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Abstract Global models of soil carbon (C) and nitrogen (N) fluxes become increasingly needed to describe
climate change impacts, yet they typically have limited ability to reflect microbial activities that may affect
global-scale soil dynamics. Benefiting from recent advances in microbial knowledge, we evaluated critical
assumptions on microbial processes to be applied in global models. We conducted a sensitivity analysis of soil
respiration rates (Cmin) and N mineralization rates (Nmin) for different model structures and parameters
regarding microbial processes and validated them with laboratory incubation data of diverse soils. Predicted
Cminwas sensitive tomicrobial biomass, and themodel fit to observed Cmin improved when using site-specific
microbial biomass. Cmin was less affected by the approach of microbial substrate consumption (i.e., linear,
multiplicative, orMichaelis-Menten kinetics). The sensitivity of Cmin to increasing soil N fertility was idiosyncratic
and depended on the assumed mechanism of microbial C:N stoichiometry effects: a C overflow mechanism
upon N limitation (with decreasedmicrobial growth efficiency) led to the best model fit. Altogether, inclusion of
microbial processes reduced prediction errors by 26% (for Cmin) and 7% (for Nmin) in our validation data set.
Our study identified two important aspects to incorporate into global models: site-specific microbial biomass
and microbial C:N stoichiometry effects. The former requires better understandings of spatial patterns of
microbial biomass and its drivers, while the latter urges for further conceptual progress on C-N interactions.
With such advancements, we envision improved predictions of global C and N fluxes for a current and
projected climate.

1. Introduction

Current concerns about climate change urge for robust estimates of greenhouse gas emissions on national to
global scales [IPCC, 2007]. At the same time, regional and national policymakers keep seeking for better tools
to assess N loading to ecosystems. The increasing number of global soil organic matter (SOM) models (i.e.,
models developed for global-scale application [in the sense of Manzoni and Porporato, 2009]) in the last
decades mirrors this general interest for predictions of soil carbon (C) and nitrogen (N) fluxes on large spatial
scales. These SOM models typically have simple mathematical formulations [Manzoni and Porporato, 2009],
whereas validation of such models is generally limited due to the inherent difficulty of collecting data on a
large spatial scale.

In parallel, recent advances in knowledge about soil microbial processes have led to major improvements in
small-scale SOM models (i.e., models describing small-scale processes, e.g., microbiology, rhizosphere, and
aggregate models [in the sense of Manzoni and Porporato, 2009]). From a mechanistic point of view, SOM
decomposition is increasingly seen as an enzyme-catalyzed process by microbes rather than an entirely
substrate-controlled process [Fang et al., 2005; Schimel and Weintraub, 2003; Sinsabaugh et al., 2008].
Accordingly, an increasing number of small-scale SOM models include microbes as a state variable, through
which physiological characteristics of microbes can be readily incorporated. The explicit treatment of
microbial biomass not only improved the ability of models to capture C dynamics in fluctuating
environments (e.g., through varying soil moisture [Lawrence et al., 2009] and upon varying substrate supply
[Blagodatsky and Richter, 1998]) but also provided a tool to theoretically investigate how functionally different
microbes affect decomposition of C [Allison et al., 2010; Allison, 2012].

Including microbe-mediated processes also facilitates a better understanding of the link between C and N
flows. The traditional way of seeing decomposition as a completely C-limited process evolves toward an
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integrated treatment of C-N interactions via microbial stoichiometry [Schimel and Weintraub, 2003]. An
increasing, but still limited, number of small-scale SOMmodels adopt mechanisms of soil N controlling C flows
[Manzoni and Porporato, 2009], and a series of analytical studies revealed that C-N interactions strongly
determine the dynamics in soil C [Manzoni and Porporato, 2007; Porporato et al., 2003]. Empirical studies also
support the importance of C-N interactions for predicting litter decomposition rates [Manzoni et al., 2008;
Parton et al., 2007]. A possible mechanism responsible for the microbe-mediated effect of N on C is altered
microbial growth efficiency (MGE) (i.e., the fraction ofmicrobial C uptake that is incorporated into newmicrobial
biomass). For example, MGE tends to decrease with decreasing availability of litter substrate N [Manzoni et al.,
2008]. In addition, a theoretical analysis showed that MGE predominantly determines the threshold of the
substrate C:N ratio where soil switches from an N sink to an N source [Manzoni et al., 2010]. High sensitivity of
MGE to other environmental factors such as temperature and moisture [Frey et al., 2013; Manzoni et al., 2012]
further indicates that microbial control on C-N interactions could be dynamic and complex.

This knowledge on microbe-mediated processes is, however, seldom incorporated into SOMmodels applied
to large spatial scales [Ostle et al., 2009; Wieder et al., 2013]. Simple, substrate-controlled linear functions are
typically used in global SOMmodels [e.g., Todd-Brown et al., 2013]. Such functions are argued to be sufficient
to describe decomposition processes in long-term SOM models [Manzoni and Porporato, 2007], since
fluctuations of microbial biomass, which can be captured only whenmicrobe-substrate relations are explicitly
included, will be masked by other predominating variability (e.g., climate) in the long term. Because spatial
and temporal scales of most SOM models are correlated, global models are usually built for long-term
simulations and therefore employ linear decomposition functions. We may question, however, if the
omission of microbial properties in global models is truly justified. On the one hand, one may argue that
among-site variations in biotic and abiotic factors are so large that differences in microbial properties may be
ignored. On the other hand, there is enough evidence that predominantly biomass and physiological
characteristics of microbes drive the biogeochemical cycles of C and N [Falkowski et al., 2008]. The fact that,
for instance, microbial biomass differs by almost an order of magnitude among biomes [Fierer et al., 2009]
may thus have important implications for global C and N fluxes. Moreover, even slightly different
assumptions on C:N stoichiometry effects result in contrasting predictions of soil C efflux [Manzoni and
Porporato, 2009], implying that analytical and empirical investigation of the C-N coupling in global SOM
models merits serious consideration. This underlies the increasing number of calls for integrating microbial
activity into SOM models to predict responses to global change [e.g., Bardgett et al., 2008; McGuire and
Treseder, 2010; Todd-Brown et al., 2011; Wieder et al., 2013]. However, empirical data on a broad range of
conditions to parameterize and validate such models are critically lacking [Treseder et al., 2012], which
hampers a judgment of howmuch and where current models need to be improved [Todd-Brown et al., 2011].

