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li] End-mern‘ner mixing meelels have lseen widely used in separaie tine dill‘ereni

eernpenenîs ef a liydr0gi‘apli‚ leni lheir effectiveness suffers frem nneerrainty in bern tlie

identilleaiien el‘erni—mernbers anê spatie‘iempei‘al varia‘iien in end-rneml3er eenceniraliens.

ln ihis naeer„ we nntline & preeeclnre, l>ased en ihe generalized likelihned nuceriainty

estiinalien (GLUE) framework, i:e niere inclusiy’eiy evalnale nneeriainty in mixing models

lhan exisling appreaelies. We apply llllS nrececlure, referred te as G_£Mlle, in a yearleng

elieinical data sel llern ille heavily impaelecl agrieniïnral Lisserlnehi catelnnent„

Neiherlancls‚ ancl cenapare iis resnlts le iiie “tradii‘ienal” end-rnembcr mixing analysis

(EMMA). While ille traditional an;nreaeh appears unable te adeqnaiely deal Wllh ihe large

spatial variaiien in nne nifiiie end-rneinbersi ille G-Elvll‘le procedure successfully

identified„ wiili varying uneeriainiy, Cûllil‘lbliliûfl3 ei” live cliffereni end-members ie ille

strearn Üur resulîs suggest liiat lhe eencentraiien distribniien of “effeeiive” eneianernbers,

lliai is, îhe flux-weighted inpni nf an enal-member te the Slï€êllìl‚ can differ inarl<eally ll‘Ülll

linn inferred frem sarnpling ei‘waler siered in the caichmenâ Resnlis aise sliew linn Êl’l€

nneertainîy arising frem idenlifying lhc eerreel eneianernbers may alter calenlalced end-

inein‘ner eennilnniens by en ‘in 30%‚ stressing the ini;nnrinriee el‘ including lln: i<ieniiílea‘iinn

ei” end—rnembers in ihe nnceriainiy assessrnene
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]. lntretìuetien

{al Using rnixing inedel anprnaclres te senaraîe îlie (lif—

ferent cnmnnnents ei a liydi"<igrapli has been instnnnenial

in the {levelepmeni efliy<lrelegieal science as envirenmen-

ial iracers provide a nnicgne view el ilie ealelnnenl-

integraleà resnense ei‘ llyíll‘0l0glîâl liew naî'ns. Tlie nse ei“

niixing niniiels has evelverl frein iwn-eempenent mixing

lìlûí'liîlS leg„ in?;nsnn al (13… l%9; Pinder ane’ Janes.

196%; Sklasl; aan’ ìf‘nrmlrìgn, l979l‚ niestly allllCíl al sepa—

rating eveni ancl preeveni water, in tlie new cemnienly

nse<l innllilracer encl-rneinlner mixing analysis íËi‘v’li‘s/lA)

enllinecl l3y C!irísínpìieiisen eî cií. íl99íll an<l Cíii'ísfn—

píiersen (ma’ Hrinper‘ [l992l £lv‘ll‘v‘lA lias in l‘€Cûlll years

heen applied in varians geegraphical senings and acinss
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snaîial scales líi‘nriìini’d ei al… 2lìlïl; Berns ei rií.‚ 2íilll;

Guinn Gcirreáí eí al… 2Ûlî; James ana! Rriníeí‚ 2996; inag

{ind chideix Zilli; $nnísby ei' al… 298%} Mixing innclel

anpreaclrcs are nei limited in liyilrelngy‚ lliey are aise

exiensively nserl in einer gensciences as geelngy íKrfrnf

er (13… 19971 Weiĳa i997l. sedin’rentelngy lĲnilf€i‘ 35 al„

2Gl2} arnl eenlegy ERnsamssen, 2{)llll.

l3l Mixing niedel anpreaclnes rely en tlie assumptinns

lliai {ll Sli‘earn waier can lie explained as a lineai‘ rnixtnre

el extreme senree snlnliens er €llíl-l’llêl‘i’llìêl'îi {2} snlutes

nste as lracers in îlie analysis are eenservaîive, an<l á3}

elieinieal signaleren el einl—nieniliers are invariani in linie

and space (al least fer single evenisì anal can be reliably

cliaraclerizeel lìlrinper‘ €î al„ l99ll; Skíasli anai i"ariielcíen_

l979}. As neie<l by varians anilmrs, these assumpiiens are

ennnnnnly Vinla‘red in real—werld applieaîiens, giving rise

in nneeriainty in ilie resnliing liyrli‘egrap'n separaiinns le.g„

Heoper €! al… l99ll; Snnìsby e:! ní.‚ ZGGÈa; Uíiíeabreeic

aaoí Haeg, 30G3l. 'lwe separale nneerlainly eernpenenis

can be <lisiingnishecl. Firsiî ilie end-members eenlribnting

in the stream waler rnix‘rure have in l3e ni‘eriei‘ly i<leniifieál

Ëi‘v’li‘v‘lA theory reanires enri-rneniliers in be elinsen that

liesl liniinil sireani water tracer data, given a cnneentnal

nnderslanaling el‘ ille eaichrneni liineliening {Hnnper @? nl.,

l99llj. l’i‘nbleins in aiinlieaiing liydi‘ngrap'n separaiinns

nsing difièreni sels nl“ iracers„ linweveri peini in ilie riifii-

cnlly in identilying ille complete set eì‘ relevani end-
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memhers using a limited number of tracers li’3urtíiuld ei ui.,

îtll l ; Rice uitd Hüì‘ìlêìe’ë"g€ï‚ l998l. By applying more trac-

ers than mathematically necessary. the El\ll\lA approach

avoids this problem to a certain extent {Christophersen (il/ld

Hooper. l‘â‘ì2; (.‘Ëiristopíiersen ei ui., l99íll. and the diag—

nostic tools developed by Hooper i2llll3l provide a means

te investigate the number of contrihuting end—members as

evideneed from the stream water data set. Nevertheless.

Burilteiri’ er al. l2lll ll show that the appropriate choice of

end—memhers varies considerably over varying tracer set

sizes and composition, resulting in a significant uncertainty.

ln this paper, we term this type ol‘ uncertainty “identifica-

tion uncertainty.”

l4l Second, in addition to the analytical error always

associated with reported concentrations, spatial and tern—

peral variahility in enri-mernher concentrations is ubiqui-

tous at the scales considered, and is nigh impossible te

characterize adequately using inevitably sparsc sampling

lËífl/‘tfi’l„ 'l989; Burris er al., 2ÛGl ; Heeg er al., 'Ëíllll); Heo-

per et al., l990; Jantes ttriri Keulen 2ílílti; Kendall er al„

îûtlll. lvloreover, even when the variability of a suggested

end—member is adequately characterized from sampling, it

cannot be assumed that the characterizcd variahility is mir—

rored in the flux-weighted contrihution to the stream water

lÀ’enu’ul! ei ui., 2tìtìl : Rinrrla’o ei ui„ Ztll ll, Ànd although

the authors have argued that spatiotemporal variability may

smooth out at larger scales. resulting in “emergent“ end—

members {Setilsby et al… Ëllûìhl‚ similar characterization

problems will apply. We use the term “characterisation

uncertainty” for this type ofuncertainty

l5l Various authors have quantitied characterixation

uncertainty in mixing models. For instance. Hooper et al.

