DE VERWIJDERING VAN ZOUTEN EN ORGANISCHE VERBINDINGEN MET BEHULP VAN CELLULOSEACETAAT-MEMBRANEN DE VERWIJDERING VAN ZOUTEN EN ORGANISCHE VERBINDINGEN MET BEHULP VAN CELLULOSEACETAATMEMBRANEN

Mededeling nr. 53 van het KIWA

Rijswijk, mei 1977

ing. A. Kostense

628.161.067.064 + 532.71 : 549.73/.76 : 547.1/.9

INHOUD

- 1. Inleiding
- De structuur van het celluloseacetaatmembraan
- 3. Het transport van water en zouten door het membraan
- 4. Transportmodellen
- 4.1 Het "preferential sorption capillary flow mechanism"
- 4.2 Het "solution diffusion" model
- 5. Het transport van organische verbindingen door het membraan
- 5.1 Het onderzoek van Duvel en Helfgott
- 5.2 Het onderzoek van Matsuwra en Sourirajan
- 6. De verwijdering van organische stoffen met andere membraanmaterialen
- 7. Literatuur

VERANTWOORDING

De literatuurstudie die in dit rapport is beschreven, maakt deel uit van het speurwerk, dat in het kader van de speurwerkovereenkomst tussen RID en KIWA wordt uitgevoerd.

1. INLEIDING

Ofschoon hyperfiltratie oorspronkelijk als ontzoutingstechniek is ontwikkeld, rijst de vraag in hoeverre dit proces in staat is organische verbindingen uit het water te verwijderen.

In oppervlaktewater en in afvalwater zijn vele organische verbindingen in opgeloste of in colloïdale toestand aanwezig.

Indien hyperfiltratie voor de behandeling van deze typen water wordt toegepast, is het belangrijk enig inzicht te verkrijgen in de factoren, die bepalen in welke mate deze organische verbindingen door het membraan worden tegengehouden.

In deze beperkte studie, waarin voornamelijk celluloseacetaatmembranen zullen worden beschouwd, zal op dit onderwerp nader worden ingegaan.

2. DE STRUCTUUR VAN HET CELLULOSEACETAATMEMBRAAN

Voordat op het transport van organische verbindingen door een celluloseacetaatmembraan wordt ingegaan, zal eerst aandacht worden besteed aan de structuur van het celluloseacetaatmembraan.

Volgens Reid en Breton (1) zijn celluloseacetaatmembranen opgebouwd uit een netwerk van lange polymeerketens, die een lengte van 15000 Å en een breedte van 15 Å bezitten. De oriëntatie van deze ketens in het membraan is voor het grootste deel willekeurig. Op sommige plaatsen in het membraan liggen de ketens echter op ordelijke wijze naast elkaar, zodat kristallijne gebiedjes ontstaan, die continu in grootte en plaats veranderen. In deze gebiedjes worden de polymeermoleculen door Van der Waalskrachten en door waterstofbindingen bijeengehouden. Bij de ketens die niet georiënteerd zijn, zijn de ruimten tussen de ketens veel groter en ontstaan er amorfe gebieden, waarin de Brownse beweging door de aanwezigheid van de kristallijne gebiedjes wordt beperkt.

3. HET TRANSPORT VAN WATER EN ZOUTEN DOOR HET MEM-BRAAN

Indien een celluloseacetaatmembraan met water in aanraking komt, treedt adsorptie van water in de amorfe gebieden van het membraan op. Deze adsorptie is het gevolg van de vorming van waterstofbindingen met de celluloseacetaatmoleculen in het membraan. De poriën van het membraan worden met dit gebonden water opgevuld. De watermoleculen worden door de membraanwand getransporteerd door verplaatsing van de ene adsorptieplaats naar de andere. Het transport van ionen en van moleculen die geen waterstofbindingen kunnen vormen door de membraanwand vindt op een andere wijze plaats. De polymeerketens in de amorfe gebieden van het membraan zijn niet stevig aan elkaar gebonden, zodat een ion of molecuul in de polymeermatrix kan worden opgenomen in een ruimte die voor dit ion of molecuul groot genoeg is. In het membraan beweegt het ion of molecuul zich van de ene open ruimte naar de andere, waarbij de drijvende kracht de concentratiegradiënt in het membraan is. De diffusiesnelheid van ionen door de membraanwand wordt onder meer bepaald door de effectieve straal van het ion, die op zijn beurt weer bepaald wordt door de mate van hydratatie van het ion. In het algemeen geldt dat de diffusiesnelheid afneemt naarmate de valentie van het ion groter is.

Volgens Matsuwra en Sourirajan (2) wordt de mate waarin zouten door het membraan worden tegengehouden bepaald door het verschil in vrije enthalpie van een bepaald ion of molecuul in de oplossing en in de buurt van de membraanwand.