Therefore, this study aims at evaluating the need to incorporate knowledge from microbial ecology into SOM
models for predicting soil C and N fluxes across different soil conditions. For simplification, throughout this paper,
we consider short-term fluxes from soils at steady-state conditions, without their long-term dynamical changes.
To meet our research aim, we examined (using a simple process-based SOM model modified from CENTURY)
whether incorporating small-scale microbial processes and microbial parameters improves across-site
predictions of soil respiration and N mineralization rates. First, we tested the sensitivity of soil respiration and N
mineralization rates to model parameter values of microbes (microbial biomass, microbial growth efficiency,
microbial C:N ratio) under different model structures (i.e., three approaches of microbial substrate consumption
kinetics and four presumedmechanisms ofmicrobial C:N stoichiometry effects on C fluxes). Second, we validated
the model outputs with empirical data obtained from laboratory incubation experiments of various soils. This
allowed us to investigate whether inclusion of site-specific microbial data improves the model prediction across
sites andwhichmodel structures seemgenerallymost appropriate. Finally, we infer from our findings howglobal
models can be improved by incorporating knowledge ofmicrobial ecology, in terms of its variation in parameters
and of its approaches, to allow more robust predictions of soil effluxes upon global change.

2. Methods
2.1. Model Approaches

We base our modeling framework on CENTURY [Parton et al., 1987], a commonly applied SOM decomposition
model on large spatial (i.e., across-ecosystems) scale. Predicted carbon pools and fluxes of CENTURY have
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been well validated with empirical data sets across ecosystems [e.g., Kelly et al., 2000; Schimel, 1994].
Moreover, CENTURY is simple enough to evaluate the components that we were interested in, while concepts
similar to those in CENTURY are applied in most if not all global models.

CENTURY consists of three carbon pools with contrasting decomposition rates (i.e., active, slow, and passive
pools). The active pool implicitly represents living microbes and microbial products, with microbes
accounting for approximately one half to one third of carbonmass in the active pool [Parton et al., 1993]. Here
we modified CENTURY to explicitly represent microbes, by splitting the active pool into a microbial pool and
an easily decomposable substrate pool. For simplicity, we merged the slow and passive pools of CENTURY
into one recalcitrant substrate pool. Parameter values were adjusted so that C flows remained realistic and
equal to those in default CENTURY settings (see Appendix A for a full description about the model
modifications). Table 1 summarizes all abbreviations of variables and parameters used in our model.

In most SOM models, the decomposition rate of the substrate is described in relation to microbes and
substrate, as it is a process of microbes consuming the substrate. The way that substrate consumption is
modeled, however, differs among current SOMmodels [Manzoni and Porporato, 2009]. The most commonly
used approach (as in CENTURY) is a linear function, in which the decomposition rate is expressed as simple
first-order kinetics with substrate (Figure 1a). This approach postulates that decomposition is a donor-
controlled process, implicitly assuming that microbes respond so rapidly to changes in substrate
availability that their biomass never limits the decomposition rates. The decomposition rate of this linear
model, DECi,LIN (g C kg�1 soil day�1), equals:

DECi;LIN ¼ ki;LIN �Ci (1)

where i is the substrate pool (i = S1 [easily decomposable substrate] or i = S2 [recalcitrant substrate]), Ci is the
carbon concentration of substrate i (g C kg�1 soil), and ki,LIN is the decomposition coefficient of Ci (day

�1).
Here, ki,LIN is described according to CENTURY, and it is modified by soil temperature, moisture, and texture
(Appendix A).

Another approach of decomposition takes limitations by microbes into consideration (Figure 1b), and
decomposition is assumed to increase linearly with concentrations of both microbes and substrates [e.g.,
Porporato et al., 2003]. The decomposition rate of this multiplicativemodel,DECi,MUL (g C kg�1 soil day�1), equals:

DECi;MUL ¼ ki;MUL �Ci �CB (2)

where ki,MUL is the decomposition coefficient of Ci (day
�1) and CB is the microbial biomass (g C kg�1 soil). We

estimated the value of ki,MUL such that equation (1) equals equation (2) when CB is the median value of a
global study (CB_gl = 0.87 g C kg�1 soil [Cleveland and Liptzin, 2007]): ki,MUL= ki,LIN /CB_gl.

Alternatively, decomposition can be formulated as an enzyme-catalyzed reaction (Figure 1c). Decomposition
depends on the enzymes produced bymicrobes as well as on substrate concentration [e.g., Allison et al., 2010;
Manzoni and Porporato, 2007; Schimel and Weintraub, 2003]. Assuming that enzyme production is
proportional to microbial biomass, the decomposition rate, DECi,MM (g C kg�1 soil day�1), can be formulated
with a simple Michaelis-Menten kinetics:

DECi;MM ¼ ki;MM � Ci

kmi þ Ci
�CB (3)

where ki,MM is the decomposition coefficient of Ci (day
�1) and kmi is the half saturation constant of

Ci (g C kg�1 soil). We took the kmi values from Allison et al. [2010] assuming a soil temperature of 20°C and a
bulk density of 1 g/cm3: kmS1 = 0.3 and kmS2 = 600 g C kg�1 soil. We estimated the value of ki,MM such that
equation (1) equals equation (3) at global median values of microbial biomass and soil total
C (CTOT_gl = 46 g C kg�1 soil [Cleveland and Liptzin, 2007]) with additional assumptions of CB = 0.5 · CS1 and
CS2≈CTOT: kS1,MM= kS1,LIN · (kmS1 + 2 · CB_gl) /CB_gl, and kS2,MM = kS2,LIN · (kmS2 +CTOT_gl) /CB_gl.

Soil respiration rates can be calculated for each type of microbial substrate consumption kinetics as:

potCminc ¼ ∑
S2

i¼S1
1� eið Þ �DECi;c (4)
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where potCminc (g C kg�1 soil day�1) is the soil respiration rate calculated with microbial substrate
consumption kinetics c (c = LIN, MUL, or MM) and ei (fraction between 0 and 1) is the growth efficiency of
microbes when assimilating substrate i. Note that potCminc is the potential decomposition rate when C, but
not N, is limiting decomposition processes. The actual soil respiration rates can deviate from the potential
decomposition rates when N is limiting (see the following section).