El99íll and later G€ìttfí”€th llllllêìl and ìfiiíeuliruolt uiit!

Heeg lîllll3l mathematically propagated the uncertainty in

end-meniher concentrations, Settísli_y er al. l2íl'íl3al devel-

oped a hierarchical l%ayesian approach. While other authors

applied a lvlonte Carlo approach to propagate the uncer-

tainty in the chemical signatures of endmemhers llin:e_

ntrire ei ui.. l994: Ûuruiid {ian l'orres, tauer. .ìoeriri er al.

l2lltl2l extended the latter approach hy allowing for non—

normal end-member concentration distributions and by

tal;ing uncertainty in the applied model hypotheses regard—

ing spatial and tempera] variation into account. alheit in a

simple manner. lorgniescn er al. l2llll5, 2íltl'il tried to allow

for time changing end—memhcrs over a sequence of events

using a data-based hydrochcmical model within a GLUE

iramevvorlc Berthold er al. lîtllll proposed an itcrativc

methodology to explore, though not quantify, the identifica—

tion uncertainty in hl‘v‘ll‘v‘lA.

lnl However. none ofthe existing approaches account

l'or both identification and characterisation uncertainty

uuantitatively. in additien_ none can be applied to end—

member mixing analyses using mere solutes than mathe—

matically necessary te solve the mixing equations tie..

overdetermined}, even though this is a central property ol‘

the ‘»vidcly used Elv‘llle approach {Clai’r'stogiliei‘sen rrnrí

Hooper. l992l. in this papen we therefore propose a new

method te quantify uncertainty in end-mernher mixing

models., one that specifically considers uncertainty in hoth

identification and characterization of end-members, and

allows for overdeterrnined mixing models. We based our

approach en the generalized lil<eliheed uncertainty estima—

tion {GLUL'l methodology of Beven ttriri Bin5ey il992}

Which recognizes that given the fundamental limitations of

models as descriptors of environmental systems, multiple

models and parameter sets may exhibit equilinality in that

they all aeceptably describe the available ohservational

data lBeven ä?id Blllftàlf} 1992; Bet'em 1989, 2llllól.

l7l We apply the proposed approach to a small {lil hmz},

heavily impacted agricultural catchment in the coastal

region of Netherlands, ’l‘hc catchmcnt provides a difficult

test case fer our approach‚ as heavily impacted catchments

pose specilic challenges to the application of end-member

mixing models, With agricultural activities and active water

management causing marltcd changes in hydrolegy and

chemistry anruno" rtiio" Torres, ll)9ól. In addition, the

“open boundary” nature of this particular catehment,

receiving extranceus fluxcs of hoth regional groundwater

llow and water intal<e, further hampers the application of

mixing models. interest in the hydrological functioning of

this catchment is tnotivated by a projected increase in sa-

linc s cpagc {Oude Essinà er al… 2910}. that would render

the surface water in the catchtnent unfit for agricultural use.

2. Materials ancl Methods

2.l.

lsl lhe artilicial Lissertocht canal drains a l0 l;ni2 inten-

siver draincd agricultural catchrncnt (Figure 1), ‘The catch—

ment is part ofthe former lal<e llaarlemmermeer. reclaimed

in l85'2, and is located 'È5 l<m southwest ofthe city of Arn-

sterdarn in the Netherlands t52°l3f latitude, 4°36f longi-

tudel. Relief in the catclnnent is all hut ilat, with an

altitudinal range of óf3.5 m below mean sea level tBSlÀ.

lvlean annual precipitation amounts to 840 mm, mean an-

nual potential cvapotranspiration te 5% mm lr’ieyrrl Netla—

ert’unds ziz!eteoroíogicul institute, Ztllíll. Excess

precipitation is uuicltly drained through an extensive sys-

tem ol'tile drains and rlitches. A pttmping station at the end

of the Lissertecht maintains water levels throughout the

catclunent at a relatively constant s.ss in BSI… in winter

tÜctober-April) and 6.4 m BSl… in summer tApril—Üctoberl.

An auxiliary puniping station at the western end of the

eatehment is used only during extreme discharge events.

Water is let into the catchment through four culverts from

April to October, to maintain surl‘ace water levels and

improve water quality. Additional fresh water can be talien

into the catchment at the location ofthe anxiliary pump.

l9l lhe catchrnent is underlain hy an aquifer of ?leisto-

ceno tluvial sands {with transrnissivity of éltiílíl ì l5tl mZ/d;

data from the Netherlands llydrological modeling instru_

ment tNHl) model, available at httpit'/www.nhinufl. The

aquifer is covered hy a 5.7 in tî (l.? m'} thiel; layer ofhet-

crogcncous llolocenc cstuarinc clays, loamy sands and

peat deposits on top of a thin t5—lt) om) layer of com-

pressed peat deposits. referred to as basal peat {Sletten

er al., 2ílll9l. This llolocene layer presents a considerable

hydraulic resistance (i.c., thickness/vertical hydraulic con_

ductivity; 2—’ltltl Ì 750 d; \lll model data} to vertical

groundwater lloyv. Aquifer hydraulic heads exceed shallow

groundwater levels {mostly within 2 m below ground sur-

face) throughout the catchment, causing a permanent

Lissertocht Catchment
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Figure l ‚ ’fopographic leatures, surface elevation and sample locations in the íissertocht catchment.

PR: precipitation, SL.: shallow, phreatic groundwater, Al): deep aquifer groundwater. Bl): groundwater

below ditches, lL: inlet water, BSL: helow mean sea level.

upward seepage flux l0ude Essink et' al„ 2tlltil. Part of this

seepage is concentrated in heils, which form preferential

flow paths hetween aquifer and surface water lDe Louw

et al., 2tllG, 'Ztll 'll.

licl We hypothesize live end-members to represent fiow

path contrihutions to stream water at the catchrnent outlet,

two of which are external inputs to the catcltment: { l) pre-

cipitation, entering the stream with minimum interaction

with the soil (denoted as l*lì} anti t2ì inlet water, extrane—

ous water tal<en into the catchment through inlet culverts

{ll,}. The other three end-menihers represent different local

groundwater stores, each with a characteristic flow path

contrihuting to stream water: {3} deep aquifer groundwater,

discharged through boil seepage tAD), t4l groundwater

helovv tlitches, representing diffuse seepage (BD), and t5)

shallow, phreatic groundwater diseharged mostly through

tile drains {SL} (Figure 2, chemistry in 'lahle 2l.

litl Resulting from difterences in geologie history, li-

thology, palaeohydrology, water management, and agricul-

tural activities, the three local groundwater types show

distinct chemical signatures… Groundwater type AD infil-

trated the aquifer when a marine transgression approxi-

mately 8 3.8 l<yr l5.P. hooded the area {Post er al., 2tltlìl.

