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Abstract
Prediction of ecosystem response to global environmental change is a pressing scien‐
tific	 challenge	of	major	 societal	 relevance.	Many	ecosystems	display	nonlinear	 re‐
sponses	 to	 environmental	 change,	 and	 may	 even	 undergo	 practically	 irreversible	
‘regime	shifts’	that	initiate	ecosystem	collapse.	Recently,	early	warning	signals	based	
on spatiotemporal metrics have been proposed for the identification of impending 
regime shifts. The rapidly increasing availability of remotely sensed data provides 
excellent	opportunities	to	apply	such	model‐based	spatial	early	warning	signals	in	the	
real	world,	to	assess	ecosystem	resilience	and	 identify	 impending	regime	shifts	 in‐
duced	 by	 global	 change.	 Such	 information	would	 allow	 land‐managers	 and	 policy	
makers	to	interfere	and	avoid	catastrophic	shifts,	but	also	to	induce	regime	shifts	that	
move	ecosystems	to	a	desired	state.	Here,	we	show	that	the	application	of	spatial	
early	warning	signals	in	real‐world	landscapes	presents	unique	and	unexpected	chal‐
lenges,	 and	may	 result	 in	misleading	 conclusions	when	 employed	without	 careful	
consideration	of	the	spatial	data	and	processes	at	hand.	We	identify	key	practical	and	
theoretical issues and provide guidelines for applying spatial early warning signals in 
heterogeneous,	real‐world	landscapes	based	on	literature	review	and	examples	from	
real‐world	data.	Major	identified	issues	include	(1)	spatial	heterogeneity	in	real‐world	
landscapes	may	enhance	reversibility	of	regime	shifts	and	boost	landscape‐level	re‐
silience	to	environmental	change	(2)	ecosystem	states	are	often	difficult	to	define,	
while	these	definitions	have	great	impact	on	spatial	early	warning	signals	and	(3)	spa‐
tial	environmental	variability	and	socio‐economic	factors	may	affect	spatial	patterns,	
spatial	early	warning	signals	and	associated	regime	shift	predictions.	We	propose	a	
novel	framework,	shifting	from	an	ecosystem	perspective	towards	a	landscape	ap‐
proach. The framework can be used to identify conditions under which resilience 
assessment	with	spatial	remotely	sensed	data	may	be	successful,	to	support	well‐in‐
formed	 application	 of	 spatial	 early	warning	 signals,	 and	 to	 improve	 predictions	 of	
ecosystem responses to global environmental change.
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1  | INTRODUC TION

Identification and prediction of ecosystem responses to global en‐
vironmental change is currently a key scientific challenge (Sato 
&	 Lindenmayer,	 2018;	 World	 Resources	 Institute,	 2005).	 Given	
that	ecosystems	and	 societies	 are	 intimately	 linked,	 it	 is	 crucial	 to	
maintain	 ecosystem	 functioning	 within	 the	 safe	 operating	 space,	
the global and local stressors under which favourable ecosystem 
functioning	 and	 services	 can	 be	 secured	 (Scheffer	 et	 al.,	 2015).	
Ecosystems	 may	 respond	 gradually	 to	 increasing	 environmental	
pressures,	 such	as	 climate	 change,	or	 they	may	undergo	a	 sudden	
‘regime shift’ (also referred to as catastrophic shift or critical transi‐
tion;	Scheffer,	Carpenter,	Foley,	Folke,	&	Walker,	2001).	In	the	latter	
case,	the	services	ecosystems	provided	for	society	remain	relatively	
stable	under	 increasing	environmental	pressure,	but	may	suddenly	
shift towards a functionally different state after a threshold pressure 
is exceeded. Regime shifts are difficult to reverse due to positive 
feedbacks	 maintaining	 each	 of	 the	 alternative	 states,	 resulting	 in	
hysteresis	(Box	1;	Scheffer	et	al.,	2001).

Regime	shifts	may	have	disastrous	effects	on	numerous	socio‐
ecological	systems	around	the	world.	In	semi‐arid	regions,	reduced	
rainfall may turn woodland vegetation irreversibly into bare soil 
(Rietkerk	 et	 al.,	 2002),	 thereby	 affecting	 societies	 that	 depend	on	
wood	cover	 for	 food,	 fuel	 and	construction	material	 (International	
Energy	 Agency,	 2018).	 In	 northern	 peatlands,	 changes	 in	 rainfall	
may	induce	shifts	towards	reduced	carbon	storage	regimes	(Hilbert,	
Roulet,	&	Moore,	2000),	hence	accelerating	global	climate	change.	
Conversely,	 regime	 shifts	may	 also	 provide	opportunities	 for	 con‐
servation	of	socio‐ecological	systems	by	inducing	shifts	towards	de‐
sired ecosystem states with relatively limited interference (Pueyo et 
al.,	2008;	Ripple	&	Beschta,	2012;	Scheffer,	1998).

Given	the	potentially	detrimental	socio‐ecological	consequences	
of	regime	shifts,	the	development	of	 indicators	to	predict	upcoming	
regime shifts has evolved as a major theme. Such indicators are often 
referred	 to	 as	 Early	Warning	 Signals	 (EWS)	 (Scheffer	 et	 al.,	 2009).	
Model	analyses	suggest	that	impending	regime	shifts	can	be	detected	
with	EWS	based	on	 time	series	of	ecological	data,	without	 system‐
specific	 mechanistic	 knowledge	 on	 potential	 drivers	 (Dakos	 et	 al.,	
2012;	Scheffer	et	al.,	2009).	A	major	drawback	of	such	EWS,	however,	
is	that	long‐term,	uninterrupted	and	high‐resolution	data	records	are	
needed	(Scheffer	et	al.,	2009).	Lack	of	such	data	often	hampers	the	ap‐
plication	of	temporal	EWS	to	detect	socio‐ecological	systems	at	risk.

Recent theoretical advances suggest that metrics describing the 
spatial	 organization	 of	 ecosystem	 patterns,	 derived	 from	 spatially	
gridded data obtained from remotely sensed imagery or extensive 
field	 inventories,	 may	 also	 function	 as	 EWS	 (Box	 1).	 Such	 Spatial	

Early	Warning	Signals	(SEWS)	including	patch	size	distributions	(Kéfi	
et	al.,	2007),	spatial	variance	and	skewness	 (Guttal	&	Jayaprakash,	
2009),	spatial	autocorrelation	(Dakos,	van	Nes,	Donangelo,	Fort,	&	
Scheffer,	2010),	wavelength	analyses	(Carpenter	&	Brock,	2010),	re‐
covery	length	(Dai,	Korolev,	&	Gore,	2013),	cross‐scale	connectivity	
(Zurlini,	Jones,	Riitters,	Li,	&	Petrosillo,	2014),	spatial	heteroscedas‐
ticity	(Seekell	&	Dakos,	2015)	and	Fisher	information	(Sundstrom	et	
al.,	2017).	Compared	to	temporal	indicators,	SEWS	have	the	advan‐
tage that they can be applied on spatial data with irregular and infre‐
quent	temporal	resolution	(Génin,	Majumder,	Sankaran,	Danet	et	al.,	
2018).	The	increasing	availability	and	resolution	of	remotely	sensed	
gridded	data	(Gómez,	White,	&	Wulder,	2016)	therefore	provides	a	
unique	opportunity	to	monitor	ecosystem	resilience	and	detect	im‐
pending regime shifts induced by global change all around the globe.

SEWS	are	increasingly	applied	to	infer	resilience	of	ecosystems	
(e.g.	Berdugo,	Kéfi,	Soliveres,	&	Maestre,	2017;	Butitta,	Carpenter,	
Loken,	 Pace,	 &	 Stanley,	 2017;	 Cline	 et	 al.,	 2014;	 Eby,	 Agrawal,	
Majumder,	Dobson,	&	Guttal,	2017;	Kéfi	et	al.,	2007;	van	Belzen	et	al.,	
2017;	Weerman	et	al.,	2012).	But	while	prospects	and	limitations	of	
SEWS	have	been	demonstrated	conceptually	using	simulation	mod‐
els	 (e.g.	Dakos,	Carpenter,	van	Nes,	&	Scheffer,	2015;	Dakos,	Kéfi,	
Rietkerk,	van	Nes,	&	Scheffer,	2011;	Guttal	&	Jayaprakash,	2009),	
empirical	validation	 in	 real‐world	examples	 remains	scarce	 (Kéfi	et	
al.,	2014).	The	application	of	SEWS	in	real‐world	landscapes	comes	
with abundant conceptual and practical challenges. In contrast to 
the idealized systems used in models to assess the functioning of 
SEWS,	landscapes	are	in	reality	complex	adaptive	systems	that	vary	
in	space	due	to	geomorphological	processes	and	where,	especially	
in	the	Anthropocene,	socio‐ecological	interactions	can	no	longer	be	
neglected	 (Sterk,	 van	de	Leemput,	&	Peeters,	2017).	The	complex	
adaptive	systems	where	ecological,	societal	and	geomorphic	factors	
interact	are	hereafter,	for	simplicity,	referred	to	as	real‐world	land‐
scapes.	Arguably,	 the	 landscape	perspective	on	SEWS	is	crucial	 to	
enhance	their	applicability	in	real‐world	landscapes.

