BTO 2018.030 | March 2018

BTO report

Tools for human health risk assessment of emerging chemicals

BTO 2018.030 | March 2018

Tools for human health risk assessment of emerging chemicals

BTO

Tools for human health risk assessment of emerging chemicals

BTO 2018.030 | March 2018

Project number 400554/127/001

Project manager Stefan Kools

Client BTO - Thematical research - Emerging substances

Quality Assurance Annemarie van Wezel

Author Kirsten Baken

Sent to This report is distributed to BTO-participants. A year after publication it is public.

Year of publishing 2017

More information

Dr. Kirsten Baken 0031 30 6069 703 т

Е kirsten.baken@kwrwater.nl

Keywords

Postbus 1072 3430 BB Nieuwegein The Netherlands

+31 (0)30 60 69 511 +31 (0)30 60 61 165 info@kwrwater.nl Е www.kwrwater.nl Т

Watercycle

BTO 2018.030 | March 2018 © KWR

All rights reserved.

No part of this publication may be reproduced, stored in an automatic database, or transmitted, in any form or by any means, be it electronic, mechanical, by photocopying, recording, or in any other manner, without the prior written permission of the publisher.

BTO Managementsamenvatting

Selectie van informatiebronnen en 'in silico' tools bieden handvatten voor toxicologische risicobeoordeling van nieuwe stoffen

Auteur Dr. Kirsten Baken

Dit onderzoek biedt handvatten voor een snelle inschatting van potentiële gezondheidseffecten van stoffen wanneer klassieke toxicologische risicobeoordeling niet mogelijk is bij het aantreffen van nieuwe stoffen in drinkwater(bronnen). Bij zo'n klassieke aanpak worden stofconcentraties vergeleken met drempelwaarden die aangeven beneden welk niveau onze gezondheid zelfs bij levenslange blootstelling geen gevaar loopt. Echter, voor lang niet alle stoffen zijn gegevens beschikbaar om een drempelwaarde vast te stellen, met name in het geval van opkomende stoffen of transformatieproducten. Dan moeten analyses worden uitgevoerd waaruit een potentiële schadelijkheid kan worden afgeleid, waarbij de onbekende stoffen qua structuur worden vergeleken met verwante stoffen waarvan de toxicologische eigenschappen wel bekend zijn. Informatiebronnen en softwarematige tools – '*in silico*' tools – die hiervoor voorhanden zijn, zijn in dit onderzoek geselecteerd op basis van hun bruikbaarheid voor toxicologische evaluatie van drinkwatercontaminanten, gevolgd door een toelichting bij hun gebruik en toepassing voor praktijkvoorbeelden. Het resultaat is een workflow die helpt in het structureren van het gebruik van deze hulpmiddelen. De *in silico* tools geven niet specifiek een veilig blootstellingsniveau aan, maar zijn wel geschikt om stoffen snel te screenen op schadelijke eigenschappen en op basis daarvan te prioriteren voor verder onderzoek. Doorlopende inventarisatie van het aanbod van *in silico* tools en training in het gebruik ervan zijn nodig om de ontwikkelingen hierin bij te houden.

Workflow voor toxicologische evaluatie van chemische stoffen in drinkwater. Bij afwezigheid van informatie wordt overgegaan naar de volgende stap (van boven naar beneden).

Belang: bij gebrek aan toxiciteitsgegevens toch stoffen gezondheidskundig kunnen duiden

Voor het aanduiden van mogelijke gezondheidseffecten van chemische stoffen in drinkwater(bronnen) en het prioriteren van stoffen voor monitoring en zuivering is een toxicologische risicobeoordeling nodig. Zijn de beschikbare gegevens te onvolledig om zo'n risicobeoordeling uit te voeren, dan bieden *in silico* tools (informatiebronnen en software) een mogelijke uitkomst. Deze tools geven niet specifiek een veilig blootstellingsniveau aan, maar zijn wel geschikt om stoffen snel te screenen op schadelijke eigenschappen en op basis daarvan te prioriteren voor verder onderzoek.

Aanpak: inventarisatie, training en toetsing aan praktijkvoorbeelden

Voor een goede selectie en toepassing van *in silico* tools is specifieke expertise nodig, zo bleek uit eerder BTO-onderzoek. Ook moeten voor een volledige inschatting van toxicologische stofeigenschappen meerdere tools naast elkaar worden gebruikt. Vanuit deze behoefte is in dit onderzoek een inventarisatie uitgevoerd van

toxicologische informatiebronnen en bruikbare, publiek beschikbare in silico tools. Daarnaast is deelgenomen aan twee trainingen waarin experts ingingen op toepassingen van de tools. Dit rapport geeft een toelichting op de geselecteerde tools, inclusief tips & tricks voor het gebruik ervan. Tot slot laten we praktijkvoorbeelden zien waarin met de tools informatie wordt verkregen over stoffen waarvoor klassieke toxicologische risicobeoordeling tekortschiet.

In de OECD QSAR Toolbox zijn de grootste verzameling aan toxiciteitsgegevens en de meeste functionaliteiten en analysemogelijkheden beschikbaar. Aanvullende tools die geëvalueerd werden zijn AMBIT, ToxRead en T.E.S.T. voor het ophalen van toxiciteitsgegevens en voorspellen van toxiciteit; Toxtree, Chemotyper, ChemMine, Toxmatch, AIM, en VEGA voor het zoeken naar verwante chemische structuren en/of onderzoek naar toxicologisch eigenschappen; en Metaprint2D-REACT en Xenosite voor het voorspellen van metabolieten van chemische stoffen.

Resultaten: gestructureerde werkwijze voor

toxicologische evaluatie van stoffen in drinkwater De geselecteerde in silico tools zijn geïntegreerd in een workflow voor toxicologische evaluatie van chemische stoffen in drinkwater(bronnen). De workflow is gebaseerd op de informatie die men bij voorkeur bij evaluaties hanteert. Toepassing van de workflow op praktijkvoorbeelden laat zien dat in silico tools complementair zijn aan elkaar en richting kunnen geven aan de risicobeoordeling.

Implementatie: training en up-to-date kennis bevordert het gebruik van in silico tools

De workflow die uit dit onderzoek voortkomt, is toepasbaar voor de toxicologische evaluatie van nieuw aangetroffen stoffen in drinkwater(bronnen). Om waterbedrijven hierbij van dienst te zijn voorziet KWR in geregistreerde toxicologen die getraind zijn in het gebruik van de benodigde in silico tools, inclusief interpretatie van de resultaten. Gezien de snelle ontwikkelingen in ontwerp van software en in silico tools is een regelmatige update van de in dit rapport beschreven informatie aan te bevelen.

Rapport

Dit onderzoek is beschreven in rapport *Tools for* human health risk assessment of emerging chemicals (BTO 2018.030). Hiermee is een vervolg gegeven aan de aanbevelingen uit Innovative testing strategies and their relevance for evaluating chemical drinking water quality (BTO 2014.009).

More information Dr. Kirsten Baken 0031 30 6069 703 kirsten.baken@kwrwater.nl KWR PO Box 1072 3430 BB Nieuwegein The Netherlands

Contents

1	Introduction	3
2	Toxicological evaluation	4
2.1	Drinking water guidelines	4
2.2	Measured data	6
2.3	Predicted toxicity	7
2.4	TTC approach	10
3	In silico tools	13
3.1	OECD QSAR Toolbox	15
3.2	AMBIT	16
3.3	ToxRead	17
3.4	T.E.S.T.	18
3.5	AIM	19
3.6	Toxtree	20
3.7	Chemotyper	21
3.8	ChemMine	22
3.9	Toxmatch	23
3.10	Metaprint2D-REACT	24
3.11	Xenosite	25
3.12	EPI Suite™	26
3.13	VEGA	26
4	Applications	28
4.1	Chemicals without toxicity data	28
4.2	New perfluorinated compounds	30
4.3	Disinfection byproducts	31
4.4	Metabolites of plant protection products	33
5	Conclusions and final remarks	35
Refer	ences	37
Attacl	hment l	39
CAAT	academy hands-on training	
Attac	hment II	40
CEFIC	-LRI hands-on Training	
Attac	hment III	41
Appli	cation of <i>in silico</i> tools for an example chemical	
Attac	nment IV	66
Data e	collection sheet	

1 Introduction

Toxicological evaluation of chemical contaminants in (sources of) drinking water is required to identify potential human health risks and prioritise chemicals for monitoring and abatement. If toxicity data obtained from experimental animal studies (or in some cases *in vitro* studies) are incomplete or absent, non-testing (*in silico*) approaches can be applied to guide hazard evaluation. Such tools do not indicate safe exposure levels but are suitable for quick identification of potential hazards, prioritization of compounds for further testing, and to provide mechanistic information. We previously concluded that expertise is required to select non-testing tools and to perform and evaluate hazard predictions, and that multiple non-testing approaches should be combined to obtain the best prediction of toxicity (Baken and Kools, 2014). This report presents publicly available data sources and *in silico* tools and organizes them in a workflow for evaluation of potential human health hazards and/or health risks of chemical drinking water contaminants. Tips and tricks for the use of the non-testing tools are provided and illustrated by a number of examples of applications of these methods. In the final chapter, conclusions and final remarks on the use of the presented tools are summarized.

2 **Toxicological evaluation**

Potential human health risks of chemical contaminants can be identified by defining safe intake levels of chemicals and comparing those to measured or predicted (drinking) water concentrations (Schriks et al., 2010; Baken et al., 2018). For a limited number of chemicals known to appear in drinking water, health-based statutory drinking water standards are in place. For most chemicals that emerge in surface and groundwater, however, drinking water guideline levels have not yet been derived. In order to gather information on the potential toxicological properties of substances without health-based statutory drinking water, a workflow as depicted in Figure 2-1 is followed. In a tiered (step-by-step) approach, available information on toxicity is retrieved and/or toxicological properties of chemicals are predicted by non-testing strategies.

2.1 Drinking water guidelines

Legal drinking water standards and drinking water guideline values derived by renowned institutes for health protection (see Table 2-1 for a selection) correspond to safe drinking water concentrations, provided that they are based on human health risk assessment and not on organoleptic properties or technical achievability. Such standards and guideline values are based on lifelong daily consumption of a standard volume of water by an average individual in the general population. A proportion of the acceptable exposure level for a chemical is allocated to drinking water, taking into account exposure via other routes as well. Acceptable exposure levels for genotoxic substances represent maximum additional cancer risk levels at lifetime exposure. For Dutch drinking water quality standards, published guideline values can be recalculated to default values of 2 liters of drinking water consumption per day, an average body weight of 70 kg, 20% allocation of total exposure to drinking water (unless information on other exposure routes justifies a different allocation factor), and a maximum lifelong additional cancer risk level of 1 in 10⁶. When multiple health based exposure thresholds are reported, either the most conservative value or the value that is most evidence-based can be adopted.

Legal standards	Drinkwaterbesluit / Drinkwaterregeling
Legal standards	Regeling materialen en chemicaliën drink- en warm tapwatervoorziening
	EU Drinking Water Directive
	US E.P.A. National Primary Drinking Water Standards and Regulations
	Public Health Goals OEHHA California
	Guidelines for Canadian Drinking Water Quality
	Australian Drinking Water Guidelines
Guideline values	WHO Guidelines for drinking-water quality
	US E.P.A. National Primary Drinking Water Standards and Regulations
	USGS Health-based Screening Levels
	<u>Rijksinstituut voor Volksgezondheid en Milieu (RIVM)</u>

TABLE 2-1 SELECTON OF INFORMATION SOURCES FOR DRINKING WATER STANDARDS AND GUIDELINE VALUES

INFORMATION	EVALUATION	SOURCES AND TOOLS
	DRINKING WATER GUIDELINE	
Legal standard Guideline value <i>(§2.1)</i>	Adopt or recalculate	Legislation <i>(Table 2-1)</i> Institutes <i>(Table 2-1)</i>
	Û	
	MEASURED DATA	
Established TDI, ADI, RfD, DNEL , VSD (§2.2.1)	Calculate provisional drinking water guideline value	Meta-databases <i>(Table 2-2)</i> Institutes <i>(Table 2-2)</i>
仓	Û	
Established LO/NO(A)EL (§2.2.1)	Calculate acceptable daily intake and provisional drinking water guideline value	Meta-databases (<i>Table 2-2</i>) Institutes (<i>Table 2-2</i>) OECD QSAR Toolbox (§3.1) AMBIT (§3.2)
仓	Û	
Other types of information (§ <i>2.2.3)</i>	Calculate NOAEL, acceptable daily intake and provisional drinking water guideline value	Meta-databases (<i>Table 2-3)</i> Institutes (<i>Table 2-3</i>)
	Û	
	PREDICTED TOXICITY	
Structural alerts (§2.3.1)	Chemical profiling	OECD QSAR Toolbox (§3.1) AMBIT (§3.2) ToxRead (§3.3) Toxtree (§3.6) Chemotyper (§3.7) VEGA
	Û	
Read across (§2.3.2)	Identify suitable analogues Collect toxicity data Predict endpoint of interest	OECD QSAR Toolbox (§3.1) AMBIT (§3.2) ToxRead (§3.3) AIM (§3.5) ChemMine (§3.8) Toxmatch (§3.9) VEGA (§3.13) and metabolism and physic- chemical properties
	Û	OECD OSAR Toolbox (52.1)
QSAR (§2.3.3)	Check applicability domain Predict endpoint of interest	AMBIT (§3.2) ToxRead (§3.3) T.E.S.T. (§3.4) VEGA (§3.13)
	ψ	
	TTC APPROACH	
TTC-based drinking water guideline level (§2.4)	Check exclusion categories Indications for genotoxicity? Carbamate or organophosphate? Cramer classification	See 'Structural alerts' T.E.S.T. (§ <i>3.4)</i> <i>In vitro</i> bioassays

FIGURE 2-1. WORKFLOW FOR HUMAN HEALTH RISK EVALUATION OF EMERGING CHEMICALS. TOOLS ARE EXPLAINED IN CHAPTER 3. THE SEARCH FOR INFORMATION STARTS AT THE TOP LEVEL; WHEN INFORMATION IS LACKING DATABASES AND TOOLS PRESENTED AT A LOWER LEVEL ARE USED.

When no health-based drinking water guideline values are available, provisional drinking water guideline values can be derived from either established acceptable daily intake levels or toxicity data obtained in experimental animal studies. Schriks et al. (2010) and Baken et al. (2015, 2018) have published a range of such guideline values for emerging contaminants detected in Dutch (sources of) drinking water.

2.2.1 Established TDI, ADI, RfD, DNEL, or VSD

Tolerable Daily Intake (TDI), Acceptable Daily Intake (ADI), Reference Dose (RfD), Derived No Effect Level (DNEL), or exposure levels corresponding to a specified additional life time cancer risk (Virtually Safe Dose; VSD), such as a 1 in 10⁶ risk level, can be retrieved from toxicological (meta)databases and websites or reports published by renowned institutes for human health protection (see Table 2-2 for a selection). Provisional drinking water guideline values (pGLV) are calculated using different equations for threshold chemicals (a) and non-threshold (genotoxic) chemicals (b):

(a) $pGLV (\mu g/L) = [TDI, ADI, RfD, or DNEL (\mu g/kg bw/day) x 70 kg body weight x$ 20% drinking water allocation] / 2 L drinking water consumption

(b) $pGLV (\mu g/L) = [VSD \times 70 \text{ kg body weight}] / 2 L drinking water consumption$

Meta-databases	International Toxicity Estimates for Risk (ITER)
	FURETOX
	OECD eChemPortal
	TOXNET
Institutes	Rijksinstituut voor Volksgezondheid en Milieu (RIVM)
	European Food Safety Authority (EFSA)
	European Chemicals Agency (ECHA)
	EC Scientific Commissions
	EU Pesticides Database
	U.S. EPA (IRIS)
	U.S. EPA (Chemistry Dashboard)
	Agency for Toxic Substances and Disease Registry (ATSDR)
	U.S. EPA Human Health Benchmarks for Pesticides
	Pesticide Properties DataBase (PPDB)
	WHO International Programme on Chemical Safety (IPCS)
In silico tools*	OECD QSAR Toolbox
	AMBIT
	ToxRead
	T.E.S.T.

TABLE 2-2 SELECTION OF INFORMATION SOURCES FOR MEASURED TOXICITY DATA

* In some in silico tools, toxicity data in underlying databases are searchable.

2.2.2 Established LO/NO(A)EL

When acceptable daily intake levels have not been reported, No Observed (Adverse) Effect Levels (NO(A)Els), Lowest Observed (Adverse) Effect Levels (LO(A)ELs) or Benchmark dose (BMD) levels, usually derived from animal experiments applying chronic oral exposure, can be used to calculate acceptable daily intake levels for non-genotoxic substances. These data are preferably retrieved from the information sources in Table 2-2, since the quality of the toxicity studies has then been assessed by expert panels. Alternatively, results from toxicity studies published in peer reviewed literature can be used. Uncertainty factors to correct for inter- and intra-species variation, duration of exposure, and adequacy of the available toxicity data (a factor of 10 is often used by default for each aspect) are applied to reported NOAEL, LOAEL and BMD values to derive safe lifelong daily intake levels.

7

2.2.3 Other types of information

For pharmaceuticals, acceptable daily intake levels are often not published. The lowest therapeutic dose (LTD) can in this case be used as a NOAEL value, to which an uncertainty factor of 100 for inter- and intraspecies variation is applied to derive the acceptable daily intake. Table 2-3 shows information sources for therapeutic doses of pharmaceuticals.

In vitro bioassays are used as alternatives to animal experiments to predict toxicological endpoints (hazard identification). Such tests are useful to indicate the presence of substances with a certain biological activity in water samples, and can indicate mechanisms of action and (relative) potency for toxic effects (such as genotoxicity). However, results of *in vitro* studies can as yet not directly be translated to safe human exposure thresholds. More information on available databases and in vitro to in vivo extrapolation can be found in Baken and Dingemans (2017).

TABLE 2-3 SELECTION OF INFORMATION SOURCES FOR THERAPEUTIC DOSES

Databases	Farmacotherapeutisch Kompas
	Geneesmiddeleninformatiebank (CBG)
Institutes	European Medicines Agency (EMA)
	WHO Defined Daily Dose (DDD)

2.3 Predicted toxicity

When toxicity data are absent or incomplete, non-testing tools can be applied for toxicological evaluation. These computational methods are based on the principle that the activity of a chemical can be predicted from its molecular structure and substructure(s), and from the physicochemical properties and biological effects of similar substances. A noncomprehensive overview of familiar and well characterised structures is provided by the US EPA (URL). Recent developments in computing power, the ability to create extensive databases and the use of the internet to compile, organise and distribute information, have increased the capability and capacity to investigate relationships between chemical structure and biological activity (Baken and Kools, 2014). In silico tools do not generate dose-response information required for human health risk assessment and thus cannot replace toxicity testing. In silico approaches can however be used additionally to results from experimental animal studies to increase the confidence in the available toxicity data. In absence of toxicity data these tools can indicate which threshold of toxicological concern (TTC) level would be appropriate (i.e. for genotoxic or non-genotoxic chemicals), and guide experimental approaches to gather toxicity data for data-poor chemicals by indicating which endpoints would be most relevant to assess primarily. A selection of publicly available in silico tools is presented in chapter 3. Types of information on potential toxicity that can be generated by such tools is described below.

2.3.1 Structural alerts

Structural alerts (SA) are functional groups or structural features that are qualitatively linked to the presence or absence of a property or activity. SA may be complete molecules or parts of molecules. Structure Activity Relationships (SARs) are based on knowledge of chemicals with known physicochemical properties and/or biological actions (reactions with biological entities such as cells or molecules) (Raies and Bajic, 2016; Bower et al, 2017). When a SA is identified in a chemical structure, the description of the SA should be checked for human relevance and for reliability. The reactivity of a SA can be modified by other elements present in the chemical structure; subtle differences in chemical structures and the position of the SA in the molecule may therefore have a considerable impact on the biological activity. Insight

BTO 2018.030 | March 2018

in modulating substructures is however limited for most SA. SA for genotoxicity have been studied most extensively (Kolkman et al., 2013). SA are used to identify potential chemical hazards, group compounds into categories for read across (§2.3.2), predict toxicity in QSAR models (§2.3.3), and assign chemicals to TTC categories (§2.4).

2.3.2 Read across

Chemical categorizing refers to the process of grouping of chemicals whose properties and/or fate are likely to be similar as a result of structural similarity. Read across techniques can subsequently be applied to fill data gaps on a specific target chemical by interpolating or extrapolating existing data of related chemicals within a category (Raies and Bajic, 2016; Bower et al, 2017). In principle, analogue-based read across can be applied for any property or endpoint, irrespective of whether it is a physicochemical property, environmental fate parameter, human health effect, or ecotoxicological effect (Baken and Kools, 2014), provided that (i) the profile of the chemical of interest is known, (ii) suitable analogues are identified, and (iii) measured toxicity data of adequate quality (e.g. as indicated by Klimisch score) are available for the analogues (Schultz et al., 2015). OECD and US EPA have categorized chemicals within the OECD HPV Chemicals Programme or a category defined within the chemical notification scheme and the HPVC challenge programme of the US EPA, and a target chemical may thus already have been associated with an existing category. The OECD QSAR Toolbox (§3.1) and AIM (§3.5) informs the user when this is the case.

It is advised to use multiple tools to identify analogues in order to cover as many chemical databases as possible. Analogues can be identified and selected based on various characteristics (Figure 2-2), that are all equally important. *In silico* tools that allow identification of analogues may offer options to set thresholds for structural similarity scores, indicate critical structural alerts, simulate metabolism, and retrieve analogues with measured toxicity data only. When (dis)similarity in chemical structure is noted, it is important to check in which part of the molecule the (dis)similarity is located and whether that particular part is:

- present in both the target and the analogue,
- critical for the chemical properties,
- representing a functional group or SA,
- related to the endpoint of interest.

Relevant physico-chemical properties are melting point, boiling point, vapor pressure, water solubility and log Kow (Petry, 2017; Autiero, 2017). When only part of the analogues have measured data for these parameters, it is advised to use predicted physico-chemical properties for all substances for optimal comparability (Autiero, 2017).

Taking both structural and biological similarity into account will increase the quality of the category. Kinetic behavior of a chemical in an organism related to absorption, distribution, metabolism and excretion (ADME) properties of chemicals affects the toxicity. Parameters that determine ADME properties are log P, log D, pKa, water solubility, bioavailability, membrane permeability, availability of transporters, volume of distribution, plasma protein binding, blood-brain barrier penetration, metabolic transformation, and excretion. *In silico* models generally predict these properties with moderate accuracy, due to limited availability of data to train the models. Prediction of the structures and subsequently the toxicity of metabolites yields a more complete toxicological evaluation of chemicals and comparison between targets and analogues. Simulation of metabolism requires the consideration at the target site), interaction with metabolic enzymes, and prediction of the structure and reactivity of all metabolites that are formed. *In silico* tools generally only assess one of those aspects. In addition, metabolic pathways are complex due to the multitude of enzymes that may be involved, differences between species, individuals, organs and tissues, and influence

of other internal and external factors such as age, disease, and stress. For cytochrome P450 (CYP450) metabolism and prediction of metabolite structures, several *in silico* models are available. However, most models cannot discriminate between major and minor or stable and reactive metabolites, and produce many false positives. Therefore, results of multiple *in silico* models should be compared and collated to identify the primary metabolites (Kirchmair, 2017).