This bracl<ish groundwater type has a salinized, deeply

anoxic, calcite saturated facies indicated by a negative

hase exchange index (BEX) lStutjìcznd, l999l. and signili-

cantly lower-than-expected SCi; concentrations, given the

admixing of sea water (Table 2}. AB exiiltrates directly

into the surface water through hoils {De Louw er al… 30l(ll,

thus preventing any suhsequent chemical interaction alter-

ing its signature The hracltish AD water type is overlain in

the aquifer hy a layer of fresh groundwater, infiltrating after

coastal barriers started to form from 55 ltyr B.P. onward

and extensive marshlands developed behind them, covering

the study area. This fresh groundwater has a different fa-

cies: freshened, deeply anoxic, and calcite saturated, dem—

onstrated hy a positive BEX and calcite saturation. This

groundwater type seeps upward through a reactive layer of

hasal peat hefore exiiltrating into the stream. We therefore

opted to sample this water type directly below ditches, inst

hefore extiltration, as water type BD. BD shows the highest

concentrations of llCt)_;, Sit);, 8, and Li, testifying of peat

interaction, dissolution of diatom skeletons and desorption

of marine components after fresh water intrusion iSttt_vjí

zond, l993l tlahle 2l. Shallow phreatic groundwater (Sí)

is evert fresher tlahle 2}, hut hears the chemical signature

of agricultural activities including fertilizer application and

drainage, leading to raised levels of SÛ4 hy pyrite oxidation

{Pons {irid Van de!” Molen, l973l.

al??-’l
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Figure 2,

Hoofdvaart

Schematic representation of expected llow path contributions to Lissertocht stream water.

lL: inlet water. PR: precipitation, BD: groundwater below ditches. SL: shallow, phreatic groundwater,

Àlìí deep aquifer groundwater.

2.2. Sampling and Analytical Methods

li2l Stream water was sampled at the catcltment’s main

pumping station, from ll October Zilli until 4 October

2tll2. Samples were automatically obtained at the end of

each pumping cycle tleledyne ÎSCÛ automatic sampler)

and collected within 3 Wâ€líS ol‘ sampling. Purnping cycles

occurred approximately daily. resulting in a total of 352

samples We investigated the response of solutes in repre—

sentative stream water in a sample bottle for a worst-case

collection scenario of Ll weelts waiting time. lhe sample

collection test showed significant responses of EC. alltalin—

ity, Ca, and \Ü3 while the response of other possible trac—

ers was in the order of analytical uncertainty. We therefore

discarded EC. alltalinity. Ca, and N03 in subsequent data

interpretation. tfatclnnent discharge was obtained by multi—

plying pumping times. logged at ll_l niin intervals by the

automated water management system ofthe local water

authority, with puniping capacity, measured in three repeti—

tions using a boabmounted acoustic Üoppler current pro—

filet {Telelìyne Rlìl lil/lttrfíítfi” uitd ll’egner, 2Û89l.

l‘v'iaximurn discharge of the various intalte culverts was

determined in three repetitions by measuring the time nec—

essary to till a lili?t L polyethylene bag,

li3l lhe live end-members were sampled with varying

frequency either before or throughout the stream water

'l”able l. Sampling Locations, Frequency. and l’eriod of Stream

Water and End-Members in l_‚isscrtocht €:nehmenta

 

Number of

Locations Frequency Period

 

 

Stream l lind ofpumpirig cycle Oct 2lll l_Oct 2tll2

l’R l Three—weekly Dec 2tll l Ûct 3tl l 3

bulk samples

ll 2; l Monthly; Mar 2… lfl\lov 2lll '

three-weeldy l‘vlar Ztl l 2—Üct 2tl l _

AD l : 5 Twice; sporadic „iun 2lll l, Nov 2lll2;

l993 Ûct Zl) l 2

Bl) s l‘vlonthly .lun 2… l — Nov“ 2… 1

St. s Monthly .lun Ètll lfl\ov Ètíll l

 

ul’lìz precipitation, ll‚: inlet avater, Al): deep aquitlr groundwater, lâl)z

groundwater below ditches. Sl .: shallow, phreatic groundwater.

sampling period. depending on their observed temporal

variance {lahle l'}. Shallow groundwater end—memhers (Sl,

and Bl)ì were sampled with a peristaltic pump. in piezome-

ters screened approximately l—2 ni below the ground sur-

face or ditclt bottom respectively. AD was sampled with a

peristaltic pump in one existing well. screened at 3ti, 4u,

and (rt) in below surface level. Historic data from this and

four additional nearby wells {< 9 l<m} was obtained from

the Dutch database en subsurface data tlìlNû, available at

http:/fwww.dinololcet.nlì. lí was sampled by grab sam-

pling, while PR was sampled using a bull< collector con-

nected to a rain gauge, constructed to minimise

evaporation lGrönt'ng er al.. 30l2l.

litl All samples were frltered through a {l.45 p,m mem—

brane filter and stored in the dark at —’l°C on the day' of col_

lection. All<alinity was determined by end-point titration

tlitralabl on the day of sample collection. Anions were an-

alyzed using a DlONEX l))í—lZG ion chromatograph within

2 days after sample collection. À vial for cations was acidi-

lied with 65% HNO3 suprapure ltr.? mL/IGG mL} on the

day of sampling, for preservation until analysis by a ‘v"[tlì—

lAN ?3ll—ES líÎP—t)ES. Analytical uncertainty was deter=

mined hy analysis of internal calibration standards and set

to at least 3% {relative standard deviation} to account l‘or

dilution errors.

2.3.

li5l lhe GLlJE methodology was developed by Beven

uitd Ër'rrley {19Q2l as an extension ofthe regionalized sensi—

tivity analysis (RSA) of .Ïoeor’ aan’ !r’or‘rtherger‘ lllìtìtll.