Here,	we	propose	a	framework	to	systematically	assess	the	pre‐
requisites	 for	 successful	 application	 of	 SEWS	 to	 spatially	 gridded	
remotely	 sensed	 (‘snapshot’)	 data	 from	 real‐world	 landscapes.	 The	
framework aims to move from an ecosystem approach towards a 
landscape	approach,	recognizing	that	ecosystem	properties	are	par‐
tially	imposed	by	geological	(lithological)	variation,	and	are	affected	by	
human	activity.	The	novel	framework	(Figure	1)	builds	on	a	literature	
review,	 supported	 by	 spatial	 analyses	 and	model	 simulations	 using	
examples	 from	 real‐world	 landscapes.	The	 framework	 is	 structured	
to	assess	three	groups	of	prerequisites	for	successful	application	of	
SEWS	to	real‐world	landscapes.	These	groups	are	(1)	conceptual,	(2)	
site‐related	and	(3)	data‐related,	and	are	described	in	the	next	three	
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Box 1 How spatial patterns may inform us on impending regime shifts
To	illustrate	how	spatial	patterns	may	help	identify	looming	regime	shifts,	we	use	the	well‐established	Noy‐Meir	model	(1973,	1975)	that	
describes the nonlinear and hysteretic response of vegetation biomass to changing grazing pressure (c).	We	employed	a	spatially	explicit	
extension	of	the	Noy‐Meir	model	following	Guttal	and	Jayaprakash	(2009)	that	incorporates	diffusive	seed	dispersal	and	random	varia‐
tion	in	space	and	time	of	the	mean	grazing	rate	(Supporting	Information	S1).	The	use	of	the	Noy‐Meir	model	is	intended	for	grassland	
ecosystems,	but	its	concepts	are	applicable	to	other	systems	under	pressure	with	two	trophic	levels.
Clearly	two	alternative	regimes	of	mean	field	biomass	appear	in	response	to	grazing.	Dependent	on	initial	conditions,	either	of	the	two	
states is possible at grazing rates 18 < c	<	26	(Figure	7a).

F I G U R E  B 1   (a)	Two	alternative	regimes	of	biomass	as	function	of	increasing	and	decreasing	grazing	pressure.	The	black	curved	
lines	represent	stable	(solid)	and	unstable	(dashed)	equilibria,	the	black	dots	indicate	tipping	points.	Greek	symbols	and	vertical	lines	
indicate	specific	(increasing)	grazing	levels	for	which	spatial	snapshots	are	shown	(α‐δ).	The	snapshots	show	deviations	from	mean	
biomass	in	the	snapshot	as	variation	in	biomass	was	much	larger	between	snapshots	than	within.	(b–e)	Metrics	that	are	suggested	to	
provide	spatial	early	warning	signals	for	regime	shifts	(following	Kéfi	et	al.,	2014).	SDR	is	the	spectral	density	ratio,	defined	as	the	ratio	
of	spectral	‘power’	in	the	lowest	(0%–20%)	to	highest	(80%–100%)	portion	of	spectral	frequencies	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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sections.	Given	the	focus	on	practical	considerations,	our	emphasis	is	
on	site	and	data‐related	aspects.	After	outlining	the	prerequisites,	we	
provide	potential	solutions	and	identify	key	research	gaps	(Table	1)	to	
further	operationalize	SEWS	theory	in	real‐world	landscapes.

2  | CONCEPTUAL PREREQUISITES

The	following	section	discusses	prerequisites	for	the	use	of	SEWS	
and	links	to	Figure	1	by	the	numbers	in	the	section	headings.	Given	
our	focus	on	practical	considerations,	we	briefly	review	conceptual	

prerequisites	and	refer	to	Boettiger,	Ross,	and	Hastings	(2013)	and	
Dakos	 et	 al.	 (2015)	 for	 a	 more	 detailed	 overview	 of	 conceptual	
limitations.

2.1 | Evidence for alternative stable states (1)

Before identifying impending regime shifts or underlying drivers by 
applying	SEWS	in	for	example	space‐for‐time	approaches,	evidence	
for	the	potential	occurrence	of	regime	shifts,	alternative	states	and	
hysteresis needs to be established empirically and/or using mecha‐
nistic	models	(Boettiger	et	al.,	2013;	Dakos	et	al.,	2015).	Alternative	

While	a	fully	deterministic	model	provides	useful	information	on	stress–response	relationships,	there	will	always	be	small	perturba‐
tions	around	the	mean	driver	value	in	the	real	world.	Under	a	continuous	regime	of	stochastic	events	in	driving	variables,	ecosystems	
constantly	respond	to	perturbations.	At	low	resilience,	ecosystems	take	longer	to	recover	from	perturbations	(Figure	8)	as	the	strength	
of	positive	feedbacks	diminishes	(van	Nes	&	Scheffer,	2007).	This	phenomenon	is	referred	to	as	critical	slowing	down	(Strogatz,	1994).	
Critical	slowing	down	(CSD)	is	expressed	by	increased	temporal	autocorrelation	and	rising	variance,	thus	representing	EWS	of	regime	
shifts	(Dakos	et	al.,	2012).

In	ecosystems	with	spatial	interactions	and	large	spatial	connectivity,	the	increased	recovery	time	associated	with	reduced	resilience	
not	only	becomes	expressed	in	temporal	characteristics,	but	also	in	spatial	patterns	(Kéfi	et	al.,	2014).
At	low	resilience,	sites	that	have—by	chance—large	biomass	have	stronger	positive	feedbacks	and	therefore	shorter	recovery	time	as	
compared	to	low‐biomass	sites.	With	accumulating	stress	(i.e.	perturbations),	high‐biomass	sites	thus	remain	high	in	biomass,	whereas	
the	biomass	at	low‐biomass	sites	reduces	due	to	the	low	recovery	rates.	This	phenomenon	increases	spatial	variability	(variance),	often	
in	combination	with	peaking	spatial	skewness	(Scheffer	et	al.,	2009)	(Figure	7b–c).	In	addition,	the	importance	of	spatial	interactions	
relative	to	local	positive	feedbacks	increases	at	low	resilience	(Dakos	et	al.,	2010).	In	the	Noy‐Meir	model	example,	seed	dispersal	will	
continue	to	occur	as	long	as	a	spatial	biomass	gradient	exists,	whereas	the	(net)	growth	rate	of	existing	vegetation	reduces	with	increas‐
ing	grazing	pressure.	As	a	result,	vegetation	cover	will	become	more	spatially	structured	with	increased	grazing	pressure,	as	expressed	
by	increasing	Moran's	I	correlation	and	decreasing	spectral	density	ratio	(Figure	7d–e).	These	SEWS	quantify	changes	in	configuration	
that	occur	with	reduced	ecosystem	resilience,	and	hence	may	be	used	to	monitor	resilience	and	detect	impending	regime	shifts.

