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Multivariate data mining for estimating the rate of

discolouration material accumulation in drinking water

distribution systems

S. R. Mounce, E. J. M. Blokker, S. P. Husband, W. R. Furnass, P. G. Schaap

and J. B. Boxall
ABSTRACT
Particulate material accumulates over time as cohesive layers on internal pipeline surfaces in water

distribution systems (WDS). When mobilised, this material can cause discolouration. This paper

explores factors expected to be involved in this accumulation process. Two complementary machine

learning methodologies are applied to significant amounts of real world field data from both a

qualitative and a quantitative perspective. First, Kohonen self-organising maps were used for

integrative and interpretative multivariate data mining of potential factors affecting accumulation.

Second, evolutionary polynomial regression (EPR), a hybrid data-driven technique, was applied that

combines genetic algorithms with numerical regression for developing easily interpretable

mathematical model expressions. EPR was used to explore producing novel simple expressions to

highlight important accumulation factors. Three case studies are presented: UK national and two

Dutch local studies. The results highlight bulk water iron concentration, pipe material and looped

network areas as key descriptive parameters for the UK study. At the local level, a significantly

increased third data set allowed K-fold cross validation. The mean cross validation coefficient of

determination was 0.945 for training data and 0.930 for testing data for an equation utilising amount

of material mobilised and soil temperature for estimating daily regeneration rate. The approach

shows promise for developing transferable expressions usable for pro-active WDS management.
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INTRODUCTION
Discoloured water is generally viewed as an aesthetic prob-

lem, however the possibility of a high content of metals,

organic/inorganic compounds and micro-organisms could

potentially pose a health risk. It has been shown that par-

ticulate material accumulates over time as cohesive layers

on pipeline surfaces in drinking water distribution systems

(WDS) as a ubiquitous process. When subsequently mobi-

lised, this material can be responsible for causing

discolouration and other water quality issues, such as

exceeding iron and manganese prescribed concentration
values. Previous work (Husband & Boxall , ) has

demonstrated the cohesive nature and variable shear

strength properties of these material layers, and how the

layers are conditioned by the daily hydraulic regime and

their causal relationship to discolouration.

The factors influencing this accumulation rate (also

referred to here as regeneration) might include localised

asset properties such as pipe age, material or diameter,

while hydraulic conditions and bulk water quality (particu-

larly iron concentration and water treatment type) are
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likely to be important. Several studies have explored how

temperature influences discolouration material accumu-

lation rates. Sharpe () studied the impact of

temperature (comparing 8 and 16 WC) and prevailing shear

stress on accumulation rates in a realistic-scale HDPE pipe

rig over 28 days and found that accumulation was most

greatly influenced by temperature. Schaap & Blokker ()

found a strong correlation between temperature and accumu-

lation rates in district metered areas (DMAs). Figure 1

captures some of the possible factors and potential interrelated

complexities the literature suggests are important. The thick

lines represent factors directly effecting accumulation rate,

all others having secondary or more complex associations.

Fieldwork results (Cook & Boxall ; Blokker et al.

) suggest that accumulation rates are a linear function
Figure 1 | Potential factors determining material accumulation rate (Temp. is an abbreviation
of time, with the magnitude dominated by the supplied

water quality (with pipe material also being an important

factor). There is limited work in the literature on predicting

discolouration material accumulation and identifying the

most important factors for estimating this rate. Models that

can provide site-specific predictions of regeneration rates

do not yet exist but a basic bi-variate categorical breakdown

of discolouration rates are presented by Husband & Boxall

(). They showed that the development of material

layers is a reproducible and repetitive process. Given the

complex, interrelated nature of the physical, chemical and

biological reactions that are considered to contribute to dis-

colouration material regeneration it could be expected that

predictive models of regeneration rates will only be engen-

dered through the application of multivariate, regressive
for temperature).
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methods to sufficient volumes of representative data. McCly-

mont et al. () presented an approach for the multi-

objective optimisation of WDS using a new hyper-heuristic

called the Markov-chain hyper-heuristic, for which one of

the objectives was discolouration risk. They specifically

sought to examine the impact of pipe diameter on discolour-

ation risk. Trading off various considerations including

optimising network design and rehabilitation costs along

with discolouration risk is possible, with constraints such

as pipe velocities and node heads. However, specific

models of material regeneration are simplistic and are not

sufficiently representative of reality to allow for prediction.

This paper investigates how accumulation (regeneration)

rate can be correlated with other system information, such

as source water quality and pipe material.