Given uncertainties and errors in model structure. model

parameterisation, and ohservational data, Gìlllì recognizes

that multiple models or model parameterization will be

equally good descriptors ofthe modeled system and thus

exhibit equiftnality líîcven, 2Ûllírl. Gl.UË therefore. rather

than trying to optimize a single parameter set for a given

model structure, retains multiple model structures or model

paranteterizations that adequately iit the ohservational data

and are consequently deemed behavioral. instead of just

accepting or rejecting a parameter set {or more precisely a

model structure—parameter set combination) as in the

Generalized Likeliltood Uncertainty Estimation

4795
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Table 2. l‘vlean and Range of the Chemical Composition of Stream Water and End-l‘vlembersfì

 

 

  

    

     

Unit Stream PR lL AD BD SL

tÎ'lh nig/í mean l44(l o.l l3ti 5453 336 75

_ range 2‘ltl=3956 l .l_22‚ l 113_l 67 4534äi59(l l3tlàí<4ll Bai—l 69

804 ” ing/l mean 359 4l‚l % 297 299 394

range l4i’l 578 2,l í‚l_l 64 ll2 ltló 665 tl 873 l38 837

H(“O; nig/í mean 454l till 263 ‚\ : lllll8 522

range rss_rot líl.l_35.l 2no_3t7 î83_ll22 6584374 2l24” "

N(jl3 nig/'L mean l3‚l 3.l bî.l l‚l 2.l

range il.l oíl.l €l.l 7.l tl,l 33.l t)l 4.l i’l.l l8.l

Ptì; nig/L mean tl‚tl2 i’}. i 2 tl. l3 2.52 l3.o2

range tì‚tìZ—Z‚(lì tl.ll2—û.52 ll‚llZ-l‚72 22 3.n3 Q.ll2—49.52

Na” nig/l. mean 7 4.l 8‘\Îê …o ‚ 278

range l?l—l95tl l‚l—l2.l 72—ltl2 Boo—3289 lbd—álltl

K nig/L mean 3l 31 E3 7l 4'sì

range ll—oS tì‚ l—l(l.l lû—l 5 20—l 8ll 39°—57

Ca nrg/l. mean 262 2.1 Q2 53% 179 258

range l27—377 l.l—5.l 7Ìtl_ltl7 288—86t‘r 83—3Üé lë5ë5_345

\lgk nig/L mean íll l.l ltì Zoo li’llè 34

range 32—2llti tl.l—2.l lti-Zíl 2 tì—4 l ll 72— l 28 9-69

he nig/'l . mean líl.(l2 l).l)2 (i.(l2 lll. l 2 l). l 2 Ü.92

range €l.€l2—tl.22 ll‚tl2—tl.tl2 tl.ll2—tl.l2 tl.22—4ll.tl2 tl‚tl2wtl.llî tl.tl2—l4‚32

hiii ing/'l in 'in 8.32 tl‚tl2 tl.l2 ll.liì l.72

range ll.fl2 i’l.92 il‚tl2 tl.l3 i’l.l2 tl.22 tl.l2 l.92 tl.92 2 '2

Siûz nig/Î… mean l7 l‚l 8 l? 52

_ range 5_27 líl.l_2.l Al_l 2 ll_22 34e77

l_l” pig/L mean 345 18 l2txî 5 li l

range l48 587 9 St ltl4 l52 47i) 551 2

Ba ‚ug/l… mean l88‚l l2.l 43.l lllì3‚l l .

range Èl_14tll.l o.lf25‚l 32.l_54.l trisrrt_tt4tt _.l

l3rb ‚ug/l… mean 5Ü82 22 543 tasas lbl5

range rrse l3.449 tl 85 268 lo23 tsoro l8.l34 4o'sì 33ll7

F ‚ug/1 mean n.e2 ll‚ll3 û.32 tl.l2 ll‚52

range llllk3.22 líl.(llftl.l2 t).224l_52 û.û2f .22

l‚ih ‚fig/'l. mean 3l).l l.l l3‚l 28_l

range l8‚l—39.l €l.l—S.l ll.l_l7 - 25.l—35‚l

t\‘lo : gf'L mean 2,l i’l.l 3.l il.l

range l.l—4‚l tl.l—ll.l l l-3 . ttl—lll ….

Srb ‚trg l mean 1329 at 455 35u; …ó

range 574—227Ü 3.t-tst 4Ü3—524 2248—294t) o75—lh7tl zee-rosa

E€ZO ‚ub/cm mean 4924 o5 %3 l53€ló 2e75 l48l)

range l728—l l.27û 3ll—l l3 835—lû22 l2.9tltl—l7.l l3 2ll5ll-3ti7íl lûr’à5—l Stitt

l3l€X° med/l mean —2‚l (l.l -24.l lll

range _rsi_s.i €l.lftl.l _3s.i_r_sti ) l—l8.l

sr_……;‘ mean u‚sz -5. E2 are n.72

range ll‚tiZ-l ‚62 7. l2—i 2.92} ti‚32—lìflì ll.22—l .32  
 

áiPR: prceipitation. lL; inlet water, AD: deep aquifer groundwater., BD: groundwater below ditehes, SL; shallow; phrcatic groundwater.

t …
”>olute used as tracer.

°llase lelxehange indef(ï Na + K+ l‘v'lg _ l.t)7ltj Cl {all in meo/l.). Negative lâbX indicates salini7ation. positive lìhX freshening of facies i$rrr;‚fìarzd‚

l‘.—)‘:)9j.

LîSaturation index ofealcitc, calculated following [5izry3íèertrè l98’9].

original RSÀ‚ a likelihood measure is used to express a

degree ofcontidence in the parameter set. _All behavioral pa-

rameter sets are used to predict a lil—;elihoot‘l-weighted distri-

bution of model responset's}. lnteraction between parameters

is implicitly accounted for by Gl.ÜF. tocusing on parameter

sets rather than individual parameters The collection ol‘ be-

havioral parameter sets is obtained by Monte Carlo sampling

of prior parameter ranges, running model simulations. and

evaluating the simulated result against a likelihood measure

to accept or reject the parameter set. A more complete

description of Críth is presented by Beven ond 5íniey

ll992l. Seven l2llíi‘ì. 2666}. and Free:” et al. lllìêlól.

2.4. A CLUE Approach te End-Member Mixing

Analysis tíG-lìl‘vll'lflá)

liel An end—member mixing model. explaining stream

water chemistry as a conservative mixture of end—

member concentrations, is a very simple conceptual

description of the origin of stream water. l…liisurprisinglyî

mixing models suffer from similar issues with model equi-

tinality due to uncertainty and errors in model structure

parameters. and observations as the raintall-runoft" models

GLUL'Î was iirst applied to. íiìljli minimizes the need for

prior assumptions about model structure ancl structure of

errors. and is therefore especially suited to quantity the

uncertainty in mixing models pertaining to end-member

characterisation, that is, the variability in end_member

concentrations. Additionally, as GLUE permits different

model structures to be simultaneously evaluated as

adequate system descriptors uncertainty in endanember

identification can be ouantiiied by testing different sets of

end—members against the available stream chemistry. \ote

that what we term identification uncertainty in this paper is

parallelecl by “structural uncertainty" in GLUE
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Calculation ofthe fuzzy likelihood measure for two iictitious solutes. Bashed lines denote

limits of acceptability t—3 to +3 analytical std. dev.l for the individual solutes.

terminology, and characterization uncertainty by “parame-

ter uncertainty.“

li7l Our Gl.llE approach to end-member mixing {G-

EMMA} starts with a definition ol‘possible end-members. in

EMMA, the Euclidean distance between endanernbers and

their projection in the mixing space is used as a measure of

the ability of the end-member to explain stream water con-

centrations lBut’thoid et al., Ëill l ; Christophersen üí’líf Hoo-

per, 1992; .iornes anr! Rottiet, 2tllltìl. This procedure might,

however.. obscu‘e end-members that are not characterized

properly by their median observed tracer concentrations.

instead, our approach minimizes the necessary prior assump—

tions by allowing for different end—member combinations

during different periods, while relying on the time-variant

data te reject invalid end-members.