F I G U R E  B 2   Biomass recovery after pulse events of increased grazing pressure slows down with lower resilience.	A	pulse	
of increased grazing pressure (Δc	=	+1.0,	duration	=	1	year)	was	employed	at	different	grazing	levels	to	simulate	recovery	from	
perturbations. Biomass (B)	was	range‐normalized	B’t=i=

(

Bt=i−Bmin

)

∕(Bmin−Bmax) to ease comparison of recovery from perturbations 
at different grazing pressures. Recovery time was estimated from a saturated exponential function: (t)=p1(1−exp(− t∕p2))+p3,	
where B′	is	the	range‐normalized	biomass,	t	is	time,	and	p1,	p2 and p3	are	fitting	parameters.	Recovery	time	(vertical	coloured	lines)	
was	defined	as	95%	of	the	asymptotic	value,	that	is,	3·p2	conform	Webster	and	Oliver	(2007).	All	fits	were	significant	(p	«	0.01)	and	
in	good	agreement	with	model‐generated	data	(Willmott's	index	of	agreement	>	0.99;	Willmott	et	al.,	1985)	[Colour	figure	can	be	
viewed at wileyonlinelibrary.com]

Box 1 (Continued)

www.wileyonlinelibrary.com
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F I G U R E  1  Prerequisites	for	application	of	spatial	early	warning	signals	to	infer	impending	regime	shifts	in	real‐world	applications.	The	
framework	indicates	main	problems,	their	cause	and	effect	on	spatial	early	warning	signals	and	regime	shift	prediction,	and	options	to	
solve	these	problems.	The	numbered	prerequisites	refer	to	section	numbers.	Prerequisites	with	thin‐lined	boxes	are	based	on	published	
conceptual	reviews	on	early	warning	performance.	Roman	numerals	refer	to:	(I)	Boettiger	et	al.	(2013),	(II)	Mander	et	al.	(2017),	(III)	Dakos	et	
al.	(2015)	and	(IV)	Dakos	et	al.	(2011).	The	framework	is	not	necessarily	hierarchical	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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states originate from positive feedbacks that maintain the system in 
a	status	quo.	As	a	result,	the	response	trajectory	of	the	system	state	
to environmental drivers differs between increasing and decreasing 
environmental	stress,	also	referred	to	as	hysteresis	(Scheffer	et	al.,	
2001).	Hysteresis	is	thus	a	phenomenon	that	inherently	connects	to	
the	occurrence	of	alternative	states	and	regime	shifts	(Box	1).

The	 prerequisite	 of	 a	 hysteretic	 driver‐state	 relationship	 has	
major	 implications	 for	 establishing	 data‐based	 evidence	 of	 regime	
shifts	using	 space‐for‐time	approaches,	where	 temporal	 variability	
in	drivers	is	replaced	with	variation	in	space.	In	practice,	evidence	of	
hysteresis	requires	that	the	effects	of	both	increasing	and	decreas‐
ing	environmental	pressure	are	observable	in	spatial	datasets.	Thus,	
even when nonlinear threshold responses to environmental drivers 
are	observed	 in	real‐world	data,	such	observations	not	necessarily	
evidence	the	existence	of	alternative	states	(Phillips,	2003).

For	many	ecosystems,	such	as	semi‐arid	woodlands	and	savan‐
nahs	 (Rietkerk	 et	 al.,	 2002;	 Van	 Langevelde	 et	 al.,	 2003),	 north‐
ern	peatlands	and	marine	 systems	 (Hilbert	et	 al.,	2000;	Möllmann	
&	Diekmann,	 2012),	 climate	 change	 is	 proposed	 as	 key	 driver	 for	
regime shifts. Given that temperature is projected to increase 
worldwide	(IPCC,	2013),	and	because	precipitation	depends	on	tem‐
perature	 (Allen	&	 Ingram,	2002),	 it	will	be	challenging	 to	establish	
both decreasing and increasing climatic pressure to demonstrate the 
presence	of	hysteresis	in	space‐for‐time	approaches.

2.2 | Effects of regime shift type on the 
applicability of EWS (2 & 3)

A	broad	range	of	mechanisms	may	result	in	transitions	between	eco‐
systems	states,	 including	bifurcations,	smooth	transitions	and	rapid	
regime	shifts	(Boettiger	et	al.,	2013).	Currently,	saddle‐node	bifurca‐
tions have received most attention in research on regime shifts and 
EWS.	Indeed,	mathematical	analysis	demonstrated	that	critical	slow‐
ing	down	 (CSD;	Box	1)	 is	a	universal	phenomenon	for	saddle‐node	
bifurcations	(Wissel,	1984).	However,	there	are	many	other	bifurca‐
tion	types	(van	Voorn,	Kooi,	&	Boer,	2010)	that	do	not	exhibit	CSD	or	
for which it remains unexplored under which conditions CSD occurs 
(Boettiger	et	al.,	2013)	and	whether	SEWS	can	be	applied.	Likewise,	
CSD	may	also	occur	during	smooth,	nonhysteretic,	ecosystem	tran‐
sitions	 (Hastings	&	Wysham,	2010;	Kéfi,	Dakos,	Scheffer,	Van	Nes,	
&	Rietkerk,	2013).	Furthermore,	sudden	extreme	changes	in	drivers,	
such	as	periods	of	extreme	drought,	may	trigger	ecosystem	regime	
shifts	 (Ratajczak	et	al.,	2017)	 that	cannot	be	predicted	with	SEWS,	
since	 these	 require	 slowly	 changing	 drivers	 (Dakos	 et	 al.,	 2015).	
Accordingly,	given	the	uncertainty	associated	with	other	types	of	re‐
gime	shifts,	a	conceptual	prerequisite	in	the	application	of	SEWS	is	
that critical slowing down precedes the specific type of regime shift.

2.3 | Effect of spatial interaction type on critical 
slowing down (4)

Critical slowing down may not be present under all types of spatial 
interactions	 that	 result	 in	 spatial	 patterns.	 For	 scale‐dependent	

feedbacks,	where	vegetation	stimulates	the	performance	of	itself	
and	 its	surroundings,	but	reduces	 it	 farther	away	(due	to	e.g.	re‐
source	accumulation,	Rietkerk	&	van	de	Koppel,	2008),	the	SEWS	
in	 Box	 1	 fail	 to	 indicate	 upcoming	 regime	 shifts	 (Dakos	 et	 al.,	
2011).	Qualitative	 changes	 in	 spatial	 patterns	 (Rietkerk,	Dekker,	
de	Ruiter,	&	van	de	Koppel,	2004)	are	 likely	more	fruitful	 indica‐
tors	of	imminent	regime	shifts	in	such	systems	(Dakos	et	al.,	2011;	
Kéfi	et	al.,	2014).

3  | SITE PREREQUISITES

3.1 | Effect of spatially variable environment on 
spatial patterns (6)

In	 the	 previous	 section	 we	 showed	 that	 conceptual	 prerequisites	
need	to	be	met	before	SEWS	can	be	calculated	from	snapshot	data.	
Given	the	focus	on	site‐	and	data‐related	issues,	we	assume	in	the	
following	 sections	 that	 such	 conceptual	prerequisites	 are	 satisfac‐
torily fulfilled.

In contrast to homogeneous ecosystems where vegetation pat‐
terns	arise	merely	from	self‐organizing	processes,	spatial	variability	
in	heterogeneous	real‐world	landscapes	may	also	arise	from	spatial	
variability in environmental conditions. This adds a complication to 
the	 application	 of	 SEWS,	 which	 in	 theory	 assume	 homogeneous	
landscapes. It is widely accepted that vegetation patterns are related 
to	habitat	conditions	at,	or	even	within,	the	plot	scale	(~1	m2)	(Cirkel,	
Witte,	 van	Bodegom,	Nijp,	 &	 van	 der	 Zee,	 2014;	 Ellenberg,	 1974;	
Kohn	&	Walsh,	 1994).	 Soil	 texture	 and	 chemistry,	 parent	material	
and	lithology,	soil	depth,	(micro)topographic	position	and	soil	fauna	
are	examples	of	factors	that	control	habitat	conditions	(Cirkel	et	al.,	
2014;	Dangerfield,	McCarthy,	&	Ellery,	 1998;	Furley,	 1976).	 These	
factors,	in	turn,	control	plant	growth	and	competition.	Thus,	spatial	
vegetation	 patterns	may—in	 real‐world	 landscapes—originate	 both	
from	 self‐organizing	 processes	 and	 from	 heterogeneous	 environ‐
ments	dictated	by	topography	and	geology	(lithology)	(Bestelmeyer,	
Ward,	&	Havstad,	2006;	Sheffer,	von	Hardenberg,	Yizhaq,	Shachak,	
&	Meron,	2013).