- 4 -

4. TRANSPORTMODELLEN

4.1 Het "preferential sorption capillary flow mechanism"

Er zijn verschillende modellen bekend om het transport van water en zouten door de membraanwand te verklaren. Het bekendste model is het "preferential sorption capillary flow mechanism" van Sourirajan (3). Sourirajan gaat ervan uit dat het membraan een microporeuze structuur bezit en dat het membraanmateriaal door zijn fysisch-chemische eigenschappen een voorkeur heeft voor de adsorptie van water en de afstoting van ionen. Als gevolg van de adsorptie van water wordt aan de membraanwand een dunne laag zuiver water gevormd, die door de aangelegde werkdruk door de poriën wordt afgevoerd. Dit resulteert in een optimale poriediameter die gelijk is aan tweemaal de dikte van de geadsorbeerde waterlaag. In figuur 1 is dit model schematisch weergegeven.

4.2 Het "solution-diffusion" model

Een tweede model is het "solution-diffusion" model. Volgens dit model wordt het membraan dan beschouwd als een dichte wand zonder poriën. Zowel de opgeloste stof als het oplosmiddel moeten eerst in de membraanwand "oplossen" alvorens stoftransport door diffusie door het membraan kan plaatsvinden.

- 5 -

5. HET TRANSPORT VAN ORGANISCHE VERBINDINGEN DOOR HET MEMBRAAN

5.1 Het onderzoek van Duvel en Helfgott

Duvel en Helfgott (4) hebben onderzoek verricht naar de mate waarin bepaalde organische verbindingen door celluloseacetaatmembranen worden tegengehouden. De experimenten zijn uitgevoerd bij een werkdruk van 42 ato, een temperatuur van 40 °C en een concentratie aan opgeloste stof van 0,01 M. Bij het transport van organische verbindingen door een membraan spelen volgens Duvel en Helfgott de volgende factoren een rol.

- De grootte van het molecuul

Organische verbindingen met een hoog molecuulgewicht (proteinen en dergelijke) worden nagenoeg volledig door het membraan tegengehouden. Bij verbindingen met een lager molecuulgewicht kunnen grote verschillen in retentie optreden. Voor een reeks verbindingen met nagenoeg dezelfde chemische eigenschappen (homologe reeks) geldt dat de retentie toeneemt met het toenemend aantal koolstofatomen. In grafiek 1 is het verband tussen de retentie en het aantal koolstofatomen weergegeven voor een aantal alcoholen.

- De vorm van het molecuul

- Behalve de grootte speelt ook de vorm van het molecuul een belangrijke rol. Een toenemende mate van vertakking van het molecuul heeft een sterke verhoging van de retentie tengevolge. Uit grafiek 2 blijkt dat
- 1. de primaire alcoholen zonder zijketen het membraan gemaakelijk kunnen passeren;

- de primaire alcoholen met een methylgroep in de zijketen of de secundaire alcoholen beter door het membraan worden tegengehouden;
- 3. de tertiaire alcoholen het best door het membraan worden tegengehouden.

Duvel en Helfgott toonden een relatie aan tussen de retentie van het molecuul en het quotiënt van het molaire volume van de verbinding en de lengte van het molecuul (grafiek 3). Uit de grafiek blijkt tevens dat alcoholen met meer dan acht koolstofatomen zich als vertakte moleculen gaan gedragen.

Omdat de genoemde alcoholen nagenoeg dezelfde chemische eigenschappen bezitten, kan worden geconcludeerd dat de verschillen in retentie het gevolg zijn van het verschil in diffusiesnelheid van de alcoholen door de membraanwand.

- De chemische eigenschappen van het molecuul Duvel heeft eveneens experimenten uitgevoerd met verbindingen die nagenoeg dezelfde afmetingen bezitten, maar die verschillen in chemische eigenschappen. Volgens Duvel en Helfgott wordt de retentie van een organische verbinding niet alleen bepaald door de diffusiesnelheid, maar ook door de oplosbaarheid van de verbinding in het membraan. Deze oplosbaarheid wordt bepaald door de mate waarin waterstofbindingen met het membraan worden gevormd. Als de neiging tot vorming van waterstofbindingen groot is, zal meer van de verbinding in het membraan oplossen, zodat meer van de stof beschikbaar is voor diffusie. De organische verbinding zal in het membraan cross-links verbreken, zodat een open ruimte wordt gevormd.

Moleculen, die zowel protondonor als protonacceptor zijn kunnen sterkere waterstofbindingen vormen dan moleculen die alleen protoacceptor zijn. Zowel protondonor als protonacceptor zijn:

- alcoholen
- amiden
- amines
- carbonzuren.

Alleen protonacceptor zijn:

- esters
- aldehyden
- ketonen
- sulfonen.

Alcoholen, amiden, amines en carbonzuren zullen door hun sterkere neiging tot vorming van waterstofbindingen een lagere retentie hebben dan de esters, aldehyden, ketonen en sulfonen. Carbonzuren kunnen zeer sterke bindingen vormen en hebben dientengevolge de laagste retentie. De retentie van de aminen en de alcoholen is nagenoeg gelijk, evenals de retentie van de aldehyden en ketonen. Duvel vond dat de retentie voor derivaten van butaan in de volgende volgorde toeneemt:

butaancarbonzuur < 1-butylamine, butylamide, 1-butanol < diethylsulfon, butylaldehyde, 2-butanon < methylpropionaat, ethylacetaat (zie tabel 1).

