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With the growth in production and use of chemicals and the fact that many end up in the aquatic
environment, there is an increasing need for advanced water treatment technologies that can remove
chemicals of emerging concern (CECs) fromwater. The current lack of a homogenous approach for testing
advanced water treatment technologies hampers the interpretation and evaluation of CEC removal ef-
ficiency data, and hinders informed decision making by stakeholders with regard to which treatment
technology could satisfy their specific needs.

Here a data evaluation framework is proposed to improve the use of current knowledge in the field of
advanced water treatment technologies for drinking water and wastewater, consisting of a set of 9
relevance criteria and 51 reliability criteria. The two criteria sets underpin a thorough, unbiased and
standardised method to select studies to evaluate and compare CEC removal efficiency of advanced water
treatment technologies in a scientifically sound way.

The relevance criteria set was applied to 244 papers on removal efficiency, of which only 20% fulfilled
the criteria. The reliability criteria were applied to the remaining papers. In general these criteria were
fulfilled with regards to information on the target compound, the water matrix and the treatment
process conditions. However, there was a lack of information on data interpretation and statistics.

In conclusion, a minority of the evaluated papers are suited for comparison across techniques, com-
pounds and water matrixes. There is a clear need for more uniform reporting of water treatment studies
for CEC removal. In the future this will benefit the selection of appropriate technologies.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Chemicals are continuously produced for various beneficial
purposes, such as protecting crops, conserving food or treatment of
diseases. Over 348,000 chemicals are currently registered and
regulated via national and international authorities (CHEMLIST).
New chemicals enter the market constantly and the global volume
of production of chemicals is continuously growing (Bernhardt
et al., 2017; CEFIC, 2016; UNEP, 2013). Many of these chemicals
and their transformation products enter the aquatic environment
during their life cycle (Schwarzenbach et al., 2006). Chemicals of
emerging concern (CECs) in the water cycle have been the focus of
research for more than 30 years. The main focus has been on
assessing their toxicity (Bruce et al., 2010; Schriks et al., 2010),
identifying their fate in the environment (Mamy et al., 2015),
documenting their occurrence (Loos et al. 2009, 2010, 2013) and
minimising their release into the environment together with
optimising removal options (Rivera-Utrilla et al., 2013; van Wezel
et al., 2017).

To minimise concentrations and thus adverse effects, removal
efficiencies of various advanced drinking water and wastewater
treatment technologies have been the focus of research (Lee and
von Gunten, 2010; Luo et al., 2014; Rivera-Utrilla et al., 2013;
Verlicchi et al., 2012; Yang et al., 2017). Advanced water treatment
technologies are based on sorption, oxidation and size exclusion
principles. The experimental settings in studies on the efficiency of
these technologies are not homogeneous. Technologies can be
tested at lab-, pilot- or full scale, with different compounds, and
under different conditions. Different water matrices can be tested
such as demineralised water, real or standardized surface water,
ground water, drinking water and wastewater. The target com-
pounds can be spiked as single compound, inmixtures with varying
concentrations, or environmental samples can be used. There can
be variations in the process conditions of the treatment, e.g. dose,
contact time or flux. Finally there are variations in how experi-
mental set-ups and results are expressed; in mJ/cm2 or W/m2 in
case of UV oxidation, with Freundlich isotherms or removal per-
centage in the case of granular activated carbon (GAC), and many
others.

These variations, and the resulting ambiguity, obstruct the
interpretation and evaluation of data concerning the removal effi-
ciency of CECs of specific treatment technologies. Stakeholders
within the urban water cycle have sufficient information on sour-
ces, occurrence and risks of CECs and on potential mitigation op-
tions, but the relevance and reliability of the information is often
unknown (Fischer et al., 2017). As a consequence a framework for
evaluation of scientific and technical information when evaluating
removal efficiency studies would be helpful, including criteria for
relevance and reliability specified for the technologies. Examples of
such data evaluation frameworks from the field of (eco) toxicology
are available and well-used, e.g. to identify studies for the deriva-
tion of environmental quality standards in a scientifically sound
way (Ågerstrand et al., 2011b; Klimisch et al., 1997; Moermond
et al., 2016; Roth and Ciffroy, 2016).

The aim of this study is to develop a novel evaluation framework
that consists of two criteria sets that can be used to evaluate the i)
relevance and ii) reliability of CEC removal efficiency studies for
advanced drinking and wastewater treatment technologies.
Commonly used advanced drinking and wastewater treatment
technologies are activated carbon (granulated or powdered acti-
vated carbon, GAC or PAC), the use of ozone (O3) and UV with or
without H2O2, and finally nanofiltration (NF) and reverse osmosis
(RO) (Luo et al., 2014; van Wezel et al., 2017). Therefore, the criteria
developed focus on those technologies. The developed criteria sets
are subsequently applied to 244 removal efficiency studies.
2. Methodology

Firstly, existing data evaluation frameworks were explored, to
be used as a starting point for the water treatment technology
evaluation framework.

Secondly, we identified parameters influencing removal effi-
ciencies of the selected treatment technologies, such as CEC char-
acteristics, characteristics of the water matrix involved and the
treatment process settings and characteristics. These impact pa-
rameters may differ per treatment technology.

An initial literature review was carried out to gain insight in the
selected treatment technologies, using Scopus. Papers describing
the water treatment techniques GAC/PAC, Ozone/UV±H2O2 and
NF/ROmembranes were selected based on their title. The full paper
was retrieved based on the abstract, and priority was given to
recent reviews. Preliminary impact parameter lists were created
and subsequently discussed with five experts from universities,
knowledge institutes and water utilities, covering all selected
technologies. We used semi-structured face-to-face interviews, and
e-mailed the preliminary impact parameter lists ahead of the
interview, to give the possibility of addressing additional parame-
ters. The interviews were recorded, and analysed. Based on this,
further extensive additional literature research on each individual
treatment technique was carried out, to underpin the selected
impact parameters, and make sure none were left out. A revised
impact parameter list was discussed in a workshop within the EU
FP7 SOLUTIONS project. Based on this the final impact parameter
list was set.

The selected data evaluation framework was then used to
develop a novel framework suited to evaluate the CEC removal
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efficiency studies for advanced water treatment technologies.
Finally we used the developed framework to evaluate the rele-

vance of 244 removal efficiency papers. These papers were found
using the Scopus database by searching on removal of CECs and the
chosen treatment technologies, and in the reference lists of the
retained articles. The 244 papers evaluated for relevance covered
54 journals, with impact factors from 0.7 to 11.6 and included
various research fields such as radiation physics, environmental
pollution and chemical engineering (Supplementary Information
1). Papers fulfilling the relevance criteria were evaluated with
regards to the reliability criteria.

3. Existing data evaluation frameworks

Many frameworks for evaluation of scientific and technical in-
formation exist (ECHA, 2011; EPA, 2012; OECD, 1998; USEPA, 2003).
Most are developed and applied for the implementation of exper-
imental data in regulatory frameworks or decision making pro-
cesses. In one of the first generic frameworks for evaluation of
scientific and technical information five key factors are highlighted
(USEPA, 2003):

1. Soundness - The extent to which the scientific and technical
procedures and methods employed to generate the information
are reasonable for, and consistent with, the intended
application.