To	illustrate	how	soil‐vegetation	relationships	may	contribute	to	
spatial	patterns,	we	here	focus	on	the	Serengeti‐Mara	savannah	eco‐
system	 (Reed,	Anderson,	Dempewolf,	Metzger,	&	Serneels,	2008),	
one	of	the	most	extensive	savannahs	of	the	world.	In	savannahs,	for‐
est	prevails	under	conditions	with	high	 rainfall,	 low	fire	 frequency	
and/or	low	grazing	pressure	(Hirota,	Holmgren,	Van	Nes,	&	Scheffer,	
2011;	Van	Langevelde	et	al.,	2003).	Adverse	changes	in	these	drivers	
may trigger a regime shift from a forested or savannah state to a 
homogeneous	grassland	state	(Van	Langevelde	et	al.,	2003).

Based	 on	 snapshots	 from	 a	 ground‐truthed	 vegetation	 map	
along	 rainfall	 gradients	 in	 the	 Serengeti‐Mara	 system,	 Eby	 et	 al.	
(2017)	 identified	 a	 threshold	 response	 of	 grassland	 cover,	 which	
rapidly dropped with increased rainfall. The reduced resilience with 
increased	 rainfall	was	 signalled	with	 the	SEWS	used	 in	Box	1,	 ap‐
parently	demonstrating	the	potential	of	SEWS	in	revealing	impend‐
ing	 regime	 shifts.	 However,	 when	 comparing	 vegetation	 and	 soil	
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patterns	from	a	digitized	soil	map	(de	Wit,	1978),	a	striking	similarity	
becomes	apparent	(Figure	2a).	Forest	presence	and	patterns	appear	
to be largely constrained to clayey soils in valleys and loamy soils 
of	the	uplands.	This	example	illustrates	that,	even	when	theory	dic‐
tates	 that	 patterns	 emerge	 from	 self‐organization,	 environmental	
heterogeneity imposed by the landscape template not accounted for 
in	drivers	may	control	actual	vegetation	patterns.	Although	one	may	
test	the	correlation	between	vegetation	and	geological	(lithological)	
factors,	at	least	two	aspects	of	interpolated	global	soil	data	products	
complicate	such	correlation	tests	(see	Supporting	Information	S2).

Ultimately,	 the	 relative	 contribution	 of	 spatially	 variable	 envi‐
ronmental	 factors	 to	 self‐organizing	 processes	 will	 determine	 the	
importance of environmental heterogeneity in affecting spatial veg‐
etation	patterns.	In	case	environmental	heterogeneity	dominates,	it	
will	constrain	the	applicability	of	SEWS.

3.2 | Anthropogenic effects on spatial vegetation 
patterns (7)

Human influence is another source of imposed spatial heterogeneity 
that	may	considerably	affect	SEWS	in	real‐world	landscapes.	While	
certain human influences may be easily identifiable on remotely 
sensed	 imagery,	 other	 forms	 are	more	 subtle	 and	may	 remain	un‐
noticed.	 An	 example	 of	 such	 subtle	 influence	 arises	 in	 semi‐arid	
woodlands	in	Sudan	(Figure	2b;	11°24′N	28°0′E).	Under	natural	con‐
ditions,	the	land	cover	of	semi‐arid	woodlands	generally	organizes	in	
a	distinct	two‐phase	mosaic	of	a	vegetated	state	with	woody	shrubs	

and	a	bare	soil	state	(Rietkerk	et	al.,	2002).	In	semi‐arid	woodlands,	
bistability of a vegetated and a desert state can occur along gradi‐
ents	of	rainfall	(Rietkerk	et	al.,	2002)	and	grazing	pressure	(Noy‐Meir,	
1973),	and	once	transformed	into	desert,	a	vegetated	state	may	be	
hard	to	re‐establish,	putting	local	societies	at	risk.

At	 large	 spatial	 extents,	 the	 semi‐arid	 vegetation	 in	 Sudan	 ap‐
pears	relatively	natural	(Figure	2b).	Closer	inspection,	however,	re‐
veals distinct areas with low tree abundance surrounding scattered 
homesteads	(Figure	2c–e).	In	Sudan,	deforestation	is	a	major	cause	
of	 land	 degradation,	where	 55%	of	 energy	 consumption	 (in	 2015)	
originates	from	firewood	and	charcoal	(International	Energy	Agency,	
2018)	and	woodland	is	converted	in	agriculture	(Aleman,	Blarquez,	
&	Staver	Carla,	2016).	The	 reduced	 tree	cover	 surrounding	home‐
steads	thus	 likely	resulted	from	logging	for	firewood	and	charcoal,	
and/or increased herbivory associated with pastoral livestock farm‐
ing	 (Figure	2c–e),	 rather	 than	 the	homesteads	being	built	 prefera‐
bly in areas of low tree cover. The homesteads are particularly small 
features	(~10	m2),	and	are	therefore	easily	overlooked	in	large‐scale	
studies.	Nonetheless,	human	activity	can	have	major	impacts	on	sur‐
rounding	vegetation	patterns,	and	thus	on	conclusions	drawn	from	
SEWS	in	socio‐ecological	landscapes	(Zurlini	et	al.,	2014).

3.3 | Effects of landscape heterogeneity on regime 
shift characteristics (5)

Heterogeneity in environmental conditions imposed by the land‐
scape,	 as	 discussed	 above,	 can	 affect	 vegetation	 and	needs	 to	 be	

F I G U R E  2  Examples	of	externally	imposed	drivers	for	spatial	vegetation	patterns.	(a)	Effect	of	soil	variability	on	vegetation	distribution	
in	the	Serengeti‐Mara	savannah	system	(1°47′S	34°33′E).	A	vegetation	map	(green	=	forest,	white	=	grass)	is	superimposed	on	a	soil	map	
(orange	=	clayey	soils	of	valley	bottoms	and	riverbeds,	red	=	loamy	soils	of	hills	and	steep	slopes	in	uplands).	The	vegetation	map	is	derived	
from	Reed	et	al.	(2008)	and	classified	in	forest	and	grass	following	Eby	et	al.	(2017);	the	soil	map	is	modified	after	de	Wit	(1978).	(b)	Semi‐arid	
woodland	in	southern	Sudan	(11°24′N	28°0′E)	showing	reduced	vegetation	presence	around	scattered	homesteads	(arrows)	(c–e)	illustrating	
anthropogenic	impact	on	vegetation	patterns	(Imagery	source:	2	February	2014,	Google	Earth,	DigitalGlobe,	2018)	[Colour	figure	can	be	
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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considered	before	interpreting	patterning	in	the	framework	of	SEWS	
and regime shifts. This section discusses two pathways through 
which landscape heterogeneity affects ecosystem resilience and 
properties of regime shifts at the landscape level.

3.3.1 | Effects of spatially varying growing 
conditions on landscape‐level regime shifts

As	shown	 in	 the	previous	section,	vegetation	cover	may	vary	as	a	
function of landscape position and environmental characteristics. 
Such spatial variability of environmental factors leads to spatial 
differences of vegetation to survive or recover from disturbance 
(Ratajczak	et	al.,	2017).	At	the	landscape	level,	this	implies	that	the	
response to gradually increasing spatially averaged stress is no longer 
instantaneous	in	parameter	space.	Instead,	due	to	spatial	heteroge‐
neity,	vegetation	at	different	landscape	positions	will	fail	at	different	
levels	of	external	stress.	Overall,	this	yields	a	more	gradual	response	
to	environmental	changes,	as	for	instance	illustrated	by	van	Nes	and	
Scheffer	(2005)	using	one‐dimensional	model	experiments	describ‐
ing	grazing	pressure	effects	on	vegetation	growth	(Noy‐Meir,	1975).

In	 the	 model	 experiments	 by	 van	 Nes	 and	 Scheffer,	 gradual	
and random spatial heterogeneity affected vegetation response to 
increasing	 grazing	pressure,	 but	not	 vegetation	 recovery	 from	de‐
creasing grazing pressure. Because vegetation recovery remained 
sudden,	this	resulted	in	substantial	hysteresis	even	in	systems	with	
spatially	varying	growing	conditions.	However,	later	modelling	work	
by	Martín,	Bonachela,	Levin,	and	Muñoz	(2015),	who	explored	the	
effect	of	stochasticity,	dispersion	and	spatial	heterogeneity	on	eco‐
system	regime	shifts,	confirmed	that	also	landscape‐level	recovery	
should be expected to be more gradual and without hysteresis under 
realistic	 assumptions.	Moreover,	 spatially	 heterogeneous	 diffusion	
may	 lead	 to	 stable	 co‐existence	 of	 alternative	 states	 in	 spatially	
extended	 heterogeneous	 systems	 (van	 de	 Leemput,	 van	 Nes,	 &	
Scheffer,	2015).	These	modelling	studies	raised	new	questions	about	
the	existence	of	multiple	stable	states	and	regime	shifts	 in,	and	at	
the	scale	of,	real‐world	landscapes.