Cha	racteristic s of chemicals		Sin	nilarity	
•	Structural features &	Similar	Similar	Major	Not shared
	functional groups			substructure	
				shared	
٠	Structural alerts & reactivity	Similar	Similar	Key reactive	Not shared
				groups shared	
•	Effect of other molecular	No	No	No	Yes
	features on toxicity				
٠	Physico-chemical properties	Similar	Not similar but no		Dissimilarity
	and toxicokinetics		effect on toxicity		alters toxicity
•	Metabolic pathways	Similar	Similar	Overlap in	Dissimilar activity
				parents/	of metabolites
				metabolites	
D	ecision: suitable analogues	Suitable	Suitable with	Suitable with	Not suitable
	for read across?		interpretation	preconditions	

FIGURE 2-2 DECISION SCHEME FOR IDENTIFICATION OF SUITABLE ANALOGUES FOR READ ACROSS ANALYSIS (BASED ON AUTIERO, 2017 AND SCHULTZ ET AL., 2015)

The decision which analogues and read across approaches are suitable depends on expert judgement. Read across for hazard assessment can be qualitative or quantitative. In qualitative read-across, the presence (or absence) of a property/activity for the target chemical is inferred from the presence (or absence) of the same property/activity for one or more analogues. In quantitative read-across, the known value(s) of a property for one or more source chemicals is used to estimate the unknown value of the same property for the target chemical. In the case of a toxicological effect, this approach implies that the potency of an effect shared by the two chemicals is similar or follows a regular pattern (Baken and Kools, 2014).

ECHA has published practical guidance documents on how to use and report (Q)SARs in the REACH registration process (ECHA, 2008, 2016, 2017). ECHA discriminates between 'analogue' and 'category' approaches (Figure 2-3). In the analogue approach, read across is based on a very limited number of structurally similar substances, where no trend or regular pattern in the properties is apparent. The term category approach is used when read across is employed between several substances that have structural similarity and as a result of this similarity, the toxicological and/or environmental fate properties are expected to be similar or follow a regular pattern.

FIGURE 2-3 SCENARIOS IN THE ECHA READ ACROSS ASSESSMENT FRAMEWORK (RAAF), REFLECTING DIFFERENT TYPES OF READ ACROSS APPROACHES (ECHA 2012A)

2.3.3 QSAR

Quantitative Structure Activity Relationships (QSARs) are mathematical models that quantitatively predict the physicochemical, biological (e.g. toxicological) and environmental fate properties of molecules based on knowledge of the chemical structure. QSARs are more prevalent for endpoints for which large databases exist, such as ecotoxicity, mutagenicity and carcinogenicity, skin sensitisation, and endocrine disruption. For complex endpoints (such as repeated dose toxicity and reproductive and developmental toxicity) the models are not overly realistic because they may ignore essential processes (Raies and Bajic, 2016; Bower et al, 2017). Baken and Kools (2014) have provided an overview of available QSAR models. The EC Joint Research Center (JRC) offers an up-to-date QSAR Model Database that provides information on the validity of QSAR models that have been submitted to the JRC (URL). A selection of publicly available *in silico* tools in which QSAR models are embedded are presented in chapter 3.

2.4 TTC approach

The TTC is a pragmatic approach, providing conservative exposure limits based on information on chemical structure in absence of toxicity data. The concept originates from the Threshold of Regulation (ToR) that was based on carcinogenicity data for hundreds of chemicals (Rulis, 1986). TTC levels have been calculated for groups of non-genotoxic chemicals (i.e. Cramer class I, II and III, referring to presumed degree of systemic toxicity) based on No Observed Adverse Effect (NO(A)EL) values of reference substances derived from animal experiments (oral dosing) on (sub)chronic, reproductive and developmental toxicity (Munro et al. 1996). A separate threshold for certain neurotoxicants and pesticides (i.e.

organophosphates and carbamates) and a TTC threshold level specifically designed for carcinogens with a structural alert for genotoxicity have been published (Kroes et al. 2004).

TTC-based drinking water target values have been derived from TTC levels by Mons et al. (2013). The generic TTC level for carcinogenic substances and the TTC for genotoxic substances were translated to drinking water concentrations using the approach described in §2.2.1, providing conservative threshold levels of 0.1 and 0.01 μ g/L for non-genotoxic and genotoxic compounds, respectively. In a recent evaluation, we evaluated these TTC-based drinking water target values levels based on toxicity data of substances detected in drinking water and sources, and concluded that somewhat higher thresholds may be used for non-genotoxic chemicals (Baken and Sjerps, 2016; Baken et al. 2018). Table 2-4 lists the different TTCs and TTC-based drinking water target values.

Classification	ттс	Reference	TTC-based	Reference
	(µg/day)		drinking	
			water target	
			value (µg/L)	
Cramer class I (low toxicity)	1800	Munro et al. 1996	37.7	Baken and Sjerps, 2016
Cramer class II (medium toxicity)	540	Munro et al. 1996		
Cramer class III (high toxicity)	90	Munro et al. 1996	4.0	Baken and Sjerps, 2016
Organophophates and carbamates	18	Kroes et al. 2004		
Carcinogens	1.5	TOR rule ('80)	0.1	Mons et al. 2013
Genotoxic substances	0.15	Kroes et al. 2004	0.01	Mons et al. 2013; Baken
(except aflatoxins,			0.02	and Sjerps, 2016
azoxy- or N-nitroso compounds)				

TABLE 2-4 TTC LEVELS AND TTC-BASED DRINKING WATER GUIDELINE VALUES

The TTC approach should not be applied to substances with complex chemical structures having multiple structural elements and highly unique structures, such as some pharmaceuticals (SCCS, 2012). Other substances that are excluded from the TTC approach, either due to underrepresentation in the databases or because they may still be of toxicological concern at the TTC exposure levels, include high potency carcinogens (i.e. aflatoxin-like, azoxy- or N-nitroso-compounds, benzidines, hydrazines), inorganic substances, metals and organometallics, proteins, steroids, organosilicon compounds, chemicals that are known or predicted to bioaccumulate, nanomaterials, radioactive substances, and mixtures of substances containing unknown chemical structures (Kroes et al. 2004; EFSA, 2012; EFSA/WHO, 2016). Such substances need to be evaluated on a case by case basis by gathering experimental (genotoxicity) data.

When substances do not belong to the exclusion categories and can be assigned to the chemical classes for which TTC values have been defined, TTC-based drinking water target values can be used as safe exposure levels for chemicals with unknown toxicity present in drinking water and its sources. First, potential genotoxicity needs to be identified for both the chemicals of interest and its (predicted) metabolites. Chemicals that are classified as genotoxic can be retrieved from the information sources indicated in Table 2-5. Indications for genotoxicity can be derived from *in vivo* or *in vitro* tests assessing gene mutations (e.g. the Ames test) or chromosomal aberrations (including micronuclei) (Table 2-2 and 2-5), structural alerts or read across. DNA reactivity (including direct interaction of chemicals with DNA and covalent modification of DNA) is of most concern, since for other genotoxicity mechanisms safe exposure threshold can often be derived (Kroes et al. 2004; EFSA/WHO,

2016; Boobis et al. 2017). OECD and OASIS DNA binding profilers are structural alerts included in a wide range of chemicals that are mainly designed for grouping and are considered over-predictive (i.e. yielding false positive alerts). Such alerts should preferably be combined with QSAR predictions (Boobis et al. 2017).

TABLE 2-5 SELECTION OF INFORMATION SOURCES ON GENOTOXICITY

Organisations	IARC
	<u>NTP</u>
	U.S. EPA / IRIS
	ECHA
	RIVM
	Ministerie van Sociale Zaken en Werkgelegenheid
Databases	TOXNET GENOTOX
	TOXNET CCRIS
	ECVAM

Non-genotoxic chemicals can be assigned to Cramer classes. The Toxtree tool (§3.6) is often used to automatically go through the Cramer decision tree. An extended decision tree is included for more accurate classification, at least for compounds consisting of one benzene ring. Since Cramer class II contains few chemicals, the TTC threshold for Cramer class III, which is possibly more robust since it is based on a more representative number of compounds, may conservatively be used for chemicals categorized in class II as well (EFSA/WHO, 2016).

3 In silico tools

In silico tools assess the (toxicological) properties of chemicals using computer-based estimations or simulations. While human health risk assessment based on reported toxicity data is common practice for emerging drinking water contaminants, *in silico* tools are not yet routinely applied in this area. Here, we present freely available tools for human health hazard assessment, in particular with respect to the oral exposure route and chronic toxicity, that can be used in context of the workflow presented in Figure 2-1. These tools were selected based on earlier evaluations and recommendations by expert users (Baken and Kools, 2014; Boobis et al. 2017; CAAT Academy Hands-on training, see Attachment I). Table 3-1 shows some specifications of the tools and the steps in the workflow (Figure 2-1) in which they can be applied. The tools are further explained below. Attachment III illustrates the information that can be retrieved by each tool taking the chemical 5-methyl-1H-benzotriazole, an emerging chemical in the water cycle, as an example.

In most tools, the chemical of interest can be indicated by name, CAS number, and/or SMILES code. It is advised to verify CAS and SMILES codes using multiple information sources such as the OECD QSAR Toolbox (see below), ChemIDplus (https://chem.nlm.nih.gov/chemidplus), U.S. EPA Chemistry Dashboard (https://comptox.epa.gov/dashboard), and PubChem (https://pubchem.ncbi.nlm.nih.gov). SMILES codes can be saved in a file with .sdf extension using for instance https://cactus.nci.nih.gov/translate or http://chemmine.ucr.edu.

For all tools it should be noted that reliable predictions can only be made when the chemical of interest is within the applicability domain of the embedded model regarding the physicochemical, structural, or biological properties, knowledge or information of the training set on which the model or tool is based. If this is the case, the target chemical is well represented by the training set. Salts, polymers and surfactants are for instance often not part of the training set.

Attachment IV contains a data collection sheet that can be used to integrate the information retrieved using the *in silico* tools. This aids in identification of data gaps, interpretation of data collected, and drawing conclusions based on the 'weight of evidence' by the user. When conflicting results are obtained for a specific endpoint, either the prediction with the highest confidence level or the most conservative prediction can be used.

14

TABLE 3-1 CHARACTERISTICS AND FUNCTIONALITIES (SEE EXPLANATION IN §2.3) OF A SELECTION OF PUBLICLY AVAILABLE IN SILICO TOOLS FOR TOXICOLOGICAL EVALUATION OF CHEMICALS. THE ORDER OF THE FUNCTIONALITIES (HORIZONTALLY) AND TOOLS (VERTICALLY) FOLLOW THE LEVELS IN THE WORKFLOW IN FIGURE 2-1.

Tool	Online / Download	Input	Measured data	SA (genotoxicity)	SA (other)	Structural analogues	Physico- chemical properties	Observed metabolites	Metabolism simulator	Read across	QSAR (toxicological endpoints)	Exclusion category	Cramer class	Batch mode	Output	Remarks
OECD QSAR Toolbox	D	Name CAS SMILES SMART Structure	¥	*	4	4	✓	*	✓	*	✓		✓ (Toxtree)	✓ (only test data and profiling)	 (Selection of) data matrix in Excel Customized assessment report 	Largest number of databases and structural alerts included
AMBIT2	O*,D	Name CAS SMILES Structure	*	✓ (Toxtree)	1	*	*	~ (when present as substance constituent)		*	✓ (VEGA)	-	✓ (Toxtree)	-	 Excel file of data or working matrix Word report of assessment Sdf and other file types of structures 	*Use Chrome browser All constituents of substances are displayed.
ToxRead	D	SMILES or sdf	1	1		1	✓ (LogP)	-	-	✓ (Ames)	1	-	-	-	Mutagenicity yes/no	Limited selection of endpoints
T.E.S.T.	D	CAS SMILES Structure	1	-	-	-	~	-	-	-	✓ (Ames)	-	-	*	 Conclusio n of Ames test Prediction score 	Limited selection of endpoints
AIM	D	Name CAS SMILES Structure	~ (links only)	-		•	-	-	-		-			-	Document with analogues and hyperlinks to data sources	No detailed report
Toxtree	D	CAS SMILES Structure	-	*	*	-	-	-	✓ (SMARTCyp)	-	-	*	1	*	Decision tree result and most probable CYP450 metabolites	Stand alone version runs only one prediction at a time
Chemotyper	D	sdf	-	1	-	-	-	-	-	-	-	-	-	*	Highlighted structural alerts	
ChemMine	0*	SMILES or sdf	-		-	1	-	-	-		-	-	-	*	Structures and similarity scores; download SMILES or sdf	*Use Chrome or Firefox browser
ToxMatch	D	SMILES or sdf	-	-	-	√*		-	-	-	-	-	-	*	Similarity graph and score; export to Excel	*no search, only similarity check
Metaprint2D -REACT	0	SMILES Structure	-	-	-	-	-	-	✓ (phase I and II)	-	-	-	-	-	Structures and SMILES of analogues	No export or SMILES codes of results available
Xenosite	0	SMILES or sdf	-	~ (DNA reactivity)	-	-	-	-	✓ (sites of metabolism)	-	-	-	-	-	Pictures or sdf file	Predicts one reaction at a time
Epi Suite	D	Name CAS SMILES Structure	-	~ (physchem properties)	-	-	*	-	-	-	-	-	-	4	Word or txt file	
VEGA	D	SMILES or sdf	*	1	1		*	-	-	*	*	-	-	1	PDF or CSV	Also embedded in AMBIT & ToxRead

3.1

The OECD QSAR Toolbox supports the practical application of grouping of chemicals and read-across approaches for data gap filling. The Toolbox incorporates information and tools from various sources and is regularly updated under peer review of OECD member state countries, ECHA, chemical industry and NGO's. Compared to previous versions, the current version contains updated profilers and metabolic simulators, increased ADME information, new databases, a streamlined workflow, and a reliability score for alerts and databases. The results are presented in a transparent way, linking to further information and underlying data.

QSAR Toolbox 4.1 [Document 1]				
QSAR TOOLBOX	hrput	Dry definition Data G	ap Filling Filling	X 0 % 4 0
Profiling Custom profile				The OECD QSAR Toolbox for Grouping Chemicals into Categories
Documents Ä Document 1	Filter endpoint tree	Parent chemical [target]	metabolite #1	Developed by LMC, Bulgana
 A # CASs 136856 ▲ in vive Rat metabolism simulator ⊘ metabolite #1 	Structure			
	Structure info			
	CAS Number	136-85-6	Invalid CAS number: 0-(
Profiling methods	CAS Smiles relation	High	Not aplicable	
Options	Chemical name(s)	1H-Benzotriazole, 5-		
f Select All Unselect All Invert	Composition	_		
✓ Predefined	Molecular Formula	C7H7N3	C7H7N3O	
✓ Database Affiliation	Predefined substance type	Mono constituent	Mono constituent	
OECD HPV Chemical Categories	Structural Formula	Cc1ccc2[nH]nnc2c1	Cc1cc2nn[nH]c2cc1O	
· · · · · · · · · · · · · · · · · · ·	Parameters			
	Physical Chemical Properties			
Metabolism/Transformations	Environmental Fate and Transport			
Options J	Ecotoxicological Information			
f Select All Unselect All Invert	Human Health Hazards			
Documented	- Profile			
Observed Microhial metabolism		A	(1) (1)	
Observed Rat In vivo metabolism 👻	Database Anniation	Canada DSI	(N/A)	
< >	I Inventory Anniation	Canada DSL	(IN/A)	×

The OECD QSAR Toolbox can be applied to perform various assessments:

- Collection of measured data for a single or multiple chemicals¹ from 49 databases with 2 million data points retrieved from animal and *in vitro* studies. Links to the databases from which the data originate are provided. When specific endpoints are selected, a colour code indicates which databases are considered suitable.
- Identification of relevant structural characteristics and potential mechanism of action of one target chemical or multiple structures at the same time¹ and/or their observed or predicted metabolites (which appear at the bottom of the endpoint tree). Chemical profiling can be done based on pre-defined, general mechanistic, endpoint specific, empiric, toxicological, and/or metabolic characteristics. When specific characteristics are selected, a colour code indicates which profilers are suitable. Right clicking on a profiler shows an explanation (some are for instance 'under development') and the applicability domain. Clicking on a SA flagged for a chemical in its profile shows the decision tree and the part of the molecule that forms the SA. When the chemical of interest is out of domain for a prediction or profiler, this is indicated.
- Retrieve observed (mammalian, rat, rat liver, rat S9 or microbial) metabolites and predict metabolites (autoxidation, dissociation, hydrolysis, rat, rat S9, skin, microbial or tautomerism). The predicted metabolites are ranked based on probability and can

¹ To collect data for multiple chemicals simultaneously, right click on the first chemical and choose 'Add in category'.

be shown along with the target in the working matrix², after which they can each be profiled.

- Identification of analogues using various criteria. 'Structure similarity' is the broadest profiler (under 'Options', choose the 'Dice' index and 'Atom centred fragments' for similarity calculation with a threshold of 70% to start with), which can be followed by a subcategorization based on 'organic functional groups' or other (endpoint specific) characteristics to narrow down the number of hits; a colour code again indicates suitable characteristics. All predicted metabolites of the analogues can be retrieved at the same time ('Define with metabolism'). Additional analogues indicated by other tools can be added manually (right click on target -> 'Add in category'). The overlap in structural alerts, physico-chemical properties, bioavailability (Lipinski rule), and metabolism and the availability of measured data can be checked after profiling all analogues (and metabolites) and gathering measured data from selected databases. The structural similarity of all analogues can be revealed by right clicking the target structure next to 'Parameter'->'2D'.
- Perform read across or trend analysis (in case of sufficient continuous quantitative data that are expected to show a trend) for data gap filling for a selected endpoint. The chemical category can be refined/adapted during the procedure; the effect on the prediction is visualised instantly. When multiple measurement results are available for an analogue, the option 'Data usage' -> 'Maximum' allows a worst case prediction.
- Run embedded QSARs for physico-chemical properties, environmental fate, Developmental and Reproductive Toxicity (DART), irritation, sensitization and ecotoxicity

3.2 AMBIT		
Developer	Latest version	Website
Ideaconsult Ltd	AMBIT2 v3.1.0	https://ambitlri.ideaconsult.net/tool2
(Bulgaria)	(September 2017)	

AMBIT has been developed within the CEFIC-LRI research program to support category approaches and read across and establishing a valid justification. The tool is regularly updated and extended; future plans include design of AMBIT as a central hub that connects different tools, including EPI Suite (§3.12). AMBIT2 contains updated non-confidential REACH data provided by ECHA as well as the new European Food Safety Authority (EFSA) OpenFoodTox database (>450.000 substances in total). It discriminates between 'substances' and the constituents of which substances are composed ('structures', additives, metabolites and impurities). The category formation and data gap filling procedure is structured by a workflow. Assessment reports can be generated automatically.

The following functions are available in AMBIT2 (Jeliaskova, 2017; see Attachment II):

- A 'Search' mode for substances (by name) and related constituents, or structures (by name, CAS or SMILES) and substances containing this structure as a constituent (the folder icon displayed for each search result discloses this information).
- Measured data can be retrieved for 43 endpoints. Toxicity data are reported for substances, not structures. Relatively little high quality (i.e. Klimisch score 1 or 2) ECHA data are available. Users need to select data for read across manually by either specifying 'Reliability' in 'Advanced search' or deleting data from the working matrix afterwards.
- Via 'Enhanced functions' Toxtree toxicity predictions (structural alerts, see §3.6) and the VEGA model (QSAR, see §3.13) can be run. For VEGA predictions, the ADI score

 $^{^2}$ To display all metabolites along with the target, right click on the chemical identifier in the left menu of the Input page -> 'Multiplication'.

(referring to applicability domain) indicates the reliability (1 = experimental data). To include Toxtree and VEGA predictions in the data matrix, 'Datasets/Models' need to be checked in the vertical sidebar at the left of the screen.

• The 'Assessment' mode allows category formation and read across. Analogues of structures (only by SMILES code) are identified by structural similarity ('Tanimoto similarity'). A similarity score is indicated and a threshold can be set. When data are gathered for analogues, users need to check whether the identified analogue is a mono-constituent of the substance for which data are reported, or whether a substance contains the analogue as an impurity or metabolite. Physicochemical properties and measured toxicity data for all substances related to each analogue can be unfolded. Next, the target structure (T) and category members (CM) need to be selected; a rationale can be added manually. Endpoint data to be used for read across are selected in the next step. 'Supporting information' in the 'Tox' tab refers to model predictions (Toxtree and VEGA). An initial data matrix is generated automatically by the selection of substances and endpoints. Data points can be added by the user.

nb	it scefic	search *	Assessments * Import * Enhanced functions * Admin * Help *	[trains	and a second
Exact	structure Simila	arity Substructure URL	Enable tragment search 0 136-85-8		ρ,
Iden	tifiers Datas	sets		_	Export
Showing	g from 1 to 1 in page	es of 20 * entries 🖷 <u>Provious</u> No	Ext In Filter		
	Diagram	CasRN EC number IUCLID 5 F	Re Names Trade Name UVPAC name SMILES Std. InChi key Std. InChi REACH registration date	Similarity	
		Street and Street and			
		Identifiers Doubtances			
	N	Name *	Value	SameAs	Source
		Name *	Value 136-85-6	SameAs	Source Dataset
		Libertuners Name CaseN 0 EC number 0	Value 136-85-6 265-355-8	SameAs (Source Dataset Dataset
		Name * CastN Ø EC number Ø IUCLD S Reference substance UUID Ø	Value 135-85-6 285-285-8 TOW-4602875-6464-988-acc6-a94a10759928/ECH4-0564a386-02ac-4475-5442-298a7466a4/ECH4-5316c105-5447-4535-a464-036884766a2/ECH4-44c354a2-6185-491c-9175- HelceB7022626	SameAs (Source Dataset Dataset Dataset
		Name * CastN © EC. number © IUCLID 5 Reference substance UUID © IUPAC name ©	Value 138-85-6	SameAs	Source Dataset Dataset Dataset Dataset
		Anne Castillo Subtrances	Value 135-85-6 205-055-8 ECN4-6002015246 ECN4-6002012026 Status	SameAs - - - - - -	Source Dataset Dataset Dataset Dataset Dataset
.1.		Name Cashi C	Value 136-85-6	SameAs - - - - - - - - - -	Source Dataset Dataset Dataset Dataset Dataset Dataset
. 1. D		I Johnson y Development of the second	Value 135-05-6 205-05.6 (204-062)25 - 4464-038-5256-2451-05564238-0226-4473-5482-27887-54854-015884716208-4464-015884716208-446524a2-0185-4016-9717- 9666872026a 3-548thyl-13-benezofiazibil 5-methyl-13-benezofiazibil (14-benezofiazibil (14-benezofiazibil 5-methyl-1 5-feethyl-13-benezofiazibil 5-methyl-13-benezofiazibil (14-benezofiazibil (14-benezofiazibil (14-benezofiazibil 5-methyl-1 3-11.2019 3-11.2019	I SameAs I * * * * * * * * * * * * * * * * * * * * * *	Source Dataset Dataset Dataset Dataset Dataset Dataset Dataset
-1-		London's Development Kenne Casht 0 EC number 0 DOL10 5 Reference substance UNID DUPAc name 0 RAMER 0 RAMER 0 SULLIS 0 SULLIS 0	Value 139-85-6 206-205-8 206-	SameAs - - - - - - - - - - - - - - - - - - -	Source Dataset Dataset Dataset Dataset Dataset Dataset Dataset Dataset

3.3 ToxRead

Developer	Latest version	Website
Mario Negri (Italy)	0.11	http://www.toxread.eu
	(September 2016)	

ToxRead assists users in making reproducible read across evaluations. The current version contains a read across mode for mutagenicity (Ames test) and bioconcentration. Other endpoints are under development. The user has to provide the chemical of interest, the endpoint, and the number of similar chemicals to be included. Similar chemicals are automatically selected by the software. ToxRead contains:

- Libraries of chemicals with associated experimental values. In the database, 16268 molecules are included with experimental values for Ames test classification (6055 data points), carcinogenicity (784 data points), bioaccumulation and -concentration in fish (857 data points), and octanol-water partition coefficient (LogP: 9959 data points). These data originate from LIFE projects ANTARES, CALEIDOS and PROSIL.
- Libraries of structural alerts and algorithms of relevant features. These were derived from the aforementioned projects and from VEGA (§3.13) and Toxtree (§3.6) libraries. For the mutagenicity endpoint, four rule sets are available: Benigni/Bossa (as available in Toxtree v. 1), SARpy rules (extracted by Politecnico di Milano, with the automatic tool SARpy), IRFMN rules (extracted by human experts at Istituto di Ricerche Farmacologiche Mario Negri) and CRS4 rules (extracted by CRS4 Institute with automatic tools).