{tsl Subsequently. appropriate tracers must be identified,

subject to two of the usual conditions prescribed by mixing

model theory: tl} tracers must mix conservatively and {2}

tracers must differ in concentration between end-members

lffooper‘ er al… l99i); Skiasfi uitd Fclt‘llûídêìl_ l979l. A usual

third condition: end-member concentrations must be invar—

iant in time and space, does, however, not apply to the

G—hlvlhlA approach. which explicitly accounts for end—

member variation. The diagnostic tools of Hooper l2llll3l

can aid in defining appropriate tracers. All identified end-

members are characterixed by a prior concentration

distribution for each tracer. Although we were able to char—

acterize concentration distributions of end-members. either

stored in the system or as direct inputs, we decided against

using these distributions as priors in the procedure. instead.

as we lack information on how these concentrations are

convoluted to observed concentration distributions, condi-

tional on the sampling time at the catchment outlet

lRt’nultío er al., 2illll, we adopted a minimal-assumption

approach and used a uniform distribution over the full

range of observed concentrations in samples belonging to

an end-member. lhe G-EMMA methodology then allows

the posterior effective concentrations for different end—

members to be identified, conditional on this minimal prior

assumption l'or effective end-member concentrations.

ital À G—El‘leA mixing model consists of: {l l a combi-

nation of end—members as a subset of all possible end—

members, {2} end-member fractions, and {3} end-member

tracer concentrations, and is. lbllovving the notation of

(.‘!tríst‘opt'tersen una’ Hooper l1992l represented in matrix

notation by t ll:

where l; represents the k sized row vector of end-member

fractions. 3 the l< >< p sized matrix of endmember concen-

nations, and .xi the p sized vector of tracer concentrations

in the stream water sample, with k and p as the number of

end-members and tracers, respectively. End-member frac-

tions are sampled from a uniform l)irichlet distribution,

yielding a uniform distribution of mixtures while ensuring

mass balance closure tend-members always sum to one}.

Note that we opted to sample end—member factions, rather

than infer thetn front a leasbsquares regression technique.

so as to retain a direct dependence of the results on the cho-

sen lil<elihood measure (see below}.

lzc=l l‘or each separate stream water sample, a large num—

ber oftnixing models is generated by uniform Monte Carlo

sampling and evaluated against the observed stream water

concentrations in terms of a fuazy likelihood measure. A

l‘uazy measure. alter anelt ll965l, can be used to express

a “degree of belief” in the model as a valid simulator of

the system lBeven und Ëinie_v„ lêlêl2l and has been used in

various previous (ìl…Ü£ applications lBlo:lcovo anti Beven.

2tìtìî. 2tlb9; Fi'eer er of., 2994; rîiu er' al., 2ílll9: Page

er al.. 2lltì3. 2907; Pr.tppenbet;ger et rd., 2007l. lt can be a

useful approach to model evaluation when there is an ex—

pectation of epistetnic tnonrandoml, rather than aleatory

trandom) errors in the modeling process and observational

data lBevert, 2ílllíi, ÈGl2l. We define our fuzzy likelihood

measure as the average over all tracers of individual trape-

zoids around the analytical values for each tracer, with a

relative likelihood of one for calculated values within one

standard deviation of the analytical value, decreasing line-

arly to aero at three standard deviations. Simulations arc

considered behavioral only il‘ calculated values for all trac-

ers fall within their respective trapezoids tl*'igure 3}. The

repetition of this procedure for each stream water sample

allows for time-varying end_member fractions and end_
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member concentrations as a reflection of catchment proc—

esses. likelihoods are rescaled to sum to unity over the en-

semble of behavioral models identified for each time step

independently. All software and source code written to

facilitate the {'t—EMMA procedure are available for down—

load at http :r'fg—emma.deltares.nlf.

2.5. Application to the Lissertoelrt Data Set

lzrl We compared applications of both the íi—Elv'llv'lÀ

and original EMMA approaches to the l.issertocbt data set

to assess the significance of accounting for uncertainty in

mixing models in a challenging catchment. ‘Àe first used

the diagnostic tools of Hooper l2tìtl3l to identify appropri—

ate tracers, complemented by expert knowledge on the

chemical stability of solutes in the catchment. lf'ollowing

the Eh/lh/lÀ procedure outlined by (fírrísíopítersen uitd

Hooper ll992l, we constructed a correlation matrix, by

standardizing the stream water samples to zero mean and a

standard deviation of one. before performing a principal

components analysis tl’ííÀi on the correlation matrix using

all appropriate tracers. We investigated the dimensionality

in the data set by analysis ol‘ both the eigenvalues {"the

rule of one’"ì and the apparent structure in the residuals for

increasing dimensionality, and calculated relative lìlvlS

errors {ldil‘viSh} for all residnals lHooper, 2flfl$l. We sub-

sequently used the methodology proposed by Barthold

er al. l2tllll to evaluate all possible combinations {mini—

tnutn of three} of end-members for all possible combitra-

tions {minimum of l‘our} of tracers on the three criteria: tl)

the littclidean distance between end_members in solute

space and their projections in the mixing space is less than

l5% {James uitd Router, 2uost, i'È} smallest deviations of

the calculated end-member fractions from the plausible

tl% lûíl% range and {33 the smallest liuclidian distance

between end-members and the median of stream water in

the mixing space. We calculated end-member fractions for

the best performing end—member combination for compari—

son with G€lvilviA results.

{22} in the (it-EMMA procedure, we retained all possible

end—members and tracers. ‘J\e identified behavioral end—

member fractions using the (i—El‘v’ll‘v’lÀ procedure outlined

above, using the full range of observed concentrations for

our live end-members {Table 2}. The number of end-

rnembers was allowed to vary randome between three and

five, and we used l >< ltlg lvlonte Carlo runs for each stream

satnple. We set the uncertainty of stream water satnples to

their respective analytical uncertainty and calculated the

likelihood of each run following the procedure outlined

above. (hEl‘vil‘viA results were evaluated by comparing

modeled stream water chemistry with observed stream

water chemistry ta valid test because the likelihood is aver—

aged over all tracers). by determining the identification of

the end—member fractions and by evaluating the calculated

catchment response in terms ol‘ its physical plausibility. lo

explore the relative contribution of identification and char—

acterization uncertainty. we investigated the variety of end—

tnember combinations that yielded behavioral results. in

addition, vve compared the uncertainty calculated for all

possible end—member combinations to that for the end—

member combination most likely based on conventional

Elvllle criteria. and investigated the time-variant response

of behavioral end—member concentrations.