2. Applicability and utility - The extent to which the information is
relevant for the intended use.

3. Clarity and completeness - The degree of clarity and complete-
ness with which the data, assumptions, methods, quality
assurance and analyses employed to generate the information
are documented.

4. Uncertainty and variability - The extent to which the quantita-
tive and qualitative variability and uncertainty in the informa-
tion or in the procedures, measures, methods or models are
evaluated and characterized.

5. Evaluation and review - The extent of independent verification,
validation and peer review of the information or of the pro-
cedures, measures, methods or models.

Besides the generic evaluation frameworks, several scientific
fields have their own specific frameworks tailored to their needs.
Within the field of (eco)toxicology, thorough and scientifically
sound assessment of scientific data is necessary in relation to the
hazard and risk evaluation of chemicals (ECHA, 2011; Klimisch
et al., 1997; Moermond et al., 2016; Roth and Ciffroy, 2016). In
view of the analogy of having to consider the complexity of CECs in
various water matrices, these well-developed data evaluation
frameworks were considered a useful starting point to develop a
data evaluation criteria set for the CEC removal efficiencies.

The first and most used toxicological evaluation framework is
the Klimisch approach, focussing on:

1. Reliability - Evaluating the inherent quality of a test report or
publication relating to preferably standardized methodologies,
and the description of experimental procedures and results to
give evidence of the clarity and plausibility of the findings.

2. Relevance - Covering the extent to which data and/or tests are
appropriate for a particular intended use of the data, i.e. in the
case toxicological evaluation hazard identification or risk
characterization.

3. Adequacy - Defining the usefulness of data for the intended (risk
assessment) purposes. When there is more than one set of data
for each effect, the greatest weight is attached to the most
reliable and relevant data set.
The Klimisch approach is used in the REACH legislation for in-
formation requirements and chemical safety assessment (ECHA,
2011). The Klimisch framework has been criticised for being too
reliant on expert judgement, as it provides few criteria for the
reliability evaluation and only mentions relevance with very little
guidance on how to evaluate this (Ågerstrand et al., 2011a; Kase
et al., 2016; Moermond et al., 2016). Therefore, a more detailed
framework for evaluation was developed and tested within the
CRED (Criteria for Reporting and Evaluation ecotoxicity Data)
project (Kase et al., 2016; Moermond et al., 2016). This framework
consists of two criteria sets addressing relevance and reliability. In
this framework adequacy is addressed under the heading rele-
vance. The relevance criteria set contains 13 relevance criteria,
under the headings general, biological relevance and exposure
relevance. The reliability criteria set entails 20 quite specific criteria
under the headings general information, test set-up, test com-
pound, test organism, exposure conditions and finally statistical
design and biological response. These criteria sets are further
elaborated point by point as to why it is important and how it
should be verified (Moermond et al., 2016). This elaboration is
followed by a recommendation of 50 points which should be
included in a study to be able to evaluate it properly.

The existing (eco)toxicology frameworks have recently been
evaluated by Roth and Ciffroy (2016). As relevance and reliability
were seen as important evaluation points, here we considered only
frameworks clearly separating and evaluating these criteria, i.e.
Ågerstrand, AMORE and CRED (Ågerstrand et al., 2011b; Isigonis
et al., 2015; Moermond et al., 2016). The AMORE framework was
not selected as it is a computer based decision support system very
specifically tailored to the evaluation of ecotoxicity tests and not
easily adaptable to other purposes (Ågerstrand et al., 2011b;
Isigonis et al., 2015; Moermond et al., 2016; Roth and Ciffroy, 2016).
The CRED framework gives a detailed description of what needs to
be assessed for the evaluation of relevance and reliability, sum-
marized in two tables. These were used as a starting point to
develop a relevance and a reliability criteria set for the evaluation of
CEC removal efficiency studies for water treatment technologies.
4. Results

4.1. Impact parameters for water treatment efficiency assessment

The impact parameters which influence CEC removal effi-
ciencies of advanced water treatment technologies concern a) CEC
characteristics, b) water matrix characteristics and c) treatment
process conditions. These are specified per treatment technology in
Table 1. Parameters in bold are unique to each study, other pa-
rameters are relevant but can be retrieved elsewhere such as via
scientific literature, and databases such as Episuite, Chemspider
and OECD toolbox.
4.2. Relevance and reliability criteria for water treatment efficiency
assessment

4.2.1. Assessing the relevance of a water treatment study
For relevance we used the definitions of Klimisch et al. (1997)

and ECETOC (2009) “Relevance broadly refers to the extent to
which data and tests are appropriate (fit-for-purpose) for their
intended use, it is a context-dependent quality criterion that is
neither intrinsic to a given study per se, nor a function of the in-
formation available about that study”. The relevance criteria,
appropriateness of data and tests (see Table 2), are used to
determine whether a paper is of interest for the specific purpose; if
positive the reliability should be assessed.



Table 1
Impact parameters per treatment technology. Parameters in bold are essential to report, other parameters can be retrieved elsewhere.

Treatment
technology

CEC characteristics Water matrix
characteristics

Treatment process
conditions

References

Granular
activated
carbon

Molecular charge/pKa pH Surface area/grain size De Ridder et al., 2011; Jeirani et al., 2017; Mailler et al., 2016; Nam
et al., 2014; Rossner et al., 2009; Verlicchi et al., 2010Log Kow/Log Dow NOMa concentration

(and composition)
Pore volume

Molecular weight/size Temperature Surface charge
Functional groups (H-
bonds, aromaticity etc.)

Biological activity

Concentration Contact time/EBCTb

Column length
Flow through
Backflush routine
Scale of testing (bench,
pilot, full)
Prior carbon use (if any)

Powdered
activated
carbon

Molecular charge/pKa pH Surface area
Log Kow/Log Dow NOMa concentration

(and composition)
Pore volume

Molecular weight/size Temperature Contact time
Functional groups (H-
bonds, aromaticity etc.)

Concentration

Concentration Surface charge
Scale of testing (bench,
pilot, full)

Ozone (þH2O2) Reactivity pH Dosage of O3 (and H2O2) Lee et al., 2013; von Sonntag and von Gunten, 2012; Zhang et al., 2012
Concentration NOMa concentration Reactor design (mixing

regime)
Nitrite/nitrate Contact time
Bromide/bromate Scale of testing (bench,

pilot, full)
UV (þH2O2) Reactivity pH Wavelength (lamp type) Lester et al., 2008; Liu and Liu, 2004; Pereira et al., 2007; Real et al.,

2009; Yang et al., 2014Concentration NOMa concentration Irradiation time
Nitrite/nitrate UV dose and H2O2 dosage
Temperature Reactor design
Turbidity Scale of testing (bench,

pilot, full)
NF/RO

membranes
Molecular charge/pKa Ionic strength Membrane area Bellona et al., 2004; Hajibabania et al., 2011b; Verliefde et al., 2007b;

Yoon et al., 2006Molecular weight (size) pH Membrane charge/Zeta
potential

Functional groups NOMa concentration
(and composition)

Fouling

Log Kow/Log Dow Temperature Trans Membrane Pressure
Concentration Turbidity Cross-flow velocity (only

NF)
Permeate flux
Recovery
Salt rejection data
(Molecular weight cut-off)
Scale of testing (bench,
pilot, full)

aNOM: Natural Organic Matter, bEBCT: Empty Bed Contact Time.
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4.2.1.1. Explanation of the relevance criteria (criteria numbers from
Table 2). Relevance of data

1 Is the scope of the tests appropriate for the evaluation?
The requirements for evaluating CEC removal efficiencies by

water treatment technologies is that the technology is commer-
cially available and full-scale applied in the water sector. Only then
can it be used by stakeholders to make informed decisions about
relevant treatment technologies. This at current implies that CEC
removal studies on activated carbon (GAC and PAC), O3 (±H2O2), UV
(±H2O2) or NF and RO membranes are considered appropriate.
Evidently, in the future this list of commercially available and full-
scale applied techniques can be expanded.