Results are displayed in graphs, in which the target chemical is connected with:

- The most similar compounds. These are represented by circles, the size of which is proportional to the similarity, ranging from 0 to 1. The user can see the structure of the chemical of interest by double clicking on the circle. ToxRead shows the structure, the similarity values, and the experimental values for a series of endpoints, not only for the endpoint under direct evaluation.
- Structural alerts. These are represented by triangles, which are inverted for non-toxic alerts. Toxicity alerts are red, while non-toxic alerts are green. The intensity of the colour is related to the percentage of toxic or non-toxic chemicals. Clicking on the alert shows the chemical structure, the prevalence of toxic compounds, the P value associated to the alert (which is represented by the triangle size), and up to 100 chemicals most similar to the target chemical containing the alert. The user should prefer alerts with a higher P value and prevalence of toxic/non-toxic chemicals. In the graph, structural alerts are also connected with related chemicals.

For the mutagenicity endpoint, an integrated prediction is provided and on its basis the target molecule is depicted in green or red (mutagenic or non-mutagenic prediction), or in yellow if the prediction is conflicting. This prediction is based on two assessments:

- i. an automatic calculation of a read across prediction based on the output of ToxRead. Molecules having an experimental value in disagreement with the toxicity reported by the alert are excluded. Two scores are calculated for mutagenic and non-mutagenic activities: each score is the sum of the predicted activity multiplied by the similarity for each compound having the same toxicity activity. The final scores are then normalized (in the range between 0 and 1) and the score with the highest value represents the read-across prediction.
- ii. a consensus (indicated by a Consensus Score) between four different QSAR models available in the VEGA software (see §3.13), and experimental data when available.

3.4 T.E.S.T.		
Developer	Latest version	Website
US EPA	4.2.1	https://www.epa.gov/chemical-research/toxicity-estimation-
	(April 2016)	software-tool-test

The Toxicity Estimation Software Tool (T.E.S.T.) is an open-source application developed by the US EPA's National Risk Management Research Laboratory. T.E.S.T allows users to estimate a selection of toxicological and a range of physical properties. The toxicological endpoints that are currently in the software include ecotoxicity parameters, acute toxicity (rat oral LD50), developmental toxicity, and mutagenicity in the Ames test. When experimental results are present in the underlying database, these are reported as well. The physical property endpoints include boiling point, flash point, surface tension, viscosity, density, water solubility, thermal conductivity, vapour pressure, and melting point. No predictions can be made for organic salts.

T.E.S.T. uses several QSAR methodologies: hierarchical, FDA, single-model, group contribution, nearest neighbour and consensus, and mode of action methods. The consensus method is preferred, since it predicts the toxicity simply by taking an average of the predicted toxicities from the aforementioned methods. To check the reliability of the predictions coming from this consensus method, the user should assess the reliability of the other methods. Predictions for similar structures are reported as well. If the predicted value matches the experimental values for similar chemicals in the training set, and the similar chemicals were predicted well, one can have greater confidence in the predicted value.

3.5 AIM		
Developer	Latest version	Website
US EPA	1.01	https://www.epa.gov/tsca-screening-tools/analog-
	(November 2013)	identification-methodology-aim-tool

The Analog Identification Methodology (AIM) facilitates analogue analysis and data identification in support of chemical assessment or read across approaches. AIM conducts a structural analysis of a chemical using over 700 individual atoms, groups and super fragments indexed in a predefined database. It then matches them to potential analogues from a built in inventory of over 86.000 chemicals with publicly available measured data. 'Pass 1' is the default stringent search in which all of the fragments/atoms in the query chemical are contained in the analogue. 'Pass 2' can be selected by the user to include a less stringent search. Under 'Advanced options', additional rules can be selected to loosen search criteria even more, in case Pass 1 and 2 yield few analogues. AIM searches may also be tailored by the user to define what types of substitutions or exclusion rules are appropriate for the search. Polymers cannot be run in AIM. For ring structures, only exact matches can be performed.

A report is produced listing the target chemical and identified analogues. Similarity scores and overlapping structural characteristics are not reported. Hyperlinks to data sources with experimental results are provided; however, users still need to look up the specific chemical in the databases themselves. 21 common chemical classes known to undergo metabolism in the body to potential metabolites of concern for various health effects are flagged. The user needs to determine when a specific analogue is suitable for a specific assessment, as the determination of what structure is 'appropriate' can vary depending on the endpoint assessed.

US EPA also offers the Chemical Assessment Clustering Engine (ChemACE) tool (https://www.epa.gov/tsca-screening-tools/chemical-assessment-clustering-engine-chemace), which is designed to cluster a list of chemicals based on structure using predefined similarity rules. The ChemACE methodology uses the same fragment generation system found in AIM, but applies a more complex method for identifying analogs for the clustering exercises.

3.6 Toxtree		
Developer	Latest version	Website
Ideaconsult Ltd	2.6.13	http://toxtree.sourceforge.net/
(Bulgaria)	(March 2015)	

Toxtree encodes a number of rulebases (sets of interrelated logical rules) for the evaluation of toxicity. It is an expert system of SARs that can be useful to identify potential hazards but also to provide the mechanistic information to substantiate read-across. Toxtree was originally commissioned by the JRC to encode the Cramer structural classes that are routinely used as part of the TTC approach. Since then, Toxtree has been extended and further developed with other rulebases.

Examples of its functionalities are:

- Decision tree for the application of the Threshold of Toxicological Concern (TTC) approach;
- Cramer scheme and an extended Cramer scheme;
- Mutagenicity and carcinogenicity rulebase known as the Benigni-Bossa rulebase as well as the ToxMic rulebase on the *in vivo* micronucleus assay;

- Rules to predict skin and eye irritation and corrosion and skin sensitisation;
- SMARTCyp, which predicts which sites in a molecule are targets for metabolism by Cytochromes P450. Good accuracy but limited coverage of reaction types and atom environments (Kirchmair, 2017). The metabolic reactions are ranked based on probability. Clicking on a result shows the site of metabolism and structure of the predicted metabolite, which can be copied and used as input for profiling or prediction of a subsequent metabolic step;
- START biodegradability, a set of structural alerts compiled by the Canadian EPA for estimating the biodegradability potential of a chemical compound based on structural alerts.

Some of the rulebases have been implemented or re-encoded into the OECD QSAR Toolbox (§3.1) and AMBIT (§3.2). The predictions may deviate from the original tool due to small differences in programming. These tools do however allow online use of ToxTree (AMBIT) and application of multiple rulebases at the same time, which is not possible in Toxtree itself.

3.7	Chemotype	r	
Dev	eloper	Latest version	Website
Mole	ecular	1.0	https://chemotyper.org
Netv	vorks GmbH	(November 2013)	

Chemotyper was developed under contract from FDA to house the public set of 'ToxPrint' chemotypes (chemical substructures or subgraphs), which were developed for FDA's CERES project. ToxPrint consists of over 700 individual chemotypes and contains the following three basic subsets:

- Generic structural fragments;
- Ashby-Tennant genotoxic carcinogen rules;
- Carcinogenicity alerts for TTC categorisation.

Chemotyper allows for searching and visualisation of the chemotypes and grouping of chemicals according to chemotypes. After loading the ToxPrint chemotypes (First option in the Welcome page), they can be matched to the target chemical(s). Chemotypes selected by the user are highlighted in the molecule.

3.8 ChemMine

Developer	Latest version	Website
Girke Lab (USA)	2011	http://chemmine.ucr.edu

ChemMine has been developed for analyzing and clustering small molecules by structural similarities, physicochemical properties or custom data types. It can be used to find structural analogues. ChemMine is linked to PubChem, which provides the advantages of including recently developed chemicals in the search as well.

After adding the target chemical, the Option 'Search similar compounds' can be selected. A predefined similarity cutoff can then be chosen; it is advised to first start with a high cutoff level (0.9) and always use the 'Fingerprint algorithm'. A list with Hits appears, which can be sent to the Similarity Workbench. The analogues can each be compared with the target molecule visually and by a score for similarity (that appears when the target and an analogue are selected).

3.9 Toxmatch

5.9 Toxmatch		
Developer	Latest version	Website
Ideaconsult Ltd	1.07	https://eurl-ecvam.jrc.ec.europa.eu/laboratories-
(Bulgaria)	(January 2009)	<pre>research/predictive_toxicology/qsar_tools/toxmatch</pre>

Toxmatch was developed under the terms of a JRC contract. The main functionalities of this advanced tool are to compare a query chemical to a training set in order to classify the chemical and to compare datasets, based on various structural and descriptor-based similarity indices. This aids in categorisation of chemicals for read across purposes. Similarity to the training set should preferably be assessed based on structural characteristics relevant to the endpoint. Predefined training sets for aquatic toxicity, bioconcentration factor, skin sensitization, skin irritation, carcinogenicity and mutagenicity are available. The carcinogenicity dataset originates from ISSCAN and contains 1153 chemicals with information pertaining to carcinogenicity (field 'Canc' with values 3: carcinogen, 2: equivocal and 1:non-carcinogen) and mutagenicity in Salmonella typhimurium (Ames test) (field 'SAL' with values 3:mutagen, 2: equivocal and 1: non-mutagen).

Users need to proceed through the following steps:

- Open training set in top left panel and select associated groups (e.g. mutagen/equivocal/non-mutagen);
- Open test set (single target chemical or group) in bottom left panel;
- Calculate or load and explore descriptors (chemical characteristics) for both data sets;
- Select 'Similarity to training set' in the top panel, use for instance 'Euclidean distance' or 'Tanimoto distance (fingerprints, kNN)' and finish with 'select Calculate similarity and predict activity';
- Choose View Fields from the top panel to select the properties used to calculate similarity in the similarity tab. Switch to descriptors panel and select all descriptors.
- Now run the similarity calculation for the test compound, following the previous two steps as above but now in the bottom panel.

Results are presented in various graphical displays including scatter plots, pair wise/ composite similarity histograms and similarity matrices. The graphs can be customized and similarity thresholds can be applied.

3.10 Metaprint2D-REACT

Developer	Latest version	Website
University of	2007	http://www-metaprint2d.ch.cam.ac.uk
Cambridge		

The web application of Metaprint2D-REACT was disabled in February 2018; it is currently not known whether the tool will become available again.

Metaprint2D derives the likelihood of metabolic transformations by mining large biotransformation databases including phase I and phase II metabolic pathways. The models assumes that each chemical has at least one target site for metabolism. The sites of metabolism are indicated in the chemical structure; clicking on an atom displays the predicted reactions at that site, and clicking on one of these reaction types shows the metabolites formed. The 'occurrence ratio' is shown for each site of metabolism, indicating the proportion of the instances of this specific atom in the database that is involved in the predicted metabolic transformation. This is commonly regarded as a rather simplistic way to predict metabolism (Kirchmair, 2017).

Metaprint2D-REACT generates structures of likely metabolites. The 'occurrence ratio' is shown between brackets, which can be regarded as the probability of this metabolic transformation. The tool particularly works well if a very comparable molecule is present in the database. Therefore, the more data that are used the better the prediction, and thus it is advised to model dog, human, and rat metabolism at the same time (Kirchmair, 2017).

XenoSite is a tool for predicting the atomic sites at which chemicals are expected to undergo metabolic modification. It includes simulation of cytochrome P450 metabolism based on computations for which among others the SmartCyp software is used. Other types of reaction such as oxidation, reduction, and epoxidation are included too, as well as reactivity towards glutathione, DNA, and protein. Structures of potential metabolites are not provided.

XenoSite provides visual output for each molecule and each enzyme. Potential sites of metabolism are labeled by a color gradient that indicates probability. The underlying data also show whether the observed site of metabolism is known from literature or used in the training set, and the background probability of observing a site of metabolism given the model, which can be used to interpret the prediction.

3.12 EPI Suite [™]		
Developer	Latest version	Website
U.S. EPA	4.11	https://www.epa.gov/tsca-screening-tools/epi-suitetm-
	(November 2012)	estimation-program-interface

EPI Suite (Estimation Programs Interface Suite) estimates a range of physicochemical properties, environmental fate parameters and ecotoxicity. It has been developed by the US Environmental Protection Agency (EPA) in collaboration with Syracuse Research Corporation (SRC). The applicability domain is based on molecular weight or LogKow. EPI Suite can be used for organic chemicals and organic salts with simple counter ions. It allows data gap filling for melting point, boiling point, vapour pressure, water solubility and octanol/water partition coefficient. EPI Suite is a screening-level tool and should not be used if acceptable measured values are available (except when not all analogues under evaluation have measured data, in which case predicted physico-chemical properties for all substances should be used for optimal comparability).

UNITED STATES	File	Edit	Functions	Batch Mode	Show Structure	Output	Fugacity	STP	Help
A AGENCY			EPI Sui	ite – Wel	come S	creen			
PROTECTION	PhysProp	Previous	Get User	Save User	Search	CAS	Cle	ar Input Fields	
	Draw						alculate	Output	
AOPWIN	Input CAS	#						(⊂ Su	nmary
KOWWIN	Input Smile	s:							
BIOWIN									
MPBPVP	Input Cher	n Name:							
WSKOW	Name L	ookup	2						
WATERNT	Henry L(2:	з atm-m/mole	Water Solubility:	· · · ·	ng/L			
HENRYWIN	Melting Poir	nt: 📃 🚺	Celsius	Vapor Pressure:	· ·	nm Hg			
KOAWIN	Boiling Poir	nt: 🗌 🗌	Celsius	Log Kow:					
KOCWIN	-	Biver	Lake						
BCFBAF	Water Deni	h: 1	1 me	ters					
HYDROWIN	Wind Veloci	tv: 5	0.5 me	ters/sec					
BioHCwin	Current Veloc	itu: 1	0.05 me	ters/sec					
DERMWIN			0.00						
ECOSAR									
EPI Links									
3.13 VEGA									
Developer	L	atest vers	ion						Website
Mario Negri (Ita	aly)	1.	1.4	htt	tps://www	v.vegahub	.eu/portf	olio-item/\	/ega-qsar

VEGA (Virtual models for property Evaluation of chemicals within a Global Architecture) is a QSAR model that was based on the CAESAR, T.E.S.T., SARpy, EPISuite, Toxtree, and other tools. It was designed to generate transparent results and is regularly updated. VEGA is also incorporated in AMBIT2 (§3.12) and Toxtree (§3.6). The applicability domain is checked by the program; no predictions can be made for organic salts. Although VEGA uses an advanced algorithm to calculate similarity of analogues (which is indicated by a score between 0 and 1; a score >0.75 should be aspired), the final evaluation on similarity should be done by the user. VEGA predicts e.g. Ames mutagenicity, carcinogenicity, developmental toxicity by several models (it is advised to combine the results of multiple models) and hepatotoxicity. The reliability of each prediction is indicated by the Applicability Domain Index.

(February 2017)

EGA	Mutagenicity (Ames test) model (CAESAR) 2.1.13	page
Prediction for	Prediction Summary	
	Prediction: Prediction: Reliability: Prediction is Mutagenic, but the result shows some critical asper which require to be checked: - only moderately similar compounds with known experimental w in the training set have been found - some atom centered fragments of the compound have not beer found in the compounds of the training set or are rare fragments infrequent fragments found) The following relevant fragments have been found: SA13 Hydraz SA27 Nitro aromatic	cts, ralue (1 ine;
Compound: Mol Compound SMI Experimental va Predicted Mutag Structural alerts Reliability: the p Remarks: none	ecule 0 LES: O=[N+]([O-])c1oc(cc1)c2cnc(NN=C(C)C)s2 lue: - en activity: Mutagenic SA13 Hydrazine; SA27 Nitro aromatic redicted compound could be out of the Applicability Domain of the model	

It is also possible to use VEGA solely for read across. For this more limited use, the predicted value should be disregarded and instead the similar compounds need to be identified on the basis of similarities in mechanisms and descriptors.

4 Applications

The *in silico* tools described in the previous chapter are useful to gain insight in the potential human health hazard of chemicals present in drinking water or sources with incomplete toxicological information. Examples of such chemicals are substances of emerging concern, newly designed perfluorinated compounds, disinfection byproducts, and metabolites of plant protection products. The workflow presented in Figure 2-1 was applied to evaluate an example for each of these groups of chemicals. Results were documented in the data collection sheet (Attachment IV) and are presented below.

4.1 Chemicals without toxicity data

Chemicals that appear in the water cycle because they have only recently become in use and/or have not been emitted before, or because chemical-analytical methods were not able to detect them earlier, often lack a complete toxicological dossier. In previous BTO research, for 21 out of 163 currently detected contaminants in drinking water (sources) no provisional drinking water guideline value could be derived because of absence of chronic toxicity data (Baken et al. 2018). One of those chemicals is 5-methyl-1H-benzotriazole. Results of its evaluation using the *in silico* tools presented in chapter 3 are presented in Attachment III; the data collection sheet is shown below.

	Target chemical	Analogues			
Name	5-methyl-1H-Benzotriazole	1,2,3-Benzotriazole	Tolytriazole		
CAS	136-85-6 HN	95-14-7	29385-43-1 N _N		
SMILES	Cc1ccc2[nH]nnc2c1	C1=CC2=NNN=C2C=C1	CC1=CC=CC2=NNN=C12		
Metabolites		L	•		
Observed (O) /	No observed metabolites	No observed	No observed metabolites.		
Predicted (P)		metabolites.			
CYP450	4 metabolites predicted by	Comparable sites of	Comparable sites of		
	Toxtree:	metabolism; no	metabolism; one similar		
	OCc1ccc2NN=Nc2(c1) is the	overlapping metabolites	metabolite		
	most probable according to				
	MetaPrint and Xenosite); no				
	measured data, genotoxicity				
	and reprotox alerts present				
rat S9	4 metabolites predicted by	2	0		
	OECD Toolbox (3 are very				
	probable according to				
	MetaPrint and Xenosite); no				
	measured data, genotoxicity				
	alerts present				
rat <i>in vivo</i>	1 metabolite overlaps with rat	3; genotoxicity alerts	5; genotoxicity alerts		
	S9. MetaPrint does not consider	present	present and		
	this a probable product.		repro/developmental tox		
Measured data			·		
Systemic toxicity	-	-	-		
Genotoxicity	Negative Ames test result, in	In vitro Ames test and	-		
	<i>vitro</i> mammalian gene	mammalian gene			
	mutation, in vivo micronucleus	mutation negative ;			
	assay	mammalian			
		chromosome			
		aberration positive			