N mineralization is coupled strongly to the decomposition of C, as both N and C are bound to organic
compounds. When soil N is not limiting, the rate of N mineralization (i.e., potential N mineralization rate
potNminc, g N kg�1 soil day�1) depends solely on the amount of C decomposed and the C:N ratios of microbes

Table 1. Model Variables and Parameters

Symbol Unit Description

Variables (continuous)
CB g C kg�1 soil Microbial biomass
CB_gl g C kg�1 soil Median value of CB in a global study
Ci g C kg�1 soil Carbon concentration in substrate i
CTOT g C kg�1 soil Soil total C
CTOT_gl g C kg�1 soil Median values of CTOT in a global study
Cminm,c g C kg�1 soil day�1 Actual soil respiration rates, with substrate consumption

kinetics c and with C:N stoichiometry effect m
DECi,c g C kg�1 soil day�1 Decomposition rate of substrate i with substrate

consumption kinetics c
ei Fraction between 0 and 1 Microbial growth efficiency when assimilating

substrate i
ei,m Fraction between 0 and 1 Microbial growth efficiency when assimilating

substrate i, with C:N stoichiometry effect m
imm_max gN kg�1 soil day�1 Maximum N immobilization rate
ki,c day�1 Decomposition coefficient of Ci with substrate

consumption kinetics c
kmi g C kg�1 soil Half saturation constant of Ci
Im,c Fraction between 0 and 1 Inhibition factor on decomposition, with substrate

consumption kinetics c and with C:N stoichiometry effect m
Ni gN kg�1 soil Nitrogen concentration in substrate i
NCB – N:C ratio of microbes
NCi – N:C ratio of substrate i
Nminm,c gN kg�1 soil day�1 Actual N mineralization rates, with substrate

consumption kinetics c and with C:N stoichiometry effect m
Om,c g C kg�1 soil day�1 Overflow of C at low N, with substrate consumption

kinetics c and with C:N stoichiometry effect m
potCminc g C kg�1 soil day�1 Potential soil respiration rates with substrate consumption

kinetics c (when N is not limiting decomposition processes)
potNminc gN kg�1 soil day�1 Potential N mineralization rate with substrate

consumption kinetics c
Variables (category)
c Substrate consumption kinetics (c= LIN, MM, or MUL)
i Substrate pool (i= S1 or S2)
m Microbial C:N stoichiometry effect (m=none,

INHin, INHorg, COin, or COorg)
Category labels
LIN Linear consumption kinetics
MUL Multiplicative consumption kinetics
MM Michaelis-Menten consumption kinetics
S1 Easily decomposable substrate
S2 Recalcitrant substrate
none No C:N stoichiometry effect
INHin Inhibition effects of N limitation on decomposition

triggered by inorganic N
INHorg Inhibition effect of N limitation on decomposition

triggered by organic N
COin C overflow upon N limitation triggered by inorganic N
COorg C overflow upon N limitation triggered by organic N
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and substrate. When assuming that all available organic N is assimilated by microbes prior to mineralization to
ammonium, potNminc can be formulated as the difference between N released from the decomposed organic
compounds and N assimilated into microbial biomass as [Manzoni and Porporato, 2009]:

potNminc ¼ ∑
S2

i¼S1
DECi;c �NCi � DECi;c �ei �NCB
� �

(5)

where NCi is the N:C ratio of substrate i and NCB is the N:C ratio of microbes. This is the same approach as in
the original version of CENTURY (although later versions allow varying N:C ratio of receiving pools depending
on soil mineral N concentrations [Metherell et al., 1993; Parton et al., 1993]: see Manzoni and Porporato [2009]
for the possible consequences of relaxing the constant N:C ratio on decomposition). Negative values of
potNminc mean net N immobilization, instead of N mineralization.

In N-poor conditions, microbial activities can be limited by N rather than C, because microbes are
stoichiometrically constrained. The hypothetical mechanisms behind the microbial C:N stoichiometry effects
on C and N fluxes (denoted asm, explained in detail later) are diverse across SOMmodels. Independent of the
approach, however, actual soil respiration rates, Cminm,c (g C kg�1 soil day�1), and actual N mineralization
rates, Nminm,c (g N kg�1 soil day�1), can be expressed as:

Cminm;c ¼ ∑
S2

i¼S1
1� ei;m
� � � Im;c �DECi;c þ Om;c (6)

Nminm;c ¼ ∑
S2

i¼S1
Im;c �DECi;c �NCi � Im;c �DECi;c �ei;m �NCB
� �

(7)

where ei,m is the microbial growth efficiency when assimilating substrate i, Im,c is an inhibition factor on
decomposition (ranging from 0 for full to 1 for no inhibition), and Om,c is an overflow of C at low N
(g C kg�1 soil day�1) (these variables are explained in detail below) for the microbial substrate
consumption kinetics c. When N is not limiting (m= none), the parameter values are set as: ei,none = 0.45
(as in CENTURY); Inone,c = 1 (no reduction in decomposition); and Onone,c = 0 (no C overflow). This leads to
Cminnone,c = potCminc and Nminnone,c = potNminc. Below, we identify four contrasting types of C:N
stoichiometry effects on soil respiration and N mineralization (m= INHin, INHorg, COin, or COorg; see
Table 2 and Figure 1d for an overview).

Figure 1. Model structure of C and N in microbes (CB and NB) and in easily decomposable substrate pool (CS1 and NS1).
The interactions between microbes and recalcitrant substrate pool (CS2 and NS2) are not shown but identical to CB-CS1
and NB-NS1 interactions. Solid lines represent flows of C and N, whereas dashed lines represent influence on flow rates.
(a–c) Three approaches of substrate consumption by microbes: linear (LIN), multiplicative (MUL), and Michaelis-Menten
(MM). (d) Four mechanisms of microbial C:N stoichiometry effects on C flows: 1. inhibition effect triggered by inorganic N
(INHin); 2. inhibition effect triggered by organic N (INHorg); 3. C overflow triggered by inorganic N (COin); and 4. C
overflow triggered by organic N (COorg). INHin and INHorg influence decomposition rates, COin affects C overflowwhich
is not related to microbial growth (O), and COorg influences microbial growth efficiency. R represents growth-related
respiration, and Nmin represents N mineralization.
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Most commonly (including later versions of CENTURY), the decomposition rate at N-limited conditions is
reduced to the point that inorganic N in soil can provide enough N for the microbial needs (the “INHin”
mechanism, affecting the decomposition process (1) in Figure 1d). The inhibition factor IINHin,c can be
formulated as [Manzoni and Porporato, 2007; Porporato et al., 2003]:

IINHin;c ¼
1

imm_max
potNminc

8<
:

potNminc ≥ imm_max

potNminc < imm_max
(8)

where imm_max is the maximum N immobilization rate (gN kg�1 soil day�1), which is by definition a
negative value. imm_max can be a function of soil inorganic N or of microbial biomass. Here, we arbitrarily
chose a value of �0.0002 gN kg�1 soil day�1.