Data mining for water resources knowledge discovery

Data-driven techniques from the field of machine learning

are capable of identifying complex nonlinear relationships

between inputs (factors potentially affecting accumulation)

and output (the accumulation rate). Models capturing such

relationships from historical training data can then be

used for prediction for new input data. Some examples of

this approach are present in the literature for similar appli-

cations. Opher & Ostfeld () used genetic algorithms

(GAs) to optimise model-tree regression methods for learn-

ing pipeline biofouling rates (focussed on biofilm measures

as the output) from a large number of predictor variables

in pilot studies. Giustolisi & Savic () reported using

the evolutionary polynomial regression (EPR) technique

that utilises a multi-objective GA and applied it to a case

study relating groundwater level predictions to total monthly

rainfall. Savic et al. () demonstrated that EPR offers a

way to model multi-utility data of asset deterioration in

order to render model structures transportable across phys-

ical systems. A polynomial expression for burst rate

occurrence was derived using only asset data – the equation

contained pipe length, diameter and age. EPR was also used

to explore the relationships between climate data (such as

temperature and precipitation-related covariates) and pipe

bursts during a 24-year period in Ontario, Canada (Laucelli

et al. ) with the models for the cold seasons showing

best accuracy. Artificial neural networks (ANNs) have
been used for modelling water quality variables for different

aspects of drinking water systems and a comprehensive

review is contained inWu et al. (). Bhattacharya & Solo-

matine () used MLP ANNs and M5 model trees to

predict sedimentation in a harbour basin. One of their find-

ings highlighted the importance of bringing a considerable

amount of domain knowledge and expertise into the process

of machine learning and this research follows this general

precept.

A data-driven modelling approach is adopted for this

paper, whereby two machine learning methods, Kohonen

self-organising maps (SOMs) and EPR, make use of several

sets of real world data for multivariate data mining based

on the observed phenomena from both a qualitative and

a quantitative perspective. The initial focus was on knowl-

edge discovery of correlation across factors affecting

accumulation rate for the national scale case study, with

further investigation into actual EPR estimation accuracy

and validation of the model in the second detailed local

scale study. Figure 2 provides a flow chart of the

methodology.
METHODOLOGY

SOMs

Initially, Kohonen SOMs were used for integrative and

multivariate data mining of the potential factors affecting

regeneration. SOMs are a type of ANN which draw inspi-

ration from biological processes and resemble brain maps

in the way they spatially order their responses by modelling

the self-organising and adaptive learning features of the

brain. The map evolves localised response patterns to

input vectors. SOMs can be used for clustering and visual

data mining and exploration. In unsupervised learning

(also referred to as self-organisation) the inputs are pre-

sented to an ANN which forms its own classifications of

the training data. The SOM is one of the most well-

known ANNs employing unsupervised learning, first

proposed by Kohonen (), and has the properties of

both vector quantisation and vector projection algorithms.

The prototype vectors are positioned on a regular



Figure 2 | Flow chart of methodology.
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low-dimensional grid in a spatially ordered fashion allow-

ing improved visualisation.

SOMs are commonly used for visual data mining/

exploration and as pattern classifiers (such as for speech

recognition) but also have potential in such areas as pro-

cess control. SOMs have been used for analysis and

modelling of water resources, including applications such

as river flow and rainfall–runoff and surface water quality,

as reviewed in Kalteh et al. (). Mounce et al. () pro-

posed their use in data mining microbiological and

physico-chemical data for laboratory pipe rig data and for

knowledge discovery from large corporate water company

databases, through linking water quality, asset and mod-

elled data (Mounce et al. ). SOM analysis does not

make any assumptions about the distribution of the input

variables or their relationship to one another. It allows

higher dimensional data to be given a simpler visual rep-

resentation in a smaller n-dimensional space determined

by the investigator.

A SOM has two layers, an input layer (with the same

number of nodes n as input variables) and an output layer.

The output neurons are arranged into a one, two (usually)

or possibly more dimensional lattice (often rectangular or

hexagonal). Each output neuron is connected to the inputs

by a vector of weights and also to its neighbours in the array.

Let x ¼ [x0, x1, . . . , xn�1] ∈ ℜ be the input vector,

where n is the number of input nodes. Let

wj ¼ [w0j, w1j, . . . , wn�1j] ∈ ℜ be the weight vector of

output neuron j. An outline of the basis of the algorithm

follows.
Kohonen self-organising map algorithm

(1) Initialise network: Define wij(t)(0 � i � n� 1) to be the

weight from input i to output node j at time t. Initialise

these weights to small random values. Let the initial

radius of theneighbourhood aroundnode j,Nj(0) be large.