Carcinogenicity			<i>In vivo</i> Micronucleus	-		
			assav negative			
Reproductive &	-		NOAEL >200 mg/kg	-		
developmental toxicity			bw/day			
Structural alerts						
Cramer class	Cramer class III		Cramer class III	Cramer class III		
Systemic toxicity	-		-	-		
Genotoxicity in vitro	Non-mutagenicity		Non-mutagenicity	Non-mutagenicity		
,	DNA binding		DNA binding positive	DNA binding positive		
	positive/negative					
	Ames test positive/ne	egative	Ames test	Ames test		
		-	positive/negative	positive/negative		
Genotoxicity in vivo	In vivo mutagenicity		In vivo mutagenicity	In vivo mutagenicity		
	(Micronucleus) alerts l	by ISS	(Micronucleus) alerts	(Micronucleus) alerts by ISS		
			by ISS			
Carcinogenicity	Positive		Negative for	Negative for		
	Negative for (non)ger	notoxic	(non)genotoxic	(non)genotoxic		
	carcinogenicity		carcinogenicity	carcinogenicity		
			Potential carcinogen	Potential carcinogen		
Reproductive toxicity	Reproductive toxicityKnown precedent reproductiveDevelopmental toxicityand developmental toxic		-	Known precedent		
Developmental toxicity				reproductive and		
	potential			developmental toxic		
				potential		
Category formation						
Rationale: OECD QSAR T	oolbox Structural simila	arity >60% y	/ields 8 analogues, 2 devi	ate with respect to physico-		
chemical properties and	functional groups. AMB	BIT reports	3 different analogues wit	h similarity score >0.92 and		
no measured data. ToxR	ead finds 6 analogues v	vith a simil	arity of 0.813 - 0.976, inc	cluding 95-14-7		
(experimental activity: m	utagen) and 29385-43-	1 (experim	ental activity: non-mutage	en). AIM identified 29385-43-		
1 as an analogue with measured data. ChemMine find		ne finds 10	analogues with similarity	>0.6, including 29385-43-1.		
1 as an analogue with m Structural similarity	easured data. ChemMin Score:	ne finds 10 70-80% /	analogues with similarity 0.935	>0.6, including 29385-43-1. 80% / 0.976		
1 as an analogue with m Structural similarity Functional groups	easured data. ChemMin Score: Benzotriazole	ne finds 10 70-80% / Benzotria	analogues with similarity 0.935 Izole	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole		
1 as an analogue with m Structural similarity Functional groups	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes	ne finds 10 70-80% / Benzotria Aryl Aron	analogues with similarity 0.935 izole natic compound	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes		
1 as an analogue with m Structural similarity Functional groups	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound	ne finds 10 70-80% / Benzotria Aryl Aron	analogues with similarity 0.935 izole natic compound	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound		
1 as an analogue with m Structural similarity Functional groups Structural alerts	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound	ne finds 10 70-80% / Benzotria Aryl Aron No additi	analogues with similarity 0.935 izole natic compound onal alerts	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar	analogues with similarity 0.935 Izole natic compound onal alerts	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar	analogues with similarity 0.935 izole natic compound onal alerts	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal	analogues with similarity 0.935 Izole natic compound onal alerts	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara	analogues with similarity 0.935 izole natic compound onal alerts ble ble	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint:	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara	analogues with similarity 0.935 izole natic compound onal alerts ble ble	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Desteciel ageo	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara	analogues with similarity 0.935 izole natic compound onal alerts ble ble	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation accourt	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed	>0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable D; all strains and +/-S9		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combinec 6 analogu	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum us (assessed by ToxPase	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 D of which 4 are negative 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity OSAP	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu	analogues with similarity 0.935 izole natic compound onal alerts ble ble <i>ion:</i> ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead	 > 0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable 1); all strains and +/-S9 I) of which 4 are negative. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint:	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combinec 6 analogu	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: no	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead Predictions are	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity Carcinogenicity	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: n T.E.S.T. and VEGA: po VEGA: negative	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu egative sitive	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead Predictions are	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity Carcinogenicity	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: n T.E.S.T. and VEGA: po VEGA: negative VEGA: positive	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu egative sitive	analogues with similarity 0.935 izole natic compound onal alerts ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead Predictions are	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable 1); all strains and +/-S9 1) of which 4 are negative. all not considered reliable. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity Carcinogenicity Developmental toxicity	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: n T.E.S.T. and VEGA: po VEGA: negative VEGA: positive T.E.S.T.: negative	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu egative sitive	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead Predictions are	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. all not considered reliable. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity Carcinogenicity Developmental toxicity	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: n T.E.S.T. and VEGA: po VEGA: negative VEGA: positive T.E.S.T.: negative VEGA: positive	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu egative sitive	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead Predictions are	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. all not considered reliable. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity QSAR Endpoint: Mutagenicity QSAR Endpoint: Mutagenicity Developmental toxicity Reproductive and	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: n T.E.S.T. and VEGA: po VEGA: negative VEGA: positive T.E.S.T.: negative VEGA: positive OECD OSAR Toolbox:	ne finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara Justificat 1 analogu combined 6 analogu egative sitive	analogues with similarity 0.935 izole natic compound onal alerts ble ion: ie (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead <i>Predictions are</i>	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. all not considered reliable. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity Carcinogenicity Developmental toxicity Reproductive and developmental toxic	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: n T.E.S.T. and VEGA: po VEGA: negative VEGA: positive T.E.S.T.: negative VEGA: positive OECD QSAR Toolbox: VEGA: negative	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara <i>Justificat</i> 1 analogi combined 6 analogi egative sitive	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ie (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead <i>Predictions are</i>	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. all not considered reliable. 		
1 as an analogue with m Structural similarity Functional groups Structural alerts Physico-chemical properties Lipinski rule Metabolic pathways Read across Endpoint: Bacterial gene mutation assay Mutagenicity QSAR Endpoint: Mutagenicity Carcinogenicity Developmental toxicity Reproductive and developmental toxic potential (DART)	easured data. ChemMin Score: Benzotriazole Aryl (hetero)arenes Aromatic compound Predicted Bioavailable Positive Negative ToxRead and VEGA: n T.E.S.T. and VEGA: po VEGA: negative VEGA: positive T.E.S.T.: negative VEGA: positive OECD QSAR Toolbox: VEGA: negative	e finds 10 70-80% / Benzotria Aryl Aron No additi Similar Bioavailal Compara <i>Justificat</i> 1 analogi combined 6 analogi egative sitive	analogues with similarity 0.935 izole natic compound onal alerts ble ble ion: ue (95-14-7, self-assessed d, data usage maximum ues (assessed by ToxRead <i>Predictions are</i>	 >0.6, including 29385-43-1. 80% / 0.976 Benzotriazole Aryl (hetero)arenes Aromatic compound No additional alerts Similar Bioavailable Comparable I); all strains and +/-S9 I) of which 4 are negative. all not considered reliable. 		

Conclusion: The only experimental data for this substance are negative Ames test results. Few analogues are available. Structural alerts, read across, and QSARs yield equivocal predictions for genotoxicity, carcinogenicity, and reproductive and developmental toxicity. Predicted metabolites contain genotoxicity alerts. Experimental data, in particular genotoxicity testing results and acceptable daily intake levels based on chronic exposure studies, are required for toxicological evaluation of this substance. Until further information is available, the generic TTC-based drinking water target value of 0.01 μ g/L for genotoxic compounds may be applied as a conservative approach.

4.2 New perfluorinated compounds

There is ample information on long-chain perfluorinated chemicals such as PFOS and PFOA with regard to toxicity and environmental behaviour (Post et al., 2017). In recent years, also short-chain perfluorinated compounds have been detected in (sources of) drinking water. The toxicity of these substances has often not been evaluated thoroughly. An example is perfluorooctanesulfonamide (PFOSA), for which no results from chronic toxicity and genotoxicity studies or human health risk assessments were available in the information sources listed in §2.1 and §2.2. In recent BTO research, an analytical method was developed for this substance.

F F F F F F F F F	Target chemical		An	alogi	Jes				
Name	perfluorooctanesulfonamid	e	OE	CD Q	SAR 1	Foolbox (n	=8), AMBI	T (n=3), To	xRead
CAS	754-91-6		(n=	3), C	hem	Aine (n=10) and AIM	(none with	n default
SMILES	O=S(=O)(N)C(F)(F)C(F)(F)C(F))(F)C	set	tings	, n=1	2 with less	stringent	settings)	all
	(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F))(F)F	pro	vide	diffe	rent analog	gues.		
Metabolites									
Observed (O) /	No observed metabolites								
Predicted (P)									
CYP450	OECD Toolbox and ToxTree	e:							
	none; Xenosite: not probab	le							
rat S9	OECD Toolbox: none								
rat <i>in vivo</i>	OECD Toolbox: none								
Measured data									
Systemic toxicity	No measured data for targe	et subs	stand	ce. Ol	ECD (QSAR Tooll	oox data f	or analogu	es:
Genotoxicity	Filter endpoint tree	4		5		6	7	8	9
Carcinogenicity	Structure	ĸ	11111111	u*	ANNING.	3544444	+++++++	+++++++	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reproductive &								1	12
developmental toxicity	CAS Number	2795-39-3		29457-72-	5	1763-23-1	2795-39-3	307-35-7	4151-50-2
	CAS Smiles relation	1-Octanesulfo	onic aci	High 1,1,2,2,3,3,4 1-Octanesi	4,4,5,5,6,6, ·	High 1,1,2,2,3,3,4,4,5,5,6,6, 1,1,2,2,3,3,4,4,5,5,6,6, 1,1,2,2,3,3,4,4,5,5,6,6	1,1,2,2,3,3,4,4,5,5,6,6, 1-OCTANESULEONIC	Hign 1,1,2,2,3,3,4,4,5,5,6,6,7,7 1-Octanesulfonyl fluoria	Hign 1-Octanesulfonamide, № n-ethyl-112233445
	Chemical name(s)	Perfluoroctan perfluoroctan	ie sulfo ine sulf	1-Octanes lithium 1,1	ulfonic aci 2,2,3,3,4,4	1-Octanesulfonic aci heptadecafluoroocta	1-Octanesulfonic aci 1-Octanesulfonic aci	1-Octanesulfonyl fluori heptadecafluorooctane	N-ethyl-1,1,2,2,3,3,4,4,5 N-ethylheptadecafluorc
	Composition	perfluoroocta	inesulfc	lithium hep	otadecatiu .	Perfluorooctane sult	1-Octanesulfonic aci	Perfluorooctyisulfonyi f	Sulfiuramid
	Molecular Formula Predefined substance type	Mono constit	uent	Mono cons	stituent	Mono constituent	Mono constituent	C8F18U2S Mono constituent	Mono constituent
	Structural Formula Parameters	[K+].[U-]5(=C)(=0)C(F)	[[1+]-[0-]5]	=0)(=0)C(F	US(=U)(=U)C(F)(F)C(F)(FC(F)(F)C(F)(F)C(F)(F)C(F	PC(F)(F)C(F)(F)C(F)(F)C(F	CCNS(=0)(=0)C(F)(F)C(
	Physical Chemical Properties (3/0) Environmental Fate and Transport (1/4) Environmental Fate and Transport (1/4)						M: 0 %	M: >100 C	W: 190 C
	Human Health Hazards							M: > 2E+03 ma/ka h	M: 543 ma/ka
	Elioaccumulation Carcinogenicity					M: 4.2E+04 h			
	Developmental Toxicity / Teratogenicity								
	Developmental toxicity (3/3)	M: Positive		M: Positive				M: Positive	
	Mouse (1/5) Oryctolagus cuniculus (2/3)					M: 2.5 mg/kg bdwt/c	M: 10 mg/kg bdwt/c		M: 0.3 mg/kg bdwt/d
	Rat (1/6)						M: 1 mg/kg bdwt/d		M: 13.3 mg/kg bdwt
	Reproductive toxicity (3/3)	M: Undefined		M: Undefin	ed		M: 10 mg/kg bdwt/c	M: Undefined	
	Genetic Toxicity								
	Bacterial Reverse Mutation Assay (e.g. Ames (1/2)							M: Negative M: Negative	
	Immunotoxicity								
	Neurotoxicity Photoinduced toxicity								
	Sensitisation AW SW AOP	M: data availa	able			M: 20 mg/kg bdwt/c	M: 0.1 mg/kg bdwt/(
	H loxCast (4/36/)	I M: 0.00662 m	ig/L			M: 0.0118 mg/L		1	M: 0.137 mg/L
Structural alerts	Common alasa III								
Systemic toxicity	Cramer class III								
Constavisity in vitra	- DNA binding pagative: Am	oc toc	t ne		/////	ativo			
Constanticity in viva	DNA binding negative ; Am	es tes	c po		nicit:	Micropus	lous) alort	s nogative	
Carcinogenicity	No alert for (non)genetoxic	in viv		nicity	nicity	(whereithe	lieus) diert	.s negative	-
carcinogenicity	No alert for (non)genotoxic	carci	ioge	menty	1				

Reproductive toxicity	Not known precedent	reproductive and develo	opmental toxic potential					
Developmental toxicity								
Category formation								
Rationale: The OECD QSA	AR Toolbox shows 6 an	alogues (structural simi	larity >90%, comparable functional groups					
and structural alerts) wit	h measured data. Predi	cted physchem properti	es are similar, except for analogue #8					
and #9 - these are more	persistent and have a h	higher LogKow and lowe	r water solubility, and can thus be					
included for worst case p	predictions. ToxRead fir	nds 3 analogues with a s	similarity of 0.72- 0.83 and negative					
experimental mutagenici	ity data.							
Structural similarity	Score:							
Functional groups	Alkyl fluoride							
	Alkyl halide							
	Halogen derivative							
	Sulfonamide							
	Sulfonic acid derivativ	'e						
Structural alerts	Halogens ; TTC carcin	ogens category						
Physico-chemical	Predicted							
properties								
Lipinski rule	Not bioavailable							
Metabolic pathways	-							
Read across								
Endpoint:		Justification:						
Developmental toxicity	Positive	OECD QSAR Toolbox:	3 analogues with positive test result; 3					
		other analogues with l	LOEL in mg/kg range					
Bacterial gene	Negative	OECD QSAR Toolbox:	1 analogue with negative Ames test data					
mutation assay								
Mutagenicity	Negative	3 analogues (assessed	l by ToxRead) which all are negative					
QSAR								
Endpoint:								
Mutagenicity	VEGA, T.E.S.T. and To	xRead: negative	VEGA and ToxRead predictions are not					
Carcinogenicity	VEGA: positive		considered reliable.					
Developmental toxicity	VEGA: negative							
Reproductive and	OECD QSAR Toolbox:	not known precedent;						
developmental toxic	VEGA: negative							
potential (DART)								
Hepatotoxicity	VEGA: unknown							

Conclusion: There are no experimental data for this substance and no information on (potential) metabolites. There is no consensus on analogues between different tools. Some structural alerts for genotoxicity are reported, but read across and QSARs do not predict mutagenicity. Carcinogenicity predictions are negative. Predictions for developmental toxicity are equivocal. Experimental data are required for toxicological evaluation of this substance. Since the weight of evidence shows that genotoxicity is unlikely, the generic TTC-based drinking water target value of 0.1 μ g/L may be applied until further information is available.

4.3 Disinfection byproducts

Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H_2O_2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many nitrogen-containing disinfection by-products (N-DBPs) result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM) during medium pressure UV treatment of water. The chemical identity and toxicity of most of the N-DBPs are unknown. 3-Nitroindole is one of the N-DBPs that has been identified in recent BTO research.

	Target chemical	Analogues
NH Name	3-Nitroindole	
	4770-03-0	Very few suitable analogues
		are identified.
	C1=CC=C2C(=C1)C(=CN2)[N+](=O)[O-]	
Metabolites		
Observed (O) /	No observed metabolites	
Predicted (P)		
CYP450	The two most probable metabolites according to	
	OECD Toolbox and Xenosite have no measured data	
	but mutagenicity alerts	
rat S9	The five most probable metabolites according to	
	OECD Toolbox, ToxTree and Xenosite have no	
	measured data but mutagenicity alerts	
rat <i>in vivo</i>	The two most probable metabolites according to	
	OECD Toolbox, ToxTree and Xenosite have no	
	measured data but mutagenicity alerts	
Measured data		
Systemic toxicity	-	
Genotoxicity	-	
Carcinogenicity		
Reproductive &		
developmental toxicity		
Structural alerts	Cremen along III	
Cramer class	Cramer class III	
Constavisity in vitra	- DNA binding. Amos tost alorts	
Cenotoxicity in vitro	DNA binding, Ames test alerts	
Carcinogonicity	Positive for genetoxic carcinogenicity	
Reproductive toxicity	Not known precedent reproductive and developmental	
Developmental toxicity	toxic notential	
Category formation	toxic potential	
Rationale: OFCD OSAR T	oolbox and AMBIT identify no analogues with structural s	imilarity $>70\%$ ToxRead finds
6 analogues with a simil	arity score of >0.9 with experimental mutagenic activity	AIM identifies one analogue
which is not reported by	ToxRead	
Structural similarity	Score:	
Functional groups	Anion	
5	Aromatic compound	
	Cation	
	Heterocyclic	
	compound	
	Nitro compound	
Structural alerts		
Physico-chemical	Predicted	
properties		
Lipinski rule	Bioavailable	
Metabolic pathways		
Read across		
Endpoint:	Justification:	
Mutagenicity	Positive 6 mutagenic analogues (assesse	d by ToxRead)
QSAR		
Endpoint:		
Mutagenicity	ToxRead, T.E.S.T. and VEGA: positive ToxRead, T.E.	.S.T. and VEGA predictions are
Carcinogenicity	VEGA: negative (not reliable) considered re	eliable.
	VEGA: positive (reliable)	
Developmental toxicity	VEGA: positive (not reliable)	
Reproductive and	OECD QSAR Toolbox: not known	
developmental toxic	precedent	
potential (DART)	VEGA: negative (not reliable)	
Hepatotoxicity	-	

Conclusion: The CAS number was not recognised by any of the tools and the substance is not present in the underlying databases. Very few analogues are identified. Structural alerts, read across, and QSARs all point to mutagenic activity and potential for genotoxic carcinogenicity. The most probable metabolites show structural alerts for genotoxicity as well. Genotoxic potential needs to be confirmed by experimental testing. In addition, an acceptable daily intake level or virtually safe dose needs to be determined. Until further information is available, the generic TTC-based drinking water target value of 0.01 µg/L for genotoxic compounds may be applied.

4.4 Metabolites of plant protection products

In European and Dutch drinking water standards, metabolites of plant protection products are divided in metabolites that are relevant or metabolites that are non-relevant for human health. This classification is based on structural characteristics, biological activity and (geno)toxicity. Since full human health risk assessment of metabolites is not a standard part of plant protection product regulation (and not performed for minor metabolites), information on potential metabolites and toxicological data is often lacking or incomplete. An example is metolachlor, two metabolites of which are often detected in (sources of) drinking water.

	Target chemical	Target chemical
Name	Metolachlor-ESA	Metolachlor-OA
CAS	171118-09-5	152019-73-3
SMILES	CCc1cccc(C)c1N	CCc1cccc(C)c1N
	(C(C)COC)C(=O)CS(O)(=O)=O	(C(C)COC)C(=0)C(0)=0
Metabolites		•
Observed (O) /	No observed metabolites	No observed metabolites
Predicted (P)		
Measured data		
Systemic toxicity	-	-
Genotoxicity	-	
Carcinogenicity	-	-
Reproductive &	-	-
developmental		
toxicity		
Structural alerts		
Cramer class	Cramer class III	Cramer class III
Systemic toxicity	-	-
Genotoxicity in vitro	Non-mutagenicity	Non-mutagenicity DNA binding
	DNA binding negative	negative
	Ames test negative	Ames test negative
Genotoxicity in vivo	In vivo mutagenicity (Micronucleus)	In vivo mutagenicity (Micronucleus)
	alerts by ISS	alerts by ISS
Carcinogenicity	Negative for (non)genotoxic	Negative for (non)genotoxic
	carcinogenicity	carcinogenicity
Reproductive toxicity	Known precedent reproductive and	Known precedent reproductive and
Developmental	developmental toxic potential	developmental toxic potential
toxicity		
Category formation		
Rationale: OECD QSAR	Toolbox identifies no analogues with st	ructural similarity >70%. The 10 most suitable
analogues according to	ToxRead have a similarity of 0.78 - 0.8	5; 7 of them are experimental non-mutagens.
ChemMine yields different	ent analogues which all have a lower sir	nilarity score. AIM identifies one other analogue
with less stringent setti	ngs.	
Rationale: OECD QSAR	Toolbox identifies no analogues with st	ructural similarity >70%. The 10 most suitable
analogues according to	ToxRead have a similarity of 0.7 - 0.9;	6 of them are experimental non-mutagens.
ChemMine yields differe	ent analogues which all have a lower sin	nilarity score. AIM finds no analogues.
Structural similarity	Score:	
Functional groups	Alkane, branched with secondary carb	on Alkane, branched with

	Alkyl (hetero)arenes	secondary carbon
	Aromatic compound	Alkyl (hetero)arenes
	Carboxylic acid tert. amide	Aromatic compound
	Dialkylether	Organic amide and
	Sulfonic acid derivative	thioamide
		Dialkylether
Structural alerts	Small alkyl toluene derivatives	Small alkyl toluene
		derivatives
Physico-chemical	Predicted	Predicted
properties		
Lipinski rule	Bioavailable	Bioavailable
Metabolic pathways		
Read across		
Endpoint:		Justification:
Mutagenicity	Negative	Predicted for both substances by ToxRead
		based on 10 analogues.
QSAR		
Endpoint:		
Mutagenicity	ToxRead, ToxTree, T.E.S.T. and VEGA:	ToxRead, ToxTree, T.E.S.T. and VEGA:
	negative (not reliable)	negative (not reliable)
Carcinogenicity	ToxTree and VEGA: positive (not reliable)	VEGA: positive (not reliable)
	VEGA: negative (not reliable)	ToxTree and VEGA: negative (not reliable)
Developmental	T.E.S.T. and VEGA: positive (not reliable)	VEGA: negative (moderate reliability)
toxicity		T.E.S.T.: positive (not reliable)
Reproductive and	OECD QSAR Toolbox: known precedent	OECD QSAR Toolbox: known precedent
developmental toxic	VEGA: negative (not reliable)	VEGA: negative (not reliable)
potential (DART)	VEGA: positive (not reliable)	
Hepatotoxicity	VEGA: negative	VEGA: negative (moderate reliability)

Conclusion: There are no experimental data for these metabolites. None or only moderately similar analogues are identified by the applied tools; read across predictions are therefore not reliable. QSARs do not provide reliable toxicity predictions as well. Experimental data are thus required for toxicological evaluation of these substances. Until further information is available, the generic TTC-based drinking water target value of 0.01 μ g/L may be applied as a conservative approach.

5 Conclusions and final remarks

In toxicological evaluations of chemical drinking water contaminants, some types of data prevail over other. Validated measured *in vivo* toxicity data from a well-designed laboratory study are always preferred. When no experimental toxicity data are available, data on appropriate analogues may be used to perform read across. If no toxicity data on the chemical or an appropriate analogue are available, data may be predicted by appropriately using scientifically sound (*in silico*) models.

This report presents *in silico* tools that can aid in structural profiling, read across based on analogues, and QSAR analysis. This is not an exhaustive overview: we only focused on freely available tools that yield information on human health hazards, with emphasis on genetic, reproductive and developmental, and chronic toxicity (i.e. not a full toxicological profile and no environmental behavior of chemicals). More tools are available and will certainly be developed in future; *in silico* methods are likely to expand to include models for specific types of toxicity and chemicals, provide insight into toxicological pathways, and combine and compare results from different models. In addition, models will be customized to meet users' demands and refined when new data become available (Raies and Bajic, 2016). **Continuous inventarisation** is thus warranted. The OECD QSAR Toolbox currently includes one of the largest collections of publicly available data and the most extensive range of analysis options of the currently available tools. In addition, training in appropriate use of this software is provided by the developers.

Expertise is needed to perform and evaluate predictions derived from *in silico* tools: the user is ultimately responsible for the assessment. Even though state of the art tools are used, the validity of the (Q)SAR models and underlying databases, applicability domain, prediction of physicochemical properties and kinetics, similarity of chemicals, cut-off points etc. always need to be critically evaluated. Especially selection of suitable analogues with experimental data for read across approaches requires careful consideration of all characteristics of the chemicals. This is time-consuming, and therefore not feasible for large sets of chemicals. In addition, a prediction approach that proves appropriate for a certain chemical and/or toxicological endpoint may not yield (proper) results for other substances or effects. When using *in silico* tools, it is advised to take care of transparent **documentation** of the applied procedure, data used, uncertainty analysis, and decisions made. Appendix IV can assist in this.

It should be noted that toxicity predictions generally concern **hazard identification** and not risk characterization (acceptable daily intake levels are for instance not calculated) and cannot replace experimental toxicity testing. QSAR prediction models are currently not considered reliable for complex toxicological endpoints. Negative predictions in particular need to be substantiated by additional information, especially when they are based on a limited set of structural alerts. The **adverse outcome pathway** (AOP) concept is foreseen to substantiate mechanistic plausibility of toxicity predictions by enabling comparison of analogues with respect to key molecular events causally linked to the toxicological endpoint of interest. There are currently a limited number of endpoints for which AOPs have been formally developed, but these will become more and more available (Schultz et al., 2015). **Guidance documents** on toxicological evaluation using *in silico* tools are available and expected to be published by health protection authorities in the future.