3.3.2 | Impact of connectivity on regime shift 
characteristics

Topographic	 and/or	 lithological	 heterogeneity	 in	 a	 real‐world	 land‐
scape	 promotes	 redistribution	 of	 resources	 between	 locations.	 A	
good example of this is redistribution of water from hillslopes to val‐
leys	(Puigdefabregas,	Sole,	Gutierrez,	Del	Barrio,	&	Boer,	1999).	With	
increasing	drought,	reduced	plant	density	at	drier	upslope	positions	
may increase the water availability at downslope landscape positions 
(Puigdefábregas,	2005).	Plants	in	these	receiving	positions	will	be	bet‐
ter	able	to	survive	stress	than	they	were	before—a	spatially	explicit	
case	of	scale‐dependent	feedbacks	following,	for	example	Rietkerk	et	
al.	(2002).	The	gain	for	plants	in	receiving	landscape	positions	makes	
these	‘oasis’	positions	function	as	refugia,	where	plants	can	survive	
harsh conditions and from where they can recolonize landscapes if 
conditions	improve	(Trichon,	Hiernaux,	Walcker,	&	Mougin,	2018).

Clearly,	redistribution	of	water	requires	hydrological	connectivity	
between	landscape	positions.	In	some	landscapes,	this	requirement	
may	not	be	met,	such	as	very	sandy	semi‐arid	landscapes	where	all	
water can infiltrate and no overland flow or upward seepage oc‐
curs,	 or	 karst	 landscapes	 with	 many	 small	 depressions.	 However,	
most	landscapes	do	appear	to	have	substantial	connectivity,	at	least	
during	intense	rainfall	(Okin	et	al.,	2015).

To	illustrate	the	impact	of	gradually	increasing	stress	(drought)	
on	 such	 ecosystems	 in	 heterogeneous	 landscapes,	we	 compared	
vegetation response to drought on a homogeneous straight slope 
and	a	rolling	landscape	in	California,	US	(Figure	3a)	using	a	model	
that accommodates for both vegetation and landscape dynamics 
(see	Baartman,	Temme,	and	Saco	(2018)	for	model	details	and	pa‐
rameterization).	 The	 model	 results	 confirm	 the	 hypothesis	 that	
retreat	of	vegetation	from	drier,	upstream	landscape	positions	al‐
lows	vegetation	in	downslope,	receiving	positions	to	survive	longer	
than	it	would	in	a	flat,	nonheterogeneous	landscape	(Figure	3).	At	
the	ecosystem	level,	this	implies	that	both	response	and	recovery	
would be more gradual in landscapes with topographic/geologic 
heterogeneity than more simple landscapes without such hydro‐
logical	 refugia	 (Figure	 3d).	 These	 model	 results	 are	 in	 line	 with	
observations	of	a	semi‐arid	grass	species	response	to	drought	by	
Godfree	et	al.	(2011),	who	found	that	even	small	topographic	vari‐
ability	(0.2–3	m)	was	sufficient	to	sustain	grass	cover	after	drought.

In	 summary,	 heterogeneity	 and	 connectivity	 at	 the	 landscape	
scale seemingly work in the direction of more gradual ecosystem re‐
sponses	to	and	recovery	from	stress,	hence	promoting	resilience	at	
the ecosystem level. It remains to be addressed to what extent such 
landscape‐level	resilience	affects	the	applicability	of	SEWS.

4  | DATA‐REL ATED PREREQUISITES

4.1 | Categorical data effects on spatial EWS (8)

Two main approaches are adopted to translate a remotely sensed 
signal into indicators of ecosystem status: land cover classification 
(categorical	data)	and	the	calculation	of	vegetation	indices	(continu‐
ous	 data)	 (Xie,	 Sha,	&	Yu,	 2008).	Both	 categorical	 and	 continuous	
spatial	data	are	used	to	calculate	SEWS	(Kéfi	et	al.,	2014).

For	 categorical	 vegetation	 maps,	 SEWS	 are	 calculated	 from	
presence–absence data. This ‘binarization’ introduces challenges in 
the	calculation	of	the	SEWS	spatial	skewness	and	spatial	variance.	
Both skewness and variance are mathematically directly dependent 
on the mean field value for binary data and therefore not only de‐
pendent	 on	 spatial	 patterns	 (Sankaran,	Majumder,	 Kéfi,	 &	 Guttal,	
2017).	This	 theoretical	 relationship	was	 confirmed	 in	our	 analyses	
of	grass	cover	along	a	rainfall	transect	in	the	Serengeti‐Mara	system	
(Figure	4a).	The	changes	in	spatial	variance	and	skewness	may	thus	
not	exclusively	reflect	modifications	in	grass	cover	patterns,	but	also	
a modified mean cover. This may lead to false and misleading regime 
shift identification.

To	circumvent	the	dependence	on	the	mean,	categorical	data	can	
be	 transformed	 into	 semi‐continuous	 maps	 using	 coarse‐graining	
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(Génin,	Majumder,	Sankaran,	Schneider	et	al.,	2018).	Coarse‐graining	
is	 a	pre‐processing	 step	 that	 aggregates	grids	 to	 a	 coarser	 resolu‐
tion,	where	the	aggregated	cell	values	represent	mean	values	of	the	
binary	data.	The	required	degree	of	coarse‐graining	is	estimated	as	
the aggregation level at which the originally binary input data shifts 
to	a	unimodal	distribution	(Sankaran	et	al.,	2017).	We	tested	multi‐
modality	in	grass	cover	distribution	of	the	Serengeti‐Mara	dataset	at	
various	coarse‐graining	 levels	using	Hartigan	dip	tests	 (Hartigan	&	
Hartigan,	1985;	R	Core	Team,	2018).

Despite	 coarse‐graining,	 however,	 the	 strong	 relationship	 be‐
tween	mean	and	spatial	variance/skewness	persisted	(Figure	4b–c),	
even when the original bimodal distribution was modified to a un‐
imodal distribution and spatial patterns were removed. This illus‐
trates	that	these	SEWS	largely	originate	from	mean	state	changes	
along	 the	 transect	 rather	 than	a	modified	 spatial	 pattern,	 even	at	
high	coarse‐graining	levels.	In	addition,	as	spatial	patterns	vary	both	
in	space	and	time,	the	optimal	coarse‐graining	level	required	to	es‐
tablish	a	unimodal	distribution	would	vary	spatiotemporally,	which	
further	complicates	SEWS	analysis.	These	unfavourable	properties	
illustrate that application of spatial variance and spatial skewness 
as indicators of regime shifts to categorical data is delicate at best.

Furthermore,	for	both	categorical	and	continuous	data,	the	spe‐
cific	 dataset	 used	 for	 SEWS	analysis	 and	preprocessing	 techniques	
needs	to	be	carefully	selected.	Not	only	pattern	characteristics	(see	
Supporting	Information	S4	for	an	example),	but	even	the	number	of	
alternative stable states may vary with data product specifications 
(Xu	et	al.,	2015).	 In	systems	with	substantial	seasonality,	vegetation	

activity	 and	 its	 spatial	 pattern	will	 also	depend	on	 acquisition	 time	
(Rasmussen	et	al.,	2011).

4.2 | Impact of definition and number of ecosystem 
states (9 + 10)

Besides	the	data‐related	issues	described	above,	the	process	of	de‐
fining ecosystem states based on remotely sensed imagery may be 
highly challenging. Continuous maps of vegetation indices derived 
from	remotely	sensed	imagery	(e.g.	colour	or	NDVI)	allow	for	gradual	
changes	of	states	in	space,	but	do	not	provide	a	direct	characteriza‐
tion of vegetation types or ecosystem states. Threshold values are 
needed	to	distinguish	between	vegetation	types,	but	values	of	veg‐
etation	indices	often	overlap	for	different	vegetation	types,	and	cut‐
off	values	may	even	be	subjective	(Xie	et	al.,	2008;	Yan,	Wang,	Lin,	
Xia,	&	Sun,	2015),	leading	to	ambiguous	ecosystem	state	definitions.	
Yet,	 for	 some	SEWS,	 such	as	 those	based	on	pattern	morphology	
(Mander	et	al.,	2017)	or	changes	in	patch‐size	distributions	(Kéfi	et	
al.,	2007),	classification	of	continuous	data	into	distinct	classes	is	an	
inevitable preprocessing step.