Alternatively, it is proposed that the inhibition effect of N limitation is directly triggered by organic N (the
“INHorg” mechanism, affecting the decomposition process (2) in Figure 1d), rather than inorganic N. Here,
organic N inhibits decomposition as soon as N demand of microbes according to C decomposition (i.e.,
DECi,c · ei,m · NCB) is larger than N assimilated from organic N (i.e., DECi,c · NCi). The inhibition factor IINHorg,c is
formulated as [Manzoni and Porporato, 2009]:

IINHorg;c ¼

1

∑
S2

i¼S1
DECi;c �NCi

∑
S2

i¼S1
DECi;c �ei;INHorg �NCB

8>>>><
>>>>:

potNminc ≥0

potNminc<0 (9)

Another possible mechanism of C:N stoichiometry effects is that, when N is limited, excess C is released as waste
through an overflowmetabolism (the “COin”mechanism, affecting the respiration not related tomicrobial growth
(3) in Figure 1d) [Schimel and Weintraub, 2003], instead of inhibiting decomposition. The overflow of C, OCOin,c

(g C kg�1 soil day�1), can be formulated as the difference between assimilated C and C fixed inmicrobial biomass
using total incoming N (i.e., mineralized N from organic sources and immobilized N from inorganic sources):

OCOin;c ¼
0

∑
S2

i¼S1
DECi;c ei;COin � NCi

NCB

� �
� imm_max

NCB

8<
:

potNminc ≥ imm_max

potNminc< imm_max (10)

Note that this model does not have any impact on N mineralization rates but only on C mineralization.

C overflowmay also occur in response to organic N limitation (the “COorg”mechanism, affecting the C overflow
process (4) in Figure 1d). In that case, it is assumed thatmicrobes decrease their growth efficiency to use Cwhen
the organic substrate is N poor. Thus, unlike with the COin mechanism which has a threshold value of N
availability to trigger extra C outflow, C outflow increases gradually as the substrate becomes N poor. Based on
a global analysis of litter decomposition, an empirical relationship was derived as [Manzoni et al., 2008]:

ei;COorg ¼ 0:43 � NCi

NCB

� �0:6

(11)

Note that equation (11) describes only one possible mechanism through which MGE is influenced. Other
factors include temperature, moisture, and substrate quality [Manzoni et al., 2012]. Provided that NCi partly
reflects substrate quality, equation (11) can be more broadly interpreted as an integrative description of

Table 2. Different Assumptions of C:N Stoichiometry Effects (m) Employed in the Modela

m =

INHin INHorg COin COorg None

Im,c Equation ((8)) Equation ((9)) 1 1 1
ei,m 0.45 0.45 0.45 Equation ((11)) 0.45
Om,c 0 0 Equation ((10)) 0 0

aSee equations (6) and (7) for how soil respiration and N mineralization rates are affected by Im,c, ei,m, and Om,c. Note
that Im,c, ei,m, andOm,c depend on substrate i (i = S1 or S2) and/or the choice of microbial substrate consumption kinetics
c (c = LIN, MM, or MUL).
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substrate quality effects on MGE. Most existing models (including CENTURY)
use constant MGE values [Manzoni et al., 2012], whereas the sensitivity of
MGE to C and N fluxes has rarely been tested [but see Allison et al., 2010; Frey
et al., 2013]. Therefore, this study also intends to examine the effect of
adaptive MGE (to substrate N richness) on model behavior.

2.2. Model Sensitivity Analysis

We tested the sensitivity of modeled Cmin and Nmin to different model
settings. The sensitivity was tested within the typical ranges of the
parameter values in a surface soil layer as derived from global studies
[Cleveland and Liptzin, 2007; Manzoni et al., 2008; Six et al., 2006] in terms
of relative rates per unit soil C (Cmin/CTOT and Nmin/CTOT), rather than
Cmin and Nmin, in order to standardize the model outputs. When not
specified, we assumed: ei,m = 0.45 (value in CENTURY); CB/CTOT = 0.023
and CTOT = 46 (global median values); CS1 = 2 · CB; CS2 = CTOT-CS1-CB;
NCS1 =NCS2 = (soil total N):(soil total C); 50% sand content; 5% clay
content; soil temperature 20°C; and no reduction effect by soil moisture.

First, for each type of microbial substrate consumption kinetics (LIN/
MM/MUL), relative respiration (Cmin/CTOT) was compared to the
global ranges of soil total C (CTOT), microbial fraction (CB/CTOT), and
microbial growth efficiency (ei,m). Here, no C:N stoichiometry effects
were assumed. Second, for each type of C:N stoichiometry effect
(INHin/INHorg/COin/COorg/none), relative respiration (Cmin/CTOT) and
relative N mineralization (Nmin/CTOT) were compared to the global
range of substrate N:C ratio (NCi), with three levels of microbial N:C
ratio (NCB). Here, the LIN model was used.

2.3. Model Validation Data Set

We collected top soils from 36 sites in the Netherlands, covering a wide
range of nutrient, acidity, and moisture conditions [Fujita et al., 2013], in
order to determine soil physical and chemical variables, microbial
biomass and stoichiometry, and C and N fluxes in soil incubation
experiments. In addition, we retrieved published data with a similar set of
soil information from temperate and boreal ecosystems (Table 3). This led
to 154 sites for Cmin and 45 sites for Nmin.