Een belangrijke plaats wordt ingenomen door de aromatische alcoholen. Deze kunnen zeer sterke bindingen met het membraan vormen, omdat nu ook de II-elektronen voor de binding beschikbaar zijn. Vaak treedt voor dergelijke verbindingen een verrijking in het produkt op (negatieve retentie).

- 8 -

Dit verschijnsel doet zich niet alleen voor bij fenol, maar ook bij methanol, aniline en chinon. De retentie van onverzadigde koolwaterstoffen ligt vaak lager dan de retentie van de corresponderende verzadigde verbindingen. Halogeenatomen als substituenten verhogen in het algemeen de retentie van het molecuul, waarschijnlijk als gevolg van hun grote afmetingen.

5.2 Het onderzoek van Matsuwra en Sourirajan

De resultaten van Duvel en Helfgott worden voornamelijk verklaard op basis van het verschil in oplosbaarheid van de verbinding in het membraan; die bepaald wordt door de mate waarin waterstofbindingen met het membraan worden gevormd. Er is in het werk van Duvel en Helfgott echter geen parameter gebruikt als maat voor de vorming van deze waterstofbindingen met het membraan en er is geen kwantitatieve correlatie ontwikkeld tussen de retentie en de chemische eigenschappen van het molecuul. Matsuwra en Sourirajan (5, 6) hebben dit wel gedaan. Zij beschouwen de retentie van een verbinding als een functie van de mate waarin water aan het membraan wordt geadsorbeerd (volgens "preferential sorption capillary flow mechansim"). Voor een gegeven membraanmateriaal is de voorkeursadsorptie voor water een functie van de chemische eigenschappen van de in het water opgeloste verbinding. Deze voorkeursadsorptie voor water wordt zowel door de functionele groep van de verbindingen als door de substituent bepaald.

Eén van de criteria die de retentie van organische verbindingen in waterige oplossingen bepalen is het zogenaamde "polar effect" van het molecuul.

- 9 -

Een maat voor dit "polar effect" is de neiging tot vorming van waterstofbindingen van het molecuul met het membraan en/of de mate van dissociatie van het molecuul in de oplossing.

De neiging tot vorming van waterstofbindingen is een uitdrukking voor de strekking van de OH-binding in het molecuul.

Voor fenolen, alcoholen en carbonzuren wordt de neiging tot vorming van waterstofbindingen weergegeven door de verschuiving van de OH-band in het IR-spectrum in tetra- en in etheroplossingen (Δv_S). De mate van dissociatie wordt bepaald door de evenwichtsconstante K_a en de concentratie van de oplossing.

Zowel Δv_S als K_a zijn gerelateerd aan de getallen van Taft en Hammett (T^{*} en T), die een maat zijn voor het effect van een substituent op het "polar effect" van het molecuul. In de tabellen 2 en 3 zijn voor een aantal alcoholen en fenolen de waarden van Δv_c en T^{*} of T weergegeven.

De relatie tussen de verschillende genoemde grootheden zijn in een aantal grafieken weergegeven:

- in grafiek 4 is voor de in de tabellen genoemde alcoholen het verband tussen Δv_S en de retentie weergegeven;
- in de grafieken 5 en 6 is de relatie tussen Δv_S en respectievelijk de getallen van Taft en Hammett voor de alcoholen en fenolen weergegeven;
- in grafiek 7 is de relatie tussen het getal van Taft en de retentie weergegeven.

Voor carbonzuren kan de strekking van de OH-binding zodanig zijn, dat dissociatie optreedt.

- 10 -

In grafiek 8 is het verband tussen de pK_a -waarde van carbonzuren en de retentie weergegeven en in grafiek 9 de relatie tussen de pK_a -waarden en de getallen van Taft en Hammett.

Uit de grafieken kan worden geconcludeerd dat een toename van Δv_S de retentie van alcoholen en fenolen verlaagt en dat een toename van de K_a en de mate van dissociatie de retentie van carbonzuren in de oplossing verhoogt.

Aldehyden, ketonen, ethers en esters zijn protonacceptors die in waterige oplossingen bijna altijd in ongedissocieerde toestand voorkomen. Bij deze verbindingen wordt de neiging tot vorming van waterstofbindingen weergegeven door de verschuiving van de OD-band in het IR-spectrum van CH_3OD in benzeen $(\Delta v_{\rm S}(b))$. De sterkte van de waterstofbinding neemt toe als de waarde van $\Delta v_{\rm S}(b)$ toeneemt. Wanneer de neiging tot vorming van waterstofbindingen toeneemt neemt de retentie af als de verbinding een protondonor is en toe als de verbinding een protontor is. In tabel 4 is voor een aantal aldehyden, ketonen, esters, ethers en aminen de waarden van $\Delta v_{\rm S}(b)$, $pK_{\rm a}$ en T of T^{*} weergegeven.

Het verband tussen de verschillende grootheden is in een aantal grafieken weergegeven.