2 Are the data reported appropriate for the evaluation?
The purpose is to compare the removal efficiency of one treat-

ment technology with another. This means that if a study reports
removal efficiencies in such a way that these cannot be compared
across technologies, e.g. break-through curves for granular acti-
vated carbon, it is not considered relevant for this purpose. The
results should ideally be reported as removal percentage, log units
of removal, or influent/effluent concentrations which can be used
to calculate the removal efficiency. Studies presenting the removal
precentages only in graph formwere disregarded as excact removal
percentages cannot be retrieved from graphs. Many studies use the
connotation > and < before the removal percentage as they cannot
be more specific due to the limit of quantification/limit of detection
(LOD/LOQ), this severly hampers the possibility of comparing the
study to other studies. In case > or < have been used, only studies
reporting removal precentages >99% or <1% have been included, as
these results are considered equal to 99% or 1% removal. In case of
negative removal efficiencies these may reflect< LOQ in influent
matrices, fluctuating concentrations, or transformation processes
during treatment, and can be relevant to include. However, studies
to find the conditions at which a certain percentage of a compound
is removed, i.e where the removal percentage is fixed, are discarded
as this is a different way of studying removal.

Relevance of tests



Table 2
Criteria for assessing the relevance of efficiency studies for advanced water treatment technologies.

Criterion #

Relevance of data
Is the scope of the tests appropriate for the evaluation? 1
Are the data reported appropriate for the evaluation? 2

Relevance of tests
Relevance of target compounds
In case of a formulation or mixture is the compound tested representative and appropriate for the compounds being assessed? 3
Are the properties of the compounds chosen appropriate for the purpose of the tests? 4
Is the applied compound concentration appropriate for the purpose of the tests? 5

Relevance of water matrix
Is an appropriate type of water chosen for the purpose of the tests? 6
Are the properties of the water matrix chosen appropriate for the purpose of the tests? 7

Relevance of treatment technology
Are the properties of the treatment technology chosen appropriate for the purpose of the tests? 8
Is the scale of the experiment appropriate for the purpose of the tests? 9
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3-5 Relevance of target compound(s)
When testing a large number of compounds these should ideally

represent a broad range of physicochemical properties. The focus
can also be on one compound or a group of compounds that are
known to be problematic to remove with other techniques than
advanced water treatment techniques, such as persistent mobile
organic compounds (PMOCs) (Reemtsma et al., 2016). In case of
compounds that degrade easily due to other processes than the
treatment studied, it should be verified that the compound is
actually removed by the tested treatment technology. This em-
phasizes the importance of controls. Ideally tested concentrations
of the CECs should be representative for environmental levels, but
this can be difficult to achieve with compounds with a high LOQ.

6-7 Relevance of water matrix
It is important to ensure that the selected water matrix corre-

sponds with the purpose of the study. Especially wastewater has
many properties that alter removal efficiencies compared to
cleaner matrices (Luo et al., 2014). As an example the often higher
wastewater content of DOC/NOM influences the efficiency of O3 or
UV compared to surface water with generally lower DOC/NOM
content.

8-9 Relevance of treatment technology
Experimental conditions need to be appropriate for the purpose

of the tests. It should be considered how the tested conditions
relate to full-scale operational ranges (e.g. dosing, exposure time)
and whether they are realistic. For example, the maximum dosage
of O3 is in many cases legally restricted because of the formation of
bromate that is highly toxic (von Gunten, 2003b).
4.2.2. Assessing the reliability of a water treatment study
When assessing the reliability of a water treatment study for

data evaluation, we used the definition by Roth and Ciffroy (2016):
“The reliability of a study relates inter alia to the robustness and
validity of the method used, the completeness and detail of
reporting, the clarity and plausibility of the findings to ensure their
reproducibility, but also to the uncertainty of the knowledge base”.
With regard to reliability, we divide the criteria into the highlighted
components from the above definition: method, reporting infor-
mation, reproducibility and uncertainty (see Table 3).
4.2.2.1. Explanation of the reliability criteria (criteria numbers from
Table 3). Method

1-2 Is a guideline or modified guideline used for any part of the
experiment? Is the test performed under GLP conditions?

The International Organization for Standardization (ISO) and the
Organisation for Economic Co-operation and Development (OECD)
are continuously producing guidelines to amongst others
standardize various chemical tests (ISO, 2017; OECD, 2017). At the
moment no guidelines for testing removal efficiencies for the
selected treatment techniques are available. Nevertheless, ISO and
OECD have provided guidelines on how to measure CECs and how
to take water samples. The American Society for Testing and Ma-
terials (ASTM) published several standards related to water treat-
ment technologies on their website, amongst others standards on
how to predict adsorption capacity of activated carbon (AC) and
some standard procedures for membrane testing e.g. salt rejection
(ASTM, 2014a; b; c). These guidelines are relevant for certain
studies on CEC removal efficiency. Besides these guidelines, it is
also relevant to know if the experiments are performed under good
laboratory practices (GLP) conditions.

3 Are validity criteria fulfilled (controls)?
This to verify that only the tested treatment technology is

removing the CECs from the water matrix and no other processes
such as natural degradation or evaporation takes place.

Reporting information
To have all the information necessary to make a thorough

evaluation of the limitations and exact conditions of the CEC
removal efficiency study the following information (criteria 4-47)
should be reported either in the study itself or in the supplemen-
tary information.

Target compound
4-6 Identification
Many of the below mentioned impact parameters can be found

in databases and literature (e.g. Episuite, Chemspider, OECD
toolbox etc.) if the compound name and/or CAS number is known.

7 Molecular charge/pKa (AC, Ozone, NF/RO membranes)
The pKa of the compound combined with the pH of the water

matrix can be used to determine the charge of the compound if this
is not given in the study (de Ridder et al., 2010; Moreno-Castilla,
2004). A charged molecule will be either attracted to or repelled
by the charge of the AC surface (De Ridder et al., 2011; de Ridder
et al., 2010; Kovalova et al., 2013; Mailler et al., 2014; Margot
et al., 2013; Moreno-Castilla, 2004). For the same reason the
charge of a compound also has an influence on the NF/RO rejection,
usually negatively charged CECs are better rejected than positively
charged CECs (Bellona et al., 2004; Verliefde et al., 2008; Yoon et al.,
2007). Also for treatment with ozone the charge is often relevant,
especially for nitrogen containing compounds as often only
deprotonated compounds have enough electron density, see also 10
Functional groups/reactivity, to be attacked by ozone (Borowska
et al., 2016).