3. Results

3.1.

l23l Measured chemical composition of the catchment

and end-members is summarixed in Table 2. Concentration

ranges for the end-members SL and BB were relatively

wide. reflecting their high spatial variability, rl‘he chemical

composition ofthe stream water was highly variable and

showed a distinct response to precipitation events {figure

43. Generally, solutes l3, lìr, Cl. lvig. Na and Sr showed a

decrease. whereas hi and SÜ4 concentrations rose with

increasing discharge. April 2Ülî signitied a marked drop in

all solute concentrations, coinciding with the start of intake

of inlet water into the catchment. lv‘laximum capacity of the

four intake culverts together was measured at 95.7 Ì —’l.3

l/s, which ecruals tl.83 ï tl.tl4 min/d. ?umping capacity of

the main pump was measured at i.tll ìll.(t2 m3/s and

i.35 ì ll.íl5 m3t’s in normal and maximum operation,

respectively.

Catehment llydrometry and Chemistry

3.2. EMMA, ilotrpct”s Biagnostic Tools. and

Evaluation of Possible End—Members

{zal After investigation of bivariate solute—solute plots,

we selected B. Br, {fl. Li. hflg, Na, 804. and Sr as suitable

tracers. Ûther possible tracers showed no significant linear

correlation with other solutes and were therefore discarded.

After performing a PCA on the hissertocht stream samples.

the rank ofthe data set was analyzed by studying the struc—

ture in the residuals of the solute concentrations in tlte

reduced model space. lhe “rule of one” suggested a two-

dimensional model space explaining 96% ofthe variance in

the stream concentrations. a result corroborated by visual

inspection of the residuals and calculated Rlìli/lSlìs taver—

age 5.ti%t. Some structure was, however, still apparent for

solute B. which disappeared in a three—dimensional model

space (average lth/lSF 3.5%i. lhe evaluation of possible

end-member combinations. following Barthold er al.

l2ûlll. resulted in end-members Al). SL, and lí (lfifi%,

98%, and 95%. respectively} featuring in nearly al] and BD

{?4%) in the maiority ofplausible combinations, while PR

featured in marhedly less (13%). Differences between trac—

ers were small, all tracers were present in between 55% and

65% ofplausible results. The combination of ll.. Sl.. l%D.

and AD was by far the most prominent. making up 57% ol‘

plausible results. Calculated endmember fractions using

this combination and all tracers are shown in Figure 5. The

fractions of all end—members except AD often fall outside

the plausible {l l range, most notably during the high dis-

charge period of December 2íll l to .lanuary 2tl l2.

3.3. GLUE End-Member Mixing Analysis {G«EMMA)

lzsl GLÜF. analysis ofthe 362 stream samples resulted

in a median value and 25—'l'5 percentile range ol'3.8 / lfl3

t3.l \ lílÌ—l.2 >< lll4} behavioral runs twith positive fuzzy

membership for all eight tracers) out of a possible l >< lily,

Two samples {on 17 lìecember ZGll and 17 July ÈGl'È}

yielded no behavioral runs (i.e.. all of the tried combina-

tions of fractions failed to match the defined fuzzy support

for one or more tracers}. lvleasured stream water concentra—

tions could, with these two exceptions, consistently be

explained by mixtures of our chosen end—members. as is

reflected in the excellent agreement of modeled and
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Nováët’3îî ì}et»iîèáiîi _larp?íîìíì Fs3b«í>flî? $dat»?lì°lî Àpr»3tìlíì liíayäû'î? }trrtä‘tì‘ì‘ì prl«?tîî? Airp»?fìlî> ît-«roîltì’ìê Ott»? ”l.?

(a} Net precipitation, {b} discharge. and {c—i) measured and G-Eh'llle modeled stream water

concentrations for tracers B, Br, Cl, íi. hflg. \a. SÛ4, and Sr. in Figure élb, dark shaded area represents

operation of auxiliary pump. light shaded area represents i i standard deviation. in figures flc4li. dots

represent measured values, with error bars denotirrg i i analytical standard deviation, and solid line and

shaded area represent median and 5 95 percentile range of modeled values.
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Figure 5. {al Net precipitation. tbl discharge. and (c—gl Ehiil\iA result (dashed line) and median (solid

line), 254’5 percentile range tdark-sbaded band). and 5_95 percentile range flight-shaded band} of G-

El‘v'il‘v'iA calculated fractions of AD, BD. SL, lL, and PR in stream water. ’fhe area in Figures 5c—5g out-

side the plausible G l range of end—member fractions is indicated in light gray.
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Table 3. frequencies of End-Member Conrbinations Producing Behavioral Results

 

Corrtbination of lL. SL, lL, SL. BD. lL, SL. SL., BD, lL. SL., lL, BL). lL, BD, SL. BD. SL. AD. BD, AD, lL, AD. lL, SL. BD. lL, SL. lL. SL, lL. BD.

 

 

lìnd_lviembers“ BD. Al) Al}. Plì Al), PR Al,). PR AD .so Al). PR AD l‘lì l’lì ?lì PR BD PR Plì

Frequency t%) 30 29 9 8 7 5 4 2 0 tl tl u ll (l

”l l.í inlet wener. Sl.z shallow, phreatic groundwater, lll): groundwater below ditehes, Äl)í Gcôl3 ao,uifer groundwater, l’lìí precipitation.

measured stream water concentrations of tracers B, Br, Cl,

Li, l‘v‘lg, Na and SÛ4. Only Sr is consistently under pre—

dicted, albeit slightly (Figure 4l. 'fhe possibilistic distribu—

tions of end-member fractions that yielded behavioral

results for the different samples are plotted in Figure 5.

This plot can be regarded as a time—variant version of the

well-l<rrown “‘dotty’-plots" of GLllF. applications leg.,

Beven. 2flflôl. showing the likelihood-weighted marginal

distributions of behavioral model parameters changing over

time, as each sample is represented by a separate lvlonte

Carlo calculation. fhe calculated uncertainty in end-

member fractions, indicated by the 5 95 and 25 75 percen—

tile ranges (shaded bands) in Figure 5, varied over time and

between end-members. ’The complete marginal distribu-

tions of all end-member fractions lay tnecessarily‘; within

the tl l range, and are asymmetrical. While there was con—

sidetable uncertainty in the fractions of al] end—members

except Alì, all end-member contributions were sensitive

parameters in the GLUE sense and could therefore be

adequately identified throughout the time series. Except for

AD, behaviorial end-member fractions differed markedly

from fractions calculated with conventional EMMA. G-

lit‘ville calculated SL fractions were lower than those cal—

culated with EMMA. which at times exceeded a fraction of

l. Contrastingly, G-ËhflhflA calculated l%lì and ll. fractions

were higher than the equivalent EMMA fractions. which at

times fell below (l.

lzal We took a closer looh at the distribution of end-

members, end—member combinations, and end_member

concentrations in the posterior parameter set, that is, the

models and parameters tltat make up the behavioral runs.