- In grafiek 10 is voor een aantal in tabel 4 genoemde esters het verband tussen $\Delta v_{\rm S}(b)$ en de retentie weergegeven.
- In grafiek 11 is voor een aantal esters, ethers, aldehyden en ketonen het verband tussen $\Delta v_{\rm S}(b)$ en pK_a weergegeven.
- In grafiek 12 is voor dezelfde groepen verbindingen het verband tussen $\Delta v_{S}(b)$ en het getal van Taft weergegeven.

- 11 -

- In grafiek 13 is het verband weergegeven tussen de retentie en het getal van Taft.

Amines komen in water in het algemeen in gedeeltelijk gedissocieerde vorm voor. De retentie van de amines wordt onder andere bepaald door de pK_a -waarde en de mate van dissociatie. Een toename van de pK_a -waarde en van de dissociatiegraad heeft een toename van de retentie tengevolge. In grafiek 14 is de relatie tussen de pK_a -waarde en de retentie van diverse amines weergegeven.

Behalve door bovengenoemde parameters wordt de retentie beïnvloed door de volgende grootheden:

- de pH van de oplossing
- de concentratie van de organische verbinding in de oplossing
- de ionensterkte van de oplossing
- de temperatuur van de oplossing.

In het algemeen geldt dat het gedissocieerde molecuul door zijn elektrostatische wisselwerking met het membraan en door zijn hydratatie beter door het membraan wordt tegengehouden dan het ongedissocieerde molecuul. In grafiek 15 is voor p-aminobenzoëzuur de retentie als functie van de dissociatiegraad weergegeven.

6. DE VERWIJDERING VAN ORGANISCHE STOFFEN MET ANDERE MEMBRAANMATERIALEN

Uit onderzoekingen is gebleken dat de verwijdering van kleine, polaire organische moleculen met behulp van celluloseactaatmembranen tot problemen kan leiden. Een verlaging van de polariteit van het membraanmateriaal (cellulosetriacetaat, celluloseacetaatbutyraat) geeft weliswaar een verhoging van de retentie van deze verbindingen, doch dit gaat ten koste van de produktie van het membraan. Dit nadeel kan alleen worden opgevangen door vergroting van het membraanoppervlak of door invloed uit te oefenen op de dikte van de skin van het membraan (ultrathin membranes).

In de figuren 2 tot en met 4 is de retentie van natriumchloride en van verschillende organische verbindingen voor verschillende membraanmaterialen weergegeven door Fang en Chian (7). In tabel 5 is voor dezelfde membraanmaterialen de "overall" retentie voor de dertien verbindingen uitgezet. Uit deze tabel kan worden geconcludeerd dat de polyamidemembranen een hogere retentie voor polaire organische verbindingen bezitten dan de celluloseacetaatmembranen. De beste resultaten voor de verwijdering van deze organische verbindingen werden verkregen met de NS-100 membranen, die vervaardigd zijn uit polyethyleenimine.

Voor polyamidemembranen geldt dat koolhydraten en in het algemeen lineaire moleculen met een molecuulgewicht groter dan 100 goed door het membraan worden tegengehouden.

- 13 -

7. LITERATUUR

- Reid, C.E., Breton, E.J.; Water and ion flew across cellulosic membranes. Journal of Applied Polymer Science, 1 (1959) 2, p. 133-143.
- 2. Matsuwra, T., Pageau, L., Sourirajan, S.; Reverse osmosis separation of inorganic solutes in aqueous solutions using porous cellulose acetate membranes. Journal of Applied Polymer Science, 19 (1975), p. 179-198.
- 3. Sourirajan, S;,Reverse Osmosis London, Loges Press Ltd., 1970, 580 blz.
- 4. Duvel, W.A., Helfgott, T.; Removal of wastewater organics by reverse osmosis. Journal WPCF, 47 (1975) 1, p. 57-65.
- 5. Matsuwra, T., Sourirajan, S.; Physicochemical criteria for reverse osmosis separation of alcohols, phenols and monocarboxylic acids in aqueous solutions using poreus cellulose acetate membranes. Journal of Applied Polymer Science 16 (1971) p. 2905-2927.
- 6. Matsuwra, T., Sourirajan, S.; Physicochemical criteria for reverse osmosis separation of aldehydes, ketones, ethers, esters, and amines in aqueous sloutaions using poreus cellulose acetate membranes. Journal of Applied Polymer Science, 16 (1972) p. 1663-1686

- 14 -

7. Fang, H.H.P., Chian, E.S.K.; Reverse osmosis separation of polar organic compounds in aqueous solutions. Environmental Science & Technology, 10 (1976) 4 p. 364-369.

Grafiek 3 (Duvel)

Effect of $\Delta \nu_s$ of solute on reverse osmosis separation of alcohols and phenols in aqueous solution using porous cellulose acetate membranes. Film type, Batch 316; operating pressure, 250 psig; feed concentration, 0.001 to 0.006 g-mole/L; feed flow rate, 400 cc/min; membrane area, 7.6 cm²; (\odot) film 1; (O) film 3.