The main advantages of all *in silico* tools are i) quick **screening** of chemical hazard (which may trigger further testing) and ii) providing supporting information of different nature and from different sources. *In silico* models are complementary themselves as well (Baken and Kools 2014). As the examples in chapter 4 show, different tools may generate different results. **Multiple** (non)testing approaches, tools, and models should thus be used in parallel. Agreement among predictions generated by independent and scientifically valid tools increases the confidence in the predictions made. A **weight of evidence approach**, in which needs all available (non-)testing information is gathered and compared, needs to be applied for an overall assessment of the support of toxicity predictions. Currently, relatively little experience with this type of data integration is available, and no formal guidance has as yet been provided for this. Nevertheless, *is silico* tools are regarded as a useful component of the toxicity assessment process (Raies and Bajic, 2016).

References

Autiero, M. (ToxMinds BVBA) Overview of Publicly Available In Silico Tools in Supporting Hazard Assessments. CAAT Academy Hands-on training 'Use of In Silico Tools in Chemical's Hazard Assessment', Brussels, 5-6 October 2017.

Baken, K.A. and Kools, S. (2014) BTO 2014.009 Innovative testing strategies and their relevance for evaluating chemical drinking water quality. KWR Watercycle Research Institute, Nieuwegein.

Baken, K.A., Schriks, M., Sjerps, R.M.A. (2015). BTO 2015.056 Toxicologische risicobeoordeling geprioriteerde stoffen. KWR Watercycle Research Institute, Nieuwegein, The Netherlands.

Baken, K.A. and Sjerps, R.M.A. (2016) BTO 2016.069 The Threshold of Toxicological Concern (TTC) - refinement of the concept and application to drinking water. KWR Watercycle Research Institute, Nieuwegein, The Netherlands.

Baken, K.A. and Dingemans, M.M.L. (2017) BTO 2017.008 Effect-based monitoring with bioassays - a roadmap. KWR Watercycle Research Institute, Nieuwegein.

Baken, K.A., Sjerps, R.M.A., Schriks, M., Van Wezel, A.P. (2018) Toxicological relevance and Threshold of Toxicological Concern (TTC) for drinking water relevant contaminants of emerging concern. *Submitted for publication.*

Boobis A, Brown P, Cronin MTD, Edwards J, Galli CL, Goodman J, Jacobs A, Kirkland D, Luijten M, Marsaux C, Martin M, Yang C, Hollnagel HM. Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their re-evaluation. Crit Rev Toxicol. 2017 Sep;47(8):705-727.

Bower, D., Cross, K. P., Escher, S., Myatt, G. J., Quigley, D. P. CHAPTER 9 In silico Toxicology: An Overview of Toxicity Databases, Prediction Methodologies, and Expert Review. In Computational Systems Pharmacology and Toxicology, The Royal Society of Chemistry: 2017; pp 209-242.

ECHA (2008) Guidance on information requirements and chemical safety assessment. Chapter R.6: QSARs and grouping of chemicals. European Chemicals Agency, Helsinki, Finland.

ECHA (2016) Practical Guide - How to use and report (Q)SARs. Version 3.1. European Chemicals Agency, Helsinki, Finland.

ECHA (2017a) Read-Across Assessment Framework (RAAF). European Chemicals Agency, Helsinki, Finland.

ECHA (2017b) Non-animal approaches. Current status of regulatory applicability under the REACH, CLP and Biocidal Products regulations. European Chemicals Agency, Helsinki, Finland.

EFSA (2012) Scientific Opinion on exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC). EFSA Journal 10(7):2750.

EFSA/WHO (2016). Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. European Food Safety Authority and World Health Organization. EFSA Supporting publication 2016: EN-1006.

Jeliaskova, N. (Ideaconsult Ltd) AMBIT2 Hands-on Training Workshop, Brussels, 29 September 2017.

Kirchmair, J. (University of Hamburg) Predicting Chemical's ADME Behavior. CAAT Academy Handson training 'Use of In Silico Tools in Chemical's Hazard Assessment', Brussels, 5-6 October 2017.

Kolkman, A., Vughs, D., Bäuerlein, P., Baken, K., Schriks, M. (2013) BTO 2013.059 Groepsgewijze analyse en beoordeling van stoffen: implementatie van 'structural alerts' in waterkwaliteitsmonitoring. KWR Watercycle Research Institute, Nieuwegein.

Kroes, R., Renwick, A.G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B., Schlatter, J., van Schothorst, F., Vos, J.G., Würtzen, G. (2004) Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol 42(1):65-83.

Mons, M.N., Heringa, M.B., van Genderen, J., Puijker, L.M., Brand, W., van Leeuwen, C.J., Stoks, P., van der Hoek, J.P., van der Kooij, D. (2013) Use of the Threshold of Toxicological Concern (TTC) approach for deriving target values for drinking water contaminants. Water Research 47, 1666-1678.

Munro, I.C., Ford, R.A., Kennepohl, E., Sprenger, J.G. (1996) Correlation of structural class with noobserved-effect levels: A proposal for establishing a threshold of concern. Food and Chemical Toxicology 34, 829-867.

Petry, T. (ToxMinds BVBA) Process to In Silico - Based Chemical Hazard Assessment. CAAT Academy Hands-on training 'Use of In Silico Tools in Chemical's Hazard Assessment', Brussels, 5-6 October 2017.

Post GB, Gleason JA, Cooper KR. (2017) Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: Contaminants of emerging concern. PLoS Biol. 20;15(12):e2002855.

Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews. Computational Molecular Science, 6(2), 147–172.

Rulis, A. (1986) De minimis and threshold of regulation.In: Food Protection Technology. C.W. Felix, ed. Lewis Publishers, pp 29-37.

SCCS/SCHER/SCENIHR (2012) Joint opinion on use of the Threshold of Toxicological Concern (TTC) approach for human safety assessment of chemical substances with focus on cosmetics and consumer products. SCCP/1171/08.

Schriks M, Heringa MB, van der Kooi MM, de Voogt P, van Wezel AP (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010 Jan;44(2):461-76.

Schultz, T. W., Amcoff, P., Berggren, E., Gautier, F., Klaric, M., Knight, D. J., Mahony, C.; Schwarz, M., White, A., Cronin, M. T. D. (2015) A strategy for structuring and reporting a read-across prediction of toxicity. Regulatory Toxicology and Pharmacology 72, (3), 586-601.

Use of In Silico Tools in Chemical's Hazard Assessment

5th - 6th October 2017

Attachment I

CAAT academy hands-on training

academy

		PROGRAM
Thursday,	5th Octobe	r 2017
08:30 - 08:50		Arrival, Registration, Coffee
08:50 - 09:00	Introduction	CAAT Academy Overview François Busquet (CAAT Academy)
09:00 - 09:30	Lecture	Process to In Silico - Based Chemical Hazard Assessment Thomas Petry (ToxMinds BVBA)
09:30 - 10:15	Lecture	Overview of Publicly Available In Silico Tools in Supporting Hazard Assessments Monica Autiero (ToxMinds BVBA)
10:15 - 11:00	Lecture	Use of In Silico Tools in a Regulatory Context Katrin Schütte (European Commission)
11:00 - 11:20		Coffee Break
11:20 - 11:45	Lecture	Use of the Ambit Tool in Identifying Analogues for Read - Across Nina Jeliazkova (Ideaconsult Ltd)
11:45 - 12:15	Lecture	Predicting Chemical's ADME Behavior Johannes Kirchmair (University of Hamburg)
12:15 - 12:45	Discussion	Questions and Answers
12:45 - 13:45		Lunch
13:45 - 15:45	Hazard & Analogue ID Tools Training	OECD Toolbox, AIM, ToxTree; ChemMine Vega Ambit All Presenters
15:45 - 16:00		Coffee Break
16:00 - 17:30	ADME Tools Training	OECD Toolbox, MetaPrint 2D, SMARTCyp All Presenters
19:00		Social Dinner
Friday, 6th	n October 20	HOT: Hands-on Training
08:00 - 08:30		Arrival, Coffee
08:30 - 10:30	HOT Case Study I	Toxicological Endpoint Data Gap Case All Participants and Presenters
10:30 - 10:45		Coffee Break
10:45 - 12:45	HOT Case Study II	Analogue - Based Read Across (Focus: ADME) All Participants and Presenters
12:45 - 13:45		Lunch
13:45 - 15:45	HOT Case Study III	Use of In Silico Tools to Support Mode of Action (MoA) Based Hazard Assessment All Participants and Presenters
15:45 - 17:00	Discussion	Presentation of Case Study Results and Discussion All Participants and Presenters
17:00 - 17:15		Closure of the Training - Hanging out of the Certificates
тс	Product Safety & Reg	Ulatory Affairs

www.caat-academy.org

Attachment II

CEFIC-LRI hands-on Training

presentation materials are published at http://cefic-lri.org/toolbox/ambit/

AMBIT2 Hands-on Training Workshop

"Cefic LRI AMBIT2 with IUCLID6 support and extended search capabilities"

CEFIC Offices in Brussels (Av Van Nieuwenhuvse 4, 1160 Brussels) Venue September 29th 2017, 10.30 - 16.00 h 1. 10.30 - 10.40 Welcome to the CEFIC LRI AMBIT2 training Workshop Topics (Bruno Hubesch) 2. 10.40 - 10.55 AMBIT is good for you! (Qiang Li, Clariant) 3. 10.55 - 11.15 AMBIT2 Project Overview (Nina Jeliaskova, Ideaconsult Ltd) - Accessibility of IUCLID6 substance data - Extracting relevant substance data from IUCLID6 using data filters - Use of the LRI Chemoinformatic System AMBIT2 to assign structures to substance constituents, impurities and additives - Implement workflows for Read across of Substance endpoint data and Category formation 4. 11.15 - 11.30 IUCLID Substance Data (Nikolay Kochev, Ideaconsult Ltd) - IUCLID6 Substance Identity Concept: Characterisation of a substance using constituents, impurities and additives - Extracting data from IUCLID6 using filters which can be fine tuned 5. 11.30 - 12.05 AMBIT2 Chemoinformatic System (Nina Jeliazkova/ Nikolay Kochev, Ideaconsult Ltd) - Enhancing AMBIT2 to allow import of IUCLID6 substance data - Implementation of different search functionalities related to structures, substances and endpoint data - AMBIT2 user management system to grant access rights via roles - IT Technique necessary to run AMBIT2 6. 12.05 - 12.25 Assessment Workflows for Read across and Substance Category formation (Qiang Li, Clariant) - General aspects on non-testing approaches - How to support an assessor in establishing a justification for a read across / category formation - Elements of the read across / category formation workflow - Steps in the workflow - Reporting 7. 12.10 - 13.10 Lunch 8. 13.10 - 14.00 AMBIT2 Demonstration (Qiang Li, Clariant) 9. 14.00 - 14.20 Coffee Break + Networking

10.14.20 – 16.00 Hands on AMBIT functionality using own notebook (all interested)

Attachment III

Application of *in silico* tools for an example chemical

Name: 1H-Benzotriazole, 5-methyl-CAS: 136-85-6

OECD QSAR Toolbox

<u>Identity</u>

OECD Toolbox shows 3 chemical structures based on CAS: Cc1ccc2n[nH]nc2c1: CAS-Structure relation low Cc1ccc2nn[nH]c2c1 : CAS-Structure relation high Cc1ccc2[nH]nnc2c1 : CAS-Structure relation high____

PubChem: CAS linked to 2D = CC1=CC2=NNN=C2C=C1 ChemID plus: CAS linked to c12c(cc(C)cc2)nn[nH]1 Chemistry Dashboard: CAS linked to CC1=CC2=C(NN=N2)C=C1

Measured data:

One negative Ames test study result is reported (strain and metabolism not specified).

QSAR TOOLBOX	input > Profiling > Data > Categ	ery definition	X 0 % 4 8
Data Import Export Cather Import U/CUD6 U/CUD6			The OECD QSAR Toolbox for Grouping Chemicals into Categories
	Place on the data land	4 December 1	Developed by LMC, Bulgaria
 Documents 	Filter enapoint tree	1 [target]	
 Document 1 # CAS: 136856 	Structure	"_ OQ	
		J	
	Human Health Hazards		
	Acute Toxicity (1/1)	M: 1.6E+U3 mg/kg	
Databases	Bioaccumulation	·	
Options	Developmental Toxicity / Teratorenicity	•	
f Select All Unselect All Invert		<u>م</u>	
Physical Chemical Properties			
Chemical Reactivity COLIPA	Bacterial Reverse Mutation Assay (e.g. Ames		
 Experimental pKa 	Gene mutation		
< >	Salmonella typhimurium		
	No S9 Info		
Inventories	No Strain Info (1/1) M: Negative	
	Immunotoxicity	·	
Canada DCI	Irritation / Corrosion	a	
COSING	Neuroloxicity Destainduced texisity	۰	
DSSTOX	Repeated Dase Toxicity	4	
ECHA PR	Sensitisation AW SW AOP	4	~
EINECS			

Profiling

- Cramer class III
- *in vivo* mutagenicity (Micronucleus) alerts by ISS:

Categories	Definition Prop	erties Training Set Literature MetaInfo Table Scheme
Filter:	Scheme Name:	in vivo mutagenicity (Micronucleus) alerts by ISS
 in vivo mutagenicity (Micronucleus) alerts by ISS 1,3-dialkoxy-benzene 	Nature:	EndpointSpecific
1-phenoxy-benzene Acyl halides	Version:	23
Aliphatic azo and azoxy E Aliphatic halogen	Counter Profile:	No alert found
Aliphatic N-nitro group Alkyl (C<5) or benzyl ester of sulphonic or phosphc	Literature:	References\in vivo mutagenicity (Micronucleus) by ISS help files
Alkyl and aryl N-nitroso groups Alkyl carbamate and thiocarbamate	GUID:	12fb37d0-fdde-4985-8092-34dd6aa32023
Alkyl nitrite alpha,beta-unsaturated aliphatic alkoxy group	Туре:	Linear
alpha,beta-unsaturated carbonyls Aromatic diazo	Default color:	Red 💙
Aromatic mono- and dialkylamine Aromatic N-acyl amine	Author:	Romualdo Benigni, Cecilia Bossa, Olga Tcheremenskaia
Aromatic nitroso group	Donator:	Institute for Health and Consumer Protection, Joint Research Centre - European Commission, Ispra, Italy; Istituto Superiore di Sanità (ISS), Rome, Italy
Explanation	Website:	
	Adopted:	QSAR Toolbox 2.3,2012
NH	Last Modified:	15.12.2016
H ₃ C VIQN	Description:	This profiler is based on the ToxMic rulebase of the software Toxtree. This rulebase provides a list of 35 structural alerts (SAs) for a preliminary screening of potentially in vivo mutagens. These SAs are molecular functional groups or substructures that are known to be linked to the induction of effects in the in vivo micronucleus assay. The compilation of SAs for the in vivo micronucleus assay in rodents provided here, is based on both the existing knowledge on the mechanisms of toxic action and on a structural analysis of the chemicals tested in the assay.
 Queries Queri (SMARTS) Map 1 Masks 	Changelog:	Further general modifications are as follows: **Aliphatic azo and azony C atoms connected to N=N can be any aliphatic instead of one in sp3 hybridisation **Aromatic mone- and dialkylamines' - Added a use letated to fused aromatic structures with a sulfonic acid group as substituent **alphabeta-unsaturated carbonyls'- changed in the help-file description *Acide and traisen groups' - Difference in charge of N atoms in N=N=N structure **H-acceptor-path3-H-acceptor' - modified
	Disclaimer:	The structural boundaries used to define the chemical classes (e.g. "Alcohol" - chemical class from "Organic functional group" profiler) or alerting groups responsible

• Known precedent reproductive and developmental toxic potential / Toluene and small alkyl toluene derivatives (8a):

0.000

Explanation for: Toxic hazard classification by Cramer (extend	ed) -> High (Class I	
Categories	Definition Prope	rties Training Set Literature MetaInfo Table Scheme
YES NO NEXT LINK	e General Properti	
	ID:	58 (ProfilingNode)
12.1 Sor nove different de la commente de	Caption:	R33: Has sufficient number of sulphonate or sulphamate groups
Kostoral gram Plant Plan	Yes Label:	Low (Class I)
	No Label:	High (Class III)
	Literature Key:	Cramer_Class_I_Class_III.htm
	Color	*0000000
	Description	Does the substance bear on every major structural component at least one Na, K or Ca sulphonate or sulphamate for every 720 carbon atoms, without any free primary amines except those adjacent to the sulphonate or sulphamate. NaK (Ca sulphonate and sulphamate salts have a strong tendency to decrease toxicity by promoting solubility and rapid excretion. This is particularly noticeable, for example, with some of the food colourings. It is important that the substance bears sufficient sulphonate groups, including one on each major structural fragments into which the original compound might be metaboliced. This question serves to ster sulphonated compoundsexcept those with amines non-adjacent to the sulphonate into a presumptively less toxic classification than the compounds would occupy if unsulphonated.
Explanation		
H3C CH CH NH	Comments	
4 Oueries		
Query 1 (SMARTS) Man 1	Examples	r Yes Example
Masks		$\frac{\tilde{s}^{a}}{\tilde{s}}$ Na ⁺ Na ⁺

Metabolites

No observed metabolites are reported. Simulated rat S9 metabolites yields 4 metabolites; the first one is also predicted for rat *in vivo* metabolism. No measured data are available for the predicted metabolites. All show the same *in vivo* mutagenicity (Micronucleus) alerts by ISS as the parent. In addition, DNA binding by OECD (Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols) is predicted for one metabolite, *in vitro* mutagenicity (Ames test) alerts by ISS for one other metabolite, and Oncologic Primary Classification for two metabolites:

Comment and footnight al									_
QSAR TOOLBOX	► Inp	P Dut ► Profiling	► Data ► Catego	Dry definition	ap Filling > Repo	Int		X 0 5 7 0	
Data Import Export Data Import Export Import Import Import Import Import Import Import Import								The OECD QSAR Too for Grouping Chemi into Categories	olbox cals
Gather Import IOCID6 IOCID6								Developed by LMC,	Bulgaria
Documente		Filter endpoint tree		Parent chemical	metabolite #1	metabolite #2	metabolite #3	metabolite #4	^
# CAS: 136856 # CAS: 13685 # CAS: 136	* 	Structure			H _R C C	<u>00</u>		к. ÖÖ	
metabolite #2	-	Carcinogenicity (genotox	and nongenotox) al	No alert found	No alert found	Simple aldehyde (Ge	No alert found	No alert found	
< III >	_	DART scheme		Known precedent re	Known precedent re	Not known precedent r	Not known precedent r	Not known precedent re	
	=	DNA alerts for AMES by O	ASIS	No alert found					
Databases		DNA alerts for CA and MN	T by OASIS	No alert found					
Options 🖌		Eye irritation/corrosion Ex	clusion rules by BfR	Undefined	Undefined	Undefined	Group All Melting Pc	Undefined	
f Select All Unselect All Invert		Eye irritation/corrosion In	clusion rules by BfR	Inclusion rules not met					
Developmental toxicity ILSI	-	in vitro mutagenicity (Ame	es test) alerts by ISS	No alert found	No alert found	Simple aldehyde	No alert found	No alert found	
CHA CHEM		in vivo mutagenicity (Micr	onucleus) alerts by ISS	H-acceptor-path3-H-ac	H-acceptor-path3-H-ac	H-acceptor-path3-H	H-acceptor-path3-H-ac	H-acceptor-path3-H-ac	
✓ ECOTOX		Keratinocyte gene expres	sion	Not possible to classify					
COVANI GENOLOXICITY & Calcinogenicit	Ψ.	Oncologic Primary Classi	fication	Not classified	Phenol Type Compound	Aldehyde Type Compou	Not classified	Not classified	- 1
		Protein binding alerts for	Chromosomal aberra	No alert found	AN2	No alert found	No alert found	No alert found	
 Inventories 		Protein binding alerts for	skin sensitization a	No alert found	No alert found	Skin sensitization Ca	No alert found	No alert found	
Options 🖌		Protein binding alerts for	skin sensitization	No alert found					
f Select All Unselect All Invert		Protein Binding Potency h	I-CLAT	No alert found					
Canada DSL		Respiratory sensitisation		No alert found					
COSING	-	Retinoic Acid Receptor Bi	nding	Not possible to classify					
DSSTOX		rtER Expert System - USE	PA	No alert found					
ECHA PR EINECS		Skin irritation/corrosion E	xclusion rules by BfR	Undefined	Group CN Melting P	Undefined	Group All Melting Pc	Group CN Vapour Pr	~
	—	<							>

Category definition

Structural similarity >60% yields 8 analogues:

AR TOOLEOX		H 🚺]						× • •
ing Custom profile	out.	ory definition 🔹 Data G	Sap Filing 🔹 Rep							The OECD Q
										into Categor
New New Deele	Filter endpoint tree	1 [target]	2	3	4	5	6	7	8	Developed t
Columns 1 CAS: 136856	Structure	.00	-00-	-00	00	ÔÓ	ÔŌ	_00	200	00
	Structure info									
	CAS Number	136-85-6	Invalid CAS number: 3	29385-43-1	94-97-3	95-14-7	273-02-9	614-97-1	2338-12-7	3441-00-7
	CAS Smiles relation	High	Low	Moderate	High	High	Low	High	High	Low
	Chemical name(s)	5-Methyl-1H-benzot	Mol-3361	1H-Benzotriazole, 4(1H-Benzotriazole, 5-	1,2,3-Benzotriazole	2H-Benzotriazole	1H-Benzimidazole, 5	1H-Benzotriazole, 5-	5-m-Tolyl-1H-tetrazole
	Composition	C74/74/3	(7)(7)(7)	(7)(7)(2)	CELLECIN/2	CELIENIA	CELIEN 1	CELIENC	CEU(8)(402	COLIDALS.
	Prodefined substance huns	Mana contituent	Maga continuet	Maga coastiluant	Mass month ant	Mena constituant	Mana constituent	Mana constituent	Maga contituent	Mana specific ent
	Structural Formula	Cr1ccc2leHleec2c1	Cr1cccr2ieHleer12	Cricerr2inHinor12	Cirteer2inHiner2r1	r1ccc2loHlonc2c1	closs2ieHienc2c1	Celece2inHicne2r1	IO-IIN+I/+Olc1ccc2lek	Criccorici)-cieneleHit
	Parameters		and the second s				conception process		re Was Baokerers In	and a construction of the second seco
	L== 20									
	(Q) Acidic pKa (Chemaxon)	8.86	8.93	8.93	8.53	No value	No value	12.5	7.76	5.05
Profiling methods	(Q) Basic pKa (Chemaxon)	1.03	0.814	0.814	0.45	0.626	0.626	6.22	-0.236	-0.812
	BAF	0.74 log(L/kg bdwt)	0.74 log(L/kg bdwt)	0.74 log(L/kg bdwt)	0.85 log(L/kg bdwt)	0.55 log(L/kg bdwt)	0.55 log(L/kg bdwt)	0.79 log(L/kg bdivt)	0.91 log(L/kg bdwt)	0.13 log(L/kg bdivt)
ET.All Unselect All Invert	BAF (lower trophic)	0.583 log(L/kg bdwt)	0.583 log(L/kg bdwt)	0.583 log(L/kg bdwt)	0.668 log(L/kg bdwt)	0.401 log(L/kg bdwt)	0.401 log(L/kg bdwt)	0.632 log(L/kg bdwt)	0.756 log(L/kg bdwt)	0.091 log(L/kg bdwt)
ART scheme	BAF (mid trophic)	0.621 log(L/kg bdwt)	0.621 log(L/kg bdwt)	0.621 log(L/kg bdwt)	0.711 log(L/kg bdwt)	0.434 log(L/kg bdwt)	0.434 log(L/kg bdwt)	0.67 log(L/kg bdwt)	0.795 log(L/kg bdwt)	0.1 log(L/kg bdwt)
usible	BAF (upper trophic)	0.742 log(L/kg bdwt)	0.742 log(L/kg bdwt)	0.742 log(L/kg bdwt)	0.851 log(L/kg bdwt)	0.546 log(L/kg bdwt)	0.546 log(L/kg bdwt)	0.791 log(L/kg bdwt)	0.908 log(L/kg bdwt)	0.13 log(L/kg bdwt)
Aquatic tenicity classification by ECOS	BAF (upper trophic, biotransformation rate is	0.815 log(L/kg bdwt)	0.815 log(L/kg bdwt)	0.815 log(L/kg bdwt)	0.901 log(L/kg bdwt)	0.59 log(L/kg bdwt)	0.59 log(L/kg bdwt)	0.875 log(L/kg bdwt)	1.03 log(L/kg bdwt)	0.169 log(L/kg bdwt)
	BCF	0.8 log(L/kg bdwt)	0.8 log(L/kg bdwt)	0.8 log(L/kg bdwt)	0.86 log(L/kg bdwt)	0.62 log(L/kg bdwt)	0.62 log(L/kg bdwt)	0.84 log(L/kg bdwt)	0.95 log(L/kg bdwt)	0.5 log(L/kg bdwt)
Lipinski Rule Class	BCF (lower trophic)	0.583 log(L/kg bdwt)	0.583 log(L/kg bdwt)	0.583 log(L/kg bdwt)	0.668 log(L/kg bdwt)	0.401 log(L/kg bdwt)	0.401 log(L/kg bdwt)	0.632 log(L/kg bdwt)	0.756 log(L/kg bdwt)	0.091 log(L/kg bdwt)
OECD HPV Chemical Categories	BCF (mid trophic)	0.621 log(L/kg bdwt)	0.621 log(L/kg bdwt)	0.621 log(L/kg bdwt)	0.711 log(L/kg bdwt)	0.434 log(L/kg bdwt)	0.434 log(L/kg bdwt)	0.67 log(L/kg bdwt)	0.795 log(L/kg bdwt)	0.1 log(L/kg bdwt)
Organic functional groups	BCF (upper trophic)	0.742 log(L/kg bdwt)	0.742 log(L/kg bdwt)	0.742 log(L/kg bdwt)	0.851 log(L/kg bdwt)	0.546 log(L/kg bdwt)	0.546 log(Ukg bdwt)	0.791 log(L/kg bdwt)	0.908 log(L/kg bdwt)	0.13 log(L/kg bdwt)
Deganic functional-groups (US EPA)	BCF (upper trophic, biotransformation rate is	0.506 log(L/kg bowl)	0.506 log(L/kg bolkt)	0.506 log(L/kg bowt)	0.845 ibg(Ukg bdwt)	0.364 log(L/kg bowt)	0.364 log(Ukg balkt)	0.507 log(L/kg bowt)	TOT IOG(L/Kg DOWL)	0.100 log(L/kg bdwt)
Organic functional groups, Norbert H	Disdag probability (Disaria 1)	0.192.0	0.192.0	0.192.0	0.403	0.237 0	0.4.37 0	0.270 0	0.140.0	0.101.0
Structure smlarty	Diodeg procedulity (Biowin 1)	0.845	0.245	0.945	0.228	0.799	0.789	0.947	0.138	0.789
	Biodeg probability (Biowin 5)	0.382	0.382	0.382	0.286	0.391	0.391	0.393	0.0609	0.31
	Biodeg probability (Biowin 6)	0.343	0.343	0.343	0.146	0.394	0.394	0.377	0.014	0.212
Metabolism/Transformations	Biodeg probability (Biowin 7)	0.178	0.178	0.178	0.148	0.454	0.454	0.0826	0.336	0.0826
	BioHC Half-Life	No value	No value	No value	No value	No value	No value	No value	No value	No value
ct All Unselect All Invert	Biotransformation Half-Life	0.192 d	0.192 d	0.192 d	0.353 d	0.257 d	0.257 d	0.178 d	0.146 d	0.101 d
Association simulator (acidic)	Boiling point	312 °C	312 °C	312 °C	320 °C	297 °C	297 °C	345 °C	359 °C	348 °C
lydrolysis simulator (basic)	Exp Boiling Point	No value	160 °C	160 °C	No value	350 °C	350 °C	No value	No value	No value
Hydrolyss simulator (neutral)	Exp Henrys Law Constant	No value	No value	No value	No value	No value	No value	No value	No value	No value
Krobil metabolism simulator	Exp Log P	No value	No value	No value	No value	1.44	1.44	No value	1.95	No value
Ibserved Mammalian metabolism	Exp Melting Point	No value	No value	No value	No value	100 °C	100 °C	No value	217 °C	No value
Observed Microbial metabolism	Exp NO3 rate constant	INO VAIUE	no value	too value	NO VAIUE	No value	No value	No value	tvo value	No value
Observed rat liver metabolism with o	Exp OH rate constant	No value	No value	No velue	No value	No value	No value	no value	No velue	No vélue
Observed Rat Liver S9 metabolism	Explozone rate constant	Neuriture	No value	No verue	Mexalue	No verue	Neumbre	No value	No value	Neuther
Rat. liver 59 metabolism simulator	Exp Vapor Pressure	Novabia	No value	No value	No value	1 DEE+04 mail	1085+04 mm/l	No value	No velue	No value
Tautomerism	EN advection air	300 ko/b	300 kn/h	300 km/h	289 kn/h	333 km/h	333 km/h	37.1 ko/b	2.57 kg/h	119 km/h
and the second se								tay		

Physico-chemical properties: mainly predicted (instead of measured); all are bioavailable; 4- $8-\underline{9}$ deviate.

Functional groups : all Cramer class III; benzotriazoles, 4=Halogen (CL group), 7 = imidazole, 8=nitro-aromatic amine, 9 = not categorized.

Structural alerts: 8=several DNA reactivity and genotoxicity alerts:

Documents			· · · · · · · · · · · · · · · · · · ·						<u></u>	Developed
	Filter endpoint tree	1 [target]	2	3	4	5	6	7	8	9
nt 1 136856 tructure similarity	Structure	.00	-0	- 0	00	00	00	00	2.00	00
	Endpoint Specific									
	Acute aquatic toxicity classification by Verha	Class 2 (less inert comp	Class 2 (less inert comp	Class 2 (less inert comp	Class 3 (unspecific read	Class 5 (Not possible to	Class 5 (Not possible to	Class 1 (narcosis or bas	Class 2 (less inert comp	Class 5 (Not possible to
	Acute aquatic toxicity MOA by OA SIS	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics	Basesurface narcotics
	Aquatic toxicity classification by ECOSAR	Benzotriazoles	Benzotriazoles	Senzotriazoles	Benzotriazoles	Bendotniazoles	Benzotriazoles	Imidacoles	Benzotriazoles	Not Related to an Existi
	Bioaccumulation - metabolism alerts	Alkyl substituent on	Alkyl substituent on	Alkyl substituent on	Aromatic chloride [Aromatic-H	Aromatic-H	Alkyl substituent on	Aromatic nitro [-NC	Alkyl substituent on
	Bioaccumulation - metabolism half-lives	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast
	Biodegradation fragments (BioWIN MITI)	Aromatic-CH3	Aromatic-CH3	Aromatic-CH3	Aromatic chloride [Aromatic-H	Aromatic-H	Aromatic-CH3	Aromatic nitro [-NC	Aromatic-CH3
	Carcinogenicity (genotox and nongenotox) al	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	Imidazole, benzimid	Nitro-aromatic (Gen	No alert found
	DART scheme	Known precedent re	Known precedent re	Toluene and small al	Not known precedent r	Not known precedent r	Not known precedent r	Known precedent re	Known precedent re	Known precedent re
	DNA alerts for AMES by OASIS	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	Non-covalent intera-	No alert found
	DNA alerts for CA and MNT by OASIS	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	Non-covalent intera-	No alert found
	Eye irritation/corrosion Exclusion rules by BfR	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Group All Melting Pc	Undefined
Unselect All Invert	Eye irritation/corrosion inclusion rules by BfR	Inclusion rules not met	Inclusion rules not met	Inclusion rules not met	Inclusion rules not met	Inclusion rules not met	Inclusion rules not met	Inclusion rules not met	Inclusion rules not met	Inclusion rules not met
	in vitro mutagenicity (Ames test) alerts by ISS	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	Nitro-aromatic	No alert found
ieni 📳	in vivo mutagenicity (Micronucleus) alerts by ISS	H-acceptor-path3-H-ac	d H-acceptor-path3-H-a	d H-acceptor-path3-H-ai	H-acceptor-path3-H-ac	H-acceptor-path3-H-ac	H-acceptor-path3-H-ac	H-acceptor-path3-H-ac	C H-acceptor-path3-H	H-acceptor-path3-H-ac
	Keratinocyte gene expression	Not possible to classify	Not possible to classify	Not possible to classify	Not possible to classify	Not possible to classify	Not possible to classify	Not possible to classify	Not possible to classify	Not possible to classify
and the second second second second	Oncologic Primary Classification	Not classified	Not cassined	Not cassined	Halogenated Aromatic	Not classified	Not classified	Not classified	Aromatic Amine Type C	Not classified
elements	 Protein binding alerts for Chromosomal aberra 	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found
Lin Case	Protein binding alerts for skin sensitization a	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found	No alert found
Chemical Categories	Protein binding alerts for skin sensitization	No alert found	No alert tound	nio alert tound	No alert round	No alert found	No alert found	No alert found	No alert found	No alert found
functional groups (nested)	Protein Binding Potency n-CLAT	No alert found	No siert found	No alert found	Mononarcarenes	No alert found	No alert found	No alert found	No sleft found	No sleft found
functional groups (US EPA)	Respiratory sensitivation	Not avert round	Not seen touris	Not arent round	No aren round	Not arent round	Not arent round	Not arens incurso	Not aren round	Not appriliate along
functional groups, Norbert R	Retinoic Acid Receptor binding	Not possible to cassivy	Not possible to cassing	Not possible to classify	Not possible to cassiny	Not possible to classify	Not possible to classify	Not possible to classify	Not possible to cassity	Not possible to cassily
	TER Expert System - USEPA	No alers round	No went tound	No alert round	No alen round	No wen round	No wers round	Ind alers round	No wen tound	No wert round
	Skin imitation/corrosion Exclusion rules by Bitk	Seclusing a las pat mat	Tanharines and a set mat	Teshuine sules est mat	Testivise a les est est	Underined	Indenned Technice outer and met	Cindenned Texh sizes suler ant mat	Croup All Meterig PC	Indenned Indentified
	- Skill initiations corrosion inclusion rales by Birk	and down rules intermet	provision rares not met	and a second states and the	provision roles not their	provident rules rive tries	siouson mes not met	provision rules not mes	incusion roles not met	ziousion rules not met
bolism/Transformations	Chemical elements	Genue 14 - Carbon C	Group M Carbon C	Group 14 - Carbon C	Group M. Carbon C.	Genue M. Carbon (Group 14 - Carbon (Group 14 - Carbon C	Genue M. Carbon F.	Genue 14 - Carbon C
	Groups of elements	Non-Matals	Non-Metals	Non-Matals	Halsoes	Non-Metals	Non-Metals	Nno-Metals	Non-Matals	Non-Matals
Unselect All Invert	Liningki Rulo Oscir	Econolable	Ricavalable	Ricevalable	Ricavalable	Riceralable	Ricavalable	Ricanalable	Romalable	Reparadable
on simulator	Ornanic functional groups	Alloy (heterolarenes	Alkyl (hetern)arenes	Alkyl (hetero)arenes	And	and	And -	Alkol (heternlarenes	And	Alkyl (heternlarenes
smuster (acoc) smuster (basc)	Organic functional groups (nester)	Alkyl (heterolarenes	Alkyl (hetero)arenes	Alkyl (hetero)arenes	And halide	Benzotriazole	Benzotriazole	Benzimidazole	Benzotriazole	Alkyl (heterolarenes
smulator (neutral)	Organic functional groups (US EPA)	123-Triazole	123-Triscole	123-Triscole	123-Triacole	1.2.3-Triazole	123-Triacole	Aliphatic Nitrogen 1	1.2.3-Triazole	Aliphatic Carbon ICF
t metabolism simulator	Organic functional groups, Norbert Haider I	Aromatic compound	Aromatic compound	Aromatic compound	Aromatic compound	Aromatic compound	Aromatic compound	Aromatic compound	Anion	Aromatic compound
netabolem simulator	Structure similarity	190%.100%1	(70%,80%)	(70%,80%)	(80%,90%)	[70%,80%)	(70%.80%)	(70% 80%)	[70%.80%]	[70%.80%)
Microbal metabolem	Tautomers unstable	Stable form	Stable form	Stable form	Stable form	Stable form	Stable form	Stable form	Stable form	Stable form
d Rat In vivo metabolism 🗧										
id rat liver metabolism with qu	Repeated dose (HESS)	Not categorized	Not categorized	Not categorized	Not categorized	Not categorized	Not categorized	Not categorized	Not categorized	Not categorized

	Image:	SAR TOOLBOX		H Data G	ao filing 🔸 Neo) 21						× • • * •
Number Partial Partial <th< th=""><th>Description Provide the second s</th><th>Profiling Custom profile y View New Dekte</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>The OECD QSAR for Grouping Ch into Categories</th></th<>	Description Provide the second s	Profiling Custom profile y View New Dekte										The OECD QSAR for Grouping Ch into Categories
• Worker • Worker <t< th=""><th>Standard Standard <t< th=""><th></th><th>Filter endpoint tree</th><th>1 [target]</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th></t<></th></t<>	Standard Standard <t< th=""><th></th><th>Filter endpoint tree</th><th>1 [target]</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th></t<>		Filter endpoint tree	1 [target]	2	3	4	5	6	7	8	9
Image: Construction Transformation Image: Construction Transformation Image: Construction Transformation Image: Construction Image: Constructi	Installing I	Cocument 1 # CAS: 136856	Structure	_00	-00	-0	00	00	QQ	00	~00	00
Number of the state base is an extra base in the state base is an extre base in the state base is an extra base in the state base is				·								
Number work	Protect all properties of the second all properios of the second all properines of the second all		- in vivo Rat metabolism simulator	1 metabolites	2 metabolites	2 metabolites	1 metabolites	3 metabolites	3 metabolites	9 metabolites	2 metabolites	8 metabolites
Image: space of the s	Number of the second		- I Predefined									
			General Mechanistic									
holds genetics holds holds holds	holes peuto basis 1 - Sub J peopler 2 2 - Clas J pe											
Label and the set of	Labeles 1. Percis anticles		Acute aquatic toxicity classification b	1 x Class 3 (unspecific	n 2 x Class 3 (unspecific r	2 x Class 3 junspecific (1 x Class 3 (unspecific r	3 x Class 3 (unspecific r	3 x Class 3 (unspecific	2 x Class 5 (Not poss	2 x Class 5 (Not possib	2 x Class 3-(unspecifi
Applic factory (according on the factor	Agastic factority (sectority contraction) y COCMA 1 - Response Mont 2 - Response Mont		Acute aquatic toxicity MOA by OASIS	1 x Phenois and Aniline	e 2 x Phenois and Aniline	2 x Phenois and Aniline	1 x Phenois and Aniline	1 x Reactive unspeci	1 x Reactive unspeci	1 x Aldehydes	1 x Phenois and Anil	1 x Aldehydes
Image: constraint of the second sec	Image: Interpretation regression framework I Addy Labeliner		Aquatic toxicity classification by ECOSAR	1 x Benzotriazoles	2 x Benzotriazoles	2 x Phenois	1 x Bencotriacoles	1 x Vinyl/Allyl Keton	1 x Vinyl/Allyl Keton	1 = Aldehydes (Monc	1 x Phenol Amines	1 x Aldehydes (Mon
Note: Discussion in Marcines Discussion Marcines Dis	Product of the sector			1 x Alkyl substituent	2 x Alkyl substituent	2 x Aromatic-H	1 x Aromatic alcohol	1x-C=CH [alkenyl]	1x-C=CH [alkenyl1]	1 x Aldehyde [-CHC	1 x Aromatic alcohol	1 x Aldehyde [-CHC
Integration Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Intermediation 14 source study 2.4 source study <td></td> <td>Bioaccumulation - metabolism half-lives</td> <td>1 x Very fast</td> <td>2 x Very fast</td> <td>2 x Very fast</td> <td>1 x Very fast</td> <td>1 x Fast</td> <td>1 × Fast</td> <td>1 x Fast</td> <td>2 x Very fast</td> <td>8 x Very fast</td>		Bioaccumulation - metabolism half-lives	1 x Very fast	2 x Very fast	2 x Very fast	1 x Very fast	1 x Fast	1 × Fast	1 x Fast	2 x Very fast	8 x Very fast
Carcing sensitivity general sensitivity decompositivity general sensitivity decompositivity general sensitivity decompositivity decomposit decompositivity decompositivity decompositivity decompositivit	Labor parks/s Labor parks/s <thlabor parks="" s<="" th=""> Labor par</thlabor>		Biodegradation fragments (BioWIN MITI)	1 x Aromatic alcohol	2 x Aromatic alcohol	2 x Aromatic alcohol	1 x Aromatic alcohol	1x-C=CH [alkenyl]	1x-C=CH [alkenyl]	1 x Aldehyde [-CHC	I x Aromatic alcohol	1 & Aldehyde [-CHC
Control () C	Constraint of the second	Profiling methods		1 x No alert found	2 x No alert found	2 x No alert found	1 x No alert found	1 x alpha beta-unsat	1 x alpha beta-unsat	1 x No alert found	2 x Primary aromatic	1 x Simple aldehyde
Description Dubusters of all product of a	District Durate: A District Distric District District	5.4	DART scheme	1 x Known preceden	2 x Known preceden	2 x Known preceden	1 x Not known precede	3 x Not known precede	3 x Not known preced	3 x Not known prece	2 x Not known preced	4 x Known preceden
Dial Dial <tddial< td=""> Dial Dial <tdd< td=""><td>Bindle CPA All start for CAA aff bindle 1 for just for CAA 1 for just for CAA</td><td>Select All Unselect All Invert</td><td>DNA alerts for AMES by OASIS</td><td>1 x No alert found</td><td>2 x No alert found</td><td>2 x No alert found</td><td>1 x No alert found</td><td>3 x No alert found</td><td>3 x No alert found</td><td>9 x No alert found</td><td>2 x No alert found</td><td>8 x No alert found</td></tdd<></tddial<>	Bindle CPA All start for CAA aff bindle 1 for just for CAA	Select All Unselect All Invert	DNA alerts for AMES by OASIS	1 x No alert found	2 x No alert found	2 x No alert found	1 x No alert found	3 x No alert found	3 x No alert found	9 x No alert found	2 x No alert found	8 x No alert found
C Good Antibiants (C) Cool (C)	Constraint 2 Notestimile 2 Notestimold 2 Notestimile 2 Notestimi	Suitable	DNA alerts for CA and MNT by OASIS	1 x No alert found	2 x No slert found	2 x No alert found	1 x No alert found	3 x No alert found	3 x No sleet found	9 x No alert found	2 x No alert found	8 x No alert found
Particle and part	Particle Section Processes Protein Enclasses (Laborane Internet) Protein Enclasses (Laborane Internet) Protein Enclasses (Laborane Internet) Protein Enclasses (Laborane Internet) Protein Enclasses Protein Enclasse	DART scheme		1 x Undefined	2 x Undefined	2 x Undefined	1 x Group All Meltiny	3 x Undefined	3 x Undefined	3 x Group All Meltiny	1 x Group All Meltin	8 x Group All Meltiny
A manufacture for the second of the sec	If is and function 1 is and function 2 is and function	Plausible	Eve irritation/corrosion Inclusion rale	1 x inclusion rules not	n 2 x Inclusion rules not a	2 x Inclusion rules not	1 x Inclusion rules not a	3 x Inclusion rules not a	3 x Inclusion rules not	9 a Inclusion rules not	n 2 x inclusion rules not	n 8 x lociusion rules not n
Comparison 1 = Nacostructure	Constrained of c	Chemical elements	in vitro mutanenicity (Ames test) alerts	1 x No alert found	2 x No alert found	2 x No alert found	1 x No alert found	1 x alpha beta-unsat	1 x alpha beta-unsat	1 x Simple aldehude	2 x Primary aromatic a	m 1 x Simple aldehude
C volume 1 Note of the second of	Constraints of the constrai	Groups of elements		1 x H-accentor-pathi-	H 7 x H-acceptor-path 2-8	7 x H-acceptor-path 2-1	1 x H-acceptor-path 2-8	1 a alpha beta-uncatura	1 x alpha beta-uncatur	a 1 y Simple aldehude	2 x H-accentor-path3-	H 1 y Simple aldehide
Sec: A constraint of the sector of the	 A provide transfer of the constraint of the constrain	Lonski Rule Case OECD HPV Chemical Categories	- in vivo mutagenicity (Micronucleus) al					1 x Azide and triazene 3 x H-acceptor-path3-R	1 x Azide and triazene 3 x H-acceptor-path3-	g 9 x H-acceptor-path3- H	H 2 x Primary aromatic a	m 8 x H-acceptor-path3-H
Concept Private Barling Private Concept Private Database State Concept Private Database Concept Private Database Concept Private Concept Private DataBase Concept Private Database Concept Private DataBase Concept Private	Concept Private Research (Standard) C	Crganic functional groups	Keratinocyte gene expression	1 x Not possible to cla	s 2 x Not possible to clas	2 x Not possible to clas	1 x Not possible to class	1 x Very high gene e	1 x Very high gene e	1 x Very high gene e	2 x Not possible to cla	s: 8 x Not possible to class
Potent boding density for Charmonic II. 1 AV2 II. 2 AV2 III.	 Protect bandle geterne ge	Organic functional groups (History)	Oncologic Primary Classification	1 x Phenol Type Comp	c 2 x Phenol Type Compo	2 x Phenol Type Comp	1 x Halogenated Arc	1 x Not classified	1 x Not classified	1 = Aldehyde Type C	1 x Phenol Type Con	1 x Aldehyde Type C
Portum bundling data for adds assessing 1 = 1 for all of the data sensing 2 = 1 for all of the data sensif 1 = 1 for all of the data sensing 2 = 1 for all of the data sens	Operations and provide status setsion 1 + to part threst 2 + topare threst 2 + to part threst	Organic functional groups, Norbert H.	Protein binding alerts for Chromosom	1 x AN2	2 x AN2	2 x AN2	1 x AN2	1 x AN2	1 x AN2	4 x AN2	2 x No alert found	2 x AN2 >> Michael
Concrete to the second se	Concern formulation C	Structure senienty	Protein binding alerts for skin sensitiza	1 x No alert found	2 x No alert found	2 x No alert found	1 x No alert found	3 x No alert found	3 x No alert found	1 x Skin sensitization	2 x No alert found	1 x Skin sensitization
Mathematical Structure Particle Statistics Patters y RLAT 1.1 No art from 2.1 No art from </td <td>Machine for the construction Particle Binding Steeps y LCAT 1.1 No airt frund 2.1 No airt frund 2.1</td> <td>Substance type</td> <td>Protein binding alerts for skin sensitiza</td> <td>1 x No alert found</td> <td>2 x No alert found</td> <td>2 x No alert found</td> <td>1 x No alert found</td> <td>3 x No alert found</td> <td>3 x No alert found</td> <td>9 x No alert found</td> <td>2 x No alert found</td> <td>8 x No alert found</td>	Machine for the construction Particle Binding Steeps y LCAT 1.1 No airt frund 2.1	Substance type	Protein binding alerts for skin sensitiza	1 x No alert found	2 x No alert found	2 x No alert found	1 x No alert found	3 x No alert found	3 x No alert found	9 x No alert found	2 x No alert found	8 x No alert found
Notable Transformation In the destinant Into destinant <	Market Strands and Proceedance of the second of the s		Protein Binding Potency h-CLAT	1 x No alert found	2 x No alert found	2 x No alert found	1 x Monohaloarenes	1 x alpha, beta-Unsa	1 x alpha; beta-Unsa	9 x No alert found	2 x No alert found	8 x No alert found
A constraint of the second secon	 And Device 1 whether the second second	Metabolism/Transformations	Respiratory sensitisation	1 x No alert found	1 x No alert found	1 x No alert found	1 x No alert found	1 x Pro-Michael Add	1 x Pro-Michael Add	1 x Pro-Michael Add	1 x Pro-Michael Add	1 x Pro-Michael Add
Sect 3 Underts 4 Intell Expert System - USEX 1 is a lar formad 2	Sect Al: Underst Al: Intel Al:		Retinoic Acid Receptor Binding	1 x Not possible to cla	s 2 x Not possible to clas	2 x Not possible to clar	1 x Not possible to class	3 x Not possible to clas	3 x Not possible to cla	9 x Not possible to cla	s 2 x Not possible to cla	s 8 x Not possible to clas:
Construction product wholdwaik and why holdwaik multiplication holdwaik multi holdwaik multiplication holdwaik multi holdwaik m	Concert public holdware mulator holdware mulator ho	Extend All Uncodent All Second		1 x No alert found	2 x No alert found	2 x No alert found	1 x No alert found	3 x No alert found	3 x No alert found	9 x No alert found	2 x No alert found	8 x No alert found
decision simplify cutc) decision simplify cutc) decision simplify cutc) decision simplify decision simplify decision	446/seg multiple (soc) wholves multiple (soc)	Deect Air Criseect Air Shert	Skin irritation/corrosion Exclusion rule	1 x Group CN Meltin	2 x Group CN Meltin	2 x Group CN Meltin	1 x Group All Meltin	2 x Group CN Vapou	2 x Group CN Vapou	3 x Group All Meltin	1 x Group All Meltin	8 x Group All Meltiny
Models anstatz (bac) wide/site anstatz (bac) wide/site anstatz (bac) structure	dybase structure (subject) dybase st	Hydrolyse smulator (acidic)	Skin irritation/corrosion Inclusion rule	1 x Phenols	2 x Phenois	2 x Phenois	1 x Phenols	1 x Ketones	1 x Ketones	4 x Inclusion rules no	L x Phenois	1 x Aldehydes
 Myddor an lafar olar olar olar olar olar olar olar ol	 Index anskate (secard) Index anskate (se	Hydrolyse simulator (basic)										
Conversion for any local memologies Conversion Conversion for any local memologies Conversion	Or Nov Buch multicity - Oropask delements 1 + Nov-Menth 2 + Nov-Menth 2 + Nov-Menth 3 + Nov-Menth	Hydrolysis simulator (neutral)	Chemical elements	1 x Group 14 - Carbs	2 x Group 14 - Carbo	2 x Group 14 - Carbs	1 x Group 14 - Carbs	3 x Group 14 - Carbo	3 x Group 14 - Carbo	9 x Group 14 - Carbo	1 x Group 16 - Oevo	8 x Group 14 - Carbo
Conversion frameworks metabolisms 2 Conversion	2 Operation Reserved mended in reaching Colored Records medicing Colored Records medicing Col	n vvo Rat metabolism simulator	Groups of elements	1 x Non-Metals	2 x Non-Metals	2 x Non-Metals	1 x Halogens	3 x Non-Metals	3 x Non-Metals	9 x Non-Metals	2 x Non-Metals	8 x Non-Metals
Colument Gall 1 A Algh (Intercision 1 A	Operand Kuncking erscholm 1 + Alp/ hermider 1 + Alp/ hermider <td>Coserved Mammalan metabolam</td> <td>Lipinski Rule Oasis</td> <td>1 x Bioavailable</td> <td>2 x Bicavailable</td> <td>2 x Bioavailable</td> <td>1 x Bicavailable</td> <td>3 x Bioavailable</td> <td>3 x Bioavailable</td> <td>9 x Bioavailable</td> <td>2 x Bicavailable</td> <td>8 x Bicavailable</td>	Coserved Mammalan metabolam	Lipinski Rule Oasis	1 x Bioavailable	2 x Bicavailable	2 x Bioavailable	1 x Bicavailable	3 x Bioavailable	3 x Bioavailable	9 x Bioavailable	2 x Bicavailable	8 x Bicavailable
Converse data have metabalam Converse data have metabaaaa Converse data have metabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	C Concerned for A for A de Carlo	Observed Microbal metabolism	Sector County	1 x Alkol (heterplace)	1 x Precursors quino	1 x Precursors duino	1 x Ard	1 x Cycloketone	1 x Cycloketone	1 x Aldehude	1 x Phenol	4 x Allor (beterplace)
Concerta 2 k w mododam kN a	Concret de la médición señado Concret de la médici señado Concret de la médición señado Concret	🗹 Observed Rat In vivo metabolism		1 x Alkyl-, alkenyl- ar	2 x Alkyl (hetero)arei	2 x Alkyl (hetero)arer	1 x Aryl halide	1 x Fused unsaturate	1 x Fused unsaturate	1 x Urea derivatives	2 x Amine, primary	4 x Alkyl-, alkenyl- a:
Concerning and C	Construction Construction 1 - 8 Percisi 2 - 4 April	Observed rat iver metabolism with qu	Organic functional groups	1 x Aryl	2 x Alkyl-, alkenyl- ar	2 x Alkyl-, alkenyl- ar	1 x Benzotriazole	1 x Ketone	1 x Ketone	2 x Alcohol	2 x Aniline	6 x Phenol
Construction C	Companie functional groups (ested) Corpanie functional groups Corpanie functional groups (ested) Corpanie functional g	Uoserved Kat Liver 59 metabolism		1 x Benzotriazole	2 x Aryl	2 x Aryl	1 x Phenol	1 x Quinoid compou	1 x Quincid compou	2 x Benzyl	2 x Aryl	6 x Precursors quino
Comparie Americana groups (seased) Comparie Amer	Tatometin Organic functional groups (instant) 11 x Alg/ hereolee 1 x Alg/ hereolee	Skin metabolism simulator		1 x Phenol	Z x Benzotriazole	2 x Benzotriazole	1 x Triazole	1 x Saturated hetero	1 x Saturated hetero	4 x Phenol	2 x Benzotriazole	8 x Aryl
	- Organic functional groups (US EPA) [1:123-Trazole _ 2:123-Trazole _ 2:123-Trazole _ 1:223-Trazole _ 1:223-Tr	Tautomensm	Organic functional groups (nested)	1 x Alkyl (hetero)are	1 x Alkyl (hetero)are	1 x Alkyl (hetero)are	1 x Aryl halide	1 x Fused unsaturate	1 x Fused unsaturate	1 x Aldehyde	1 x Phenol	1 x Aldehyde
			Organic functional groups (US EPA)	1 x 1,2,3-Triazole	2 x 1,2,3-Triazole	2 x 1,2,3-Triazole	1 x 1,2,3-Triazole	1 x Azo [-N=N-]	1 x Azo [-N=N-]	1 x Aldehyde, aroma	I x Hydroxy, aromat	1 x Aldehyde, aroma