4.2.1 | Effect of (not) merging discrete land cover 
types in ecosystem states (10)

Alternative	states	may	be	characterized	by	a	range	of	internal	vari‐
ation,	which	makes	it	difficult	to	identify	alternative	stable	states	in	
snapshots.	 For	 instance,	 in	 semi‐arid	woodlands	 in	 Sudan	 (11°7′N	

F I G U R E  3  Modelled	effects	of	landscape	heterogeneity	on	vegetation	recovery	from	changing	environmental	drivers	and	regime	shift	
characteristics	(a)	A	hydrologically	connected	landscape	with	rolling	hills.	The	landscape	extent	is	1	km2 and cell size is 25 m2. Total relief is 
16	m.	(b)	Simulated	banded	vegetation	pattern	under	semi‐arid	conditions	(320	mm/year,	see	Fig.	d).	Vegetation	density	ranges	from	64	to	
0 g/m2.	(c)	Persistence	of	vegetation	under	arid	conditions	(75	mm/year,	see	Fig.	d)	in	positions	that	receive	run‐on	water	flow.	Vegetation	
density ranges from 64 to 0 g/m2.	(d)	Landscape‐averaged	response	and	recovery	curves	indicating	extremely	limited	hysteresis	and	very	
gradual	response	for	the	rolling	hills	landscape.	The	grey	line	shows	a	reference	result	for	a	straight	slope	landscape,	with	sudden	recovery	
at	rainfall	225	mm/year,	leading	to	substantial	hysteresis.	Arrows	indicate	directions	of	ecosystem	response	trajectories	to	rainfall	[Colour	
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


1914  |     NIJP et al.

28°15′E),	three	land	cover	types	occur	with	clearly	distinct	spectral	
properties	 (Figure	 5a).	Whereas	 vegetation	 of	 such	 semi‐arid	 sys‐
tems	 is	 typically	 classified	 in	 ‘bare	 soil’	 (whitish	 colour)	 and	 ‘vege‐
tated’	(greenish)	(e.g.	Rietkerk	et	al.,	2002),	about	33%	of	the	total	
area in the example is represented by a third land cover type with a 
distinct	reddish	colour	(Figure	5a;	cover	determined	with	supervised	
maximum	 likelihood	classification,	see	Supporting	 Information	S3).	
Although	no	ground	observations	are	available	for	confirmation,	the	
red	colour	likely	characterizes	‘herbaceous	plants’	(Barbier,	Couteron,	
Lejoly,	Deblauwe,	&	Lejeune,	2006),	representing	a	distinct	biomass	
group	between	bare	soil	and	forest.	The	same	three‐phase	mosaic	
is	observed	 in	many	other	parts	of	 the	Sahel	 region,	 including	 for	
example	 Chad	 (12°9′N	 17°36′E),	 Senegal	 (14°25′N	 14°30′W)	 and	
Mali	(14°9′N	6°44′W)	on	Digital	Globe	imagery	using	Google	Earth	
(Google,	 CA).	 The	 aggregation	 of	 this	 ‘herbaceous’	 state	with	 the	
vegetated or bare soil state significantly affects vegetation patterns 
(Figure	5a)	 and	 cover	of	 the	vegetated	 state	 (47%	vs.	 80%)	 in	 the	
Sudan	example.	As	a	 result	 the	SEWS	also	vary	considerably	with	
state	definitions	(Figure	5).	The	difference	in	SEWS	between	merg‐
ing the red ‘state’ to the forested state and merging it to the bare 

state is well above 100% for spatial skewness and spectral density 
ratio	(Figure	5c–d).	Therefore,	erroneously	merging	land	cover	types	
may result in failure of timely regime shift detection.

Alternatively,	 the	 herbaceous	 plant	 community	 may	 represent	
a	 third	 alternative	 stable	 state	 (Figure	 5b),	 as	 also	 proposed	 by	
Holmgren	 and	 Scheffer	 (2001)	 for	 arid	 ecosystems	 and	 van	 Nes,	
Hirota,	 Holmgren,	 and	 Scheffer	 (2013)	 for	 tri‐stable	 tropical	 tree	
cover. Considering the red land cover as a separate regime affects 
the	 cover	 and	 spatial	 patterns	 of	 the	 forest	 and	 bare	 soil	 states,	
hence	SEWS.	Hypothetically,	disaggregating	two	alternative	stable	
equilibria	 into	multiple	(>2)	equilibria	may	reduce	the	impact	of	re‐
gime	shifts,	as	tipping	to	an	intermediate	state	may	have	a	smaller	
impact	 on	 ecosystem	 state,	 and	 the	 irreversibility	 (hysteresis	 do‐
main)	is	likely	to	reduce	with	increasing	number	of	stable	states.

In	the	examples	above,	different	criteria	to	merge	land	cover	types	
will result in different spatial patterns. Comparable issues with defining 
ecosystem states may appear in other patterned ecosystems around 
the	world,	for	example,	in	northern	peatlands	(Korrensalo	et	al.,	2018).	
The—often	subjective—choices	for	merging	states	influence	spatial	pat‐
terns,	SEWS	and	ultimately	the	estimated	likelihood	of	regime	shifts.

F I G U R E  4  Dependence	of	spatial	early	warning	signals	on	mean	field	value	persists	with	coarse‐graining.	The	top	row	illustrates	the	
effect	of	coarse‐graining	(increasing	with	columns	a	to	e)	on	spatial	patterns	of	grassland	(bright	colours)	and	forest	(dark	colours)	in	a	
representative	spatial	snapshot	(7.5	×	7.5	km)	of	the	Serengeti‐Mara	ecosystem.	CG	denotes	the	coarse‐graining	factor	and	dx	the	grid	
resolution,	red	or	black	borders	indicate	bimodal	or	unimodal	distribution	of	grass	cover.	The	middle	and	bottom	row	show	suggested	SEWS	
spatial	variance	and	skewness	as	a	function	of	mean	grass	cover	and	how	they	depend	on	coarse‐graining	pre‐processing.	Snapshot	data	are	
taken	along	a	rainfall	gradient.	Numbers	in	top‐right	of	each	graph	indicate	the	goodness	of	fit	(R2

adj)	of	the	theoretical	mean	versus	variance	
or	skewness	relationships,	which	were	all	significant	(p	<	0.05).	Grey	areas	correspond	to	95%	confidence	intervals	of	early	warning	signals	
acquired	from	200	simulated	null‐models	(through	random	permutation	snapshot	grid	cells	conform	Kéfi	et	al.,	2014)	[Colour	figure	can	be	
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4.3 | Selecting the right image resolution (11)

The	suitability	of	remotely	sensed	imagery	for	describing	patterns,	
hence	usage	 in	SEWS	analyses,	crucially	depends	on	 its	resolution	
and	the	spatial	ecosystem	pattern	of	interest	(Woodcock,	Strahler,	&	
Jupp,	1988).	If	the	image	resolution	is	coarser	than	the	typical	veg‐
etation	pattern,	a	remotely	sensed	signal	may	be	composed	of	mul‐
tiple vegetation types. Such spectral mixing due to coarse resolution 
generally	reduces	classification	accuracy	(Roth,	Roberts,	Dennison,	
Peterson,	&	Alonzo,	2015),	and	has	major	impact	on	ecosystem	pat‐
tern characteristics and proportional cover of vegetation classes 
(Moody	 &	 Woodcock,	 1995;	 Wickham,	 O'neill,	 Riitters,	 Wade,	 &	
Jones,	1997)	(Figure	4).	At	fine	resolutions,	the	classification	accu‐
racy	may	be	reduced	due	to	increased	within‐class	variability	due	to	
for	example	variation	in	illumination	and	shadow	(Löw	&	Duveiller,	
2014;	McCloy	&	Bøcher,	2007),	which	will	affect	spatial	patterns	and	
therefore	SEWS.	Thus,	both	too	coarse	and	too	fine	image	resolution	
may	affect	SEWS	and	conclusions	drawn.

