlin, 2018).  

MoA can be considered as an intermediary link between chemical exposure and final effect. Several ways to define 

MoA exist and these have potential to strengthen risk assessment with functional omics methods. However, these 

ways lack harmonization and therefore often give contradictory results (Kienzer et al., 2017). The use of functional 

omics data in AOPs in general is not well studied, leading to a lack of clear linkage and relevance to such adverse 

outcomes. The difficulty to establish a clear link between established MoA in model organisms and chemically 

induced human toxic endpoints was shown in Chapter 3 as well. Hence, it is necessary to further establish pathways 

to connect functional omics and phenotype, in the form of MoA or AOPs (Buesen et al. 2017; Sahlin, 2018; Schriks 

et al., 2011) and to see which of these MoA or AOPs in model organisms have relevance and predictive value for 

chemically induced human toxicity endpoints. Future research and developments of omics as well as a standardized 

way to define MoAs are necessary before gaining regulatory acceptance (Sahlin, 2018). 
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A concrete promising framework towards assessing possible risks for a mixture of chemicals in water is recently 

provided by Xia et al. (2020) and Wang et al. (2018) (Figure 7 and 8). This method works with groups of biomarkers 

(the ‘signature’ features) that represent a specific pathway that can be triggered following exposure to chemicals. 

With a concentration range of exposure a ‘Point of Departure’ (POD) it is established, relating to transcriptional 

potency. This POD was set for individual genes to the dose where the gene expression surpassed 1 standard 

deviation from the control. For pathways the POD was set to the dose where 20% of the genes of the pathway 

were expressed (EC20). This means the potency of a particular chemical (mixture) to trigger responses can be 

established for the ‘signature’ features that indicate a specific pathway, or for a single biomarker feature. For a 

chemical or a mixture, the size of the effect on different pathways can be compared. For individual compounds, a 

typical pattern can be established of the potency of chemicals to trigger particular pathways (see Figure 7 and 8). 

For two mixtures of 12 compounds with different MoA, it was shown that mixture effects per pathway were as 

expected if these were calculated by compound addition (Xia et al., 2020; Wang et al., 2018).  

 

 

Figure 7. Point of departure (POD) analysis of pathways (Xia et al., 2020). This leads to relative potencies based on 

EC20 of the unknown mixture to affect different MoA (see Figure 8 for a visualization from Xia et al., 2020) in a 

model species. As an addition, these MoA can be linked to human relevant health effects, and trigger values can be 

derived. 

 

To increase applicability of such a method for risk assessment, pathways or other (novel) established expressed 

‘signatures’ should be (statistically) linked to the likelihood of presence of chemicals that are linked to a particular 

human relevant toxicological endpoint. The more pathways can be identified that link to a human toxicological 

endpoint, the wider the range of possible adverse mixture effects is that can be signaled by the assay.  

Routine implementation of new technologies is supported if data can be easily interpreted. This approach can also 

be expanded with ‘trigger values’ as indication for a potential risk associated with the environmental mixture 

studied. Trigger values are generally derived based on human relevant guideline concentrations (Béen et al., 2020). 

Functional omics data for a sufficient number of individual compounds, preferably under similar experimental 

setup, is required to derive trigger values for these types of bioassays. For each of the effects (pathways 

representing MoA) of interest, a reference compound can be tested in the model species alongside the unknown 

mixtures. In this way, the relative potency of that particular effect in the mixture can be established more precisely 

than by using separate control studies. It might also be possible to derive -omics trigger values for specific toxicity 

endpoints. 
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Figure 8. Clustering of twelve chemicals based on established PODs (figure from Xia et al, 2020). Similarly, an 

unknown mixture can be assessed based on the measured effects on these pathways. Trigger values could signal 

possible risks per detected MoA. Abbreviations: TCS: Triclosan; BaP: Benzo(a)pyrene; BbF: Benzo(b)fluoranthene; 

BPA: Bisphenol A; CLP: Chlorophene; CPD: Cyprodinil; DFC: Diclofenac; DIR: Diuron; GES: Genistein; PCZ: 

Propiconazole; TPP: Triphenylphosphate, DIZ: Diazinon. 