Microbial C was estimated with either the chloroform fumigation-
extraction method or the substrate-induced respiration method. See
Appendix B for justification to treat the estimates of both methods as
being equivalent. Cmin was measured for incubation periods of 2 h to
1 day, with a few exceptions of 10 days (five sites). Soil moisture condition
was in most cases adjusted to be “optimal” (i.e., respiration not hampered
by either oxygen or water stress), and temperature was adjusted to 20–
25°C. See Table 3 for methodological details of each study. Nmin was
measured at the same conditions as Cmin but for longer periods (6weeks
to 1month). For one data set in which soil moisture was adjusted to the
highest level (db1 in Table 3, WFPS 80%), measured Nmineralization rates
were corrected for N loss by adding denitrification rates predicted with
DAYCENT model equations [Del Grosso et al., 2002] (for details, see Fujita
et al. [2013]). For the majority of the sites, the predicted denitrification rates
were small. For 13 out of the 36 sites, however, the modeled denitrification
rate was rather large (i.e., >0.1mgNkg�1 soil day�1 and >10% of the
measured N mineralization rate).Ta
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2.4. Validating Soil Respiration and N Mineralization Rates

Prior to our validation, we determined the relationship between soil texture and respiration rates. Contrary to
the assumption of CENTURY model that Cmin, expressed as a ratio to soil total C, is negatively related to the
clay plus silt content, they were positively related in our validation data set (see Appendix C for more details).
To avoid texture adversely affecting the modeled relations, we employed an arbitrarily chosen fixed value of
sand and clay content (50% and 5%, respectively) for all sites.

We compared measured and predicted Cmin to test model performance for the different approaches of
substrate consumption (LIN/MUL/MM) and C:N stoichiometry (INHin/INHorg/COin/COorg), and for different
site-specific input values of microbial properties (constant/measured) (see Table 4 for an overview). First, for
each approach of substrate consumption, we predicted Cmin with no site-specific microbial information (i.e.,
site-specific input values are soil total C and incubation temperature only) and no C:N stoichiometry effects.
Here, the microbial fraction (CB/CTOT, where CTOT = CB + CS1 +CS2) was set to 1% according to the initial value
of CENTURY [Metherell et al., 1993]. Second, the constant microbial fraction was replaced with the measured
microbial fraction. Third, we tested the four different approaches of the C:N stoichiometry effect (INHin/
INHorg/COin/COorg) with measured microbial fraction. A constant microbial N:C ratio (NCB) (0.14, the median
value of a global data set [Cleveland and Liptzin, 2007]) was applied, and soil N pools were initiated such that
the N:C ratio of the easily decomposable pool (NCS1) is higher than that of the recalcitrant pool (NCS2) (NCS1:
NCS2 equaling 11:8, as in CENTURY). In addition, for the subset for which NCB had been measured (45 sites),
the constant NCB was replaced with measured NCB values. Note that Cmin is affected by N:C ratios of
substrates and microbes only when C:N stoichiometry effects are included. For all simulations, CS1 was
assumed to be as twice large as CB, and we assumed no reduction in decomposition due to soil moisture.

Subsequently, we tested model performance for Nmin. Nmin was predicted in the same way as for Cmin but
with LIN model only (since model predictive ability for Cmin was better with LIN than with MUL or MM; see
section 3). Validation was run with a constant NCB (0.14) and with the site-specific measured NCB value. See
Table 4 for an overview.

Goodness of fit between observed and predicted Cmin and Nmin was quantified with Spearman’s rank
correlation coefficients (ρ) and normalized root mean square error (nRMSE). The latter quantifies the “average
distance” of observed and predicted values in units of the observation range:

nRMSE ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

s¼1
obss � presð Þ2=n

r

obsmax � obsmin
(12)

where obss is the log-transformed observed Cmin or Nmin of site s, pres is the log-transformed predicted Cmin
or Nmin of site s, n is the number of sites, and obsmax and obsmin are the maximum and minimum values,
respectively, of observed log-transformed Cmin or Nmin.

To evaluate model performance across models with different assumptions, median values and 95%
confidence intervals of ρ and nRMSE were calculated from 1000-time bootstrapped sites (154 sites for Cmin
and 45 sites for Nmin) [Good, 2005]. If fewer than 5% of the computed ρ or nRMSE for a model exceeded the
median value of another model, we considered the change in the model predictive ability as
significant (P< 0.05).

3. Results
3.1. Sensitivity of Modeled Soil Respiration to Microbial Substrate Consumption, Microbial Biomass,
and Microbial Growth Efficiency

Figure 2 shows the sensitivities of modeled relative respiration rate, Cmin/CTOT, for each type of substrate
consumption kinetics given the 5th to 95th percentile of soil total C (CTOT), microbial fraction (CB/CTOT), and
MGE (ei,m) from global studies. The patterns of relative respiration were contrasting among LIN, MUL, and
MMmodels. With the LIN model, relative respiration was constant for all levels of CTOT (Figure 2a), whereas
relative respiration increased with increasing CTOT with the MUL and MM models (Figures 2b and 2c,
respectively). The sensitivity of relative respiration to CTOT was stronger in the MUL model than in the MM
model: relative respiration increased 19.3× with the MUL model and 2.9× with the MM model when CTOT
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increased from the 5th to the 95th percentile of its global values. Note that the sensitivity of the MM model
changed with the choice of the half-saturation parameter values (kmS1 and kmS2): the sensitivity of relative
respiration increased to 3.8× when kmi values were doubled, whereas it decreased to 2.3× when kmi values
were halved.

The effect of microbial biomass on relative respiration was strong, especially for the MUL model. Within the
global 5th–95th percentile of microbial fraction (i.e., a 12.6× difference), relative respiration increased 6.5× for
the LINmodel (Figure 2d), 82.2× for the MULmodel (Figure 2e), and 15.6× for the MMmodel (Figure 2f) when
CTOT was the global median value. The MULmodel led to an unrealistic relative respiration (i.e., higher than its
global range) whenever microbial fraction and CTOT exceeded its global 75th percentile values (Figures 2b
and 2e).

From the 5th to 95th percentile of the global MGE values (i.e., a 20.7× increase), relative respiration declined
about 3× irrespective of the substrate consumption kinetics and CTOT (Figures 2g–2i).