Typically,	 remote	 sensing	 products	 with	 a	 longer	 history	 (e.g.	
Landsat	or	MODIS)	have	coarser	resolution	than	more	recent	imagery	
(e.g.	Sentinel‐2).	This	 implies	that	the	required	resolution	will	deter‐
mine	whether	 longer‐term	datasets	are	available	to	reconstruct	his‐
torical	developments	in	SEWS	and	upcoming	regime	shifts	over	time.

5  | OPPORTUNITIES AND FUTURE 
DIREC TIONS

5.1 | Confronting conceptual challenges

Currently,	not	all	types	of	impending	regime	shifts	can	be	identi‐
fied	with	SEWS	due	to	for	example	limited	applicability	of	critical	

slowing	down	(CSD)	or	occurrence	of	extreme	events	that	are	im‐
possible	to	anticipate	using	contemporary	SEWS	(Boettiger	et	al.,	
2013;	Dakos	et	al.,	2015).	Major	research	efforts	are	aimed	to	es‐
timate the likelihood of environmental extremes using mechanis‐
tic	models	(Fischer	&	Knutti,	2014;	IPCC,	2013;	Nijp	et	al.,	2017)	
and	controlled	experiments	(Knapp	et	al.,	2008;	Nijp	et	al.,	2014).	
Such studies are crucial to identify when the duration or intensity 
of environmental extremes is sufficient to trigger irreversible re‐
gime	shifts,	and	hence	may	demarcate	quantitatively	under	which	
driver	 changes	SEWS	may	be	useful	 indicators	 for	 regime	shifts	
(Table	1).

For	 space‐for‐time	approaches	at	 large	 spatial	 extent	with	cli‐
mate	as	driver,	it	is	challenging	to	demonstrate	hysteresis,	as	both	
a	 cooling	and	warming	climate	are	 required	but	 the	vast	majority	
of	 the	 earth	 is	warming	 (IPCC,	 2013).	A	 solution	 to	 establish	 the	
particularly elusive ‘cooling climate branch’ may lie in historical 
point‐data,	such	as	paleo‐ecological	records	(Cole,	Bhagwat	Shonil,	
&	 Willis	 Katherine,	 2015;	 Davies,	 Streeter,	 Lawson,	 Roucoux,	 &	
Hiles,	2018;	Willis,	Bailey,	Bhagwat,	&	Birks,	2010).	However,	such	
point‐data	might	 not	 reflect	 the	 spatiotemporal	 evolution	of	 spa‐
tial patterns. Interesting opportunities for successful resilience 
assessment may arise by combining research methods (particularly 
paleo‐ecology,	mechanistic	models,	theoretical	concepts,	remotely	
sensed	data	and	plant	trait	databases).	For	instance,	Spasojevic	et	
al.	(2015)	successfully	combined	remote	sensing	with	trait	datasets	
to	gain	insight	in	ecosystem	recovery	from	wildland	fire,	and	Rogers	
et	al.	(2018)	combined	tree	growth	observations	with	remote	sens‐
ing	to	successfully	detect	regime	shifts	with	temporal	EWS.	These	
recent examples illustrate how integration of research methods can 
lead	to	novel	insights	in	the	application	of	SEWS	in	real,	heteroge‐
neous landscapes.

F I G U R E  5  Effect	of	alternative	
stable state definitions on spatial early 
warning	signals	(a)	Vegetation	pattern	of	
semi‐arid	woodland	in	the	Sahel	region	
in	Sudan	(11°7′N	28°15E,	image	source:	
11	September	2014,	Google	Earth	©	
2018,	Digital	Globe	2018)	showing	three	
distinct colours that are associated 
with	vegetated	(green),	bare	(white)	and	
‘herbaceous	plants’	(brown‐red)	cover.	(b)	
Classified vegetation map with three land 
cover	types.	(c)	Classified	vegetation	map	
where the red land cover type is merged 
with	the	‘vegetated’	state	or	(d)	with	
the	bare	soil	state.	Early	warning	signals	
(numbers	below	figures)	are	calculated	for	
the	forested	state	[Colour	figure	can	be	
viewed at wileyonlinelibrary.com]
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5.2 | Resolving issues related to landscape 
heterogeneity

Real‐world	ecosystems	are	often	affected	by	socio‐ecological	inter‐
actions	that	raise	substantial	environmental	heterogeneity	(Figure	2).	
Model	simulations	indicate	that	geomorphic	landscape	heterogeneity	
likely	 reduces	 hysteresis,	 results	 in	 a	 smoother,	more	 linear	 driver‐
state	 relation,	 and	 due	 to	 landscape	 refuges	 allows	 vegetation	 to	
persist	 under	 environmental	 change	 (Figure	 3;	Martín	 et	 al.,	 2015;	

van	Nes	&	Scheffer,	2005).	These	model	results	are	confirmed	by	ob‐
servations	in	semi‐arid	woodlands	in	the	Sahel	(Trichon	et	al.,	2018)	
and	a	perennial	grassland	(Godfree	et	al.,	2011),	which	demonstrate	
the	 importance	 of	 heterogeneity	 for	 landscape‐level	 resilience.	
Nevertheless,	 current	 theoretical	 and	 empirical	 understanding	 of	
how	spatially	structured	heterogeneity	affects	SEWS	is	highly	limited	
(but	see	Génin,	Majumder,	Sankaran,	Schneider	et	al.,	2018	for	spa‐
tially	variable	stressors	caused	by	autogenous	processes).	Filling	this	
research gap is crucial for the detection of impending regime shifts 
in	real‐world	socio‐ecological	systems,	and	requires	moving	from	an	
ecosystem	approach	towards	a	landscape	perspective	(Table	1).

The heterogeneity of environmental factors may control spatial 
vegetation	patterns	and	interfere	with	SEWS	and	regime	shifts	de‐
tection	 (Figure	2).	Before	 the	 application	of	 SEWS,	 it	 needs	 to	be	
confirmed that state variables are not disproportionally associated 
with spatially variable environmental conditions or societal actors 
(e.g.	 soil	 type,	 logging)	 using	 chi‐square	 tests	 or	 cross‐variograms	
(Rossi,	Mulla,	Journel,	&	Franz,	1992).	Unfortunately,	global	spatial	
data	on,	for	example,	soils	(Hengl	et	al.,	2017;	Stoorvogel,	Bakkenes,	
Temme,	Batjes,	&	Brink,	2016)	 is	often	highly	uncertain	at	a	 reso‐
lution	matching	the	typical	scale	of	vegetation	patches	 (~1–250	m;	
Supporting	 Information	S2).	A	prospective	high‐resolution	alterna‐
tive for soil and geology data may be found in digital terrain metrics 
(e.g.	topographic	wetness	index,	slope,	curvature;	Wilson,	2012),	de‐
rived from remotely sensed digital elevation information. Geology 
and	 topography	 are	 important	 controls	 on	 soil‐forming	 processes	
and	water	availability	(Jenny,	1941),	and	as	such	may	serve	as	proxy	
for	soil	properties	(Moore,	Gessler,	Nielsen,	&	Peterson,	1993).

Besides	 verifying	 controls	 on	 spatial	 patterns,	 environmental	
datasets	 may	 be	 used	 as	 alternative	 null‐models.	 In	 state‐of‐the‐
art	SEWS	analyses,	spatial	patterns	on	snapshots	are	compared	to	
null‐models	representing	random	noise	(Génin,	Majumder,	Sankaran,	

F I G U R E  6  Variogram	analyses	as	prospective	spatial	early	
warning	signal.	(a)	Definition	of	variogram	parameters	that	
characterize spatial heterogeneity. The x‐axis	represents	the	
separation	distance	between	points	in	space,	the	y‐axis	the	
mean variance at this separation distance averaged over multiple 
point‐pairs	(referred	to	as	semivariance).	Typically,	the	similarity	
decreases	with	increasing	separation	distance,	increasing	the	
semivariance. The correlation range represents the separation 
distance	up	to	which	points	in	space	are	correlated,	and	can	be	
interpreted	as	a	quantitative	measure	of	mean	patch	size.	The	
partial	sill	is	the	part	of	variance	that	is	spatially	structured,	
whereas the nugget effect represents a random component. 
Together	they	constitute	the	sill.	A	variogram	consisting	of	only	
a	nugget	represent	pure	spatial	random	noise.	(b)	Vegetation	
biomass	as	function	of	grazing	pressure.	(c)	Variability	of	biomass	
in	space	(sill;	nugget	+	partial	sill	parameter).	(d)	Mean	patch	size	
(m)	of	biomass	(correlation	range	parameter):	represents	the	
characteristic	length	scale	at	which	spatial	patterns	emerge.	(e)	
The relative structural variance (100% partial sill/(partial sill + 
nugget)),	quantifying	whether	data	are	spatially	structured	(100%)	
or	organized	randomly	(0%)	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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Schneider	et	al.,	2018;	Kéfi	et	al.,	2014).	These	null‐models	allow	for	
testing the hypothesis that vegetation structure is significantly dif‐
ferent	from	random	noise.	Instead,	by	taking	spatial	patterns	of	envi‐
ronmental	variables	as	null‐models,	it	can	be	tested	whether	spatial	
vegetation	patterns	and	SEWS	are	significantly	different	from	spa‐
tial	 variability	 in	 the	 environment.	 Such	 null‐models	 have	 not	 yet	
been	developed,	but	would	considerably	advance	SEWS	application	
(Table	1).

