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Abstract

Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in
trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal
choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility
measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility–trait
relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different
elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for
one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than
individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had
element-specific effects on traits related to species composition (e.g. Grime’s CSR strategy). The timescale of fertility
measures only had a minor impact on fertility–trait relationships. Two integrated fertility measures (one reflecting overall
fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in
explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of
plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g.
66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms
of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent
(i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly considering
the roles of different elements to properly interpret fertility–trait relationships.
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Introduction

Soil nutrients, such as nitrogen (N) and phosphorus (P),

constitute basic requirements for plants to support their life. In

the short term, soil nutrients induce plastic responses of individual

plants (e.g. as related to recruitment, growth, and reproduction). In

the longer run, soil nutrients affect the species composition of a

plant community, because each species has evolved to adapt to

certain environments and therefore has contrasting requirements

for nutrients. How and why plant community composition

changes from fertile to unfertile soil has been a central concern

of ecologists for many decades. A general trend derived from

qualitative studies is that species with a rapid growth strategy

dominate in fertile soils, whereas species with a conservative

strategy dominate in infertile soils (for a review see [1]). In

quantitative trait-based studies on a global scale, between-site

variations of leaf traits were well explained by soil fertility if

combined with climate factors (R2 between 59 and 78% for

specific leaf area and leaf N and P concentrations) [2]. Within a

climatic region, however, the effects of soil fertility on leaf traits

were moderate (e.g. 22–23% of between-site variance in an

integrated leaf economy measure were explained by nutrient

indicator value [3]; 31% and 50% of between-site variance in leaf

N and P concentrations were explained by soil total P if combined

with growth form [4]). Accordingly, the relatively weak relation-

ship between soil fertility and plant traits remains an uncertain link

in trait-based species distribution models [5].

Generally weak linkages between environmental factors and

traits could be due to stochastic processes being more dominant

than environmental filtering effects during the assembly of these

plant communities [6,7]. However, these relatively weak relation-

ships could also be the results of using suboptimal (or inappro-

priate) measure of soil fertility [3]. Soil fertility, or availability of

nutrients for plants, is typically expressed as concentrations of

dissolved N or P in soil, N mineralization rates for a certain period,

soil total N or P, or soil C:N or C:P ratios. Although these soil

fertility measures are generally correlated [2,8], it is likely that the

choice of a fertility measure influences the strength of the

correlation between soil fertility and plant traits (e.g. [9]).

Nevertheless, whether the most relevant fertility measure was

used to examine the relation with a specific plant trait has never

been explicitly examined. For example, the two nutrient elements,

N and P, both have pivotal yet different roles in how plants

function. Previous studies showed that soil N and P have different

degrees of contributions to each trait: specific leaf area was better

predicted by soil N supply, whereas leaf N and P concentrations
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showed stronger relationships with soil P [2,4]. This implies that

element-specific mechanisms or stoichiometric effects (i.e. effects of

relative availability of N and P) may play important roles in

regulating these traits.

Furthermore, any measure of soil fertility reflects the nutrient

status over a certain timescale. This timescale is implicitly (e.g.

total N) or explicitly (e.g. N mineralization over 5 years) reflected

in the way the measure is expressed. Measures from chemical soil

bulk analysis at a certain moment, such as pool size and

extractable amount of nutrients, provide only partial information

about the nutrient availability for plants over a long time span

[10]. Nutrient mineralization rates from soil could be a more

relevant measure of nutrient availability for living plants as they

reflect a major flow within soil nutrient cycles [11]. However, they

fluctuate considerably over time and are controlled by abiotic

factors such as temperature and soil moisture [12]. Thus, the

timescale associated with soil fertility measures could influence the

relationship between soil fertility and plant traits.

Moreover, since plants use soil nutrients in a multidimensional

manner (e.g. different ratios of elements, at different timings and

periods, etc.), certain combinations of soil fertility measures may

better reflect plant trait variability. Hence, an aggregated measure

derived from multiple fertility measures may better explain trait

variability than a single fertility measure.

This study aims to investigate whether the relationships between

soil fertility and nutrient-related plant traits can be improved by

analyzing the mutual and divergent impacts of different soil

fertility measures. To this aim, we tested (1) whether nutrient

elements in soil (N or P) have specific or shared impacts on plot-

mean plant traits (i.e. averaged or aggregated values of traits of all

plants in each plot), (2) whether the timescale of a soil fertility

measure is important in explaining plot-mean plant traits, and (3)

whether use of an integrated soil fertility measure improves the

fertility vs. trait relationships. Subsequently, we infer from our

findings which fertility measure or combinations of fertility

measures are the best suited to describe among-plots trait

variations. Throughout the paper, we considered vascular plants

only, since non-vascular species (i.e. mosses and lichens) do not

directly take up nutrients from soils and are thus less relevant in

the context of soil fertility–trait relationships.