 

If the concentration response curve gives an unreliable identification of the MoA, a tiered approach can be 

considered. Relevant in vitro bioassays can target suspected MoA more precise after the initial whole organism 

omics assay (Fang et al. 2020). 

4.2 Recommended steps for implementation 

Although omics technologies are being regarded as the future generation of effect-based monitoring tools (Leung, 

2018) they are currently not yet incorporated in any environmental monitoring scheme (Sahlin, 2018). An uptake in 

water quality regulation will boost the use of omics as an effect based monitoring tool.  

Several issues need to be solved before an omics technique can be implemented as an early warning for risks in 

(sources for) drinking water.  

It is essential to develop standardized frameworks for consistency and to reduce methodological (see paragraph 

3.2.3 in this report) and technical uncertainties. With sufficient standardization, -omics data can be reliably 

interpreted and integrated into regulatory frameworks across borders (Buesen et al., 2017). A standard model 

organism, with a standard study design and standard data processing per omics- technique, such as proposed in the 

previous paragraph 4.1. will help interpretability of an effect-based monitoring tool based on omics.  

Standard data processing possibilities will also depend on established and verified ‘signatures’ of features in –omics 

data that are indicative and predictive for the presence of a mixture that may trigger a human relevant toxicological 

endpoint (either a statistical link or via an established AOP), for presence of chemicals of particular chemical 

classes, or for presence of chemicals with particular MoA. Such signatures can be identified in further scientific 

research with functional omics techniques. Since functional omics methods are still relatively novel, especially in 

assessing drinking water quality, still more experiments with exposures of chemicals with known mechanisms and 

adverse outcomes are needed to reliably establish these mechanistic links. Only in very few studies the responses 
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of functional omics assays were connected to possible adverse outcomes at higher levels (e.g. reproduction, 

impaired growth) in a predictive approach (Sahlin, 2018). Proteomics and metabolomics are arguably the best 

candidates for an omics- based risk assessment tool because they have closer link to phenotype of an adverse 

effect (such as impaired growth or reproduction) (Sahlin, 2018). These are however also the techniques that are 

least developed and tested.  

To bridge the gap between expression of features in model organisms and human health risks of low-level mixtures 

of chemicals in water, we will first have to establish MoA of individual chemicals, to be able to link biomolecular 

expression (-omics) patterns common for chemicals with that MoA. In paragraph 3.1 a poor linkage between MoA 

and human toxicological endpoints in chemicals was demonstrated, and this also needs improvement. For this 

purpose public and non-public data on effects of individual chemicals in in vitro tests can be analysed. If a chemical 

triggers a biomolecular response in an in vitro test, the MoA that is addressed in that in vitro test can be assigned to 

that chemical. In addition or as an alternative, QSARS can be developed that predict the MoA. Another way to 

establish MoA of chemicals is to look at existing information on MoA of chemicals in (REACH) risk assessment 

reports (Heusink et al., 2020) and literature (Lee et al., 2015; Spaan et al., 2019). These MoAs in turn will be linked 

via a predictive model to the relevant human endpoints established in literature of these chemicals. The resulting 

toxicological knowledge of the meaning/relevance of expressed biomolecular pathways after relative short 

exposures in model organisms can be used in risk assessment. 

Lastly, Leung (2018) stressed that there is a lack of expertise with omics technology. Hence, there is a great need 

for increased communication and exchange of knowledge and experiences between researchers and laboratories 

to enhance and improve the use of omics (Sahlin, 2018), and to support their implementation for water quality 

monitoring.  
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5 Conclusions and recommendations 

 The advantages of using bioassays based on functional omics techniques merit making the effort to build 

such a framework for the assessment of mixture toxicity in drinking water or in sources for drinking water.  

 Progress in technology is continuously being made, the field of functional omics remains relevant. Most 

efforts are, however, made in ecotoxicology (no human relevance) and drug development (no mixtures). 

 Although there is a lot of data on functional omics following chemical exposure of model organisms or in 

vitro bioassays, the lack of standardization of experiments cause high variability in the expression of 

features. For uptake in any regulatory framework a standardized approach needs to be developed. 

 The biggest hurdle for application of omics to drinking water quality monitoring is the lack of study 

towards the expression of biomolecules in relation to AOP of chemicals. The MoA is a useful concept to act 

as an intermediary between the initially expressed biomolecules and the adverse outcome.  