Grafiek 4 (Sourirajan)

Grafiek 7 (Sourirajan)

Effect of pK_u of solute on reverse osmosis separation of monocarboxylic acids in aqueous solution using porous cellulose acetate membranes. Film type, Batch 316; operating pressure, 250 psig; feed concentration, 0.0006–0.0008 g-mole 1., feed flow rate, 400 cc/min; membrane area, 7.6 cm²; (**O**) film 1; (**O**) film 3.

Grafiek 8 (Sourirajan)

Effect of Δ_{ν} , (basicity) of esters on membrane performance. Film type, cellulose acetate (Batch 316); operating pressure, 250 psig; feed concentration, 0.001 to 0.002 g mole/l.; feed flow rate, 400 cc/min; membrane area, 7.6 cm².

Grafiek 11 (Sourirajan)

Taft number vs. solute separation for aldehydes, ketones, eihers, and esters. Film type, cellulose acetate (Batch 316); operating pressure, 250 psig; feed concentration, 0.00075 to 0.003 g mole/l.; feed flow rate, 400 cc/min.

Effect of pK_a of amines on membrane performance. Film type, cellulose acetate (Batch 316); operating pressure, 250 psig; feed concentration, 0.00075 to 0.003 (0.001 in most cases) g mole/l.; feed flow rate, 400 cc/min; membrane area, 7.6 cm².

Grafiek 14 (Sourirajan)

Effect of degree of dissociation of solute on reverse osmosis separation of p-aminobenzoie acid in aqueous solution using porous cellulose acetate membranes. Film type, Batch 316; operating pressure, 250 psiz; feed concentration, 0.0001-0.007 g-mole 1.; feed flow rate, 400 cc/min; membrane area, 7.6 cm²; (\odot) film 1; (Λ) film 2; (\odot) film 3.

Grafiek 15 (Sourirajan)

1

Tabel 1 (Duvel)

-Rejection of Selected Organics

Solute .	Solute Rejected (%)
Four-Carbon Solutes:	
Butyric Acid	16.4
1-Butylamine	39.2
Butyramide	40.5
1-Butanol	41.3
Diethyl sulfone	67.9
Butyraldehyde	72.1
2-Butanone	72.9
Methyl propionate	89.1
Ethyl acetate	91.1
Aliphatic Alcohols:	· · · · · · · · · · · · · · · · · · ·
2-Buten-1-ol	18.3
3-Buten-1-ol	28.3
3-Butyn-1-ol	12.3
Aromatic Alcohols:	
Phenol	· 0
Benzyl alcohol	-0.6*
2-Phenyl ethanol	11.7
3-Phenyl-1-propanol	5.5
Diols:	
12-Ethanediol	52.2
1 3-Propagadiol	64.1
1.4. Butanedial	65.9
1.5-Pentanediol	62.0

* Negative rejection indicates enrichment of solute in product water.

		Niufe .	2v,, cr.*1			•••	
30.	Name	Formula	Malesalar Weight	Tello Corx	Fof. 17 (Parrez)	H ((Kuhn)	сн: э
		k in RGR					a.
1 1	t-Sutyl slochol.	t-0.Ha	74.1	123	115	178	
2	3-Pentanol	3-0,87	88.2	136	-	-	-1.225
3	e-Butyl alcohol	0-0,H	. 74.1	137	103	125	-1.010
4	1-Frigyl alechol	1-C.H.	60.1	135	102	-	-2.120
5	Cyclchexanol	eyele-06"11	102.2	129	- ·	-	-0.150
5	n-Butyl alcohol	n-C _h H _g	74.1	1-5	135	152	-0.130
7	1-Sutyl alechel	1-C ₄ ii ₉	74.1	140		-	-2-192
3	n-Propyl alechol	n-03117	£0.1	141	- .	-	-0.115
<u>'</u> 9	Ethyl alochol	с ₂ н ₅	45.1	143	. 133	(- ·	-0.163
10	Methyl Alcohol	c#3	35-9	149	135	151.	0
11	Phonethyl alcohol	с ^{бн2} (сн ⁵) ⁵	122.2	153		-	+0.05
12	Senżyl alcohol	Cong(cu2)	108.1	155	-		+0.215
13	Fhendl '	°ú [∺] 5	94.1	288	275	278	+0,660
14	n-Anyl alechol	n-05 ^H 11	\$3.2	142	-	-	-
15	m-Hexyl blochol	rC6 ^R 13	102.2		-		- 1
16	n-Huptyl alechol	n-07 ^H 15	116.2	1.45	-		-
17	p-Cetyl alechol	n-29 ¹¹ 17	130.2	142	-		
		, un					
		X in 💭					a .
15	g-Aninophenol	p-JH2 X	109.1	l	-		-3.665
19	Bydropainone	1-CH	110.1	- 1		1	-0.357
20	g-Nethoxyphenel	g-cen,	124.1	283			-0.268
21	p-Cresol ·	· p-JH ₂	108.1	256			-0.170
22 .	n-Anticephenol	n-381	109.1	-	-	- ·	-0.161
23	m-Créacl	n-Cli	108.1	283			-0.069
24	Recordinal	m-011	110.1	234	· ·		-0.005
13	Phonel	-	94.1	353	276	273	0.000
:5	r-Chlerophenel	p-01	128.5	313		-	152.04
26	n-Chloriphenol	m-01	128.5	315	-	-	10.373
. 7	n-Nitrophenol	n-202	132.1	407	-	-	+a1370
28	p-Witraphenol	p-102	139.1	-	-	-	*0.778
		он Тх	ł	1			
		x in 💭					• •
2.	c+drest1	CH.	108.1	272	∮	- -	-0.17
13	Phenel -	JI JI	94.1	2:3	276	273	o
	d-Chloriphenol	C1 .	123.6	-			+0.20
31	c-Mitrophenol	10.	132.1	-			+0.60
32	Fyrisstechel	CH	110.1	231			-
			1			<u> </u>	