Materials and Methods

Ethic Statement
We obtained permissions for soil and vegetation sampling in

Hoge Veluwe national park (permission from Stichting het

nationale park de Hoge Veluwe), Zuid-Kennemerland national

park (permission from Provinciaal Waterleidingbedrijf Noord-

Holland), and nature reserves owned by Staatsbosbeheer.

Site selection
We selected 36 sites in the Hoge Veluwe and Zuid-Kennemer-

land national parks and nature reserves owned by Staatsbosbeheer

(dataset 1). Additionally, we used 47 sites of Olde Venterink et al.

[11] (dataset 2) and 51 sites of Ordonez et al. [3] (dataset 3); these

studies used almost the same methods to measure soil and plant

properties (see Table 1 for a methodological overview). In total, we

thus acquired information for 134 sites and 372 plant species in

natural ecosystems in the Netherlands and Belgium, consisting of

104 grasslands, 17 shrub lands (including heath), and 13 forests.

These sites cover the range of ecosystems typical in this region

except for those influenced by brackish water. Vascular plant

species were recorded in a plot size of 4 m2 for herbaceous, 4, 9, or

25 m2 for shrub (depending on the size of the woody species), and

100 m2 for forest stands. Soil cores of 10 cm depth (datasets 1 and

3) or 15 cm depth (dataset 2) were taken within or next to the plot.

Large roots were removed from the soil cores. For datasets 1 and

3, several soil cores were mixed to make a composite soil to

eliminate the effects of local soil heterogeneity. In the peak

growing season (July or August), above-ground standing biomass

of vascular plants (datasets 1 and 2) or leaves of dominant vascular

species (dataset 3) were harvested.

Soil fertility measures
Dissolved N (N–NO3 + N–NH4, mg N kg21 soil) and dissolved

P (P–PO4, mg P kg21 soil) were measured to indicate the short-

term availability of N and P, respectively. Two different extraction

methods were used to measure dissolved P: ammonium lactate-

acetic acid (ALA) extraction and the Olsen extraction. Therefore,

we converted the values estimated with the ALA extraction to be

comparable to those with Olsen extraction, using an empirically

derived relationship [13] (Olsen-P = 2.35+0.45 ?ALA-P). The

potential influence of using two different extraction methods is

tested in Fig. S1 in Appendix S1. Olsen extraction is meant for

neutral to alkaline soils; however, this method was also used for

some of our acid (pH,5) soils. The potential interference of these

acid soils on our results is tested in Fig. S2 in Appendix S2.

As a longer-term indication of N availability, we measured in-

situ N mineralization rates in the mid growing season (‘summer

Nmin’) for 6 weeks (datasets 1 and 3) or 8 weeks (dataset 2) (see

[14] for details about the method). The difference in dissolved N

between the beginning and the end of the incubation period was

considered as mineralized N from organic N. Mineralized N was

expressed as rates per week (mg N kg21 soil week21). Because

denitrification in wet soil cores could have caused a considerable

loss of N from the incubation tubes [14], we corrected for the N

loss by adding modelled denitrification rates simulated by

DAYCENT [15] to the measured N mineralization rates.

Additionally, to estimate nutrient availability for much longer

terms, we used a modified version of a SOM model, CENTURY

[14]. The CENTURY model simulates decomposition of soil

organic C and associated flows of organic N and P. Soil total C, N,

and P, soil texture, temperature, and moisture of the top soil were

used as model input values. Soil temperature and moisture were

simulated with a hydrological model SWAP [16]. The daily

groundwater level of each site, required for the SWAP simulation,

was estimated by temporal inter- and extrapolation of the

observed groundwater levels in nearby wells (mostly within 30 m

from the plot) using MENYANTHES software [17]. With the

CENTURY model, cumulative net mineralization rates of N and

P were estimated for the year of the sampling (from the first of

January [mid-winter] until the end of August [end of summer], as

plant traits were measured by then) (‘annual Nmin’, mg N kg21

soil 243-day21 and ‘annual Pmin’, mg P kg21 soil 243-day21) and

for the preceding five years (from September five years before the

sampling year to August of the sampling year) (‘5yr Nmin’, mg N

kg21 soil 5-year21 and ‘5yr Pmin’, mg P kg21 soil 5-year21).

Transformation processes of mineralized N and P (e.g., nitrifica-

tion, denitrification, adsorption and precipitation of inorganic P)

were not considered.