(2) Present input: Present input x ¼ x0(t), x1(t), . . . , xn�1(t),

where xi(t) is the input to node i at time t. Normalise

the input vector.

(3) Calculate distances: Compute the distance dj between

the input and each of the weights of each output

node j, given by:

dj ¼
Xn�1

i¼0

ðxiðtÞ �wijðtÞÞ2

(4) Select minimum distance: Designate the output node

with minimum distance dj as c.

(5) Update weights: Update weights for node c and its

neighbours, as defined by the neighbourhood NcðtÞ.
New weights are given by

wijðtþ 1Þ ¼ wijðtÞ þ ηðtÞðxiðtÞ �wijðtÞÞ for

0 � i � n� 1

for j in NcðtÞ
where ηðtÞ is a learning coefficient which decreases

with time, as does the neighbourhood size NcðtÞ.
Normalise each weight vector that is updated.

(6) Repeat by going to 2.
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This process repeats over a number of iterations, result-

ing in clusters of winning nodes that correspond to clusters

within the input data thus evolving localised response pat-

terns to input vectors. If input vectors are similar then

they evoke a topologically close response. The algorithm is

robust when presented with input vectors containing miss-

ing values: the dimensions corresponding to missing input

vector values are simply ignored when finding the best

matching output neuron and then updating the output

neuron weights.

The SOM for the training vectorswas generated using the

program MATLAB (Version 7.14.0.739; The Mathworks

Inc.) using the SOM toolbox (Version 2.0beta) developed at

the Helsinki University of Technology (available online at

http://www.cis.hut.fi/projects/somtoolbox). For this work,

the input layer consisted of a number of neurons correspond-

ing to the number of variables used and the output layer

consisted of a hexagonal Kohonen map whose size was opti-

mally selected by the SOM toolbox. A batch training method

was used with a Gaussian neighbourhood. The initial learn-

ing rate of 0.5 was used for the first rough phase of training

corresponding to the creation of a ‘coarse’ mapping which

is when the global order is imposed on the map. Later the

learning rate is reduced to 0.05 for the second phase, in

which the fine structure is added to the map while preserving

the global order. Kohonen () reported that system par-

ameters are not ‘brittle’ as is the case for other types of

network algorithm and that the self-ordering phenomenon

occurs for quite diverse values of the parameters.

The SOM is a useful tool in visual correlation discovery

(the primary use in this application), that is in inspecting the

possible correlations in the input data – the component

plane representation allows visualisation of the relative com-

ponent distributions, and these planes are effectively slices

of the SOM (with each slice a dimension). Each plane rep-

resents the value of one component in each node in the

SOM (typically using a colour range) and by comparing

these planes even partial correlations may be found. By

comparing component planes we can see if two or more

components (dimensions) correlate. By picking the same

neuron in each plane (in the same location), we could

assemble the relative values of a ‘codebook’ vector of the

network.
EPR

EPR (Giustolisi & Savic ), a hybrid data-driven tech-

nique, was applied, which combines GA with numerical

regression for developing simple and easily interpretable

mathematical model expressions. Polynomial models are

generated combining the independent variables together

with the user-defined function as in Equation (1):

Ŷ ¼
Xm
i¼1

FðX ; f ðxÞ;aiÞ þ a0 (1)

where Ŷ is the EPR estimated dependent variable, Fð:Þ the
polynomial function constructed by EPR, X is the indepen-

dent variable matrix, f :ð Þ is a user defined function, ai the

coefficient of the ith term in the polynomial (with a0 the

bias) and m is the total number of polynomial terms. The

multi-objective genetic algorithm (MOGA) (Giustolisi &

Savic ) allows the development of multiple models by

simultaneously optimising fitness to training data and parsi-

mony of resulting mathematical expressions (in terms of

numbers of terms and equation complexity). The principle

of parsimony states that for a set of otherwise equivalent

models of a given phenomenon one should choose the sim-

plest one to explain a given data set (Savic et al. ).