Acidity Parameters for Alcohols and Phenols

Tabel 2 (Sourirajan)

	Solut	e			•
Solute no.	Name	Formula	Molecular weight	pKa (ref. 7)	σ* or σ (ref. S)
		R in RCOOH			s*
- 33	Pivalic acid	t-C4II2	102.1	5.05	-0.300
34	<i>i</i> -Butyrie acid	i-C ₃ H ₇	\$8.1	4.86	-0.190
35	Cyclohexanecarboxylic acid	$eyclo-C_e \Pi_{11}$	128.2	4.91	-0.150
-36	Valerie acid	n-C:II2	102.1	4.86	-0.130
37	n-Butyric acid	$n-C_{2}H_{7}$	88.1	4.83	-0.115
38	Propionic acid	n-C2II3	74.1	1.87	-0.100
39	Acetic acid	CII3	60.1	1.75	0
40	4-Phonylbutyric acid	$C_6 H_3 (CH_2)_3$	164.2	4.73	± 0.020
-11	β-l'henylpropionic acid	$C_{\mathfrak{s}}H_{\mathfrak{s}}(CH_2)_2$	150.2	4.66	+0.080
42	Phenylacetic acid	$C_{6}H_{5}(CH_{2})$	136.1	4.31	± 0.215
43	Benzoie acid	C ₆ H ₅	122.1	4.20	+0.600
-1-1	Caprylie acid	n -C ₇ Π_{13}	144.2	-4.90	·
		ÇOOF	1	•	
	· · ·		·	•	
		X in			σ
		X		•	
45	p-Aminobenzoic acid	p-NH ₂	137.1	4.82	-0.660
46	Anicie acid	p-OCH ₃	152.1	4,47	-0.263
.17	<i>m</i> -Aminobenzoie acid	m-NH ₂	137.1	4.60	-0.161
48	m-Toluie acid	m-CII ₃	136.1	4.24	-0.069
-49	m-Hydroxybenzoic acid	m-OH	138.1	1.08	-0.002
43	Benzoie acid		122.1	4.20	0
50	p-Chlorobenzoie acid	p-Cl	156.6	3.99	+0.227
51	m-Nitrobenzoic acid	m-NO ₂	167.1	3.45	+0.710
52	p-Nitrobenzoic acid	p-NO ₂	167.1	3.41	+0.778
		ÇOOH			
	• • • • • • • • • • • • • • • • • • •	Vin L	х ·	-	
					σ
43	Benzoie acid	и	122.1	4.20	0
53	o-Chlorobenzoie acid	CI	156.6	2.91	+0.20
51	a Nitrobanzaie acid	NO.	167 1	2.17	+0.50

Tabel 3 (Sourirajan)

Tabel 4 (Sourirajan)

Basicity Parameters	for	Aldehydes,	Ketones;	Ethers,	Esters,	, and	Amines
---------------------	-----	------------	----------	---------	---------	-------	--------