Finally, as very rough measures of soil fertility in the long time

span, we used soil total N and P (% of total soil mass), soil N:C

ratio, and soil P:C ratio.

Plant traits
N and P concentration in leaves (LNC and LPC, respectively;

mg g21) were determined for dataset 3 only (Table 1). Nutrient

concentrations were measured in each site for dominant species,

Soil Fertility vs. Plant Traits
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and weighted averages (weighted by species’ relative cover) were

used as the plot-mean LNC and LPC. The dominant species were

sampled until the cover sampled exceeded 50% of the total

vascular plant cover. Note that the 50% of coverage being sampled

is rather low compared to the recommended threshold of 80%

[18], and therefore the LNC and LPC values in our study may

slightly deviate from the true plot-mean values.

The entire above-ground plant biomass (i.e. all vascular plants

of the community together) was sampled to determine whole-

canopy N and P concentrations in each plot (WNC and WPC,

respectively; mg g21) for datasets 1 and 2 (Table 1). Since WNC

and WPC reflect the aggregated characteristics of the community,

they are considered as plot-mean trait values. One plot in dataset

1, which did not have nutrient concentration data, was excluded

from all analyses concerning WNC and WPC. Woody species

were included in WNC and WPC when they were young seedlings

less than one year old, so that WNC and WPC reflect the annual

uptake of the nutrients. LNC, LPC, WNC, and WPC were log-

transformed prior to analyses to correct for the right-skewed

distributions.

Combinations of multiple plant traits are constrained by

physiological trade-offs [19]; thus, integrative traits (e.g. nutrient

use efficiency) or strategy types help to express trait variability in

fewer dimensions. Here we used two types of integrative plant

traits: one based on species occurrences in different habitats (i.e.

indicator values for nutrients, IVnut [20]), and the other based on

life history traits (Grime’s CSR strategy [21]).

IVnut is comparable to the Ellenberg indicator value for

nutrients, but is tailored for Dutch flora and has a continuous

scale ranging from 1 (prevailing at nutrient poor sites) to 3

(prevailing at nutrient rich sites) [20]. Plot-mean IVnut values were

computed as arithmetic means of IVnut for each site, rather than

weighted means of IVnut based on species abundance, as the

former was shown to be sufficient for this trait with ordinal-scale

values [22]. 26 species (out of total 372 species recorded in our

study), for which IVnut value was not available, were excluded

from the calculation of plot-mean IVnut values. The trait coverage

(i.e. percentage of species with IVnut values within each plot)

ranged from 76% to 100% (median 94%).

The CSR scheme represents the adaptive strategy of plant

species along gradients of resource availability, stress, and

disturbance, expressed with three axes of primary components:

C (‘Competitors’), S (‘Stress tolerators’), and R (‘Ruderals’). Each

species can be classified into one out of 19 classes with different

combinations of strategy components, e.g. C, SR/R, or CSR. We

retrieved CSR strategies from Hunt et al. [23] (313 species),

supplemented by the BioFlor database [24] (35 species). For 11

species, we assigned the CSR strategy according to the method of

Table 1. Overview of methodology of soil and plant trait measurements for three datasets used in this study.

Dataset 1 Dataset 2 [11] Dataset 3 [3]

N. of sites 36 47 51

N. of combined soil cores
per site 3 1 5

Soil fertility measurements

Soil C % CNS analyzer*1*2 0.5 ? Loss on ignition at 550uC CNS analyzer*1

Soil N % CNS analyzer*1 Kjeldahl digestion CNS analyzer*1

Soil P % HNO3 + HCl digestion Kjeldahl digestion HNO3 + HCl digestion

Dissolved N (N–NO3 + N–NH4) mg N kg21 dry soil 1 M KCl extraction 1 M KCl extraction 1 M KCl extraction

Dissolved P (P–PO4) mg P kg21 dry soil Olsen extraction (0.5 M
NaHCO3)

ALA extraction (0.1 M NH4OH
+ 0.1 M lactic acid + 0.4 M
acetic acid)

Olsen extraction (0.5 M NaHCO3)

Summer N mineralization mg N kg21 dry soil
week21

6 weeks in-situ incubation in
May–July (d 15 cm x ø 4 cm)

8 weeks in-situ incubation in
July–August (d 10 cm x ø 4.8 cm)

6 weeks in-situ incubation in
June–August (d 15 cm x ø 6 cm)

Annual N and P mineralization mg N (or mg P) kg21

dry soil 243-day21
Simulated with CENTURY Simulated with CENTURY Simulated with CENTURY

5-year N and P mineralization mg N (or mg P) kg21

dry soil 5-year21
Simulated with CENTURY Simulated with CENTURY Simulated with CENTURY