These models have a capability to select a subset of the

most relevant inputs and the relationship type relevant for

model predictions, i.e., identify the most relevant input

covariates. This is in contrast to some other data-driven

models such as ANNs which are usually focussed on good-

ness of fit only, and may be prone to over-fitting. EPR

consists of a two-stage process: a GA identifies the model

structures and a numerical least-squares regression esti-

mates the coefficients in the selected expressions. Usually,

a pseudo-polynomial expression is used, where each term

comprises a combination of the candidate inputs and each

covariate has its own power (exponent) value. Each

polynomial term is multiplied by a constant coefficient(s)

which is determined during the search, and can

include user-selected functions. In the GA search, the

candidate power values are selected from a user-defined

set of values, which generally includes zero (any candidate

raised to the power zero is excluded from that model).

http://www.cis.hut.fi/projects/somtoolbox
http://www.cis.hut.fi/projects/somtoolbox
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MOGA ranks the candidate model based on three criteria:

goodness of fit, parsimony of covariate variables (number

of inputs) and parsimony of mathematical equations

(number of polynomial terms). The result is a set of

models returned as formulae. Their symbolic nature allows

their inspection in light of the physical and domain knowl-

edge of the phenomena. Full details of the methodology

are contained in Giustolisi & Savic ().

The EPR MOGA – XL tool version 1.0 was used for the

static regression modelling of the regeneration rate. This

software uses a MOGA optimisation strategy based on the

Pareto dominance criteria (Giustolisi & Savic ). Data

were not scaled in accordance with general procedure for

this type of static regression application, and proportionality

factors for generations were default as suggested in the lit-

erature. In this research, possible power values were

[�2, �1.5, �1, �0.5, 0, 0.5, 1, 1.5, 2] thus considering most

well-known relationships, e.g., linear, quadratic, inverse

linear, square root, etc. The regression method for par-

ameter estimation was non-negative least squares (i.e.,

aj > 0) and the bias term was assumed equal to zero. The

reader is referred to the user manual for the details of the

EPR toolbox and the various different components of its

graphical user interface (Laucelli et al. ). EPR was

used to explore producing novel simple expressions to cap-

ture and highlight the important factors in the

accumulation of discolouration material, based on the case

studies, and to explore estimation of this rate.
CASE STUDIES

Case study 1: UK national

Description

An extensive nationwide data set (presented in Husband &

Boxall ) was collated comprising field data collected

during uni-directional flushing operations within live WDS

in partnership with nine collaborating UKwater service provi-

ders who serve over 40 million customers. These water

companies provided access to a total of 36 sites and were

selected to cover a range of factors suspected to have an influ-

ence on material accumulation rates, including pipe material,
diameter, volume, sourcewater and bulkwater quality factors,

such as the presence of upstream unlined cast iron pipes and

water treatment processes such as coagulation and hydraulic

conditions. Site-specific details could then be correlated to

identify influencing factors. The study used 15 different net-

work locations from across the UK with 67 monitored pipe

sections. Site selection included, wherever possible, sites that

had not previously experienced hydraulic disturbances (as

indicated by water company records), such that the initial

flushing of each pipe mobilised a large amount of material

from its wall. Ideally, sites should also then have no large

hydraulic disturbance between flushes. For each site, the two

operations (initial visit and repeat) were planned to be com-

pleted under identical conditions (same time of day, flushing

flow rates and duration) but a year apart, thereby producing

two sets of comparable turbidity data. These were used to cal-

culate an annual regeneration rate of erodible discolouration

material, irrespective of operational date or location. The

annual regeneration rate is a percentage figure relating the

amount of material accumulated and subsequently mobilised

12 months after the initial site visit.

The full fieldwork methodology employed is presented in

Husband & Boxall () along with further site details. These

comprehensive site data were collected by a single researcher

who was directly involved on site with all operations, in col-

laboration with water company personnel, hence although of

limited size the data set has been assembled into very high

quality information. By collating data sources (i.e., asset and

water quality data) from all sites it is then possible to explore

the relative influence of the factors identified as possibly influ-

encing material accumulation rate.

Data sets and preparation

The observed temporal turbidity traces for each pipe section

from the initial and repeat operations can be plotted together

with the measured flushing flow rate. Figure 3 shows an

example of a turbidity trace for a 75 mm CI pipe. In Husband

& Boxall (), in order to determine a useful regeneration

index, three methods were trialled to obtain a score from

these plots allowing simple comparisons between the initial

trial and the repeat trial as an indicator of the regeneration

rate. These measures were peak turbidity, average turbidity

(mean of all data within measured time frame) and finally a



Figure 3 | Turbidity trace for initial and return flush, 75 mm, 92 m cast iron pipe (with flushing steps of 2 L/s (0.45 m/s) and 2.5 L/s (0.55 m/s).
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metric based on integration of the time turbidity plots: effec-

tively a step in calculating an amount of material (Boxall

et al. a). It was concluded for this data set that thematerial

mobilised from sites at this national scale is not consistent due

to differences in water quality so multiplication by a common

conversion factor to suspended solids, a mass of material, was

not undertaken. Further, it was observed that the average and

integration method for calculating regeneration percentages

return comparable results. Consequently, a similar approach

of using the average turbidity was utilised here with the appro-

priate score determined for each operation, being a percentage

annual regeneration value, indicating the rate material returns

to a fully developed and maximum discolouration risk.