 Proteomics and metabolomics are the best candidates to use in water quality monitoring of adverse 

effects because they have a closer link to phenotype, however existing data is still overrepresented by 

transcriptomics.  

 The ease of operation, their intermediary position in trophic levels and the high sensitivity to chemicals 

with different MoA and toxicological endpoint suggests that Daphnia is an appropriate model organism. It 

remains to be seen if signatures for all relevant toxicity endpoints could be established in this model 

organism. Nematodes could be a good candidate as well for the same reasons, however these are less 

frequently studied in a water quality context. 

 The development of a concrete framework for risk assessment of chemical mixtures in water for drinking 

water (sources) was proposed, based upon the work of Xia et al. (2020). 
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I Appendix I: Methods  

I.I List of human relevant toxicological endpoints of chemicals 

The list of endpoints was constructed with the downloaded chemicals from online sources in Table 1 Appendix I 

with help of a custom in-house R-script. From the list of 1763 chemicals, 1379 chemicals had a single endpoint, 231 

had two endpoints, 96 had three endpoints, 65 had four or more endpoints.  

 

Table 1 Appendix I. Overview and short description of the sources for uptake of chemicals in the list of chemicals 

with a human relevant endpoint. 

 

Weblink 

 

Source 

number 

Source Description 

https://oehha.ca.gov/proposition-65/crnr/chemicals-meeting-

critieria-listing-developmental-and-reproductive-toxicants 

S1 California office of 

environmental health hazard 

Assessment: source U.S. EPA 

https://saferchemicals.org/wp-

content/uploads/2014/11/mindthestore.org-full-list-toxic-

chemicals.pdf 

S2 Organization Safer chemicals, 

healthier families: source 

diverse 

https://www.health.state.mn.us/communities/environment/childen

vhealth/docs/chlist/mdhchc2019.pdf OR 

https://www.health.state.mn.us/communities/environment/childen

vhealth/tfka/highconcern.html#list 

S3 Minnesota Department of 

Health Toxic Free Kids Act 

Chemicals of High Concern 

June 2019 

https://echa.europa.eu/nl/ed-assessment S4 ECHA European Chemicals 

Agency 

https://www.chemsafetypro.com/Topics/Restriction/UN_list_identifi

ed_endocrine_disrupting_chemicals_EDCs.html 

S5 published by the International 

Panel on Chemical Pollution 

(IPCP) commission by the UN 

Environment 

https://sinlist.chemsec.org/endocrine-disruptors/ S6 ChemSec Sinlist (REACH 

compliant information) 

https://edlists.org/the-ed-lists/list-i-substances-identified-as-

endocrine-disruptors-by-the-eu?page=0 

S7 Recognised by EU in PPPR, BPR 

or REACH (2020) 

https://cfpub.epa.gov/ncea/iris/search/index.cfm  

Search filters: Route of exposure: oral. Selection of endpoint of 

interest in ‘Organ/System Affected’. For most endpoints, all 

chemicals were selected. Except for spleen toxicity, thyroid toxicity 

and kidney toxicity. For spleen toxicity, ‘immune’ was selected and 

only the chemicals of which the ‘Critical Effect or Tumor Type’ 

contained spleen, splenic or splenomegaly. For thyroid toxicity, 

‘endocrine’ was selected and only the chemicals of which the 

‘Critical Effect or Tumor Type’ contained thyroid or TSH. 

For kidney toxicity, ‘urinary’ was selected and only the chemicals of 

which the ‘Critical Effect or Tumor Type’ contained kidney, renal, 

nephro, glomerulonephritis. 

S8 Integrated Risk Information 

System (IRIS) from EPA (United 

States Environmental 

Protection Agency) 

 