Soil texture*3 clay/silt/sand in fraction Laser particle sizer Estimated*4 Estimated*4

Plant trait measurements

LNC mg g21 - - CNS analyzer*1

LPC mg g21 - - HNO3 + HCl digestion

WNC mg g21 CNS analyzer*1 Kjeldahl digestion -

WPC mg g21 HNO3 + HCl digestion Kjeldahl digestion -

IVnut - Derived from species
composition

CSR - Derived from species
composition

*1CNS analyzer (Carlo Erba NA 1500, Rodana).
*2C in CaCO3, determined with thermogravimetric analysis (TGA-601, Leco Corporation), was subtracted.
*3Used as model input values for CENTURY simulation.
*4Estimated based on top layer characteristics of the soil physical unit, derived from 1:50,000 soil map.
doi:10.1371/journal.pone.0083735.t001
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Hodgson et al. [25], using seven life-history traits of these species

retrieved from the LEDA database [26]. The remaining 13

species, for which we could not attribute CSR strategy due to lack

of trait information, were excluded from the calculation of plot-

mean CSR values. For each species, scores of each primary

component (C, S, and R) were determined from its proportional

contribution to a specific strategy (e.g. C scores of C, CS, CSR

strategy are 1, 0.5, and 0.33, respectively: cf. [27]). Subsequently,

for each site, plot-mean scores of C, S, and R (again, not weighted

average by species abundance) were calculated. The trait coverage

ranged from 86% to 100% (median 100%).

Statistics
Variation partitioning. Soil fertility measures were corre-

lated, especially strongly within the group of N-related measures

and that of P-related measures (table S1). In order to examine the

relative contribution of soil N and soil P to plant trait variation

among sites, we partitioned the variance of each plant trait t (Tt, a

vector of n plots) into unique and shared effects of the two groups

of predictor variables; i.e. to N-related fertility measures (N, a

matrix of n x pN, where pN is the number of N-related fertility

measures, pN = 6) and P-related fertility measures (P, a matrix of n

x pP, where pP is the number of P-related fertility measures, pP = 5)

[28]. The fraction of variance explained was indicated by the

coefficient of determination of linear regression analysis for Tt

regressed by X, where X is either N, P, or N&P. In order to

correct for the different number of fertility measures within each

group, we used adjusted R2, R2
(Tt|X) adj, according to [29]. The

unique effects of N were calculated as the fraction of variance in Tt

explained by N&P minus the effects of P on Tt: R2
(Tt|N&P) adj 2

R2
(Tt|P) adj. Identically, the unique effects of P on Tt were

calculated as R2
(Tt|N&P) adj 2 R2

(Tt|N) adj. Shared effects of N and

P on Tt were calculated as R2
(Tt|N) adj + R2

(Tt|P) adj 2 R2
(Tt|N&P)

adj. The analysis was performed in R [30].

Additionally, we tested if N-related fertility measures explain

significantly more variance in plot-mean traits than P-related

fertility measures, and vice versa, following the bootstrapping

method described in [29] using R [30]. Bootstrapped adjusted R2

was computed 1000 times, and the difference between the adjusted

R2 between groups, Di = R2
(Tt|N) adj-boot,i 2 R2

(Tt|P) adj-boot,i, was

calculated for each ith bootstrapping. p-values were calculated

from the distribution of Di, as the fraction of Di that falls below

zero (when the median of Di was positive, i.e. variance explained

by N was larger than that by P) or above zero (when the median of

Di was negative).

Hierarchical partitioning. In order to examine the most

relevant timescale of soil fertility for explaining the variation of

plant traits, we used the hierarchical partitioning method [31,32].

This method allows, within the hypothetical relationship between

trait variance (response variable) and k fertility measures with

different timescales (predictor variables), to quantify the indepen-

dent contribution of a fertility measure S to the explained variance

of a trait without being confounded by the other k-1 fertility

measures. The hierarchical partitioning method computes the

increase in goodness-of-fit when S is added to the model (in our

case: a linear multivariate regression model of a trait regressed by

fertility measures) compared to the model without S, and averages

the increase over all possible models that include S as a predictor

variable (i.e. 2k models). In this way, the variation of a trait

explained by S is divided into an independent effect of S and joint

effect of S with other fertility measures. Negative values of a joint

effect mean that the interactive effects of S and the other fertility

measures on the trait are suppressive, rather than enhancing. An

advantage of using the hierarchical partitioning over a one-model

approach is that the averaging eliminates the problem of

multicollinearity among predictor variables [32]. We conducted

hierarchical partitioning separately for N-related and P-related

fertility measures (i.e. k = pN or k = pP), so that interactions of N and

P do not obscure the effects of timescale. We used R2 as the

goodness-of-fit measure of the models. The analysis was performed

in R [30] with the package ‘hier.part’ [33].