Metabolites: no observed metabolites; rat in vivo simulator: several metabolites for 7 and 9. Most show DNA reactivity alerts, 5-9 also structural alert for mutagenicity in Ames test:

Read across

Measured data: only analogue 5 has measured data for developmental toxicity and genotoxicity:

Data gap filling for Bacterial gene mutation assay, all strains and +/-S9 combined, data usage maximum: prediction = positive:

<u>QSAR</u>

Predicted: known precedent reproductive and developmental toxic potential (DART)

QSAR Toolbox 4.1 [Document 1]			and the second second second	and the second second		
QSAR TOOLBOX	F Input ► Profilin	g Data	Category definition	01010 01 0 10100 ► Data Gap Filling	► Report	X 8 4 4 8
Gap Filling W	Vorkflow ized Automated					The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC Buloa
Documents A Document 1 # CAS: 136856	Filter endpoint tree Structure		1 [target])Q		
	QSAR nan Developmental and Re Toxicity (DART) (1.0)	R models productive	# 1	Predicted Known precedent reprodu developmental toxic poten	Domain ctive and tialNo domain available	Endpoint Developmental and Reprod Toxicity (DART)
Data Gap Filling Settings Only endpoint relevant Only chemical relevant At this position: QSARs Automated workflows O In nodes below: QSARs QSARs O Automated workflows O	Find Find Immunotoxicity Immunotoxicity	monella typhimurium No S9 Info — No Strain Info ion	(1/1) M: Negativ	/e		Run Cencel

QSAR Toolbox 4.1 [Document 1]		The second second	Married Red		
QSAR TOOLEOX	Input ► Profiling	Data Category de	efinition	► Report	X 0 5 4 0
Gap Filling Work	flow Automated				The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC. Bulgari
CAS: 13856	Filter endpoint tree Structure	1 (t			
	Details for 1 (Q)SAR models QSAR name	#	Predicted	Domain	Endpoint
Duto Gan Eilling Sottings	Developmental and Reproductive Toxicity (DART) (1.0)	1	Known precedent repro developmental toxic po	No domain available	Developmental and Reprod Toxicity (DART)
Only endpoint relevant Only chemical relevant	C.			_	ں ۲
At this position: QSARs 1 E Automated workflows 0 Standardized workflows 0	Find Galmonella typhimu	rium			Run Cancel
In nodes below: QSARs 0 Automated workflows 0	No S9 Info No Strain Inf Immunotoxicity Irritation / Corrosion	io (1/1) M:	Negative		
Care de adire d'anna dalla como de la como de					> •

AMBIT

mbit			Search * Ass	stances	Import • Enhance	d functions *	Admin • Hel	p •				[constant] (or
Search altra to	tres and appr	scanned data										
Exact structure	re Similarit	y Substru	icture URL							Enable fragment sear	ch 0 136-85-6	a 1
2 Similarit	itγ O											select all unselect all
Showing from 1 Dia	agram (CasRN EC	entries (Encylous Next) C number IUCLID 5 Re Substances	Names 8	Trade Name 8	IUPAC nar	me () SMILES	1 5	td. InChi i	key Std. InChi	Filter REACH registration date	0 Similarity 0
Showing from 1 Dia	agram (of 20 CasRN EC	entries e Excisions Next a C number IUCLID 5 Re Substances m 1 to 4 in pages of 20 Substance Name	Names 6	Trade Name 0	IUPAC nat	ne () SMILES	0 St	td. InChi i	key 51d. inChi	Filter REACH registration date	0 Similarity 0
Showing from 1 Dia	agram (CasRN EC Identifiers Showing fro	entres « Exercises Hext & Cnumber IUCLID S Re Substances mt 1 to 4 in pages of 20 Substance Name methyl:1/f-benzotriazole	Names 0 Substances 0 Substance 0 UUID ECH4.32- 0	Trade Name () Frevious Next () Substance Type () multi constituent uubstance	IUPAC nar Public name Tolyitriazol	ne I SMILES Fil Reference substance UUID ECHA-98- 8) Sinter	Info	key 0 Std. InChi 0 Contained In as constituent 0	Filter . REACH registration date	e Similarity e
Showing from 1 Dia	isgram (CasRN EC Identifiers Showing from	entres « Etzotos Next & C number IUCLID S Ré Substances substance Name mathyl:1/1-benzotriazole methyl:1/1-benzotriazole	Names 0 Substances 0 UUID ECHA-32- 0 ECHA-32- 0 ECHA-32- 0	Trade Name () Pravious Next () Substance Type () multi constituent substance multi constituent substance	IUPAC nar Public name Tolyitriazol Tolyitriazol	ri Reference substance UUID ECHA-96- 8 ECHA-96- 8) Siler	Info	key Std. InChi Contained In as constituent O constituent O	Filter REACH registration date	6 Smitarty 6
-1.	agram (CasRN EC CasRN EC Identifiers Showing from -1 - -2 - -3 - -3 -	entries a <u>Provous Noot</u> a Cnumber <u>IUCLID S R4</u> Substances mt 1to 4 in pages of 20 Substance Name methyl-1H-benzotriazole methyl-1H-benzotriazole methyl-1H-benzotriazole	Names 0 Substance UUID ECHA-32- 0 ECHA-32- 0 ECHA-32- 0 ECHA-32- 0	Trade Name Trade Name	IUPAC nar Public name Tolyitriazol Tolyitriazol	ne) SMLES Fil Reference substance UUID ECIA-95- 0 ECIA-95- 0 ECIA-95- 0	0 Si	Info g	Contained o In as constituent 0 constituent 0 constituent 0	Filter REACH registration date	6 Similarity 6

Measured data

All 4 substances: subacute NOAEL 150 mg/kg bw/day (nominal), reproduction generation P and developmental NOAEL >200 mg/kg bw/day.

Negative for bacterial reverse mutation assay, *in vitro* mammalian gene mutation, *in vivo* micronucleus assay:

Search	structures and as	ssociated d	ita								
Exact st	tructure Simila	arity Sub	structure URL				Enable fragment search 0 13	8-85-6		م	P
Identi	fiers Datas	iets				_		_	_	Ex	xpo
🗹 Sir	milarity 🖲									select all unsele	lec
howing	from 1 to 1 in page	es of 20	• entries d Previous Next >				Fi	lter			
	Diagram	CasRN	EC number IUCLID 5 Re N	ames 🕴 Trade Name	IUPAC name	MILES 0 Std. InC	chi key 🕴 Std. InChi 🗄	REACH registratio	on date	0 Similarity 0	¢.
		Identifier	Substances								
		Showing	from 1 to 4 in pages of 20 *	substances 🐗 Previous Next	•			Filter			
		-1-	methyl-1H-henzotriazole	Substance UUID ECHA-30f	Substance Type multi constituent substance	Public name Tolyltriazol	Reference substance UUID	Owner	o Info o	constituent 0	
				0		,	0				
			IUC Substance Composition	Tox (12) P-Chem (7) Eco Tox ((4) Env Fate (9)						
1-			Riter							Expand all Collapse	e
			T-hibitaral								
			Tolyitriazoi								
			7.2.1 Acute toxicity - oral (1)							
			7.2.3 Acute toxicity - derm	al (1)							
			7.3.1 Skin irritation / Corre	osion (1)							
			7.3.2 Eye irritation (1)								
			4								

<u>Profiling</u> Cramer class III

Positive structural alerts for DNA binding, Ames test, micronucleus assay, carcinogenicity

<u>Metabolites</u>

No metabolites are reported in related substances.

Category definition

Three analogues are found; one is a constituent in a multi constituent substance, for the two other no substances are reported.

				Collect structures List collected					
arch									
Exact	structure Similar	rity Substruc	ture URL	Enable fragment search O Cc1	ccc2[nH]nnc2c1	р ,			
Showing from 1 to 4 in pages of 20 * entries Previous Next Filter									
	Diagram	CasRN	EC number	Names	Similarity .	Rationale			
M		136-85-6	205-265-8	6-methylbenzotriazole 1H-Benzotriazole, 5-methyl- , 5-Methyl-1H-benzotriazole 5-methyl-1H-benzotriazole	1	Reason for selection_			
s	·	41253-36- 5	255-281-4	sodium 5-methyl-1H-benzotriazolide 1H-Benzotriazole, 5-methyl-, sodium salt , sodium 5-methylbenzotriazol- ide	- 1	Reason for selection_			
s		4184-79-6	224-058-3	5,6-dimethyl-1H-benzotriazole	0.97	Reason for selection_			
S	~~~~	67924-12- 3	267-797-7	bis(5-methyl-1H-benzotriazole) sulphate	0.92	Reason for selection_			

Some measured physicochemical properties are reported for the related substances:

Assessme	ent identifier	Collect structu	Endpoint data used	Assessment	details Report			_	_	_	_		
	Diagram	Casi	EC num	ber 0		Nan	nes		Similarity	*	Rationale 0		
T S CM		Identifiers	Substances										
-			Name 🔺	Endpoint	Result 0	Text	Guideline 0	Owner 0	Citation	Reliability	UUID		
			Disseminated endpoint study record	log Pow	1.714				true	2 (reliable with restrictions)	есна-93 Ф		
		Disseminated endpoint study record	log Pow	(1.079, 1.083]	-	OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)		true	1 (reliable without restriction)	ЕСНА-59 В	l		
			Showing 2 substance(s) (1 to 2)										
			4.8 Water solubility (1)									*	
TS		Identifiers	Substances										
-	- 100		Name 🄺	Endpoint (Result ¢	Text 0	Guideline \$	Owner 0	Citation 0	Reliability	UUID	÷.	
	- 110		Disseminated endpoint study record	log Pow	(1.083, 1.091]	-	OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)		true	1 (reliable without restriction)	ECH4-221 8		
			Showing 1 substance(s) (1 to	1)							Previous Next		
			4.8 Water solubility (1)									*	
			Name 🔺	Endpoint (Result (Text	Guideline 0	Owner (Citation	Reliability	UUID	•	

Read across

There are no data available to perform read across. Example of working matrix:

essme	ent ident	ifier Collect str	uctures	Endpoint data	used	Assessm	ent deta	ails Report		_		
								Initial matrix Working matrix Final matrix	rix		Saved	
entifie	rs ECO	тох тох									Export	
7.2.1	1. Acute to	xicity - oral O	🗷 7.6.1. Ge	metic toxicity in vit	ro O						select all unselect all	
wing fi	rom 1 to 8	in pages of 20	* entries at	Previous Next 🖿						Eilter		
-	CasRN	Substance Name	ISUUID	Data source	Tag	Diagram	1	6.1.1. Short-term toxicity to fish	7.2.1. Acute toxicity - oral	¢	7.6.1. Genetic to:	
		N,N-dimethyl-C16- 18-(even numbere d, C18 unsaturate d)-alkyl-1-amines	<u>IUC5-402</u> ®	Clariant Produkte (Deutschland) GmbH / Sulzbach am Taunus /	0 0	۰۰۰۰۰۰ م م	с: О с:		0		o	
		Amines, coco alkyld imethyl	<u>IUC5-7f1</u> ®	Germany Clariant Produkte (Deutschland)	0	م 	D: O		LD50 = [1000, 1250] mp/kg by ♥ (Spece LD50 = 1.2 p/kg by ♥ (Species = rat) LD50 - 1.5 p/kg by ♥ (Species - rat)	ies = rat) 0	 <u>negative</u> ∉ (Study type = mammalian cell gene mutati <u>negative</u> ∉ (Study type = in vitro mammalian chromos 0 	i
				GmbH / Sulzbach am Taunus / Germany	0		D		 <u>LD50 > 2000</u> mg/kg bw <i>Ø</i> (Species = rat 	00		
					0		C:					
					0	 م	6					
					8	 م	C.					
					0	 م	C.					
					0		N, Di					
					0	 م	N, Di					
		N,N-dimethyl-C12- 14-(even numbere d)-alkyl-1-amines	<u>IUC5-032</u> ®	Clariant Produkte (Deutschland)	CM 0	 هر	0	LCO and NOEC = 0.312, mg/L ♥ (Exposure = 96.0 h) ♥ LC100 = 1.25, mg/L ♥ (Exposure = 96.0 h) ♥ LC50 = 0.62, mg/L ♥ (Exposure = 96.0 h) ♥	 LD50 = 1015 mg/kg bw	t) 0 t) 0	 <u>negative</u> Ø (Study type = bacterial reverse mutation a: <u>negative</u> Ø (Study type = bacterial reverse mutation a: 	ł
				GmbH / Sulzbach am	CM 0		C 0	LC50 = 0.46 mg/L # (Exposure = 96.0 h) B LC50 = 0.57 mg/L # (Exposure = 24.0 h) B				

<u>QSAR</u>

VEGA predicts carcinogenicity and developmental toxicity:

trict the search within give

mable structure attributes (1/1)	* Pleases real *	VEGN models (10)	summers manual ten te				
sRN	136-85-6	VEGA models	(i) (ii) (ii) ^				
number	205-265-8	Skin Sensitization model (CAESAR) - prediction: Sensitizer	×				
CLID 5 Reference substance UUID	ECHA-40ce26f5-e64e-49a8-accd-a94a1976692dECHA-05c4a3b8-02ac-4e	Ready Biodegradability model (IRFMN) - prediction: Not classifiable	×				
mes	5.Methul. 1H-benzotriazole/6-methul. 1H-benzotriazole. 6-methu/benzotriazol	Estrogen Receptor Relative Binding Atlinity model (IRFMN) - prediction: Inactive					
ILES		Carcinogenicity model (CAESAR) - prediction: Carcinogen					
i. InChi key		Mutagenicity (Ames test) model (CAESAR) - prediction: NON-Mutagenic	· · · · · · · · · · · · · · · · · · ·				
L inChi	LRUDIIUSNGCQKF-UHFFFAOYSA-N	Developmental Toxicity model (CAESAR) - prediction: Toxicant	*				
A Million and the second	InChi=1SiC7H7N3/c1-5-2-3-6-7(4-5)9-10-8-6/h2-4H.1H3,(H.8.9.10)	BCF model (CAESAR) - ADI - 0.401					
AGPI registration date	30.11.2010	BCF model (CAESAR) - Reliability : LOW reliability BCF model (CAESAR) - prediction llog(L/kn) - 0.44 (set an)					
F model (CAESAR) - ADI	0.401						
F model (CAESAR) - Reliability	LOW reliability	Carcinogenicity model (CAESAR) - Reliability					
F model (CAESAR) - prediction [log(L/kg)]	0.44	Daphnia Magna LC50 46h (EPA) - ADI : 0.388					
cinogenicity model (CAESAR) - Reliability	LOW reliability	Daphnia Magna LC50 48h (EPA) - rediction [-log(mol/l)] : 3.09 log(mol/l)					
cinogenicity model (CAESAR) - prediction	Carcinogen	Developmental Toxicity model (CAESAR) - Reliability : LOW reliability					
hnia Magna LC50 45h (EPA) - ADI	0.388	Estrogen Receptor Relative Binding Affinity model (IRFMN) - ADI 0.527					
phnia Magna LC50 48h (EPA) - Reliability	1 CW reliability	Estrogen Receptor Relative Binding Affinity model (IRFIMN) - Reliability : LOW reliability					
phnia Magna LC50 48h (EPA) - prediction [-L.		Fathead Minnow LC50 96h (EPA) - ADI : 0.408					
	3.09	Fathead Minnow LC50 96h (EPA) - Reliability LOW reliability					
relopmental Toxicity model (CAESAR) - Reli		r anican namoni coon son (cr.4) - tradicion (-officiand) - area administ					
aloomaatal Tovicity model ("AESAD) - ora	LOW reliability	LogP model (Meytan/Kowwin) - ADI: 1 LogP model (Meytan/Kowwin) - Reliability : GOOD reliability					
elopmental robotly model (GPE SPPC) - pre	• Toxicant -	LogP model (Meylan/Kowwin) - prediction 1.71					
	Paratan diaman	Mutagenicity (Ames test) model (CAESAR) - ADI - 1					
	Soucce dagram	Mutagenicity (Ames test) model (CAESAR) - Reliability EXPERIMENTAL value Mutagenicity (Ames test) model (CAESAR) - experimental value : NON-Mutagenic					
		Skin Sensitization model (CAESAR) - ADI 0.296					
		Skin Sensitization model (CAESAR) - Reliability : LOW reliability					
/							

ToxRead

<u>Identity</u> N1=NC=2C=C(C=CC2N1)C

<u>Measured data</u> Two QSAR models report absence of mutagenic activity.