The results from the fieldwork were compiled and pre-

processed to include variables considered to be possible influ-

encing factors in the regeneration of discolouration material

including bulkwater iron concentration, sourcewater, coagu-

lation treatment type, presence of upstream unlined cast iron

pipes, pipe material, pipe diameter, daily hydraulic
Table 1 | Encoding for discrete discolouration factors

Value Supply Treatment Upstream iron Pipe mat

0

1 Ground None None PE/PVC

2 Blend Al Coag Minor AC

3 Surface Fe Coag Significant CI
conditions and configuration. The type of the site refers to a

subjective classification based on the flow route – ‘main’

refers to pipe lengths that do not terminate in a dead end

and are not part of a loop, ‘loop’ referring to an area likely

to be affected by flow reversals or so-called ‘tidal points’

due to multiple potential flow paths, and dead end being

self-explanatory. Some of the variables were binary or ordi-

nal/nominally encoded and these are detailed in Table 1.

Most materials were either cast iron (all unlined) or a plastic.

Continuous variables included Fe concentration, diam-

eter (mm), volume (m³) and modelled shear stress values –

both daily and (maximum) flushing values (Pa). In general,

the higher the scoring the higher the risk of material

accumulation due to perceived increased material source

or accumulation mechanism, e.g., an unlined CI pipe has a

score of 3 in the pipe category as it is regarded as a possible

source of corrosion products (informed by Husband &

Boxall ). Upstream iron is based on information supplied

by the consortium water companies and incorporates a
erial Area Dead end Loop Main

Not DE Not loop Not main

Urban DE Loop Main

Rural
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subjective element. A number of water quality measures

have been considered as possibly influencing discolouration

material accumulation processes. These measures could be

considered as independent sources of material contributing

to the generation of discolouration material. However,

analysis of flushing samples has shown iron to be the domi-

nant constituent of discolouration material, independent of

site conditions (Seth et al. ).
Case study 2: Dutch local scale long-term monitoring

Description

An area in Purmerend, a town in the Netherlands, has been

flushed four times in 5 years. The area has the same water

supply and treatment and a total of 12.3 km of mainly AC

and PVC pipes, with 2,310 home connections. Note that

the length variable is the length of pipe affected by the flush-

ing operation. Typical source water values for Fe and Mn

were 1.7 μg/L and 0.2 μg/L, respectively. The flushing

programme is described in detail in Blokker ().
Data sets and preparation

For each pipe the turbidity (FTU) that was measured during

flushing at the pipe location was recorded. From this the

locally accumulated material (LAM)was computed according
Figure 4 | LAM per year for first return flush in March 2010 (17 months after initial flush) and sec

200 mm, 1,000 m AC pipe, with flushing of 42 L/s (1.42 m/s) and 50 L/s (1.71 m/s).
to Equation (2). In 2013, the flushing programme was slightly

changed and higher flushing velocities were used, hence in

order to obtain comparable quantities the turbidity was multi-

plied with the Qflush (in litres) as shown in Equation (2):

LAMyear ¼ Turbidity �Qflush � Δt

�
Qflush

Pti�tmin

ti�tmin

jTurbidityðtiÞ

year between flushes
FTU � L
year

� �
(2)

Figure 4 shows an example of a turbidity trace for a

1,000 m length pipe, 200 mm AC and some pieces of

150 mm PVC (internal diameter of 141 mm).
Case study 3: Dutch local scale highly repeated flushing

Description

An area in Volendam, a town in the Netherlands, has had an

extensive and intensive flushing programme for several

years, where every 3–6 weeks up to 21 pipe lengths in an

urban distribution area have been flushed as part of a conti-

nuing monitoring programme. Results have been used from

January 2012 to August 2014. The site characteristics are as

follows: surface water supplied, UV and H2O2 treatment

and pipes mainly of PVC and AC material (with no

upstream iron).
ond return flush in October 2010 (24 months after initial flush), flushing action 2 on mainly a



104 S. R. Mounce et al. | Estimating the rate of discolouration material accumulation in WDS Journal of Hydroinformatics | 18.1 | 2016
Data sets and preparation

The data set contains some asset information, soil tempera-

ture, flushing shear stress, the average turbidity (using an

integrative method of calculation) and the accumulation

rate (per day). A similar process was used as in case study

2 to calculate LAM as shown in Equation (3):