Foe each fertility measures, the statistical significance of their

independent contribution to a plant trait was tested by random-

izing the pairs of trait and fertility values for 1000 times [32] in R

[30]. Z-scores were calculated from the generated distribution of

randomized independent contributions, and statistical significance

was determined based on the upper 95% confidence limit

(Z$1.65).

In addition, independent contributions were compared among

fertility measures with different timescales by means of boot-

strapping in R [30]. 134 plots were randomly selected with

replacement, and the 95% confidence interval was computed from

the distribution of independent contributions of 1000x boot-

strapped 134 plots. Furthermore, the difference in independent

effects between two fertility measures was computed for all

combinations. When more than 95% of the difference was larger

or smaller than zero, we considered that the two fertility measures

had significantly (p,0.05) different magnitudes of independent

effects.

Principal component regression. Since the soil fertility

measures were strongly correlated, we extracted the main axes of

variation by a Principal Component Analysis (PCA) in R [30],

based on a correlation matrix to correct for differences in metrics

among variables. We used six soil N measures, five soil P measures,

and soil N:P ratio. All these variables were log-transformed prior

to the analysis. We extracted the scores of sites along PCA axis 1

and 2 and related them to plot-mean values of each trait using

linear regression.

Results

Relative contributions of soil N and P measures to plot-
mean plant traits

Bivariate correlations between plant traits and soil fertility

measures were often significant (table S2). All soil fertility measures

together explained less than half of the among-site variation in leaf

nutrient concentration (32.7% for LNC [Fig. 1A] and 42.8% for

LPC [Fig. 1B]), in which a large part was attributed to the shared

effects of soil N and P measures. There was no significant

difference between soil N and P measures in their contribution to

the total explained trait variance (p = 0.42 for LNC, p = 0.30 for

LPC). P concentrations at the whole-canopy level were more

strongly related to soil fertility measures than those on a leaf level

(i.e. 65.9% of variance in WPC was explained, Fig. 1D). In

contrast, the relationships between N concentrations and soil

fertility were weak both on a whole-canopy level and on a leaf level

(i.e. 31.0% of variance in WNC was explained, Fig. 1C). For both

WPC and WNC, the shared effects of soil N and P measures were

relatively small, and the contribution of soil P measures was larger

than that of soil N measures (significant for WPC [p,0.001] but

not for WNC [p = 0.42]).

55.5% of the variance in IVnut was explained by soil fertility

measures (Fig. 1E), of which less than half was attributed to the

shared effects of soil N and P measures (18.2%). The contribution

of soil P and N measures was not significantly different (p = 0.33).

Of the three components of the CSR strategy, soil fertility

measures explained the variance in the S component to a largest

extent (50.7%, Fig. 1G), followed by the C component (33.6%,

Soil Fertility vs. Plant Traits
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Fig. 1F) and the R component (29.3%, Fig. 1H). Shared effects

contributed to a small proportion of the explained variance (4.0%

for S, 3.6% for C, and 7.3% for R). For the R component, the

contribution of soil N measures was almost significantly (p = 0.057)

larger than that of soil P measures, whereas for the C and S

components, the contribution of soil P measures was considerably

(but not significantly, p = 0.16 and p = 0.21, respectively) larger

than that of soil N measures.

Effects of different timescales of soil fertility measures on
plot-mean plant traits

Only few fertility measures had significant independent effects

on LNC and WNC (i.e. dissolved P and soil total P for LNC

[Fig. 2I], soil total N and annual Pmin for WNC [Fig. 2C and

2K]). The independent effects were not significantly (p.0.05)

different among fertility measures with different timescales (Table

S3).

For LPC, independent effects were significant for three out of

six soil N measures (Fig. 2B) and for three out of five soil P

measures (Fig. 2J). Longer-term measures (e.g. soil total N, soil

total P) tended to have larger independent effects, but the

differences with short-term measures were not very apparent (e.g.

only dissolved N had slightly smaller effects than longer-term

measures i.e. annual Nmin, 5yr Nmin, and soil total N, p,0.05,

Table S3).

For WPC, all soil P measures had significant independent effects

(Fig. 2L). Longer-term measures (e.g. 5yr Pmin and soil P:C ratio)

tended to have larger independent effects, but the differences were

not significant (p.0.05) except between 5yr Pmin and annual

Pmin (p,0.01, Table S3).

For IVnut, independent effects were significant for all fertility

measures (Fig. 2E, Fig. 2M). The independent effects were not

significantly (p.0.05) different among fertility measures with

different timescales except between 5yr Pmin and annual Pmin

(p,0.05, Table S3).