Averaged over the entire tinte series. frequencies of end_

members occurring in behavioral end—member combina_

tions were: AD: líltl%. Sl.í 98%, ll.: 86%, BT): 82%, and

?RÌ 52%. Results resemble those obtained through the cri-

teria of Barthold er al. l2ûl ll. although the contribution of

‘9R is much more prominent in the (i—El‘v’ll‘v’lÀ analysis. The

end-member combination of ll., SL, BD. and AD yielded

the most behavioral runs, closely followed by the combitra—

tion of all five end-members (Table 3). Results from G_

Flvllle include more combinations. and frequencies are

spread out more evenly over the different combinations.

l27l ’the effect of including the identification uncertainty

in íi—Elv'llv'lÀ was investigated by comparing the behavioral

end-member fractions for all possible combinations, to the

subset of behavioral fractions for the combination lL, SL,

BD. ÀD, the most dominant combination from the criteria

of Barthold er al. l2lll ll. l‘v‘laximum effects were seen in

lL. the median fraction of lL resulting from all possible

end-member combinations is consistently lower {average

—3tl i êl%l than from the subset of one possible combina-

tion, and its uncertainty {5_95 percentile range) is consis-

tently larger {average 54î9tl%i than from the subset

{figure 5l- Smallest effects were observed for Al), but
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Figure 7.

Q…tìîl: €3,15

Freoocncy

{a} i*osterior distribution of SO.; concentrations of end_member SL and {b} frequency distri-

bution of sampled SL—SÛ4 concentrations {dark} versus (i—ElVllVlÂ behavioral SL—SÜ4 concentrations

on 25 December '2tll l {light}. The day 25 lìecember 2í‚ll l is indicated in Figure 7a by a vertical dasbed

line. Solid line in Figure 7a represents median values. 25—75 and 5—95 percentile ranges are represented

by dark— and light-shaded bands. respectively.

effects were still on average —4 i 24% on median fractions

{uncertainty range 5 i 7% larger}. For comparison, the

El‘v'il‘v'iA result {which also pertained to titis end-member

combination} for lL is also shown in Figure ob. Even with

identical end-member combinations. results differ marl;—

edly between Flvilviâ and G-f.l‘vil‘viA.

l2sl Analysis of the likelihood weighted marginal distri—

butions of end-member tracer concentrations revealed a

general insensitivity of the likelihood of modeled stream

water concentrations to iL and PR concentrations. and lim-

ited sensitivity to most Al) and lil) concentrations, as be—

havioral simulations were found throughout the respective

parameter distributions {not shown}. Note tltat model likeli-

hood is associated with a combination of a model structure

{endanember combination) and model parameters, rather

than a single model parameter lf’3even. 2tlllbl. So while the

model likelihood (i.e., the lit of stream water concentra-

tions) may be insensitive to end—member concentrations,

end—member fractions do not necessarily have to be. lvlost

Sl. tracer concentrations were, however, constrained to part

of their initial range during discharge events, when the

fraction of SL in stream water is highest {SO4 shown in

Figure 7al. Behavioral results were limited to lower con—

centrations of lì, Li, and t\r'lg, and to higher concentrations

of SÛ4 and Sr during discharge events. Subsequent indica-

tive calculations using these constrained concentrations of

SL, instead ofthe full range. clearly lessened the sensitivity

of SL concentrations, while hardly affecting modeled

stream concentrations. ’i‘he resulting median SL fraction

was slightly lower {—8 i l-t%l than using the full range,

while its uncertainty decreased t—2il î lS%l.

3.4. Catchmcnt Response

{ral Calculating the discltarge for each end-member by

multiplying the fraction with the discharge provides a com-

prehensive view of the catchment’s response to rainfall

events and enables a, subiective, plausibility check of (Ït-

El‘v' "iA results {figure 8). Generally, the observed patterns

in catchment response are physically plausible and are con—

sistent with our previously formed perceptual model ofthe

hydrologic functioning of the catchment. fhe catchment

response showed a relatively constant flux of AD, consist—

ent with the relatively constant head difference between the

aquifer and the tightly managed surface water levels, and in

agreement with results for a similar catchment l.De Louw

er al.. 2ill ll. Frecipitation events resulted in a dominant

contribution of SL to discharge, a behavior exhibited by

numerous catchtnents over a range of different geographi—

cal settings {overview in lif'et't'ei‘ er al. l2ílílíl). À long dry

period before the onset of precipitation delayed the

response of SL and l3D considerably, indicating a thorough

depletion of shallow groundwater stores.

isol Active water management in the catchment is evi-

denced in the hydrograph by a rising contribution of iL

{and PR to a lesser extent) around l April 2Gl2, coinciding

with the start of intake of fresh water into the catchment.

fhe discharge of iL rose to a relatively constant value of

about (i.5 mm./d, which was in the order of the measured

maximum capacity ofthe intake culverts. Additional intake

of water at the auxiliary pump had started on 29 lvlay 2il12.

lasting approximately l week {hfl. Riethoff, Rijnland Water

Authority, personal communication, 2fl12), coinciding well

with the temporary rise in lL discharge in June 2íll2. fhe

contribution of il. during the winter months and during

summer precipitation events was unexpected however. as

its input is controlled by actively managed hydraulic struc—

tures. This unexpected result may be caused by fl} the lack

of separation between IL and PR. the unexpected lL contri-

bution in fact being PR, {2) an unidentified source of water

with similar chemical properties as lL. tnost likely subterra—

nean inputs from the canal supplying IL water, or (3) stor—

age in the extensive surface water system frushed out at

discharge events. Due to the uncertainty associated with

the proximate locations of ll. and PR in mixing space an

additional tracer that better distinguishes between the two

would be necessary to better separate the two end-

members. (iadolinium has proved successful in a similar

setting lRo:enreiier er al., 2ill2l and also ”"Ü could yield

better contrasts l.S’ru_víìund. l993l. fire contribution of PR

appears small even during the larger precipitation events
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Figure 8. Median {solid line„ 25—5 percentile range {dark-shaded band} and 5—95 percentile range

tliglrt-shaded band} of discharge ofta) AD. {b) lil), {c) SL. {d} lL. and te) PR.

indicating the absence of significant fast llow routes like

overland flow. although the lack of separation betw ‘en ER

and lL necessitates caution when drawing this conclusion.

4. Blscussion

l3il Given the well-established problems in identifying

and characterizing end-members. end-member mixing

models are, at best, simple hypotheses about catchment

iirnctioning. Nevertheless, they can still offer valuable

insights. assuming uncertainty is adequately accounted l‘or

{Soiifsîiy er al.. 2llfi3a; Uitfenîirook rtnrf ii'oeg, 2ililìl. ’i‘his

paper presents (là—EMMA. a novel method of quantifying

uncertainty, both in identifying and characterizing end-

nrenrbers. in end-member mixing models, based on the

GLlJL-Î methodology of Beven anâ Biniev ll992l. An addi—

tional advantage is that our method allows for using more

tracers than necessary, a central feature of EMMA. but

lacking in existing quantitative uncertainty assessments.