LAMday ¼ Turbidity �Qflush � Δt

�
Qflush

Pti�tmin

ti�tmin

jTurbidityðtiÞ

days between flushes
FTU � L
day

� �
(3)

Figure 5 shows an example of a turbidity trace for 710 m

pipe of PVC 300 (270 mm inside pipe diameter).
RESULTS

Case study 1: UK national

SOM results

A top level data set was assembled for case study 1 and this

was used as input to a SOM, along with the return flush

NTU (Flush2) and the average annual percentage regener-

ation obtained by dividing the repeat by the initial results
Figure 5 | LAM per day for first return flush on 23 February 2012 (4 weeks after initial flush) a

mainly a 270 mm, 710 m PVC pipe, with flushing of 44 L/s (0.77 m/s) and 42 L/s (0.7
(Flush2/Flush1). Figure 6 provides the component planes

of the SOM allowing visual inspection of how variables

change relative to each other and in comparison to the

regeneration index (REGEN). Note that SOMs are able to

interpolate missing values, unlike EPR.

The resulting Kohonen map comprises colour-coded or

greyscale shaded hexagons that summarise all of the com-

ponent planes that represent individual variables. In Figure 6,

there are two separate parts of the SOMdisplay. These include

the summary U-matrix and then the 15 component planes for

individual variables. TheU-matrix shows thedistances between

the reference vectors of adjacent cells. Ridges in the U-matrix

therefore delineate clusters in the trained SOM.

Each hexagonal cell represents multiple neurons, which

are the mathematical linkages between the input and output

layers. In the component planes for individual variables, the

colouring or shading corresponds to actual numerical values

for the input variables that are referenced in the scale bars adja-

cent to each plot. Blue (dark) shades show low values and red

(white) corresponds to high values. This allows visual compari-

son of their clustering relationships with other variables by

comparing regions of the map across component planes.

The SOM confirms that the sites with the greatest regen-

eration rates (bottom right component plane, lower right

area) are surface source water sites, non-plastic pipes, and

high iron concentration, with iron coagulation treatment

and combined with unlined upstream cast iron pipes.
nd second return flush on 29 March 2012 (9 weeks after initial flush), flushing action 3 on

3 m/s).



Figure 6 | SOM for regeneration fieldwork results with UK site determinants. Please refer to the online version of this paper to see this figure in colour.
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Dead ends would also appear to be a factor for increased

regeneration rate. In contrast, trunk mains and urban

locations would appear to result in a lower regeneration

rate. Combinations of factors are evident, such as medium

diameter pipes in rural areas with upstream unlined cast

iron, are related to higher rates. These findings support the

hypothesis that certain key factors will, in general, deter-

mine the rate of material accumulation on pipe walls.

EPR results

EPR is used here to attempt to derive an expression for an

annual regeneration rate and not the risk or magnitude of
Table 2 | Selected Pareto optimal regeneration rate estimation models identified by EPR

Model structure

Regen ¼ þ9:5843FeConc0:5

Regen ¼ þ6:6894FeConc0:5Material0:5

Regen ¼ þ9:7883Material2 Loop1:5 þ 1:4608FeConc

Regen ¼ þ0:2990LoopFlushShear1:5 þ 6:382FeConc0:5 Material0:5
any potential discolouration event occurring. All the vari-

ables in Figure 6 (apart from Flush2 which is used in the

calculation of the annual regeneration rate) were initially

used, i.e., 13 candidate inputs in total. Input and output

test (or cross validation) data were not used, due to the lim-

ited data points available for this case study and the

principal goal being knowledge discovery. The seven

model structures described in Giustolisi & Savic ()

were applied, although the use of an inner function (such

as logarithm, exponential, etc.) did not provide any

additional accuracy and merely led to longer model run

times. Results are presented here for standard polynomial

structured equations produced by EPR. The MOGA process
CoD

0.40

0.49

0.58

0.67
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ran for 7,020 generations. Table 2 provides five models pro-

duced along with the coefficient of determination (CoD)

which is based on the sum of squared errors and reflects

model accuracy.

Table 2 reveals that in the simplest models the iron con-

centration and pipe material are key factors. Models with

reduced parsimony, such as those with greater than seven

terms could provide CoD greater than 0.8; however, due

to the data set size for this case study overfitting is inevitable.