Figure 1. Partitioning of among-site plant trait variation. Trait
variations (in percentage of variance) are divided into unique effects of
soil N measures (dark grey), unique effects of soil P measures (white),
and shared effects of both (light grey). Examined plot-mean plant traits
are A: log-transformed leaf N concentration, LNC (mg/g) (n = 51), B: log-
transformed leaf P concentration, LPC (mg/g) (n = 51), C: log-trans-
formed N concentration of above-ground plant biomass, WNC (mg/g)
(n = 82), D: log-transformed P concentration of above-ground plant
biomass, WPC (mg/g) (n = 82), E: indicator value for nutrients, IVnut

(n = 134), F: C component (n = 134), G: S component (n = 134), and H: R
component (n = 134). When the contribution of N or P measures to the
total explained variance is significantly larger than the other, this is
indicated by asterisks (***: p,0.001).
doi:10.1371/journal.pone.0083735.g001

Figure 2. Hierarchical partitioning of among-site plant trait
variation. Trait variations are divided into independent effects of a soil
fertility measure (black bars) and its joint effects with other measures
(white bars). All fertility measures (see Table 1 for specification) were
log-transformed prior to the analysis. Examined plot-mean plant traits
are A&I: log LNC, B&J: log LPC, C&K: log WNC, D&L: log WPC, E&M: IVnut,
F&N: C component, G&O: S component, and H&P: R component. See the
caption of Figure 1 for the specification and sample number of each
plant trait. Computation was done within each group of fertility
measures (i.e. within soil N measures [A–H] and soil P measures [I–P]).
Asterisks indicate that the independent effect was significant, based on
Z-scores computed with randomization (*: p,0.05, **: p,0.01, ***:

Soil Fertility vs. Plant Traits
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For the C component of the CSR strategy, independent effects

were significant and stronger for shorter-term fertility measures

(e.g. dissolved N, summer Nmin, dissolved P; Fig. 2F and Fig. 2N).

In contrast, for the S component, almost all fertility measures had

significant independent effects (Fig. 2G, Fig. 2O), but the

difference was less apparent (although dissolved P had stronger

independent effects than all other soil P measures, p,0.05, Table

S3). The strong independent effects of dissolved P on the C and S

components could be an artefact of using Olsen extraction

methods for some of the acid soils (see Appendix S2 for details).

For the R component, soil P measures hardly had significant

independent effects, and timescale did not matter (p.0.05, Table

S3) (Fig. 2P), whereas intermediate-term soil N measures (e.g.

annual Nmin, 5yr Nmin) had significant and stronger (p,0.01)

independent effects than shorter-term measures (e.g. dissolved N,

summer Nmin) (Fig. 2H, Table S3).

Relations between integrated soil fertility measures and
plot-mean plant traits

PCA analysis extracted major axes of variation in soil fertility

measures. The first axis, explaining 59.8% of the variance, was

related to overall nutrient availability of a site (i.e. high in both soil

N and P), with the negative axis values representing fertile

conditions (Fig. 3). The second axis, explaining 18.3% of the

variance, separated relatively P-rich (positive axis values) from N-

rich (negative axis values) sites (Fig. 3).

Most plant traits, except WNC and the R component, were

significantly related to PCA axis 1 (Fig. 4A–H). PCA axis 2 was

significantly related only to WPC, IVnut, the S component, and the

R component (Fig. 4I–P). Multiple regression analysis showed that

both PCA axes had significant (p,0.05) effects for WPC, IVnut,

and the S component (and almost significant [p,0.07] effects for

p,0.001). 95% confidence intervals of independent effects, obtained by
1000-time bootstrapping, are shown.
doi:10.1371/journal.pone.0083735.g002

Figure 3. Principal Component Analysis (PCA) of 12 soil
fertility measures for 134 plots.
doi:10.1371/journal.pone.0083735.g003
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the R component); this indicates that the two axes had

complementary rather than redundant effects on these traits.

Discussion

Mutual and stoichiometric control of soil N and P on
plant traits

In line with previous studies [2,4,5], we found that fertile soils

are associated with plant communities composed of species with

higher nutrient concentrations, and include more competitor

rather than stress-tolerant types of species. However, we highlight

the importance of considering both soil N and soil P concentra-

tions in explaining trait variation among communities. Indeed, we

found that soil N and P had a strong mutual (shared) effect on

LNC and LPC while other traits tend to be related to unique effect

of soil N or soil P.