8 Log Kow/Log Dow (AC, NF/RO membranes)
The hydrophobicity of a compound affects the efficiency of a

treatment technique (Hu et al., 1998; Kovalova et al., 2013; Mailler



Table 3
Criteria for assessing the reliability of removal efficiency studies for advanced water treatment technologies, specified per treatment technology.When no technology
is specified the criteron applies to all technologies.

Criterion #

Method
Is a guideline (e.g., OECDa/ISOb/ASTMc) or modified guideline used for any part of the experiment? 1
Is the test performed under Good Laboratory Practices (GLP) conditions? 2
Are validity criteria fulfilled (e.g. controls)? 3

Reporting information
Target compound
Identification
Name 4
CAS number or other identifier 5
Form tested (e. g. salt, acid or base) 6

Impact parameters
Molecular charge/pKa (AC, ozone, NF/RO membranes) 7
Log KOW/Log Dow (AC, NF/RO membranes) 8
Molecular weight/size (AC, NF/RO membranes) 9
Functional groups/reactivity 10

Supplier, purity of target compound 11
Water matrix
Matrix being wastewater, wastewater effluent, surface water, ground water, drinking water, demineralized water or synthetic wastewater 12
Impact parameters
pH 13
NOM concentration and possibly composition 14
Temperature 15
Nitrite/nitrate concentration (ozone, UV) 16
Bromide/bromate concentration (ozone) 17
Turbidity (NF/RO membranes) 18
UV transmittance (UV) 19

Treatment process conditions
Identification
Type of technology used 20

Impact parameters
Surface or membrane area (AC, NF/RO membranes) 21
Pore volume and pore size distribution (AC) 22
Bed volume (GAC) 23
Flow through (GAC) 24
Preloading (GAC) 25
Surface charge (AC, NF/RO membranes) 26
Concentration/dosage or intensity (PAC, ozone, UV) 27
Contact, exposure or irradiation time (AC, ozone, UV) 28
Biological activity (GAC) 29
Technology application (diagram) 30
Wavelength (UV) 31
Concentration of reagent H2O2 (ozone, UV) 32
Fouling (NF/RO membranes) 33
Trans membrane pressure (NF/RO membranes) 34
Permeate flux (NF/RO membranes) 35
Cross-flow velocity (NF membranes) 36
Backwashing (GAC) 37
Recovery (NF/RO membranes) 38
MWCO and/or salt rejection data (NF/RO membranes) 39

Experimental conditions
Scale of experiment (lab, pilot or full scale) 40
Stand alone or part of a treatment train 41
Target compound present in the water matrix tested, or spiked 42
Tested as single compound or in a mixture 43
Initial concentration of target compound 44
Concentrations after treatment of target compound and time points for measuring (duration of experiment). 45
How are the samples collected and with what method? 46
Analytical method: description of method, including recoveries and matrix effects and correction for these, Level of Quantification (LOQ) 47

Reproducibility and uncertainties
Calculation of removal efficiency 48
Use of statistical methods 49
Is the result/efficiency statistically significant? 50
Uncertainty data 51

a OECD: The Organisation for Economic Co-operation and Development.
b ISO: International Organization for Standardization.
c ASTM: The American Society for Testing and Materials.
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et al., 2014; Westerhoff et al., 2005). The hydrophobicity is often
expressed as the octanol-water partitioning coefficient Log Kow, or
the pH corrected log Dow (De Ridder et al., 2011; Kovalova et al.,
2013). Log Dow values can be calculated on the basis of the
reported pH of the water matrix, the pKa and the log Kow, so it is not
essential to report. For NF/RO membranes more hydrophobic CECs
can be adsorbed by the membrane and are initially well removed,
but removal may decrease later due to saturation of the membrane
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(Hu et al., 2007; Moons and Van der Bruggen, 2006; Verliefde et al.,
2007a).

9 Molecular weight/size (AC, NF/RO membranes)
Large compounds tend to be less easily removed with AC (De

Ridder et al., 2011; Mailler et al., 2014). The size of a compound,
expressed in molecular weight, is believed to be one of the main
factors in rejection of CECs by NF/RO membranes (Bellona et al.,
2004; Yoon et al., 2007). Besides the molecular weight also the
molecular size, width, length, (effective) diameter and the molec-
ular volume are used in studies as a measure of the size of the CEC
(Braeken et al., 2005; Comerton et al. 2008, 2009; Jung et al., 2005;
Kiso et al., 2001; Sadmani et al., 2014; Yangali-Quintanilla et al.,
2009).

10 Functional groups/reactivity (All)
Relevant functional groups can be identified on the basis of the

compound structure, so in principle they do not have to be reported
although it is helpful if the author includes information on this
topic. Different functional groups are relevant for different tech-
niques. With regards to AC especially groups allowing H-bonds or
p-p binding are relevant (de Ridder et al., 2010; Mailler et al., 2014).
For NF/RO membranes functional groups of CECs may play a role in
whether the compound is rejected or not, this is, however, mostly
related to the resulting size and/or charge of the compound
(Bellona et al., 2004; Ko�suti�c and Kunst, 2002; Ozaki and Li, 2002).
With regards to O3 and UV, it is the reactivity of a compound that is
important. This is related to the electron density of the compound,
which can again be related to the functional groups. Functional
groups with a high electron density will increase the reactivity of a
compound (von Sonntag and von Gunten, 2012). For treatment
with ozone a broad range of functional groups such as nitro groups,
amides, primary amines, thioethers and olefins are known to
enhance the removal of CECs (Kovalova et al., 2013; Nakada et al.,
2007; Snyder et al., 2007a; von Gunten, 2003a). For UV or O3
treatment in combination with H2O2 an even broader scale of
chemical structures will be attacked as OH radicals react more
unspecific with a very wide variety of functional groups (Snyder
et al., 2007a).

11 Supplier and purity (All)
Supplier and purity of purchased target compounds should be

reported, as this cannot be retrieved elsewhere. This is important
with regards to both the analysis and the behaviour of the target
compounds.

Water matrix
12 Type of water (All)
It is essential to know which type of water was used and

whether it has been artificially created or is of environmental
origin. This gives an indication of the relevance of the study in
relation to full scale treatment and what issues to expect from the
water matrix. If the water matrix is artificially created, details on
the substituents and preparation procedure are to be reported. In
addition, the origin of the composition may be given, as this can be
based on literature e.g greywater (Benami et al., 2016; Pradhan
et al., 2019) andwastewater (Wilsenach and Van Loosdrecht, 2004).

13 pH (All)
As previously discussed under 7 Molecular charge/pKa, the pH of

the water matrix is relevant. In most full scale treatments the pH
lies between 7 and 9 (Kovalova et al., 2013; Mailler et al., 2014;
Margot et al., 2013), so it should be explicated if the study has been
performed at a significantly different pH. Depending on the pKa a
CEC might express higher or lower reaction rates with UV or ozone
at a specific pH due to whether it will be present in a deprotonated
or protonated state, as mentioned in 7 Molecular charge/pKa (Avisar
et al., 2010; Borowska et al., 2016; Real et al., 2009). Furthermore, at
a high pH, ozone decomposition to OH radicals increases, and this
likely will change the CEC removal (Real et al., 2009). The pH can
also have an influence on the surface charge of both NF/RO mem-
branes and AC, as well as impact fouling of the membrane (Bellona
et al., 2004; Braghetta et al., 1997; Deshmukh and Childress, 2001;
Hagmeyer and Gimbel, 1998).