By incorporating Flush2 as an additional input, the best

single variable equation was still the first listed equation in

Table 2, but the second equation then incorporated

Flush2, along with FeConc with a CoD of 0.65. The multi-

case strategy (MCS) variant of EPR utilises splitting data

into subsets according to, for example, failure history, and

it has been used to develop distinct models for different sub-

sets of pipes (Giustolisi & Berardi ). An additional EPR

study was conducted on cast iron material only for the case

study. Table 3 provides two of these models (the simplest).

Note that it was possible to get CoD greater than 0.9 for

only five terms in this case, however caution over the

subset data size needs to be emphasised since the data set

was reduced to 44% of the original size. However, CoD

for the equation with only the iron concentration term is

improved over that in Table 2. Bulk water iron concen-

tration could potentially be a single measure capturing the

dominant influence of a number of other water quality fac-

tors: source water, coagulation treatment processes and

quantity of unlined upstream iron.

Case study 2: Dutch local scale long-term monitoring

In Figure 7, the discolouration response due to flushing is

provided as measured at each visit to each pipe in the net-

work. In the figure, pipes are coloured or shaded

according to percentiles of turbidity response for each

visit’s distribution of turbidity response values: yellow (thin
Table 3 | Selected Pareto optimal regeneration rate estimation models (cast iron material)

identified by EPR

Model structure CoD

Regen ¼ þ10:8244FeConc2 0.46

Regen ¼ þ68:5251Loopþ 10:1151FeConc0:5 0.79
black line): no value (not flushed or not recorded); black

(very light grey): lower 50 percentile; cyan (light grey): 50–

80 percentile; blue (grey): 80–90 percentile; purple (dark

grey): 90–95 percentile; red (thick black line): upper 5 per-

centile. From the figure it can be seen that the degree and

location of accumulation changes across the network with

each visit. It should be noted that the flushing operations

in this area were from routine operations, not rigorously

managed for scientific investigation. The time of day, flush-

ing rate, etc. were not rigorously repeated between

operations. Additionally, it should be noted that the dur-

ations between the sequence of images in Figure 7 are not

consistent.
Total accumulation rate

To explore beyond the pipe level variability evident in

Figure 7, it was decided to calculate total network behav-

iour. A total accumulated material (TAM) value was

calculated from the summation of all measured turbidities

during each visit and the total pipe length (Equation (4)).

TAM ¼

PF
i¼1

P∞
t¼1

TurbidityðtÞ �Qflush;i � Δt
PF
i¼1

Li

½FTU � l=m� (4)

with Δt the measurement time step in s, i counting all flush

actions, L is length per flush action, Qflush is the flushing

flow.

Figure 8 presents the total network accumulation behav-

iour as a function of time, from which it can be seen that the

overall rate of accumulation was highly consistent, evident

in the similar gradients. Thus while the individual pipe

accumulation behaviour may be suspect, the overall

system behaved in a repeatable manner.

While having a similar number of data points as case

study 1, the flushing exercises for case study 2 did not

have the high degree of control of the former and were con-

fined to a specific area. A SOM is provided in Figure 9 by

way of example, and it is difficult to draw any strong con-

clusions. This led to EPR analysis being unfeasible for

providing any generic results. Encodings are as set out in

Table 1, and note that most material is AC.



Figure 7 | Accumulation rate per flushing action: (a) March 2010; (b) October 2010; (c) August 2013; (d) October 2014. Please refer to the online version of this paper to see this figure in

colour.
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Case study 3: Dutch local scale highly repeated flushing

site

SOM results

Figure 10 provides the component planes of the SOM for case

study 3. This allows visual inspection of how variables vary
relative to each other and in comparison to the daily regener-

ation index (LAM). The amount of material mobilised is

particularly clearly correlated with regeneration rate.

In Figure 11, all the accumulation rates for all the flush-

ing actions over time are provided, normalised to a

maximum rate at each site. The black dotted line is the temp-

erature of the soil at 1 m depth. The correlation is apparent



Figure 8 | Total accumulated material in Purmerend area over time.

Figure 9 | SOM for flushing operations in case study 2. Please refer to the online version of this paper to see this figure in colour.
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and hence the importance of temperature, which is also par-

tially evident in Figure 10, for larger diameter pipes. Up to

21 sites were flushed for up to 33 times over the studied

time period; in total this provided 495 data points. Some

data were removed, because: (1) during the summer

vacation there was a lot less flow into the system which
affects the accumulation rate, but this variable was not

used in the analyses (50 out of 495 were removed); and (2)

visual inspection on turbidity measurements indicated that

some measurements were not reliable (24 out of 495 were

removed). This means 425 data points remained. The

removed data explain the gaps in Figure 11.



Figure 10 | SOM for multiple flushing operations in case study 3. Please refer to the online version of this paper to see this figure in colour.