There are several possible mechanisms that explain why LNC is

related to both soil N and soil P (rather than only to soil N) and

why LPC is related to both soil N and soil P (rather than only to

soil P). Although leaf-level nutrient concentrations change

plastically with changing concentrations of that element in the

soil [34], LNC and LPC are strongly coupled with a 2/3-power

law of scaling [35,36] due to the mutually dependent roles of N

and P in photosynthesis. Consequently, rapid growth, which is

associated with high LNC and high LPC [35], is realized only

when both soil N and P availability for plants is high. This clarifies

the observed pattern that the shared effects of soil N and P (i.e.

overall fertility effects), rather than the unique effects of soil N and

soil P, explain the large variation in LNC and LPC.

In contrast, the nutrient concentrations on a whole-canopy level

(WNC and WPC) reflect the availability of single elements more

strongly than on a leaf level, because plants store excess elements

in non-leaf organs. This is reflected in a much larger variation in

N:P ratio in non-leaf organs than in leaves [37]. The predictive

power of soil P on WPC was especially strong, because plants can

adjust P concentrations much more flexibly than N concentrations

to the nutrient availability in the soil [38].

For IVnut, the unique effects of single elements contributed to

most of the explained variance, although the shared effect of soil N

and P also accounted for a large part of the variance. For the CSR

strategy, most of the explained variance was related to the unique

effects of single elements, rather than to the shared effects of soil N

and P. Here, the effects of N and P were highly different,

indicating a stoichiometric control of soil N and P on the CSR

strategy of vegetation. The unique effects of soil P were larger than

those of soil N for the C and S components, in accordance with the

findings of Ceulemans et al. [39] based on Olsen-extracted P

availability and KCl-extracted N availability. Variance in the R

component was least explained, reflecting that environmental

drivers other than nutrient availability (i.e. disturbance) are the

primary determinants of the distribution of ruderals [21].

To test whether the above-mentioned trends were merely an

artefact of biased distribution of N- and P-limited ecosystems in

our study, we conducted the same analyses for N-limited and P-

limited plots separately (Appendix S3). When only N-limited plots

were considered, contributions of soil N measures to plant trait

variance tended to increase slightly (Fig. S3 left); however, other

major trends (e.g. a stronger effect of soil P on WPC than that of

soil N [p = 0.094], small shared effects on CSR strategy) remained.

When only P-limited plots were considered, the contributions of

soil P remained mostly unchanged or even decreased for some

traits (Fig. S3 right). It is particularly notable that the stronger

determinants for stress tolerators were N-related fertility measures

in N-limited plots (p,0.05) and P-related fertility measures in P-

limited plots (p = 0.079) (Fig. S3). Furthermore, signs of correla-

tions between soil N measures and integrative plant traits (IVnut,

CSR strategy) reversed in P-limited plots compared to N-limited

plots for most cases (e.g. stress tolerator increased as soil N

availability increased in P-limited plots only; see Table S4 in

comparison to Table S5 in Appendix S3). These reversed

relationships imply that, under P-poor conditions, high soil N

availability results in an extreme imbalance of soil N and P and

therefore induces harsher environments for plant species. This

emphasizes the importance of explicitly considering stoichiometric

effects of nutrients on plant functioning.

Timescale has only minor impact on fertility–trait
relationships

Contrary to previous results [2,10], we found no clear indication

that the fertility–trait relationship is sensitive to the timescale of the

soil fertility measure. Almost all soil fertility measures were closely

correlated, and therefore the independent effects of a particular

fertility measure were almost never outstandingly stronger than

that of others.

It is more difficult to estimate the availability of soil P for plants

than that of soil N; this is because various geochemical processes of

soil inorganic P, such as adsorption and precipitation, are

involved. These processes were not explicitly included in our soil

P measures, possibly obscuring the impact of timescale on the

fertility–trait relationships. To test this, we examined for a subset

of our dataset (36 plots) whether adding extra measurements of soil

P availability improved the fertility–trait relationships (Appendix

S4). Neither summer gross P mineralization rates (i.e. increase in

Olsen-extractable P [both inorganic and organic] in in-situ

incubation experiments), oxalate-extractable P (i.e. an estimate

of reducible amount of P, which includes P adsorbed on Al- and

Fe-hydroxides and oxides [40]), nor the degree of phosphate

saturation (i.e. the percentage of oxalate-extracted P over half of

oxalate-extracted Al plus Fe, an index for soil capacity to release P

[41]) were superior to other P fertility measures in explaining trait

variations (Fig. S5 in Appendix S4). So, the virtual absence of

timescale impacts on soil fertility–trait relationships was not likely

due to the inadequacy of selected P measures.