	Coluin			Δr_s (Basicity), cm ⁻¹					
lute No.	Name	Formula	Mol. wt	This work	Ref. 7	Ref. 4	Refs. 8 & 9	pK_a (refs. 15, 17-19)	σ^* or $\Sigma \sigma^*$ (ref. 21)
		R in R.		·········					
	Aldchydcs)C=0	ν.				· · .		
T	Juoluuturi aldaburda		FO 1	100					
ь. О	- Duted aldebude		72.1	130					-0.19
ش رب	n-bittyi ildenyde	$n - C_{3} \Gamma_{7}$	72.1	140	83	117			-0.115
ວ 	1 ropionaldenyde		58.1	144	85			and the second	-0.10
· 4	Castan Labora		44.1	100	79				0
0	Describbles	CH ₃ CH=CH	70.1	83	75	97			0.36
0	Benzaldenyde		106.1	60	53	84		-6.99	0.60
4	P UPINPAL	$C_4 H_3 O$	96.1	70		70 .			
	Kclones	R ₁ , R ₂ in R ₁							
		R, C=0							
8	Diisopropyl ketone	iCaHr. iCaHr	114.2	48		84			
9 -	Diisobutyl ketone	iC.H ₁ , iC.H ₂	142.2	85	1. T	84			0.33
10	Cyclopentanone	evelo-C.H.	84 1	85		84 84			-0.25
11	Cyclohexanone	cyclo-C-Ha	08.1	00	66	177	. US		
12	Methyl ethyl ketone	CIT- C-H-	72 1	76	57		90	1997) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	~0.15*
13	Acetone	CH. CH.	52.1	70	64	07	70		0.10
14	Benzyl methyl ketone	C.H.(CH.) CH.	124.9	19	04	97	18		0
15	Acotophonopa	C.H. CH.	104.4	00		Þa -		0.01	0.215
	neetopmenone	D D	120.1	00	90	11		-0.04	0.60
	Ethers (Noncyclic)	R. R. in					•		
	a Nagara di Katalan da katalan di katalan di Katalan di katalan di ka	R_2				1			
	•								
16	Diisopropyl ether	iC ₂ H ₇ , iC ₂ H ₇	102.2	96	75	123	110	1 20	0.00
17	Diethyl ether	C_2H_5 , C_2H_5	74.1	95	78	120	06 .		-0.38
18	Anisole	CH ₃ , C ₅ H ₅	108.1	42	26	70	70	-3.59	0.20
19	Ethyl vinyl ether	C_2H_5 , $H_2C=CH$	72.1	384	31		10	-0.34	0.60
20	Phenetole	C ₂ II ₅ , C ₆ H ₅	122.2	30*	25	57			• •••
21	Methyl benzyl ether	CH_3 , $C_5H_3(CH_2)$	122.2	00	40	110		-0.44	0.50
		,				110	•		0.215
	Ethers (Cyclic)	cyclo 🔀						·	
99	Tatus hardron								
, <u>,</u> , , ,	Totanbadasfuras	Cyclo-C ₅ H ₁₀	86.1	104-	93		115	-2.79	-0.18^{5}
202 2.4	1 4 Dimme	cyclo-C4Hs	72.1	100	90		117	-2.08	0.25b
97E 97E	Durandung und be	C ₄ H ₈ O	88.1	86	77	97	111	-2.92	0.67
2i)	r ropytene oxide	H ₂ C	58.1	76ª	59°	100	99		
	· · · .	HC							
		1							
~	a	H ₃ C							
0	Styrene oxide	H ₂ C	120.1	60-	51	85			
		HC							
		J							
	17.11.1.1.1.	C ₆ H ₅				· ·			
4	relicioronydrin	H ₂ C	92.5	57	45	104	80	ъ,	
		HC-CH,CI		•					•
	•	RC==0				· ·			
	Esters	R_1, R_2 in $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$							
		Ra-O							

(continued)

Tabel	4	(continued)
-------	---	-------------

loluta		Solute		$\Delta \nu_*$ (Basicity), cm ⁻¹			ťt .		
No.	Name	Formula	Mol. wt	This	Ref. 7	Ref. 4	Refs.	pK_a (refs. 15, 17–19)	σ^* or $\Sigma\sigma^*$
28	Ethyl propionate	C.H. C.H.	102 1	40	32			10, 11 10)	0.00
29	n-Amyl acetate	CH_2 , n - C_2H_3	130 2	70		00			0.122
30	Methyl <i>n</i> -butyrate	C.H. CH.	102.1	46		50			0.133
31	Ethyl acetate	CH. C.H.	99.1	10	20	04			-0.115
39	Mathyl acotata	CH. CH.	77.1 1	43		04	51		0.10
122	Mathur bonzoeto		14.1	47	30	84	51	• * * · · ·	· 0
00 9.4	Tibel oblaza astata		130.1	40		63			0.60
01± 25	Mathal ablume estate	$O(OH_2, O_2H_5)$	122.6	21		70			0.95
30 60	Michyl chloroacetate	$\operatorname{ClCH}_2, \operatorname{CH}_3$	108.5	21	27				1.05
30	Vinyl acetate	$CH_3, H_2C=CH$	86.1	25	21			1 - A - A - A - A - A - A - A - A - A -	
37	Methyl acrylate	$H_2C=CH, CH_3$	86 1	33	30	1			
-38	Methyl methacrylate	H ₂ C=CCH ₃ , CH ₃	100.1	40	33				
	Amines, Primary	R in RNH ₂							
39	Ethylamine	C.H.	45.1		233			10.75	0 60
40	Benzylamine	Cells(CHs)	107.2		200			10.75	1 105
41	Aniline	C.H.	02.1	170	150	101		9.04	1,195
42	p-Anisidine	Define De	199.9	110	100	101		4.08 -	1.58
42	m.Toluidino		120.2					5.29	
4 S	p-romanic p-Disarlance/ispring	p-Origosri,	107.2					5.07	
1313 45	<i>m-r</i> nenyteneuninne	$m_1 N H_2 \cup \epsilon H_4$	108.2					4.88	
40	m-10mme	m-GHaCoH4	107.2			175		4.67	·
40	o-Anisidine	o-CH3OC6H4	123.2	1910 - 1910 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 -				4.49	
47	o-Phenylenediamine	o-NII2C6II4	108.2	•	• *			4.47	
48	o-Toluidine	o-CH3C8H4	107.2	•		175		4 20	
49	<i>p</i> -Chloroaniline	$p-\mathrm{ClC}_6\mathrm{H}_4$	127.6			140	÷	4.59	•
50	<i>m</i> -Chloroaniline	m-ClCsII.	127 6			100		3.81	
51	o-Chloroaniline	0-CIC.H.	127.6			102		3.32	
52	m-Nitroaniline	m-NO ₂ CoH	128 1			190		2.62	
	- · · · · · · · · · · · · · · · · · · ·	7	100.1					2.45	
	Amines, Secondary	$R_1, R_2 in \frac{R_1}{R}$ NH			4 		•		
53	Di-n-Butylamine	n-C.H. n-C.H.	120 5						
54	Piperidine	evelo-C-H-	129,0	007	0.10			11.25	0.23
55	Dimethylamine		85.2	261	240	242		11.22	0.31
56	N-Methylaniline		45.1					10.87	0.49
00	11-meany minine	06115, OF13	107.2		151	156		4.70	1.09
	Amincs, Tertiary	$R_1, R_2, R_3 in \frac{R_1}{R_2} N$							
57	Triethylamine	CJL CJL CJL	101.9		000				
58	Trimethylamine	CH. CIL CI	101.2		238			10.76	-0.30 .
59	N N-Dimethyl-		09.1		•			9.75	0
00	benzylamine	$O(1_3, O(1_3, O_6(1_5)))$	135.2	•		218		8.93	0.215
00	n,n-Dimethylaniline	CH_3 , CH_3 , C_6H_5	121.2		148	143		5 06	0.00
_	Amincs, Conjugated							0.00	0.00
61	Pyridine	CH((CHCH) ₂)N	79.1	200	168	181		5.23	
62	γ -Picoline	C ₃ II ₄ N • CII ₃	93.1		160			6.00	
. Wetim	nted from Rivers 1	-		·····				0.00	