14 NOM concentration (and composition) (All)
For all treatments the presence of NOM can reduce the efficiency

of the treatment in which both the concentration and composition
are relevant parameters (Boehler et al., 2012; De Ridder et al., 2011;
Loos et al., 2013; Mailler et al., 2016; von Gunten, 2003a). With
regards to AC NOM can reduce the removal efficiency of CECs by
pore blocking or adsorption competition (Kilduff et al., 1998;
Matsui et al., 2002; Newcombe and Drikas, 1997; Pelekani and
Snoeyink, 1999). The composition of NOM has proven to be rele-
vant for adsorption competition, where protein-like fluorophores
seem to be the most problematic molecular components (Mailler
et al., 2016). In advanced oxidation treatment the OH radicals are
scavenged by NOM, leading to lower removal efficiencies (Neamţu
and Frimmel, 2006; Pereira et al., 2007; Snyder et al., 2007a; von
Gunten, 2003a; Yuan et al., 2009; Zwiener and Frimmel, 2000). In
the case of UV treatment the presence of NOM can increase the
removal efficiency of the treatment as the presence of NOM can
initiate the production of OH radicals (Leech et al., 2009; Neamţu
and Frimmel, 2006; Pereira et al., 2007; Zhan et al., 2006). On the
other hand NOM can also decrease the efficiency of UV treatment as
it can adsorb the UV, see 19 UV transmittance. As with UV the effect
of NOM on NF/RO membrane removal efficiency is ambiguous,
depending on the amount of NOM, the type of CECs, and the type
and thickness of the fouling layer, and has been researched in many
studies (Comerton et al., 2009; Nghiem and Coleman, 2008;
Nghiem et al., 2010; Nghiem and Hawkes, 2007; Verliefde et al.,
2009a). Usually NOM in wastewater is negatively charged, assist-
ing in repulsion of negatively charged CECs (Mailler et al., 2014).
Even though the effect of NOM present in the water matrix may not
be clear, it is important tomention the presence, concentration, and
when relevant and possible the composition of the NOM, so the
influence can be taken into consideration when evaluating the
removal efficiency. In the 49 studies evaluated in this paper NOM is
expressed as DOC (18 studies), TOC (17 studies) and/or COD (13
studies). To enable comparison across studies it is recommended to
include at least DOC. Only 4 studies mentions NOM composition, 2
PAC studies, one NF and one NF/RO study.

15 Temperature (All)
With regards to AC the temperature can an influence adsorption

kinetics, with a low temperature giving lower removal efficiency
(Nam et al., 2014). In removal with ozone, temperature can influ-
ence ozone decay. In a study by Real et al. (2009) the rate constants
of removal with UV increased with increasing temperature. How-
ever, the difference in minimum and maximum temperature in the
study was 30 �C, and this difference is unlikely to occur in full-scale
applications. With regards to NF/RO membranes a higher temper-
ature will result is more viscous water, which will easier transport
(diffuse) through the membrane and therefore result in a higher
flux which also influences the CEC removal, see also 34-35 Trans-
membrane pressure and permeate flux (Crittenden and Montgomery
Watson, 2012).

16-17 Nitrite/nitrate and bromide/bromate (Ozone, UV)
When applying ozone (especially for wastewater) the nitrite

concentration is relevant since nitrite reacts quickly with ozone and
reduces the available dose (Hollender et al., 2009; Lee et al., 2013).
For both UV and ozone the nitrate concentration (especially for
drinking water) is also relevant as this can form nitrite and other
by-products which are highly toxic. Furthermore, bromide can form
the toxic compound bromate with ozone and consequently, above
certain bromide concentrations ozonation cannot be recom-
mended (Lee et al., 2013; von Gunten, 2003b; von Sonntag and von
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Gunten, 2012).
18 Turbidity (NF/RO membranes)
For NF/ROmembranes the turbidity can give an indication of the

pre-treatment needed and whether to expect fouling, see 33
Fouling (Kim et al., 2002).

19 UV transmittance (UV)
The UV transmittance of the water matrix is relevant to be able

to understand the ability of the UV radiation to reach the CECs. The
transmittance is an indication of how much of the UV radiation is
adsorbed by dissolved matter in the water matrix, and is related to
the NOM and nitrate content of the water matrix (Kruithof and
Martijn, 2013). In general, the higher the transmittance the
higher the CEC removal (Wols et al., 2015). A low transmittance can
be compensated for by using more energy to reach the same UV
dose.

Treatment process conditions
The parameters listed below are all relevant to report as they are

unique to the particular study and cannot be found elsewhere.
Some of these parameters will change over time, so it is important
to report any development of these parameters over the course of
the technology test.

20 Type of technology (All)
The exact type of water treatment technology used should be

reported.
21 Surface/membrane area (AC, NF/RO membranes)
The surface area has a significant influence on the removal ef-

ficiency of a specific AC, and is thus important to report. In general,
a smaller surface has a smaller removal efficiency (Mailler et al.,
2016). The surface area can be acquired from the producer, if the
commercial name is provided in the study. For NF/RO membranes
the membrane area tested is important to understand the scale of
the test rather than its influence on the removal capacity (Verliefde
et al., 2009b).

22 Pore volume and pore size distribution (AC)
The pore volume and the pore size distribution is relevant in

relation to the size of the CEC, and the competition of NOM
(Kovalova et al., 2013; Mailler et al., 2016; Moreno-Castilla, 2004).
NOM can access mesopores and block these and the access of the
CECs to underlying micropores (Moreno-Castilla, 2004).

23-25 Bedvolume, flow through and preloading (GAC)
The bedvolume and flow through of the GAC column influences

the removal efficiency of the GAC treatment (Chowdhury, 2013).
Bedvolume and flow through indicate the time the CECs have to
adsorb to the AC, see also 28 Contact time. In case the GAC has been
used before it will be preloaded with NOM, this should be reported
as it can have a negative influence on the efficiency, however
preloaded GAC columns might also exhibit biological degradation
which will have a positive effect on the removal efficiency (Bourgin
et al., 2018).

26 Surface charge (AC, NF/RO membranes)
The impact of the surface charge has been discussed under 7

Molecular charge/pKa. For NF/RO membranes the surface charge is
often quantified as zeta potential (Bellona et al., 2004). NF/RO
membranes are mostly negatively charged at neutral pH, and thus
have a higher affinity for positively, or neutral compounds (Bellona
et al., 2004; Taheran et al., 2016).