Table 4. Overview of Model Assumptions to Predict Soil Respiration and NMineralization Rates of the Validation Data Set and Their Goodness-of-Fit (in Normalized
Root Mean Square Errors nRMSE and Spearman’s Rank Correlation Coefficients ρ) With Observed Data

Model Assumptions Model Fit

ID
Substrate

Consumption (c)
Microbial Fraction

(CB/CTOT)
C:N Stoichiometry

(m)
Microbial N:C

ratio (NCB) Fig No.a nRMSE (%) ρ

Soil Respiration
LIN LIN 1%c none – S5a 45.4 0.66***
LIN_Cb LIN measured none – S5b 21.3 0.78***
LIN_Cb_INHin LIN measured INHin 0.14d S5c 56.4 0.57***
LIN_Cb_INHorg LIN measured INHorg 0.14 S5d 21.6 0.78***
LIN_Cb_COin LIN measured COin 0.14 S5e 21.3 0.79***
LIN_Cb_COorg LIN measured COorg 0.14 S5f 19.5 0.76***
MUL MUL 1% none – S5g 95.7 0.65***
MUL _Cb MUL measured none – S5h 41.2 0.78***
MUL _Cb_INHin MUL measured INHin 0.14 S5i 66.3 0.56***
MUL _Cb_INHorg MUL measured INHorg 0.14 S5j 41.3 0.78***
MUL _Cb_COin MUL measured COin 0.14 S5k 41.6 0.78***
MUL _Cb_COorg MUL measured COorg 0.14 S5l 39.5 0.77***
MM MM 1% none – S5m 71.9 0.65***
MM _Cb MM measured none – S5n 27.6 0.79***
MM _Cb_INHin MM measured INHin 0.14 S5o 60.3 0.52***
MM _Cb_INHorg MM measured INHorg 0.14 S5p 27.8 0.78***
MM _Cb_COin MM measured COin 0.14 S5q 27.6 0.79***
MM _Cb_COorg MM measured COorg 0.14 S5r 25.9 0.78***

N Mineralization
N LIN 1% none 0.14 S8a 29.0 ns
N_Cb LIN measured none 0.14 S8b 31.0 ns
N_INHin LIN measured INHin 0.14 S8c 27.6 ns
N_INHorg LIN measured INHorg 0.14 S8d 31.0 ns
N_COinb LIN measured COin 0.14 S8e 31.0 ns
N_COorg LIN measured COorg 0.14 S8f 25.3 0.41**
N_nc LIN 1% none measured S8g 29.6 ns
N_Cb_nc LIN measured none measured S8h 35.8 ns
N_INHin_nc LIN measured INHin measured S8i 32.9 ns
N_INHorg_nc LIN measured INHorg measured S8j 35.8 ns
N_COin_ncb LIN measured COin measured S8k 35.8 ns
N_COorg_nc LIN measured COorg measured S8l 22.2 0.35*

ns: not significant (P> 0.05);
*P< 0.05;
**P< 0.01;
***P< 0.001.
aFigure numbers corresponding to those in Figure S5 in Appendix D and Figure S8 in Appendix G.
bThis assumption of N limitation does not affect N mineralization rates (but does affect respiration rates).
cInitial value of CENTURY [Metherell et al., 1993].
dThe median value of global data set [Cleveland and Liptzin, 2007].
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3.2. Sensitivity of Soil Respiration and N Mineralization to Microbial C:N Stoichiometry Effects

Different approaches to modeling C:N stoichiometry effects led to opposing patterns of soil respiration for
N-poor to N-rich conditions (Figures 3a–3c). When an inhibiting effect on decomposition was assumed (INHin
and INHorg), relative respiration decreased with decreasing substrate N:C ratio (NCi, for which NCS1 =NCS2
was assumed) from a threshold value of NCi onward (grey lines in Figures 3a–3c). In contrast, when N
limitation was assumed to occur through an overflow of C (COin and COorg), relative respiration increased
with decreasing NCi (black lines in Figures 3a–3c). In both cases, when inorganic N triggered the effect (INHin
and COin; dotted lines in Figures 3a–3c), the threshold values of NCi where N limitation starts were lower, but
the magnitude of change in relative respiration following the threshold was larger.

A higher microbial N:C ratio, NCB, amplified the C:N stoichiometry effects on relative respiration (from
Figures 3a to 3c), as the increasing demand of microbes for N increased the threshold value of NCi, and
therefore N limitation occurred at a less N-poor substrate.

The choice of the C:N stoichiometry effect had a less striking, but still substantial, effect on N mineralization
(Figures 3d–3f). If there was no C:N stoichiometry effect (thick lines in Figures 3d–3f), relative Nmineralization
rates (i.e., Nmin/CTOT) decreased with decreasing NCi because a larger fraction of assimilated N was fixed by
microbes and less N was released to the soil. As NCi decreased further, N was eventually immobilized from
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Figure 2. Sensitivity of relative respiration rate (Cmin/CTOT, day
�1) to soil total C (CTOT, g C kg�1 soil), microbial fraction

(CB/CTOT), and microbial growth efficiency (ei,m) for three model approaches of substrate consumption (a,d,g: linear
(LIN), b,e,h: multiplicative (MUL), c,f,i: Michaelis-Menten (MM)). For the multiplicative and Michaelis-Menten models, the
model behavior against microbial fraction and microbial growth efficiency depends on soil total C. Soil total C values were
24.8 (dashed line), 46.0 (solid line), and 74.3 (dot-dash-line), representing the 25th, 50th, and 75th percentiles of a global
data set [Cleveland and Liptzin, 2007, N=155]. Box plots show the 25th, 50th, and 75th percentiles of the global data set of
soil total C and microbial fraction [Cleveland and Liptzin, 2007, N=144], microbial growth efficiency (measured with mixed
microbial community for litter [Manzoni et al., 2008] and soil [Six et al., 2006], N= 112), and relative respiration (this study,
N= 154), with whiskers extending to the 5th and 95th percentiles. We assumed CB/CTOT = 0.023 for Figures 2a–2c and 2g–2i,
and ei,m = 0.45 for Figures 2a–2f.
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inorganic N pools. This pattern still occurred when an inhibition effect of C:N stoichiometry was imposed
(INHin and INHorg), but the magnitude of N immobilization was diminished (grey lines in Figures 3d–3f).
Model behavior was quite different with COorg: relative N mineralization was less suppressed at lower NCi,
because C use efficiency was reduced by decreasing e, and therefore microbial N demands were kept
relatively low at N-poor conditions (black solid lines in Figures 3d–3f).

Increasing NCB decreased relative N mineralization for all models (from Figures 3d to 3f). However, the effect
of increasing NCB was limited for COorg, because a negative effect of high NCB on relative N mineralization
due to increased microbial demand was mitigated by a positive effect via decreasing MGE.