 Estimated from Figure
Estimated by Hall.²²
Estimated from Taft.²¹ 1.

Tabel 5 (Fang, Chian)

Average Permeate Fluxes and Overall Solute Separations of Reverse Osmosis membranes

		Overall separation of * 13 model
Membrane	Average flux, gfd	compounds, %
CA	7.66	12.82
CA-T	10.17	17.84
CAB	1.37	21,81
CA3	4.89	26.61
NS-100	9.71	69.83
NS-100-T	6.50	73.65
NS-200	6.69	78.92
PBI	36.03	16.12
SPPO 1	17.39	19.36
AP	2.45	63.48
B-9 (2' × 5" diam.)	1,250 gpd*	50.00
B-10 (4' × 5" diam.)	4,500 gpd ^b	50,81
B-10 (4' X 5" diam.)	4,500 gpd ^b	52.11°

^a The overall separation of solutes shown here indicates that the anticipated separation of a mixture having a concentration of 1000 ppm of TOC contributed on equal weight basis by each of the thirteen test compounds. ^b Since the total surface area of hollow-fiber module is unknown, the permeate capacity, in terms of gallons/day, is shown. ^c Actual separation of mixture of solutes on equal weight basis having a final TDC of 1000 ppm.

Roverse Osmosis Membranes, Their Abbreviations, Configurations, and Suppliers

Membrane material	Abbrevia- tion	Configuration	Supplier
Cellulose acetate	CA	Flat sheet	University of Illinois
Cellulose acetate	CA-T	Tube	Universal Gil Products
Cellulose acetate butyrate	CAB	Flat sheet	Universal Water
Cellulose triacetate	CA3	Flat sheet	Envirogenics
Cross-linked polyethylenimine	NS-100	Flat sheet	University of Illinois
Cross-linked polyethylenimine	NS-100-T	Tube	Universal Oil Products
NS-200	NS-200	Flat sheet	North Star
Poly-2,2'-(m-phenylene)- 5,5'-bibenzimidazole	PBI	Flat sheet	Celanese
Sulfonated polyphenylene oxide	SPPO	Flat sheet	General Electric
Aromatic polyamide	AP	Flat sheet	Chemstrand
Aromatic polyamide	B-9	Hollow fiber	Du Pont-
Aromatic polyamide	B-10	Hollow fiber	Du Pont

Reverse Osmosis Membranes, Their Abbreviations, Configurations, and Suppliers

Membrane material	Abbrevia- tion	Configuration	Supplier
Cellulose acetate	CA	Flat sheet	University of Illinois
Cellulose acetate	CA-T	Tube .	Universal Oil Products
Cellulose acetate butyrate	CAB	Flat sheet	Universal Water
Cellulose triacetate	CA3	Flat sheet	Envirogenics
Cross-linked polyethylenimine	NS-100	Flat sheet	University of Illinois
Cross-linked polyethylenimine	NS-100-T	Tube	Universal Oil Products
NS-200	NS-200	Flat sheet	North Star
Poly-2,2'-(m-phenylene)- 5,5'-bibenzimidazole	PBI	Flat sheet	Celanese
Sulfonated polyphenylene oxide	SPPO	Flat sheet	General Electric
Aromatic polyamide	AP	Flat sheet	Chemstrand
Aromatic polyamide	B-9	Hollow fiber	Du Pont
Aromatic polyamide	B-10	Hollow fiber	Du Pont

Figuur 4 (Fang)

Figuur 3 (Fang)