27 Concentration/dosage/intensity (PAC, ozone, UV)
For PAC, the dosage is the main controlling factor for the

removal efficiency, the higher the dose the higher the removal
(Boehler et al., 2012; Mailler et al., 2014; Snyder et al., 2007b). Also
for ozone, the dosage has a substantial positive influence on the
removal efficiency (Margot et al., 2013; Snyder et al., 2007a;
Zwiener and Frimmel, 2000). Often the ozone dosage is related to
the DOC concentration of the water matrix, as a higher dose can
compensate for the limiting effect of the DOC concentration
(Zwiener and Frimmel, 2000). Especially for wastewater the ozone
dosage is often given in relation to the DOC concentration as g O3/g
DOC (Hollender et al., 2009; Kovalova et al., 2013). Also for UV in
general the higher the dose the higher the removal efficiency,
however, this is only valid for CECs that are already susceptible to
degradationwith UV light (Kovalova et al., 2013;Wols and Hofman-
Caris, 2012; Wols et al., 2013). In some of the studies evaluated the
UV intensity is given in einstein s�1, which is not a SI unit and
cannot be compared to the more commonly used mJ/cm2.

28 Contact, exposure or irradiation time (AC, ozone, UV)
The contact time can have a great influence on the removal ef-

ficiency of AC (Mailler et al., 2016; Snyder et al., 2007b). However
for compounds with very fast adsorption kinetics this impact factor
will be less relevant (Mailler et al., 2016). In UV studies the irradi-
ation time is included in the calculation of the dose, so it is less
relevant to state. However, when using advanced oxidation, the
exposure time, during which the OH radicals have time to form and
react with the CECs, is relevant.

29 Biological activity (GAC)
Usually it is known if there is a possibility of biological activity in

the GAC experiments. If this is the case it needs to be stated as the
presence of microorganisms in the GAC filter can enhance removal
of biodegradable CECs (Bourgin et al., 2018; Magic-Knezev and van
der Kooij, 2004; Rattier et al., 2014). Biological activity depends on
the time the GAC have been in use. When using fresh GAC or GAC
directly after regeneration there will be no biological activity in the
beginning, but it will develop and increase in time during use.

30 Technology application (All)
Theway the technology is applied is also relevant to report as for

example the efficiency of ozone depends a lot on themixing regime
(Dodd et al., 2008; Zucker et al., 2016). It can be difficult to describe
an experimental set-up, so in this case the criterion is considered
fulfilled if a schematic of the set-up has been included.

31 Wavelenght (UV)
The wavelength or the source of the UV light (which type of

lamp) is relevant, especially in the case of treatment without H2O2
(Yang et al., 2014). As mentioned under 10 Functional groups/reac-
tivity, this can have influence on whether the CEC will be able to
absorb the radiation, and thus degraded by photolysis (Chen et al.,
2007; Rosenfeldt and Linden, 2004; Yang et al., 2014). Furthermore
a broader UV spectrum can lead to more unwanted by-products
(Hofman-Caris et al., 2015).

32 Concentration of reagent (H2O2)(Ozone, UV)
The addition of H2O2 to ozone or UV treatment increases the

production of OH radicals, and thus the removal efficiency of the
treatment (Ocampo-P�erez et al., 2010; Real et al., 2009; Ternes
et al., 2003; Zwiener and Frimmel, 2000). An increase of the H2O2
dose can be used to compensate for NOM scavenging (Zwiener and
Frimmel, 2000).

33 Fouling (NF/RO membranes)
Fouling and the type of fouling is important for the evaluation of

the removal efficiency of the NF/RO membrane. Organic fouling/
biofouling has been referred to under 14 NOM concentration (and
composition). Fouling with NOM can lead to higher removal of
negatively charged CECs and lower removal of positively charged
CECs. Pressure and flux is also influenced by fouling (added resis-
tance) as it takes more pressure to force water through a fouled
membrane while keeping the flux stable, see also 34e35 Trans-
membrane pressure and permeate flux (Taheran et al., 2016).

34-35 Transmembrane pressure and permeate flux (NF/RO
membranes)

The transmembrane pressure (TMP) is related to the permeate
flux in a NF/ROmembrane, the higher the transmembrane pressure
the higher the flux, when the resistance is constant (Plakas and
Karabelas, 2012). Increased pressure lead to higher removal of
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CECs (Plakas and Karabelas, 2012). The highest removal efficiency
of pesticides was found with NF membranes operation with a high
flux by Chen et al. (2004) and Ahmad et al. (2008). In the 49
evaluated papers TMP was not always given. Instead the working
pressure, the applied pressure or just pressure was given,
obstructing comparison across studies.

36 Cross-flow velocity (NF membranes)
During membrane filtration the phenomenon of concentration

polarization occurs, resulting in a higher concentration of solutes in
front of the membrane surface, resulting in a lower rejection of
solutes compared to the bulk solution (Hajibabania et al., 2011a; Ng
and Elimelech, 2004). A higher cross-flow velocity results in a lower
concentration polarization, and therefore a higher CEC rejection
(Crittenden and Montgomery Watson, 2012). The cross flow ve-
locity cleans the membrane, the higher the velocity the more
fouling (resistance) is removed (Crittenden and Montgomery
Watson, 2012). The influence of fouling on removal of CECs has
been discussed under 33 Fouling.

37 Backwashing (GAC)
Backwashing can influence the CEC removal of the GAC. It

removes materials blocking the pores of the GAC enhancing the
removal efficiency on the other hand it can also disturb the build-
up of the bed and remove organic material degrading the CECs
which will decrease the removal efficiency, see also 29 Biological
activity and 14 NOM concentration (and composition). It is therefore
important to state if backwashing is done and how it has been done.

38 Recovery (NF/RO membranes)
The recovery of a NF/ROmembrane has an effect on the removal

efficiency (Bellona et al., 2004). Several studies have found that
removal efficiency of CECs decreases with increasing recovery
(Chellam and Taylor, 2001; Chen et al., 2004).

39 MWCO and/or salt rejection data (NF/RO membranes)
The rejection capacity of NF/RO membranes can be character-

ized by the salt passage or rejection of standard salts. For RO
membranes typically monovalent salts, such as NaCl are used,
while for NF membranes bivalent salts such as MgSO4 are used
(Bellona et al., 2004; Kiso et al. 1992, 1996, 2001). It is preferable
that these characteristics are noted in the original study as there
might be minor changes from batch to batch, producers and pro-
duction processes change. The molecular weight cut-off (MWCO) is
also used in NF/RO, referring to the lowest molecular weight solute
(in daltons) inwhich 90% of the solute is retained by themembrane.
The MWCO, however, can be difficult to obtain, and is due to dif-
ferences in protocols used by manufacturers not always compara-
ble between NF/RO membranes (Bellona et al., 2004; Cleveland
et al., 2002).

Experimental conditions
All experimental conditions are essential to report as they are all

unique to the specific treatment study, and can influence the
removal efficiency of the studied technique.

40 Scale of experiment
As differences can be expected between lab- pilot- and full scale

experiments, it is important to know the scale of the study
(Hofman-Caris et al., 2017; Verliefde et al., 2009b). Lab scale refers
to laboratory scale experiments (proof of principle). This can be
either batch experiments (batch volume< 100 L) or continuous
flow experiments (flow< 100 L/h). Pilot scale (proof of practice)
refers to experiments on a larger scale, often on-site, with a flow
rate normally< 10 m3/h. These scales proceed full scale application
(proof of market).

41 Stand alone or part of a treatment train
When the study is done on a treatment train it is important to

know the impact parameters of the water matrix, and the removal
efficiency of the CECs at each step of the treatment train, at least if
the authors want to conclude anything on the individual treatment
steps. In all studies it is relevant to know whether the tested water
has received any form of pre-treatment in advance of the treatment
technology investigated in order to have an understanding of what
to expect in the tested water matrix, see also 12 Type of water. The
impact parameters of the water matrix should be measured after
the pre-treatment. In case any post treatment is needed it can be
relevant to mention this, depending on the purpose of the study.