 

https://oehha.ca.gov/proposition-65/crnr/chemicals-meeting-critieria-listing-developmental-and-reproductive-toxicants
https://oehha.ca.gov/proposition-65/crnr/chemicals-meeting-critieria-listing-developmental-and-reproductive-toxicants
https://www.health.state.mn.us/communities/environment/childenvhealth/docs/chlist/mdhchc2019.pdf
https://www.health.state.mn.us/communities/environment/childenvhealth/docs/chlist/mdhchc2019.pdf
https://echa.europa.eu/nl/ed-assessment
https://www.chemsafetypro.com/Topics/Restriction/UN_list_identified_endocrine_disrupting_chemicals_EDCs.html
https://www.chemsafetypro.com/Topics/Restriction/UN_list_identified_endocrine_disrupting_chemicals_EDCs.html
https://sinlist.chemsec.org/endocrine-disruptors/
https://edlists.org/the-ed-lists/list-i-substances-identified-as-endocrine-disruptors-by-the-eu?page=0
https://edlists.org/the-ed-lists/list-i-substances-identified-as-endocrine-disruptors-by-the-eu?page=0
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https://www.uspharmacist.com/article/drug-induced-acute-renal-

failure   

S9 Howell HR (2007) Drug-Induced 

Acute Renal Failure. US Pharm. 

32(3):45-50. 

https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-

ECVAM/datasets/genotox/ECVAM_Ames_positives_DB.xls 

S10 JOINT RESEARCH CENTRE big 

data platform: ECVAM 

European Centre for the 

Validation of Alternative 

Methods data 

https://doi.org/10.5281/zenodo.2648768 S11 NORMAN List of Human 

Neurotoxins 

https://www.env-health.org/IMG/pdf/06tl9094page.pdf 

(DOI:10.1016/S01406736(06)69665-7) 

S12 Grandjean P, Landrigan PJ 

(2006) Developmental 

neurotoxicity of industrial 

chemicals, The Lancet 

Chemicals (n=201) known to be 

neurotoxic in man 

http://192.82.104.231/documents/ehc/ehc/ehc180.htm S13 WHO International program on 

chemical safety (IPCS) INCHEM 

Internationally peer reviewed 

chemical safety information 

https://haz-map.com/heptox1.htm S14 NCI National Library of 

Medicine: HAZ-MAP 

Information on Hazardous 

Chemicals and Occupational 

Diseases:  Industrial Chemicals 

Associated with Acute Liver 

Injury as the Primary Toxic 

Effect: 

Illness or Death 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783956/ S15 Björnsson ES (2016) 

Hepatotoxicity by Drugs: The 

Most Common Implicated 

Agents Int J Mol Sci. 17(2): 224 

https://comptox.epa.gov/dashboard/chemical_lists/neurotoxins S16 EPA NEURO: Neurotoxicants 

Collection from Public 

Resources 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598532/  S17 Petejova et al. (2019) Acute 

toxic kidney injury Ren Fail. 

41(1): 576–594. 

 

https://www.dovepress.com/drug-induced-impairment-of-renal-

function-peer-reviewed-fulltext-article-IJNRD  

S18 Pazhayattil GS, Shirali A (2014) 

Drug-induced impairment of 

renal function Int J Nephrol 

Renovasc Dis. 2014;7:457-468 

https://doi.org/10.2147/IJNRD.

S39747 

http://www.inchem.org/documents/ehc/ehc/ehc119.htm#PartNum

ber:5  

S19 WHO international programme 

on chemical safety, 

Environmental health criteria 

https://www.uspharmacist.com/article/drug-induced-acute-renal-failure
https://www.uspharmacist.com/article/drug-induced-acute-renal-failure
https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/genotox/ECVAM_Ames_positives_DB.xls
https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/genotox/ECVAM_Ames_positives_DB.xls
https://www.env-health.org/IMG/pdf/06tl9094page.pdf
http://192.82.104.231/documents/ehc/ehc/ehc180.htm
https://haz-map.com/heptox1.htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783956/
https://www.chemsafetypro.com/Topics/Restriction/UN_list_identified_endocrine_disrupting_chemicals_EDCs.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598532/
https://www.dovepress.com/drug-induced-impairment-of-renal-function-peer-reviewed-fulltext-article-IJNRD
https://www.dovepress.com/drug-induced-impairment-of-renal-function-peer-reviewed-fulltext-article-IJNRD
http://www.inchem.org/documents/ehc/ehc/ehc119.htm#PartNumber:5
http://www.inchem.org/documents/ehc/ehc/ehc119.htm#PartNumber:5
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119. Principles and methods for 

the assessment of 

nephrotoxicity associated with 

exposure to chemicals 

 

Table 2 Appendix I. Overview of the number of chemicals per human relevant endpoint, and the sources for the 

chemicals.  