3.3. Model Validation for Soil Respiration Rates

The LIN model with minimal site-specific input values (soil total C and incubation temperature) predicted the
rank order of Cmin reasonably well (ρ=0.66) but not the magnitude of Cmin (nRMSE 45.4%) (Table 4; Figure
S5a in Appendix D). Use of site-specific CB data significantly improved nRMSE (21.3%, P< 0.001) and rank
order (ρ= 0.78, P< 0.01) (Figure S5b; see Appendix E for the difference in model performance tested by
bootstrapping). Including the INHin mechanism made model performance significantly (P< 0.001) worse
(Figure S5c; nRMSE=56.4%), whereas there was a trend (P= 0.089) for the COorg mechanism to improve
model predictions (Figure S5f; nRMSE=19.5%). Including the other mechanisms of C:N stoichiometry effects
(INHorg [Figure S5d] and COin [Figure S5e]) did not make any significant change (P> 0.10) in
model performance.

The MULmodel made predictions of Cminworse for all model settings (Table 4 and Figures S5g–S5l) because
of model underestimation for organic-poor soils (bottom left side of the graph) andmodel overestimation for
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Figure 3. (a–c) Sensitivity of relative respiration rate (Cmin/CTOT, day
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CTOT, g N g�1 C day�1) against substrate N:C ratio (NCi), with different approaches of the microbial C:N stoichiometry
effects on C fluxes. The microbial C:N stoichiometry effect is described as INHin (dotted grey lines), INHorg (solid grey lines),
COin (dotted black lines), and COorg (solid black lines), and no effect of C:N stoichiometry (thick grey lines). Sensitivity is
shown for three different levels of microbial N:C ratio (NCB); (NCB = 0.11, left) low, (NCB = 0.14, middle) intermediate, and
(NCB = 0.17, right) high levels, which corresponds to the 25th, 50th, and 75th percentiles of a global data set [Cleveland and
Liptzin, 2007, N=134]. Box plots show the 25th, 50th, and 75th percentiles of the global data set of NCi [Cleveland and Liptzin,
2007, N=145], with whiskers extending to the 5th and 95th percentiles. We used the linear model (LIN) and assumed
CTOT = 46, CB/CTOT = 0.023, and ei,m = 0.45 (except for COorg, in which ei,m varies as a function of NCi and NCB).
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organic-rich soils (top right side). The MMmodel gave slightly worse predictions than the LIN model (Table 4
and Figures S5m–S5r), mainly because of model underestimation for organic-poor soils.

With a subset of the sites for which microbial N data were available (45 sites), we also tested if site-specific
NCB data improved model performance for Cmin. No significant (P> 0.05) improvement was detected in
nRMSE nor ρ after inclusion of measured NCB (Appendix F).

3.4. Model Validation for Soil N Mineralization Rates

When NCB was assumed to be constant, and when no C:N stoichiometry effect was assumed, model
performance for Nminwas poor irrespective of whether CB was kept constant (nRMSE= 29.0%, Figure S8a in
Appendix G) or measured (nRMSE= 31.0%, Figure S8b). The poor performance was partly because many
sites were falsely predicted to have net N immobilization. Including the INHin mechanism slightly
improved the model performance in terms of nRMSE (27.6%, P< 0.05, Figure S8c) but not the rank order
(ρ= 0.14, P> 0.05), because overestimation of N immobilization was corrected to some extent. Including
the COorg mechanism significantly improved the model fit in terms of both nRMSE (25.3%, P< 0.05) and
rank order (ρ= 0.41, P< 0.001) (Figure S8f). INHorg and COin did not cause any significant difference in
model performance (P> 0.05).

When measured NCB was used instead of constant NCB (Figures S8g–S8l), model performance on Nmin was
improved significantly only for COorg mechanism in terms of nRMSE (22.2%, P< 0.05, Figure S8j), yet the rank
order remained unchanged (ρ= 0.35, P> 0.05).

4. Discussion
4.1. Important Model Elements to Improve Across-Site Predictions of Soil C and N Fluxes

Increasing model complexity potentially leads to improved model performance, yet at the expense of
increasing efforts and uncertainty in defining input and parameter values. A challenge is to find an optimal
complexity given the specific scope of the model and the availability of data. Our study identified the relative
importance of components of model complexity (in terms of model structures on microbial processes and
microbial parameters) in order to predict C and N fluxes across sites.

Microbial biomass had by far the strongest influence on predicted Cmin (Figures 2d–2f). Significant
improvement of model predictive ability on Cmin when using site-specific microbial biomass data (Table 4)
provides empirical evidence that microbial biomass counts for determining Cmin. From a model-structure
perspective, the sensitivity of Cmin to microbial biomass is explained by the much higher (ca. 67×)
decomposition coefficient for easily decomposable carbon (kS1) than for recalcitrant carbon (kS2), accounting
for approximately 67% of total decomposition irrespective of the small size of the labile carbon pool (derived
from equations in Appendix A, assuming 5% clay content and 45% silt content). Note that, even in the LIN
model in which the microbial biomass was not explicitly included, partitioning of soil C pools was controlled
by microbial biomass (see assumptions in section 2.2). Thus, the improved model fit by using measured
microbial biomass does not per se justify the model structure of microbe-substrate relations or specific
parameter values involved in our model but reflects the generic dependency of decomposition rate on the
size of SOM fractions [Ros, 2012] and, therefore, the uncertainty in model performance due to initial
fractionation of SOM in models [Bruun and Jensen, 2002; Foereid et al., 2012].

In contrast to the strong model sensitivity to microbial biomass, the impacts of different substrate
consumption kinetics (LIN/MUL/MM) on predicted Cmin were minor, except that the MUL model causes
unrealistically high predictions for C-rich soils (Figure 2). This implies that the LIN model is sufficient to
describe across-site differences in steady-state Cmin. Second-order kinetics of decomposition may become
important when predicting the temporal dynamics of C in non-steady conditions [Treseder et al., 2012;
Whitmore, 1996] since dynamically changing microbial biomass could have large feedback effects on C
cycling [Allison et al., 2010; Wieder et al., 2013], but that was not tested in our validation data set.