The	 effect	 of	 socio‐economic	 activities	 (e.g.	 logging)	 on	 spa‐
tial	 vegetation	 patterns	 cannot	 be	 ruled	 out	 in	 the	Anthropocene	
(Figure	2),	 and	 its	 importance	 requires	 careful	 examination	before	
the	application	of	SEWS.	In	many	data‐sparse	regions	considerable	
socio‐economic	 activity	 occurs,	while	 the	 exact	 human	 impact	 on	
vegetation patterns remains largely undocumented (Chidumayo 
&	Gumbo,	2013).	 In	such	conditions,	object	based	 image	analyses,	
which	utilizes	 information	of	 texture,	 shape,	and	context,	may	be‐
come	useful	to	detect	human	structures	(Blaschke	et	al.,	2014).

5.3 | Resolving data‐related issues

The	use	of	 categorical	 data	 introduces	 several	 challenges,	 ranging	
from reducing the applicability of spatial skewness and variance to 
difficulties	with	defining	ecosystem	states	(Figures	4	and	5).	When	
using	 categorical	 snapshots,	 it	 is	 crucial	 to	 clearly	 define	merging	
criteria of land cover types in ecosystem states or test the sensi‐
tivity	of	results	to	other	relevant	state	definitions.	Extensive	field‐
based ecosystem knowledge will therefore remain indispensable for 
adequate	 state	definitions.	Given	 these	 issues,	we	advise	 to	avoid	
these	SEWS	with	 categorical	 data	 and	 focus	on	 alternative	SEWS	
(Berdugo	et	al.,	2017;	Dai	et	al.,	2013;	Kéfi	et	al.,	2014;	Mander	et	
al.,	 2017;	 Yin,	 Dekker,	 Rietkerk,	 van	 den	 Hurk,	 &	 Dijkstra,	 2016).	
Spatial	 correlation	 length,	 another	measure	 for	CSD	 (Dakos	et	 al.,	
2010),	has	a	strong	theoretical	foundation	 in	geostatistics	and	can	
be	quantified	from	variogram	analysis	(Journel	&	Huijbregts,	1978).	
Variograms	 (Figure	 6)	 provide	 a	measurable,	 interpretable	 and	 in‐
tuitive	measure	of	vegetation	patch‐size	distribution	(Li	&	Reynolds,	
1995;	Woodcock	et	al.,	1988),	are	applicable	to	binary	data,	quan‐
tify spatial correlation (in random and spatially structured compo‐
nents)	and	can	account	for	anisotropy	(e.g.	linear	features	on	sloping	

terrain)	 in	 a	 single	 analysis	 (Rossi	 et	 al.,	 1992;	Webster	 &	 Oliver,	
2007).	 Additionally,	 variograms	 do	 not,	 in	 contrast	 to	wavelength	
analyses	 (e.g.	 Fast	Fourier	Transforms;	Mugglestone	and	Renshaw	
(1998)),	require	equidistant	sampling	and	preprocessing	to	deal	with	
no data values.

The	 potential	 of	 variograms	 as	 SEWS	 can	 be	 illustrated	 from	
spatial	 patterns	generated	with	 the	Noy‐Meir	model	 (Box	1).	The	
variability,	 mean	 patch	 size	 and	 spatial	 structure	 all	 clearly	 in‐
crease	with	 increased	 grazing	 pressure	 (Figure	 6;	 see	 Supporting	
Information	S5	for	analyses	details).	Though	explorative,	this	analy‐
sis demonstrates that variograms very well capture changes in spa‐
tial patterns at reduced ecosystem resilience. Given the advantages 
of	variogram	analyses,	 its	application	 to	detect	 impending	 regime	
shifts	induced	by	global	change	deserves	further	attention	(Table	1).

As	discussed,	the	resolution	of	openly	available	global	remotely	
sensed products has increased steadily over the past decades and 
will	likely	increase	further	in	the	future	(Toth	&	Jóźków,	2016).	The	
higher	resolution,	however,	introduces	new	challenges	as	it	increases	
within‐class	variability,	increasing	the	potential	for	misclassification	
and	inaccuracies	in	spatial	patterns	(Löw	&	Duveiller,	2014).	To	es‐
timate	the	optimal	image	resolution	for	SEWS	analyses,	or	to	select	
among	appropriate	remote	sensing	products,	variograms	again	be‐
come	useful.	For	gridded	data,	Garrigues,	Allard,	Baret,	and	Weiss	
(2006)	recommend	to	calculate	the	optimal	resolution	using	the	typi‐
cal length scale of landscapes (Dc),	derived	from	the	range	parameter	
of	theoretical	variograms.	With	the	Shannon	Theorem	stating	that	
the	sampling	frequency	needs	to	be	higher	than	twice	the	maximal	
frequency	of	the	signal	(Shannon,	1949),	the	optimal	resolution	thus	
equals	Dc/2.

6  | CONCLUSION

Real‐world	 landscapes	 are	 complex	 due	 to	 spatial	 heterogeneity	
induced	by	 geo(morpho)logical	 heterogeneity	 and	 socio‐ecological	
interactions. This may lead to several complications when applying 
SEWS	in	real‐world	landscapes	(Figure	1).	The	first	main	complica‐
tion is that spatial environmental variability imposed by landscape 
template	and	socio‐economic	factors	may	affect	spatial	patterns.	As	
SEWS	 are	 derived	 from	 spatial	 patterns,	 such	 environmental	 het‐
erogeneity may result in misleading interpretations of regime shifts. 
Second,	heterogeneity	in	real‐world	landscapes	may	promote	land‐
scape‐level	resilience,	and	enhance	the	reversibility	of	regime	shifts.	
Moreover,	particularly	the	application	of	SEWS	to	categorical	maps	
requires	 careful	 consideration	 of	 ecosystem	 state	 definitions	 and	
the	specific	SEWS	employed.	For	categorical	data,	spatial	variance	
and	skewness	may	be	inappropriate	SEWS	and	variogram	analyses,	a	
common	geostatistical	technique	to	quantify	spatial	patterns,	seems	
a fruitful alternative. These and other complications are detailed in 
the	presented	framework,	as	well	as	opportunities	to	solve	them.

Moving	 from	an	ecosystem	towards	a	 landscape	approach,	we	
hope	 the	 framework	 (1)	 enhances	 successful	 application	 of	 SEWS	
in	real‐world	landscapes,	(2)	prevents	over‐interpretation	of	SEWS,	

TA B L E  1   Key research priorities in the field of spatial early 
warning	signals	(SEWS)

How extreme must single extreme events be to trigger regime 
shifts?

Can	SEWS	be	used	to	detect	impending	regime	shifts	in	heteroge‐
neous landscapes?

Can	we	develop	null‐models	to	test	the	hypothesis	that	vegetation	
patterns are significantly different from environmental patterns?

How	can	controls	on	spatial	patterns	be	identified	in	data‐sparse	
regions without information on environmental heterogeneity?

Can	variograms	provide	valuable	SEWS	(correlation	length,	part	of	
explained	variance	valuable),	as	alternative	for	spatial	skewness	
and spatial variance?
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(3)	 provides	 guidance	 in	 understanding	 relations	 between	 spatial	
vegetation patterns and environmental drivers in landscapes under 
pressure	 and	 (4)	will	 stimulate	 further	development	of	 SEWS	 that	
can deal with the challenges outlined in this paper.
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