 

Human Endpoint Identified Substances (1763)  

 

Source 

Developmental / Reproductive toxicity 267 1,2,3,8 

Endocrine disruptor 278 2,3,4,5,6,7,8 

Carcinogen 637 2,3,8 

Neurotoxin 579 3,8,11,12,16 

Immunotoxicity 48 3,8,13 

Liver toxicity 249 3,8,14,15 

Hematotoxicity 74 3,8 

Kidney toxicity 210 3,8,9,17,18,19 

Thyroid toxicity 40 3,8 

Spleen toxicity 17 3,8 

Cardiotoxicity 14 3,8 

 

  



 

40 

 

II Appendix II: Comparative overview of 

functional omics studies in literature and 

databases 

II.I Overview of functional omics studies in literature  

To obtain insight into the availability of omics data in literature, a literature search was performed using Scopus.com. 

Out of 1.296.725 ( 11-08-2020) “*omics” articles, 15.011 articles were found using the following search term: ( TITLE-

ABS-KEY ( metabolomic* )  OR  TITLE-ABS-KEY ( transcriptomic* )  OR  TITLE-ABS-KEY ( proteomic* ) )  AND TITLE-

ABS-KEY ( expos* ). ‘TITLE-ABS-KEY ( expos* )’ was added to select the articles describing changes in physiology due 

to exposure only. The number of articles was reduced to 3.629 articles following selection of organisms exposed to 

a chemical using ‘AND TITLE-ABS-KEY (chemical*)’, to filter out organisms exposed to environmental conditions. 

Limiting the search to articles solely, 3156 articles of potential interest were found. To select articles which use 

organisms as bioassays for monitoring purposes ‘AND ( *monitor* ) was added. In total 1147 articles were selected 

using the following search query:  

( TITLE-ABS-KEY (metabolomics*) OR TITLE-ABS-KEY ( transcriptomic* ) OR TITLE-ABS-KEY ( proteomic*) ) AND TITLE-ABS-KEY ( expos* ) AND TITLE-

ABS-KEY ( chemical* ) AND ( *monitor* ) AND ( LIMIT-TO (DOCTYPE , “ar” ) ). 

The 1147 selected articles were used to determine the amount of transcriptomic, proteomic and metabolomics 

articles published at that point (11-08-2020). In addition, the organisms most represented in the selected articles 

were looked into to further specify the search for omics data relevant to this project. The following model search 

query was used:  

( TITLE-ABS-KEY (metabolomics*) OR TITLE-ABS-KEY ( transcriptomic* ) OR TITLE-ABS-KEY ( proteomic*) ) AND TITLE-ABS-KEY ( expos* ) AND TITLE-

ABS-KEY ( chemical* ) AND ( *monitor* ) AND ( TITLE-ABS-KEY ( zebrafish* ) OR TITLE-ABS-KEY ( “danio rerio” ) ) AND ( LIMIT-TO (DOCTYPE , “ar” ) 

). 

Following selection of the organisms of interest, the following three search queries were used to select the final batch 

of articles:   

( TITLE-ABS-KEY ( metabolomic* ) OR TITLE-ABS-KEY ( transcriptomic* ) OR TITLE-ABS-KEY ( proteomic* ) OR TITLE-ABS-KEY ( genomic* ) ) AND 

TITLE-ABS-KEY ( expos* ) AND TITLE-ABS-KEY ( chemical* ) AND ( *monitor* ) AND ( TITLE-ABS-KEY ( “danio rerio” )  OR TITLE-ABS-KEY ( zebrafish 

) ) AND ( LIMIT-TO ( DOCTYPE ,  "ar" ) ), 

( TITLE-ABS-KEY ( metabolomic* ) OR TITLE-ABS-KEY ( transcriptomic* ) OR TITLE-ABS-KEY ( proteomic* ) OR TITLE-ABS-KEY ( genomic* ) ) AND 

TITLE-ABS-KEY ( expos* ) AND TITLE-ABS-KEY ( chemical* ) AND ( *monitor* ) AND ( TITLE-ABS-KEY ( *mussel* ) OR TITLE-ABS-KEY ( mytilus ) OR 