Use of integrated soil fertility measures to explain
community trait composition

There was no single fertility measure that dominantly explained

plant trait variations; this indicates that plant traits are mutually

controlled by multiple soil fertility measures, suggesting the

usefulness of using integrated fertility measures. Indeed, the main

axis of variation in fertility measures, overall fertility gradient (PCA

axis 1), was related to almost all plant traits. However, the

explanatory power of the PCA axis 1 (i.e. R2 values in Fig. 4) was

only slightly higher for LNC and LPC than that of the best single

fertility measures (i.e. variance explained by a fertility measure,

including both independent and joint effects, in Fig. 2). For the

other traits, PCA axis 1 explained less than the best single fertility

measures. The other integrated fertility measure, the relative

availability of soil N and P (PCA axis 2), had small but

complementary effects for some plant traits (i.e. WPC, IVnut, S

Figure 4. Relationships of the first and second PCA axis with
plot-mean plant traits. R2 and p-values of linear regression analysis
are shown. Lines represent the regression model (only when p,0.05).
See the caption of Figure 1 for the specification and sample numbers
for each plant traits.
doi:10.1371/journal.pone.0083735.g004
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component, R component). Similarly, including the type of

nutrient limitation of plants (i.e. N- or P-limited) improved the

relationship between overall fertility and several plant traits

(WNC, WPC, IVnut, R component) (Fig. S4 in Appendix S3).

This means that the fertility–trait relationships are modulated by

the type and magnitude of nutrient limitation, probably because

the most influential factor of fertility is not identical for all sites but

depends on which nutrient is actually limiting the plant growth of

the site.

These findings imply that simultaneous consideration of overall

fertility and N:P stoichiometry (either in soil or in plants) is a

prerequisite for improving fertility–trait relationships. Note that

the N:P stoichiometry effect cannot be assessed by individual

fertility measures alone, but it can be explicitly tested by integrated

fertility measures (i.e. PCA axis 2 in our case). This suggests the

appropriateness of using integrated fertility measures as a starting

point to explore which aspect of soil fertility has a relevant effect

on the specific plant trait.

Wrong choice of fertility measure, or intrinsically
moderate relationships between fertility and plant traits?

As in previous studies [2,4], variance of LNC was less strongly

explained by fertility measures than that of LPC in our study, even

if various types of fertility measures were considered (i.e. 32.7%

explained by all fertility measures together, 19.9% by the best

single measure [soil total N] and 23.8% by the best integrated

measure [PCA axis 1]). Also, only a minor part of the variation

was explained by soil fertility for WNC (31.0%, 3.2%, and 1.9%,

respectively) and for R component (29.3%, 6.7%, and 7.7%,

respectively). In contrast, several other plant traits could be well

explained by fertility measures: 65.9%, 52.6%, and 44.6% for

WPC, respectively, and 55.5%, 33.6%, and 32.1% for IVnut,

respectively. Reasonably good relationships between IVnut or

equivalent (e.g. Ellenberg indicator value for nutrients) and a

single soil fertility measure have also been observed before (e.g.

49% explained by annual N mineralization rates [5], 35%

explained by ‘nitrification degree’ [9], 29% explained by

oxalate-extractable P [42]).

Thus, the moderate fertility–trait relationships of some plant

traits are most likely not because of a wrong choice of fertility

measure but because of the intrinsic nature of the relationships for

these traits as explained earlier. Furthermore, environmental

factors other than soil fertility also influence plant traits. For

example, the occurrence of ruderal species (R component of CSR

strategy) is primarily associated with disturbance rather than soil

fertility [21], and LNC and LPC are weakly but consistently

related with drought and oxygen stress [43]. Since plant traits are

coordinated through physiological trade-offs and the coordination

of the traits is strongly modulated by environmental factors

[19,44], simultaneous consideration of multiple environmental

factors is necessary to improve the prediction of these traits.

Reasonably good relationships between fertility and IVnut

encourage the application of this relationship in species-distribu-

tion models to predict the functional composition of plant species.

Also, other plant traits unexamined in our study, such as specific

leaf area, may be considered for examining fertility–trait

relationships. Specific leaf area was, however, not better related

to soil fertility measures than LPC [4].

In conclusion, our study showed that among-site variations in

nutrient-related plant traits are consistently, although moderately

for some traits, related to soil fertility measures. Whether a trait

has only a moderate relationship depends on the mechanism

through which soil fertility and other factors regulate the trait

variation. The timescale of the fertility measure has only negligible

or minor effects on fertility–trait relationships, whereas the mutual

and/or stoichiometric effects of N and P should be considered to

improve the relationships. Since the relative importance of soil

fertility measures is different among plant traits, a scan of

integrated fertility measures will facilitate identification of influ-

ential fertility measures (or groups of fertility measures) for each

specific plant trait separately.
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