42 CEC already present or spiked
Depending on the purpose of the study spiking can be necessary

to ensure that an accurate removal percentage can be calculated.
When spiking a factor 100 above the limit of quantification, a
removal percentage of 99% can be determined. However, very high
spiking at environmentally unrealistic concentrations may have an
effect on removal efficiencies and may alter the behaviour of the
CEC, which is undesirable.

43 Single compound or mixture
This gives an indication of the boundaries of the study, as in

reality the compounds will almost always be present in a mixture.
44-45 Initial and end concentration of CECs
The initial concentration and the end concentration is particu-

larly important in case no explanation is given on how removal
efficiency percentage have been calculated.

46 Sample collection
It is relevant to report how the samples have been collected, e.g.

grab sampling or continuously sampling. Also the number of
samples and over what time period is important to mention, in
order to get an understanding of the representativeness of the
samples.

47 Analytical method CECs
Here it is essential to describe the analytical methods used and

the treatment of the samples. Furthermore, it is important to give
the limit of detection for each CEC specifically, and if possible the
recoveries too. This information is very relevant as it gives a
detailed understanding of what the removal efficiencies are based
on. This can all be added in supplementary information.

Reproducibility and uncertainties
To ensure the clarity and plausibility of the experimental find-

ings, the following information (criteria 48-51) should be available
to assess the reproducibility and uncertainties of the study.

48 Calculation of removal efficiency
It should be clear how the removal efficiencies are calculated,

and how values< LOQ/LOD are treated, as these choices highly
impact the results (Helsel, 2005; Weltje and Sumpter, 2017). When
spiking the CECs this problem can be avoided, by spiking a high
enough concentration. When not spiking, When not spiking a ‘>’
percentage using the LOQ/LOD as end concentration is preferred to
stating a 100% removal, as this in cases with a low initial concen-
tration and a high LOQ/LOD can be very misleading. It is also
important to note the number of replicates, and how they are used
in the determination of the removal efficiencies.

49 Statistical methods
Have appropriate statistical techniques been employed to

evaluate variability and uncertainty? If any statistics are used to
analyse the experimental findings this should be mentioned
including which methods and why.

50 Significance
When significance of the experimental findings is presented it

should be noted how this is determined and at what p-value a
result is deemed significant.

51 Uncertainties data
A description of the produced amount of data and to what de-

gree it is sufficient to support the conclusions of the study is very
helpful to evaluate the reliability of the results. To what extent do
the uncertainty and variability of the different measurements
impact the conclusions that can be inferred from the data and the



A. Fischer et al. / Water Research 161 (2019) 274e287 283
utility of the study? What is the standard deviation of the results?

5. Application of the criteria

The current status of reporting is discussed based on the review
of 244 selected papers (Supplementary Information 1), and the
benefits of a standardised framework are elaborated based on the
findings. Because of the broad selection of techniques and resulting
large amount of data, the evaluation of the CEC removal itself will
be presented in a follow-up study.

5.1. Relevance criteria

Table 4 details the results of the application of the relevance
criteria described in chapter 4.2.1 on 244 peer-reviewed scientific
articles on the removal of CECs with one of the selected water
treatment techniques.

It is important to realise that the failure to fulfil one of the
relevance criteria does not necessarily mean that the paper is of
poor quality, but merely that the paper does not comply with the
specified relevance criteria and cannot be used for our purpose, i.e.
decision-making by stakeholders comparing removal efficiencies
between various water treatment techniques. It is however
remarkable that so few of the evaluated papers are suitable for a
comparison across techniques, compounds and water matrixes. In
general the first three criteria are the ones most frequently not
fulfilled. The papers were either outside the scope we were inter-
ested in, did not include removal percentages at all or did not report
removal percentages in a way that could be used for our purpose.
Overall, only 20% of the papers evaluated were in compliance with
the relevance criteria and could be used for our purpose.

5.2. Reliability criteria

The application of the relevance criteria left 49 studies onwhich
the reliability criteria could be applied. Table 5 details the results of
the application of the 51 reliability criteria to the water treatment
technology papers.

From Table 5, it is clear that some criteria (in bold) such as
compound name, technology/combinations, wavelength, scale of
experiment, whether it is a stand-alone, whether the compound is
spiked or not, and the pressure for NF/RO membranes are always
reported. For compound name, technology/combinations and scale
of the experiment this is logical as this is also included in the
relevance criteria, and the studies have been selected based on this
information.
Table 4
Details of relevance criteria evaluated for 244 peer-reviewed scientific articles. Since the p
the treatments evaluated but of all the papers.

Criteria applied Description GAC

Total number of papers evaluated 32
1 Outside scope 1
2 Without removal percentage 25
2 Data unusable* 3
3 Not appropriate compound tested 0
4 No properties of compounds 0
5 No concentration of compound 0
6 No type of water matrix 0
7 No properties of water matrix 0
8 No properties of treatment technology 0
9 No scale of experiment 0

Papers fulfilling all the criteria 3

* Data presented as> or < values out of the chosen range, only graphs no tables.
Several criteria are almost always reported (criteria 9, 12, 13, 14,
21, 27,30, 32, 36, 39, 43, 44 and 47) however for some of these
parameters such as NOM content and dosage of O3 and UV, what is
reported is not consistent. NOM was found to be reported in DOC,
TOC and/or COD, and O3 as mg/L or mg O3/g DOC which cannot
easily be compared if DOC is not given.

The criteria for the target compound properties (criteria 4e10)
are poorly reported, varying from not at all to 50% of the studies,
except formolecular weight which is reported in 21 of 24 studies. In
general these criteria are not essential to report as they can be
found elsewhere. However, they facilitate the interpretation of the
results in the studies themselves.

The supplier of the CECs tested (criterion 11) is in general re-
ported, however the purity of the compound (also criterion 11) only
in approximately 60% of the studies.

The criteria concerning the water matrix (criteria 12e19) except
water type, pH and NOM concentration (and composition) are also
not well reported, with the most reported in 50% of the studies and
the least in 25%. This is essential information specific for the study,
and cannot be found elsewhere.

For the treatment process conditions (criteria 20e39) not yet
mentioned, reporting is also not complete. In general, they are re-
ported in less than 40% of the studies, this information is also
specific for the study and cannot be found elsewhere.

With regards to the experimental conditions (criteria 42e48),
sample collection and concentration after treatment are rarely re-
ported. Especially the lack of end concentration makes it very
difficult to understand and reproduce the calculation of removal
efficiencies.

Understanding removal efficiencies is even more difficult as
LOD/LOQ and recoveries for the analytical methods are not always
reported (criterion 47), especially when the method used to
calculate the efficiencies, the number of replicas, the standard de-
viation and how values below the LOD/LOQ are dealt with are re-
ported in as little as 15%e47% of the studies. This makes it almost
impossible to validate the findings of the studies. There is also
virtually no reporting on whether statistics have been used in the
studies (criterion 49) and how. This together with details on sample
collection (criterion 46) are the most underreported areas found in
the studies.