<u>Profiling</u> IRFMN alert n. 194 for NON-Mutagenicity, defined by the SMARTS: c1cn[n]n1 1

Experimental accuracy: 0.67 Fisher test p-value: 0.31587

Category definition

6 analogues: 29385-43-1 Similarity 0.976 Experimental activity: non mutagen 95-14-7 Similarity 0.935 Experimental activity: mutagen 2592-95-2 Similarity 0.892 Experimental activity: non mutagen 56602-32-5 Similarity 0.722 Experimental activity: non mutagen 3333-62-8 Similarity 0.605 Experimental activity: non mutagen 215245-16-2 Similarity 0.58 Experimental activity: mutagen

<u>Read across</u> Read-Across assessment: Non-Mutagenic Read-Across Mutagenic score = 0.21 Read-Across Non-Mutagenic score = 0.79

<u>QSAR</u>

QSAR consensus assessment: NON-Mutagenic (Consensus score: 0.55) Predicted Consensus Mutagen activity = NON-Mutagenic Consensus Score = 0.55 Model Caesar assessment = NON-Mutagenic (EXPERIMENTAL value) Model ISS assessment = NON-Mutagenic (low reliability) Model SarPy assessment = NON-Mutagenic (EXPERIMENTAL value) Model KNN assessment = Mutagen (low reliability)

Overall assessment: NON-MUTAGENIC

T.E.S.T.

<u>Identity</u> CAS number is present in database

Measured data

A negative test result for mutagenicity is reported.

Predicted Mutagenicity for 136-85-6 from Consensus method

	Prediction results	
Endpoint	Experimental value (CAS=136-85-6) Source: <u>Toxicity Benchmark</u>	Predicted value ^a
Mutagenicity value	0,00	0,70
Mutagenicity result	Mutagenicity Negative	Mutagenicity Positive

^aNote: the test chemical was present in the training set. The prediction does not represent an external prediction.

<u>QSAR</u>

The consensus model predicts mutagenicity and absence of developmental toxicity. Similar chemicals were identified that were mutagenic as well. No chemicals with high similarity and measured developmental toxicity data were identified.

Predictions for the test chemical and for the most similar chemicals in the training set

If the predicted value matches the experimental values for similar chemicals in the training set (and the similar chemicals were predicted well), one has greater confidence in the predicted value.

CAS	Structure	Similarity Coefficient	Experimental value	Predicted value
136-85-6 (test chemical)			0,00	0,70
95-14-7	N N	0,95	1,00	0,42
2942-42-9		0,93	1,00	0,59
5401-94-5	ant.	0,92	1,00	0,79
114607-46-4	d d	0,76	0,00	0,19

Lookup

Lookup

AIM

Identity

CAS number is recognised fication M Lookup Structure Draw Structure Advanced Options Report Settings Lookup by CAS Number or Chemical Name CAS # or ID: 136856 Chemical Name: 1H-Benzotriazole, 5-methyl-Smiles Notation: N(=NNc1ccc(c2)C)c12 Load Draw Chemical Structure H₃C User Manual Data Sources

Include Pass 2

Category definition

Fragment Library

Pass 1 and 2 including 'Advanced options' yield one analogue with measured data: CAS 29385-43-1

Reset

Analogs

1H-Benzotriazole, 4(or 5)-methyl- [29385-43-1] Cc1cccc2c1nnn2

T	oxicity Data Available for this Compound
	RTECS
	TSCATS II
	ACToR
	TSCATS
	NTP
	DSSTox
	HPVIS

Based on its structure, this chemical may belong to an EPA New Chemical Category. The category and its concern are: . Benzotriazoles (Environmental Toxicity)

Toxtree

Identity SMILES code entered

Profiling Cramer class III DNA binding alert (Michael acceptor) No alerts for Ames mutagenicity; positive structural alerts for the micronucleus assay (Hacceptor-path3-H-acceptor) Negative for (non-)genotoxic carcinogenicity

File Edit Chemical Compounds Toxic Hazard Method Help ▼ Go! » Chemical identifier Cc1ccc2[nH]nnc2c1 oqenicity (qe otox and n tox) and muta ilable structure attributes by <u>Car</u> by ISS Estimate ent a QSAR calculation could be applied es TTC decision tree es TTC decision tree... tive for genotoxic carcinogenicity gative for genotoxic c... gative for nongenoto... YES Potential S. typhimurium Potential carcinogen bas. QSAR 13 applicable? NO tive for nongenotoxic carcinogenicity NO NC SAR6.8 applicable? NC en applying the decision tree A10_gen A11_ger Verbose explanation QORZO_HOGOL(1 019) Halogonatod Cycloaixanos (Hongonotoxic careinogens) cerecez[mijmeze A13 ger QSA31a_nogen.Halogenated benzene (Nongenotoxic carcinogens) No Cc1ccc2[nH]nnc2c1 A14 ge QSA31b_nogen.Halogenated PAH (naphthalenes, biphenyls, diphenyls) (Nongenotoxic carcinogens) No
 Cc1ccc2[nH]nnc2c1
 QSA31c_nogen.Halogenated dibenzodioxins (Nongenotoxic carcinogens) No
 Cc1ccc2[nH]nnc2c1 _ge A17_noge A18_gen QSA39_gen_and_nogen.Steroidal estrogens No Cc1ccc2[nH]nnc2c1
 QSA40_nogen.substituted phenoxyacid No Cc1ccc2[nH]nnc2c1 19_gen m QSA41_nogen.substituted n-alkylcarboxylic acids No Cc1ccc2[nH]nnc2c1 gen A20_noge NC QSA42_nogen.phthalate diesters and monoesters No Cc1ccc2[nH]nnc2c1 A21 der NO QSA43_nogen.Perfluorooctanoic acid (PFOA) No Cc1ccc2[nH]nnc2c1 A22_gen NO NO Cc1ccc2[nH]nnc2c1 A23_ge NC m QSA45_nogen.indole-3-carbinol No Cc1ccc2[nH]nnc2c1
m QSA46_nogen.pentachlorophenol No Cc1ccc2[nH]nnc2c1 m QSA47_nogen.o-phenylphenol No Cc1ccc2[nH]nnc2c1 QSA48_nogen.quercetin-type flavonoids No Cc1ccc2[nH]nnc2c1
QSA49_nogen.imidazole and benzimidazole No Cc1ccc2[nH]nnc2c1 Cc1ccc2[nH]nnc2c1 QSA51_nogen.dimethylpyridine No Cc1ccc2[nH]nnc2c1
QSA52_nogen.Metals, oxidative stress No Cc1ccc2[nH]nnc2c1 QSA53_nogen.Benzensulfonic ethers No Cc1ccc2[nH]nnc2c1 QSA54_nogen.1,3-Benzodioxoles No Cc1ccc2[nH]nnc2c1
 QSA55_nogen.Phenoxy herbicides No Cc1ccc2[nH]nnc2c1 Cc1ccc2[nH]nnc2c1 Class Negative for nongenotoxic carcinogenicity fired? No Class Negative for nongenotoxic city Cc1ccc2[nH]nnc2c1 Prev 1/1 Next First Last

<u>Metabolites</u>

Four most likely metabolites: OCc1ccc2NN=Nc2(c1) CC1=CC(O)=C2NN=NC2(=C1) OC=1C=C2NN=NC2(=CC=1C) OC1=C2N=NNC2(=CC=C1C)

Chemotyper

<u>Identity</u>

Sdf file uploaded

<u>Profiling</u>

No Ashby Tennant Alerts or Carcinogenicity alerts were identified.

ChemMine

Category definition

Similarity Cutoff: 0.9, Max Compounds Returned: 10

```
CC1=CC2=N[NH]N=C2C=C1 [OECD QSAR Toolbox CAS 136-85-6]

[NH]1N=C2C=C3C=CC3=CC2=N1 [OECD QSAR Toolbox CAS 269-12-5]

CC1=CC2=C2=N[NH]N=C12 [OECD QSAR Toolbox CAS 29385-43-1]

CC1=CC2=N[NH]N=C2C=C1C [OECD QSAR Toolbox CAS 4184-79-6]

FC(F)(F)C1=CC2=N[NH]N=C2C=C1 [OECD QSAR Toolbox CAS -]

CC1=CC2=N[Se]N=C2C=C1 [OECD QSAR Toolbox CAS 1123-91-7]

CCCN(CCC)CCC1=CC2=N[NH]N=C2C=C1 [OECD QSAR Toolbox CAS -]

[NH]1N=C2C=CC(=CC2=N1)C3=CC=CC3 [OECD QSAR Toolbox CAS -]

CC1=CC2=NSN=C2C=C1 [OECD QSAR Toolbox CAS -]
```

WORKBENCH My Compounds	Fingerprint Sear	Fingerprint Search Results				
Add Compounds	Job Start Time	Jan. 19, 2018, 2:18 a.m	Jan. 19, 2018, 2:18 a.m.			
TOOLS	Options	Similarity Cutoff: 0.9, Ma	Similarity Cutoff: 0.9, Max Compounds Returned: 10			
Pasi Jous Upload Numeric Data Cluster Physicochemical Properties Similarity Workbench SEARCH PubChem Similarity Search	Query Structure	N N N N H	N N H			
	Send to Workbench Download SI	DF Download SMILES Hide Structures	CID	More Info		
	Ker-		6705	PubChem Link		

Metaprint2D-REACT

<u>Identity</u>

SMILES code entered

<u>Metabolites</u>

Fingerprint Matching default and Model ALL yields glucuronidation as the main metagbolic reaction.

~~~





123045

 SMILES:
 Cc1ccc2[nH]nnc2c1

 Model:
 ALL (Metabolite 2010.2)

 Settings:
 DEFAULT

As the next probable site of metabolism several reactions are reported, of which hydroxylation is the most probable.

PubChem Link





Reaction type filter: all

#### Input

 SMILES:
 Cc1ccc2[nH]nnc2c1

 Model:
 ALL (Metabolite 2010.2)

 Settings:
 DEFAULT

### Xenosite

### **Identity**

SMILES code entered

## Profiling

DNA reactivity seems not likely.

#### **Metabolites**

The most probable reaction sites are shown below.



| Predict       | or XenoSite Epoxidation 1.0               |  |  |  |  |
|---------------|-------------------------------------------|--|--|--|--|
| Noti          | ce Results expire 24 hours after creation |  |  |  |  |
| Downlos       | ad Predictions   SDF   Figures            |  |  |  |  |
| Color Scali   | ng Unscaled                               |  |  |  |  |
| C. Alto       |                                           |  |  |  |  |
|               | M1                                        |  |  |  |  |
| <b>+</b>      | Molecule Epoxidation                      |  |  |  |  |
| 0.0           |                                           |  |  |  |  |
| Predictor     | XenoSite Reactivity 2.0                   |  |  |  |  |
| Notice        | Results expire 24 hours after creation    |  |  |  |  |
| Download      | Predictions   SDF   Figures               |  |  |  |  |
| Color Scaling | Unscaled                                  |  |  |  |  |
|               | M1                                        |  |  |  |  |
| Molecule      | Cyanide DNA GSH                           |  |  |  |  |
|               |                                           |  |  |  |  |
| -             |                                           |  |  |  |  |
| 0.0           |                                           |  |  |  |  |
|               |                                           |  |  |  |  |
|               |                                           |  |  |  |  |

### **EPI Suite**

<u>Identity</u> CAS number entered <u>Profiling</u>

### EPI Suite Results For CAS 136-85-6



SMILES : n(nnc1ccc(c2)C)c12 CHEM : 1H-Benzotriazole, 5-methyl-MOL FOR: C7 H7 N3 MOL WT : 133.15 ------ EPI SUMMARY (v4.11) ------Physical Property Inputs: Log Kow (octanol-water): -----Boiling Point (deg C) : -----Melting Point (deg C) : -----Vapor Pressure (mm Hg): -----Water Solubility (mg/L): -----Henry LC (atm-m3/mole) : ----- Log Octanol-Water Partition Coef (SRC): Log Kow (KOWWIN v1.68 estimate) = 1.71

Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPVP v1.43):
Boiling Pt (deg C): 311.65 (Adapted Stein & Brown method)
Melting Pt (deg C): 97.46 (Mean or Weighted MP)
VP(mm Hg,25 deg C): 0.000314 (Modified Grain method)
VP (Pa, 25 deg C): 0.0418 (Modified Grain method)
VP (Pa, 25 deg C): 0.0418 (Modified Grain method)
MP (exp database): 80-82 deg C
BP (exp database): 210-212 @ 12 mm Hg deg C
Subcooled liquid VP: 0.00105 mm Hg (25 deg C, Mod-Grain method)
: 0.14 Pa (25 deg C, Mod-Grain method)

Water Solubility Estimate from Log Kow (WSKOW v1.42): Water Solubility at 25 deg C (mg/L): 3069 log Kow used: 1.71 (estimated) no-melting pt equation used

Water Sol Estimate from Fragments: Wat Sol (v1.01 est) = 10100 mg/L

ECOSAR Class Program (ECOSAR v1.11): Class(es) found: Benzotriazoles

Henrys Law Constant (25 deg C) [HENRYWIN v3.20]: Bond Method : 1.62E-007 atm-m3/mole (1.64E-002 Pa-m3/mole) Group Method: Incomplete For Henry LC Comparison Purposes: User-Entered Henry LC: not entered Henrys LC [via VP/WSol estimate using User-Entered or Estimated values]: HLC: 1.793E-008 atm-m3/mole (1.816E-003 Pa-m3/mole) VP: 0.000314 mm Hg (source: MPBPVP) WS: 3.07E+003 mg/L (source: WSKOWWIN)

Log Octanol-Air Partition Coefficient (25 deg C) [KOAWIN v1.10]: Log Kow used: 1.71 (KowWin est) Log Kaw used: -5.179 (HenryWin est) Log Koa (KOAWIN v1.10 estimate): 6.889 Log Koa (experimental database): None

Probability of Rapid Biodegradation (BIOWIN v4.10): Biowin1 (Linear Model) : 0.7388 Biowin2 (Non-Linear Model) : 0.8449 Expert Survey Biodegradation Results: Biowin3 (Ultimate Survey Model): 2.8301 (weeks ) Biowin4 (Primary Survey Model) : 3.5871 (days-weeks ) MITI Biodegradation Probability: Biowin5 (MITI Linear Model) : 0.3821 Biowin6 (MITI Non-Linear Model): 0.3428 Anaerobic Biodegradation Probability: Biowin7 (Anaerobic Linear Model): 0.1780 Ready Biodegradability Prediction: NO

Hydrocarbon Biodegradation (BioHCwin v1.01): Structure incompatible with current estimation method!

Sorption to aerosols (25 Dec C)[AEROWIN v1.00]: Vapor pressure (liquid/subcooled): 0.14 Pa (0.00105 mm Hg) Log Koa (Koawin est ): 6.889 Kp (particle/gas partition coef. (m3/ug)): Mackay model : 2.14E-005 Octanol/air (Koa) model: 1.9E-006 Fraction sorbed to airborne particulates (phi): Junge-Pankow model : 0.000773 Mackay model : 0.00171 Octanol/air (Koa) model: 0.000152

Atmospheric Oxidation (25 deg C) [AopWin v1.92]: Hydroxyl Radicals Reaction: OVERALL OH Rate Constant = 2.7466 E-12 cm3/molecule-sec Half-Life = 3.894 Days (12-hr day; 1.5E6 OH/cm3) Half-Life = 46.731 Hrs Ozone Reaction: No Ozone Reaction Estimation Fraction sorbed to airborne particulates (phi): 0.00124 (Junge-Pankow, Mackay avg) 0.000152 (Koa method) Note: the sorbed fraction may be resistant to atmospheric oxidation

Soil Adsorption Coefficient (KOCWIN v2.00): Koc : 84.91 L/kg (MCI method) Log Koc: 1.929 (MCI method) Koc : 87.87 L/kg (Kow method) Log Koc: 1.944 (Kow method)

Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v2.00]: Rate constants can NOT be estimated for this structure!

Bioaccumulation Estimates (BCFBAF v3.01): Log BCF from regression-based method = 0.798 (BCF = 6.281 L/kg wet-wt) Log Biotransformation Half-life (HL) = -0.7170 days (HL = 0.1919 days) Log BCF Arnot-Gobas method (upper trophic) = 0.742 (BCF = 5.517) Log BAF Arnot-Gobas method (upper trophic) = 0.742 (BAF = 5.517) log Kow used: 1.71 (estimated)

Volatilization from Water: Henry LC: 1.62E-007 atm-m3/mole (estimated by Bond SAR Method) Half-Life from Model River: 4171 hours (173.8 days) Half-Life from Model Lake : 4.56E+004 hours (1900 days)

Removal In Wastewater Treatment:Total removal:2.06 percentTotal biodegradation:0.09 percent

Total sludge adsorption:1.96 percentTotal to Air:0.01 percent(using 10000 hr Bio P,A,S)

Level III Fugacity Model: Mass Amount Half-Life Emissions (percent) (hr) (kg/hr) Air 1.7 93.5 1000 Water 23.2 360 1000 Soil 75 720 1000 Sediment 0.122 3.24e+003 0 Persistence Time: 589 hr

VEGA

Identity SMILES code entered

<u>Measured data / QSAR</u> All predictions are listed below:





# EXPERIMENTAL DATA

Experimental value is NON-Mutagenic. Model prediction is Possible NON-Mutagenic (good reliability).







#### Developmental/reproductive toxicity:



#### Hepatotoxicity:



# **Attachment IV**

# Data collection sheet

A default sheet that can be used to summarize and compare the information retrieved using multiple data sources and tools is presented on the next page.

|                              | Target chemical | Analogues      |    |   |   |  |  |
|------------------------------|-----------------|----------------|----|---|---|--|--|
| News                         |                 |                |    |   |   |  |  |
| Name                         |                 |                |    |   |   |  |  |
|                              |                 |                |    |   |   |  |  |
| Motabolitos                  |                 |                |    |   |   |  |  |
| Observed (O) / Predicted (P) |                 | [              |    |   | [ |  |  |
| mammalian                    |                 |                |    |   |   |  |  |
|                              |                 |                |    |   |   |  |  |
| rat in vivo                  |                 |                |    |   |   |  |  |
| rat SO                       |                 |                |    |   |   |  |  |
| microbial                    |                 |                |    |   |   |  |  |
| anvironmental                |                 |                |    |   |   |  |  |
| Mossured data                |                 |                |    |   | I |  |  |
| Systemic toxicity            | 1               | i              | i  | i | [ |  |  |
| Cenotoxicity                 |                 |                |    |   |   |  |  |
| Carcinogonicity              |                 |                |    |   |   |  |  |
| Reproductive &               |                 |                |    |   |   |  |  |
| developmental toxicity       |                 |                |    |   |   |  |  |
| Structural alerts            |                 |                |    |   |   |  |  |
| Cramer class                 | 1               | i              | i  | r | i |  |  |
| Systemic toxicity            |                 |                |    |   |   |  |  |
| Cenotoxicity in vitro        |                 |                |    |   |   |  |  |
| Genotoxicity in vivo         |                 |                |    |   |   |  |  |
| Carcinogenicity              |                 |                |    |   |   |  |  |
| Reproductive toxicity        |                 |                |    |   |   |  |  |
| Developmental toxicity       |                 |                |    |   |   |  |  |
| Category formation           |                 |                |    |   |   |  |  |
| Rationale:                   |                 |                |    |   |   |  |  |
| Rationale.                   |                 |                |    |   |   |  |  |
| Structural similarity        | Score.          |                |    |   | 1 |  |  |
| Functional groups            |                 |                |    |   |   |  |  |
| Structural alerts            |                 |                |    |   |   |  |  |
| Physico-chemical             |                 |                |    |   |   |  |  |
| properties:                  |                 |                |    |   |   |  |  |
| • MW                         |                 |                |    |   |   |  |  |
| • MP                         |                 |                |    |   |   |  |  |
| • BP                         |                 |                |    |   |   |  |  |
| • VP                         |                 |                |    |   |   |  |  |
| Log Kow                      |                 |                |    |   |   |  |  |
| Water solubility             |                 |                |    |   |   |  |  |
| Lipinski rule                |                 |                |    |   |   |  |  |
| Read across                  |                 |                |    |   |   |  |  |
| Endpoint:                    |                 | lustification: |    |   |   |  |  |
|                              |                 | 5              |    |   |   |  |  |
| Endpoint:                    |                 | Justification  | n: |   |   |  |  |
|                              |                 | 5              |    |   |   |  |  |
| QSAR                         |                 |                |    |   |   |  |  |
| Endpoint:                    |                 |                |    |   |   |  |  |
|                              |                 |                |    |   |   |  |  |
| Endpoint:                    |                 |                |    |   |   |  |  |
|                              |                 |                |    |   |   |  |  |