The assumptions employed for microbial C:N stoichiometry effects matter not only for the prediction of N
fluxes but also for the prediction of C fluxes. Whether Cmin increases or decreases with increasing substrate N
richness depends on the presumed mechanism of how microbes cope with N-limited conditions (i.e., INHin/
INHorg/COin/COorg) (Figures 3a–3c). Model validation showed that using COorg resulted in the best model
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performance for both Cmin and Nmin, whereas using INHin led to considerable underestimation in predicted
Cmin and Nmin for N-poor soils (Table 4). In addition, decreasing Cmin at N-rich conditions (as in COin and
COorg), instead of increasing Cmin (as in INHin and INHorg), is in accordance with observed patterns in
fertilization experiments [Butnor et al., 2003; Janssens et al., 2010; but see Lu et al., 2011; Ramirez et al., 2010].
Strikingly, INHin is used in the majority of the existing SOM models that consider C:N stoichiometry effects
[Manzoni and Porporato, 2009]. Another implication from themodel validation was that the C:N stoichiometry
mechanisms triggered by substrate N (INHorg, COorg) performed better than those triggered by mineral N
(INHin, COin) when predicting Cmin (Table 4). Those substrate-drivenmechanisms result in earlier emergence
of N-limitation effects as a soil becomes N-poor (see tipping points in Figures 3a–3c). Importantly, SOM
models adopting thesemechanisms will project more rapid responses of soil C upon changed availability of C
relative to N (e.g., CO2 increase, N deposition) than conventional models (i.e., without C:N stoichiometry
effects or with INHin mechanism), possibly leading to a considerable deviation in future predictions of global
C cycles.

Interestingly, despite the importance of C:N stoichiometry mechanisms, including site-specific microbial C:N
ratios did not clearly improve predictions of Cmin and Nmin (Appendix F). This is largely explained by the fact
that the microbial C:N ratio is well constrained even across biomes [Cleveland and Liptzin, 2007]. Also, if there
is a feedback mechanism of microbes to correct an imbalance between C and N (e.g., high N demand of N-
rich microbes is mitigated by decreased MGE when substrate is relatively N-poor [COorg mechanism]), which
is a plausible strategy evolved in N-poor environments, among-site variations of microbial C:N ratio will be
masked by these feedbacks. Indeed, although model sensitivity to MGE was relatively minor compared to
that to microbial biomass (Figures 2g–2i compared to Figures 2a–2c), our model fit did improve when MGE
was assumed to be a function of substrate C:N ratios (COorg mechanism) (Table 4). This impact of variation in
MGE on model performance reinforces the need for an explicit description of drivers of MGE in SOM models
[Frey et al., 2013; Manzoni et al., 2012; Sinsabaugh et al., 2013].

4.2. The Importance and Challenges of Model Validation

Our study provided one of the first across-site validations of SOMmodels with various microbial processes for
both Cmin and Nmin. Such across-site validations are a crucial step for evaluating the need for consideration
of microbial processes and parameters in global soil models [McGuire and Treseder, 2010; Ostle et al., 2009;
Rastetter et al., 2003; Treseder et al., 2012; Wieder et al., 2013]. When locally measured microbial biomass was
imposed on our SOM model, across-site variations in C fluxes were predicted well (Table 4). Thanks to a
recently developed global microbial biomass map [Serna-Chavez et al., 2013], it is now possible to incorporate
microbial biomass also into global SOM models. Still, such estimates are available only for the contemporary
climate. Moreover, in order to properly incorporate microbial biomass into global models, evaluation of their
robustness to environmental drivers in space and time will remain needed. In addition, how microbial
processes (for which we defined alternative descriptions) affect C fluxes at non-steady-state conditions needs
to be examined with experimental data and validated in field conditions of multiple ecosystems. This
highlights the need to continue our efforts to better understand the mechanisms and drivers of C dynamics,
as well as to obtain more appropriate data sets for model parameterization.

Across-site model validation studies are even more critically needed for N compared to C. Soil N cycles are
more complex compared to soil C cycles, coinciding with generally poorer model predictions for N than for C
efflux [Table 4; also, see, e.g., Kelly et al., 2000; Leirós et al., 1999]. As a consequence, the current implications of
N cycling in global models are highly uncertain. This is particularly problematic given the strong feedbacks of
N cycling on CO2 fluxes [Thornton et al., 2007]. Provided the importance of C:N stoichiometry effects,
standardized flux and pool size measurements alone are likely to be insufficient to further enhance our
understanding. Instead, one should aim at measuring gross rates of each process with, for example, isotopic
approaches [Schimel and Bennett, 2004], although that is not easily realized in field conditions.

4.3. Implications to Improve Global Models

Our study provides important insights for improving SOM models as a crucial part of global models
evaluating terrestrial C (and N) fluxes, such as Dynamic Global Vegetation models embedded in Earth system
models. The need for including a mechanistic representation of microbial processes, which has been
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discussed before [Todd-Brown et al., 2011; Treseder et al., 2012], was put forward in our study, yielding several
vital indications for the required model complexity as follows.

First, microbial biomass, which differs considerably among sites, has to be better understood on global scales
to improve model predictions. The recent progress in global databases of microbial biomass and activity
[Cleveland and Liptzin, 2007; Fierer et al., 2009; Serna-Chavez et al., 2013; Sinsabaugh et al., 2008] allows for a
more realistic initialization of microbial biomass and other microbial parameters for global SOM simulations
for the contemporary climate. Such efforts should go hand in hand with efforts to improve model
initialization of SOM fractionation in global models [Pietsch and Hasenauer, 2006].

Second, including the non-linear kinetics of microbial substrate consumption does not seem necessary to
improve the model performance, unless capturing temporal fluctuation of fluxes is of main concern.

Finally, the microbial C:N stoichiometry mechanisms certainly need improved understanding and
incorporation in global models. Given the increasing recognition on the importance of N feedbacks in global
C models [Esser et al., 2011; Gerber et al., 2010; Thornton et al., 2007], rigorous efforts are needed to empirically
test microbial feedbacks on C-N interactions (especially those concerning microbial growth efficiency) and to
re-evaluate the approach of C:N stoichiometry effects in global SOM models. Detailed biologically realistic
microbial models for small-scale applications may, in this context, allow testing of specific processes,
eventually speeding up procedures of identifying and reducing model uncertainty, making SOM models
more robust and better suited for global change predictions.

Concluding, our study showed that incorporating microbial processes in a simple SOM model considerably
reduced prediction errors in soil C and N fluxes across different soil conditions: the predictive ability was
improved from 45.4% to 19.5% nRMSE for soil respiration and from 29.0% to 22.2% nRMSE for soil N
mineralization by including site-specific microbial biomass data and microbial N feedbacks on C via altered
microbial growth efficiency. This highlights the need to better incorporate microbial mechanisms into global
models. Future studies are needed to better understand spatial patterns and its drivers of microbial biomass
based on the emerging global databases of microbes, as well as to re-evaluate the mechanisms of soil C-N
interactions mediated by microbes. With such advancements, we envision improved predictions of global C
and N fluxes for a current and projected climate.
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