No papers fulfilled all the criteria. The GAC papers fulfil 36e50%
of the criteria, PAC 41e73%, ozone (±H2O2) 38e74%, UV (±H2O2)
33e64%, NF/RO 39e71%. This does not mean that the papers cannot
be used, but that not all the information needed for our evaluation
is available. This will make the assessment of the efficiency of the
technique less straightforward as impact parameters that can
apers often investigatemore than one type of treatment, the total is not the sum of all

PAC O3 ±H2O2 UV±H2O2 NF RO Total

40 64 82 62 29 244
10 8 14 12 4 40
17 22 20 5 2 75
6 18 29 30 16 79
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0
0 1 1 1 1 2
0 0 0 0 0 0

7 15 18 13 6 49



Table 5
Details of evaluated reliability criteria. The numbers in the cells are the number of studies providing that information. If information on the criterion can be given in more than
one way, or the criterion includes more than one parameter the number of studies reporting this parameter are separated with/and reported in the same order as the pa-
rameters of the criterion. When the cell is empty this criterion is not relevant for that specific water treatment technology. Numbers in () are the amount of studies for which
the criteria are applicable, this is only given if the criteria are not applicable to all 49 studies. Criteria in italic are not essential as this information can be found elsewhere, when
compound name is known. Criteria in bold are criteria that are reported in all studies.

Criterion GAC PAC O3 ±H2O2 UV±H2O2 NF RO Total

# of papers 3 7 15 18 13 6 49

1 Guidelines 1 1 3 3 8 4 15
2 GLP conditions 0 0 0 0 0 0 0
3 Validity 1 2 5 1 6 4 13

4 Compound name 3 7 15 18 13 6 49

5 CAS number 0 2 5 4 3 2 12
6 Form tested 0 0 0 0 0 0 0
7 Molecular charge or pKa 0 2 2 1 7 3 12
8 Log KOW(Log Dow, Log P) 1 4 4 4 12 (incl. 3 Log P) 6 22
9 Molecular weight/size 1/0 2/1 13/10 6/5 21/12(24)
10 Functional groups/reactivity 0/0 3/1 1/1 1/1 0/0 0/0 3/1
11 Supplier/purity* 2/0(2) 1/1(3) 4/3(8) 10/9(13) 6/5(13) 2/2(6) 22/15(35)
12 Water type 3 7 15 18 11 6 47
13 pH 3 4 15 17 9 5 41
14 NOM concentration (DOC,TOC,COD)**/composition 2/0(3) 4/2(6) 12(14)/(N/A) 11(13)/(N/A) 6/2(8) 2/1(4) 31/4(37)
15 Temperature 2 4 8 10 9 3 28
16 Nitrite or nitrate** 6(15) 6(13) 11(25)
17 Bromide or bromate** 4(15) 4(15)
18 Turbidity** 1(13) 3(8) 1(4) 4(21)
19 UV transmittance** 3(13) 3(13)

20 Technology and combinations 3 7 15 18 13 6 49

21 Surface or membrane area 3 6 12 5 21(24)
22 Pore volume 1 1 2(10)
23 Column length 1 1(3)
24 Flow through 1 1(3)
25 Prior use 1 1(3)
26 Surface charge 0 1 5 2 6(24)
27 Concentration/dosage/intensity 6 14 16 31(34)
28 Contact, exposure or irradiation time 3 6 13 13 27(35)
29 Biological activity 1 1(3)
30 Technology application 3 6 13 15 12 6 44

31 Wavelength 18 18(18)

32 Concentration of reagent (H2O2)*** 6(6) 13(15) 18(20)
33 Fouling 8 3 9(14)

34 Pressure 13 6 14(14)

35 Cross-flow velocity 6 3 6(14)
36 Permeate flux 12 6 13(14)
37 Backwashing 1 1(3)
38 Recovery 6 3 7(14)
39 MWCO/salt rejection 12 5 13(14)

40 Scale of experiment 3 7 15 18 13 6 49
41 Stand-alone/treatment train 3 7 15 18 13 6 49
42 Compounds spiked or not 3 7 15 18 13 6 49

43 Single compound or mixture 3 7 15 17 13 6 48
44 Initial concentrations 3 7 15 14 10 6 43
45 End concentrations 0 2 7 2 0 0 9
46 Collection of sample 0 1 4 0 1 0 6
47 Analytical method/recoveries/(LOD/LOQ) 3/1/3 7/3/7 14/6/12 18/2/7 13/3/9 6/1/3 48/11/31
48 Calculation of removal efficiency/replicas/use of LOD/LOQ 0/1/0 2/4/1 7/11/5 4/4/1 11/6/0 5/3/0 23/20/7
49 Statistical methods 0 2 3 1 2 1 7
50 Statistically significant 0 2 1 1 2 1 5
51 Uncertainty data/SD 0/0 1/2 1/5 1/2 2/5 0/2 5/12

* In 14 studies unspiked wastewater was used so supplier and purity of the compounds is in this case not applicable. **12 studies are only using ultra-pure, Milli Q or distilled
water, for these waters the matrix properties are known and not essential to report. ***6 O3 studies and 15 UV studies applied H2O2, in this case concentration of reagent is
applicable.
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influence the removal efficiency are not reported and/or removal
efficiencies have not been described.

6. Conclusions and recommendations

Our literature survey revealed that there is currently no uniform
approach to study the CEC removal efficiency of advanced water
treatment technologies. Removal is tested at various scales, with
different water matrices and numerous CECs. There are large var-
iations in the process conditions of the treatment, in the experi-
mental set-ups and in the way results are expressed and reported.

These variations hinder the interpretation and evaluation of the
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removal efficiency data. This in turn makes it difficult for stake-
holders to make an informed decision with regards to which
treatment technology will be relevant for their specific needs.
Therefore, in this study a framework for evaluation of scientific and
technical information that describes what is important when
evaluating removal efficiency studies was developed.

For this framework, two criteria sets were developed: 9 rele-
vance criteria and 51 reliability criteria. These two criteria sets offer
a thorough, unbiased and standardised method to select studies to
evaluate and compare the CEC removal efficiency of advanced
water treatment technologies in a scientifically sound way.

The relevance criteria have been applied to 244 treatment
technology studies, and 49 of these papers fulfilled the criteria,
with non-compliance with the criteria outside scope and appro-
priate data being the main reason for the papers being discarded.
Especially the lack of removal percentage, and data reported in a
way that it cannot be used, affect the potential of these studies to
provide additional information and be suitable for a comparison
across techniques, compounds and water matrixes.

The reliability criteria were applied to the 49 remaining papers.
The main finding here was a severe lack of information on how
removal percentages had been calculated in terms of how LOD/
LOQs had been dealt with, howmany replicas had been used, what
statistics had been applied, and what the standard deviation was.
This hinders the interpretation of the reported result. Furthermore,
many papers did not report on all the identified impact parameters
which makes comparison across studies difficult.

These findings clearly demonstrates the need for a more uni-
form approach. When the developed framework is used as a
guideline by scientists to document their studies it will facilitate
the comparison of different treatment technologies regarding the
removal of CECs. This in turn will enhance the interpretation of the
findings of the studies and consequently benefit the selection of
appropriate technologies by water managers and other
stakeholders.
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