We showed that (‘r—EMMA is able to adequately model
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stream water concentrations and identify contributions of

five different end-members, albeit with varying uncertainty.

Therefore. as vas also shown by Soulsb_v er ai. {2flf33al,

even in agricultural catchments, heavily impacted by agri—

cultural activities and intricate water management, mixing

models can help to better understand catchment

functioning.

{irl Several existing approaches have quantified the

uncertainty resulting from an inability to adequately charac-

terize end-member concentrations {Bazentore er' al., l994:

Genereax. 1998; Hooper er af., l99íl; Joerin er al.. 2992;

Sorrisby er al.. 2(lll3al. l)ncertainty in end—member concen—

trations was inferred from sampling of stored water. and in

most approaches, approximated by a Gaussian distribution.

However, as .ìoerr‘u er al. {2lltl2{ recognize, and illustrated

by figure 7b, end-member concentrations do not always fol—

low a Gaussian distribution. so that this approximation may

lead to incorrect uncertainty estimations. Furthermore, an

accurate characterization of stores of end—member water in a

catchment does not necessarily equate to a proper characteri-

zation of the dux-weighted input to the stream {Rinaldo

er al., 2íll ll, although implicitly assumed by these

approaches. instead, recognizing the impossibility of

adequate characterization ofthe flux-weighted input to the

stream. we adopted a minimal assumption approach in G—

EMMÎA and assumed a uniform prior distribution over the

complete range of sampled end-member concentrations. As

evidenced from Figure 7b, the posterior distribution of be-

havioral end—member concentrations can indeed differ mark—

edly from the distribution obtained through samplimt,

signifying our inability to adequately a priori characterixe

end-member concentrations.

{.nl We did not explicitly include the temporal variation

ofend-member tracer concentrations in our mixing models.

as temporal variance was relatively low in measured end-

member concentrations. furthermore. adequate quantiiica-

tion of the effect of temporal variance in catchment inputs

on stream concentrations would require a tlteoretical frame-

work that accounts for both nonlinearity and nonstationar-

ity in travel times {iorgalexca er al., 28%. 2ílíl7; Rinaldo

er al., 2lll ll, which is outside the scope of titis research.

Temporal variation is, however. implicitly accounted for” in

G—EMMA, as every stream water sample is independently

modeled using the full range of observed end—member

tracer concentrations. lf a temporal signal is significant

enough to be expressed in stream water concentrations de-

spite all uncertainty, end—member concentrations should be

sensitive parameters in (ìLÜE. Ûur model results were.

howe fer, generally insensitive to end-member concentra-

tions, with the exception of SL. While we cannot exclude

temporal variation in SL concentrations, the constraining of

SL concentrations during discharge peaks is more likely a

result of the high proportion of SL in stream water, increas-

ing the sensitivity to SL concentrations. ’l’he constrained

concentrations of SL during discharge events may therefore

be a closer representation of “real” Si. water {ie.. the flux-

weighted input to the stream} than the range obtained from

sampling.

{34l F.xplicitly including time-variant patterns in end-

member fractions and concentrations in lit-EMMA poten-

tially offers several advantages and is an important direc—

tion for future research. first. extending the work of

!orgaíesea er al. {2tlil5. 2ilil7l, combining íi—EMMA with

the recent progress made in research on transit time distri-

butions {Heia’biieítel er al.. 2912; Ri’nairío er al., 2(ll l; van

der Velde er al., 2tll2l may be a way to shed more light on

the time—variant behavior of end-member concentrations or

their convolution to stream chemistry through instationaiy

transit times. Second, combining results for successive

samples in a time—frltered way may reduce the uncertainty

of end—member fractions as opposed to the current inde—

pendent simulation of successive samples.

{35{ in mixing model analyses, the choice of end—

members is often a translation of the researcher’s hypothe—

sis of catchment functioning and therefore. by definition.

also an uncertain one. fhe GLUE approach of G-EMMA

quantities this identification uncertainty by simultaneously

evaluating different possible end-member combinations. .A

comparison between results for a selected end-member

combination and the complete result set {ligure 6) illus—

trated the possible significance of identification uncertainty.

in this particular case amounting to a maximum 3ll% differ-

ence in nredian calculated end-member fractions. End-

mernber iL occupies a proximate location to PR in the mix-

ing space ofthe Lissertocht catchment. resulting in interfer—

ence and hence a relatively high uncertainty of both end-

members. Similar uncertainty due to interference has, to

our knowledge, not been reported, as conventional Eh/lh/lA

guidelines {e.g. Christopíteissen anr! Hooper, l992; Chris-

tophcrsen er al.. 199(i{ recommend the use of end-members

that are sufficiently different to each other. We would

argue, however, that even if adequate separation is simply

impossible based on the available measurement data,

retaining proximal end-members presents a more realistic

notion of the uncertainty in our understanding of catchment

tirnctioning.

{3o{ fhe heavily impacted Lissertoclrt catchment is, due

to the significant spatial variation in end—member concen—

trations and extraneous inputs of regional groundwater and

fresh water intake, a difficult test case for applying end-

member mixing models. indeed, conventional EMMA suf-

fered from repeated excursions of end-member fractions

outside the plausible tì—l range {Figure 5}. As these excur—

si ons predominantly occurred during discltarge events with

a large fraction of SL water. this end-member is probably

not well represented by its sampled concentration median.

The skewed constraining of behavioral Sl. concentrations

in the G-EMMA analysis also points in this direction. Con-

trastingly. G_Lh hf’lA application was not significantly

affected by the uncertainty in end—member concentrations.

and was still able to identify the {uncertainl contributions

of five different end-members to the Lissertocht. Therefore,

in addition to quantifying uncertainty in end_member mix—

ing models. íi-EMMA can potentially be applied over a

wider range of catclmrents than conventional EMMA,

while still yielding meaningful results. Moreover, applica—

tion of (l-Elvil‘dA is not limited to hydrology. but may be

successfully applied to end-member mixing problems in

other {earthl sciences.

5. Conclusion

{37{ Using a GLUE—based approach to endmember mix—

ing models allowed a more complete investigation of end—

—l-Stl-’l
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member mixing uncertainty than existing methods, as the

approach includes both characterisation and identification

uncertainty. Despite this uncertainty, G-Elv’ll‘v‘lËì was able to

characterize end—member contributions to the Lissertocht,

where conventional Blvllle results suffered from repeated

excursions outside the plausible (‚lf range. We therefore

recommend using G-Ehílle to more robustly test hypothe-

ses about catclnnent functioning. especially in complex

catchments with considerable concentration ranges. In spite

ofthe well-rehearsed dit‘frculties in applying end-member

mixing models to agricultural catchments. our approach

enabled us to improve our understanding of the functioning

ofan actively managed Dutch polder catchment throughout

the course ol‘a year.
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