TITLE-ABS-KEY ( unionidae ) OR TITLE-ABS-KEY ( mytilidae ) ) AND ( LIMIT-TO ( DOCTYPE ,  "ar" ) ), and 

( TITLE-ABS-KEY ( metabolomic* ) OR TITLE-ABS-KEY ( transcriptomic* ) OR TITLE-ABS-KEY ( proteomic* ) OR TITLE-ABS-KEY ( genomic* ) ) AND 

TITLE-ABS-KEY ( expos* ) AND TITLE-ABS-KEY ( chemical* ) AND ( *monitor* ) AND ( TITLE-ABS-KEY ( daphnia ) ) AND ( LIMIT-TO ( DOCTYPE ,  "ar" 

) ). 

The analyses of the results of this literature search can be found in Chapter 3.  
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II.II Overview of functional omics studies in databases 

Omics data is often shared in repositories online. Per omics technique, several data repositories exist. Most of them 

are integrated into the open source platform Omics Discovery Index (https://www.omicsdi.org/). As 23 repositories 

are integrated in OmicsDI, this platform was used for this project. OmicsDI combines the following data repositories: 

EGA (European Genome-Phenome Archive; genomics), MetaboLights (metabolomics), PeptideAtlas (proteomics), 

GPMDB (Global Proteome Machine Database; proteomics), MetabolomeExpress (metabolomics), GNPS (Global 

Natural Products Social Molecular Networking; metabolomics), ArrayExpress of Functional Genomics Data 

(genomics), LINCS (Library of Integrated Network-based Cellular Signatures; multiomics), PAXDB (Protein Abundance 

Database; proteomics), JPOST Repository (Japan ProteOme Standard Repository; proteomics), ExpressionAtlas 

(genomics), Pride (proteomics), MetabolomicsWorkbench (metabolomics), dbGaP (database of Genotypes and 

Phenotypes; genomics), GEO (NCBI Gene Expression Omnibus; genomics), ENA (Eurpean Nucleotide Archive; 

transcriptomics/genomics), BioModels (models), EVA (European Variation Archive (genomics), MassIVE (proteomics), 

NODE (National Omics Data Encyclopedia; transcriptomics/genomics), Physiome Model Repository (models), Cell 

Collective (models), FAIRDOMHub (models). The OmicsDI database is a convenient platform combining omics data 

from various omics platforms. It is possible to search specific chemicals, yet not exposure information. In addition, 

by clustering many databases, overlap between hits were regularly seen. In several cases, both the dataset behind 

the article and the article were up-loaded separately. In addition, often datasets of multiple chemicals were uploaded 

per single chemical, making the database less convenient for the selection of additional databases/articles with ≥6 

chemicals.  To determine if additional omics datasets could be gathered from OmicsDI, the open source platform 

integrating datasets coming from multiple omics studies, was searched. From the total of 504 Danio rerio datasets, 

5 additional datasets containing ≥ 6 chemicals could be found. One dataset was included in the literature search. For 

Daphnia (magna + pulex), 2 additional datasets containing ≥ 6 chemicals could be found, whilst 3 were also found 

during the literature search. The additional datasets only contained genomics/transcriptomics data and belonged to 

articles which were not found during the literature search due to the addition of the search term ‘*monitor*’. The 

addition of this term to the literature search query reduced the total hits from 3156 to 1147, which made the search 

more manageable. 

To determine if additional datasets were available through OmicsDI, the following search query was used:  

expos* AND ((zebrafish OR (Danio rerio)) OR (mytilus OR perna OR mussel) OR ((Daphnia magna) OR (Daphnia pulex))) 

At the time of the search (07-09-2020), this query found 923 hits, which could be broken down into 504 Danio rerio 

datasets, 99 Daphnia magna datasets, 25 Daphnia pulex datasets, 29 Mytilus galloprovincialis datasets, 6 Mytilus 

edulis datasets and 2 Mytilus californianus datasets. As the addition of ‘AND chemical*’, to remove exposure to 

environmental factors (as with the literature search query), reduced the number of hits by 41%. The search term 

above was taken as a starting point. Per organism, a list of articles containing ≥ 6 different chemicals were selected. 

The datasets on the list were integrated with the list of literature articles selected in Chapter 3.  

https://www.omicsdi.org/
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