Figure 11 | Dotted black line¼ calculated soil temperature at�1 m (validated with drinking water temperature samples). The other lines are the accumulation rates (per day) over time for

all the flushing action locations, normalised to a maximum of 1.
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EPR results

EPR was used in a similar manner to previously to attempt to

derive an expression for a daily regeneration rate based on all

flushing actions and their repeats. An extensive data set was
available with 624 individual flushing actions available in

theory (before issues of missing data had to be dealt with)

with accumulation rates calculable for each successive pair

offlushing operations at each site. All the variables inFigure 10

were used in the EPR, i.e., eight candidate inputs in total. In



110 S. R. Mounce et al. | Estimating the rate of discolouration material accumulation in WDS Journal of Hydroinformatics | 18.1 | 2016
this case study, the amount of material in the second flush was

used as calculated by the integrative method (recall that in the

UKnational case study1 the average turbidity hadnot been the

dominant predictive factor, however it had proved to be so for

the Dutch local scale study). Results are presented here for

standard polynomial structured equations produced by EPR.

The MOGA process ran for 4,320 generations. Table 4 pro-

vides three models produced along with the CoD when

utilising all data. Note the relatively high prediction from just

using the Flush2 amount, but that the addition of soil tempera-

ture further improves the forecast.

Table 4 reveals that in the simplest models the amount

of material mobilised in the second flush dominated the con-

tribution to the models (somewhat in contrast to case study 1)

with only the soil temperature feature further adding to the

CoD excellent accuracy. With very complex models with

far reduced parsimony, including other asset parameters, a

CoD of 0.96 could not be exceeded. The relatively large
Table 5 | K-fold validation results for optimal equation for case study 3

F-fold Equation

1 Regen ¼ þ0:010069Soil TempFlush 2Amoun

2 Regen ¼ þ0:0098479Soil TempFlush 2Amou

3 Regen ¼ þ0:038656Soil Temp0:5 Flush 2Amo

4 Regen ¼ þ0:009523Soil TempFlush 2Amoun

5 Regen ¼ þ0:0099064Soil TempFlush 2Amou

Table 4 | Top three Pareto optimal daily regeneration rate estimation models identified by EPR

Model structure

Regen ¼ þ0:16156Flush 2Amount

Regen ¼ þ0:0097246Soil TempFlush 2Amount

Regen ¼ þ0:072493Flush2Amountþ 0:00031Soil Temp2Flush2Amoun

Figure 12 | Scatter plots of the observed data and the EPR model-predicted regeneration rate
number of data points and repetitive nature of the flushing

operations in time and space allowed for independent train-

ing and validation. A K-fold cross validation approach was

applied rather than hold-out validation (Kohavi ). The

data are broken into K-blocks (five were used here, resulting

in an 80/20 split). Then, for K=1 to X, the Kth block becomes

the validation (or test) block with the remaining data becom-

ing the training data. EPR training and testing is conducted

and K then updated. Recall that 21 specific locations were

flushed 33 times each, within a period of between 3 and 6

weeks. The K-folds were randomly selected from all flushing

actions. Table 5 provides the results – the best equation with

material amount and soil temperature is used. Mean cross

validation CoD was 0.945 for training data and 0.930 for test-

ing data. Average CoD for the single variable equation

(structure from Table 4) was 0.883 for unseen data.

Figure 12 provides scatter plots of the regeneration rates

from the observed data and the EPR model-predicted data
Training CoD Testing CoD

t 0.954 0.903

nt 0.942 0.956

unt 0.948 0.897

t 0.938 0.955

nt 0.944 0.937

CoD

0.897

0.947

t 0.954

(train and test for F-fold 5).
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for K-fold 5, and with a small percentage (< 5%) of outliers

out of scale.

If EPR is run without the amount of material from the

second flush, the best equation (Equation (5)) involves soil

temperature and diameter with CoD of 0.624 on training

data – comparable to similar equations in Table 2 for case

study 1. Duration between flushes was utilised as an

additional input but did not contribute (the temporal

element was already accounted for in the regeneration rate):

Regen ¼ þ0:0000016Diameter2 Soil Temp1:5 (5)
DISCUSSION

There exists a significant contrast between case study 1 (the

national UK data set) and the two local Dutch case studies.

The large scale UK data set was collected in very carefully

controlled conditions, over many varying areas with differ-

ent materials, source waters, treatment types, etc.

(Husband & Boxall ). In this case regeneration rates

were available from only a single pair of flushing operations

a year apart. This case study shows that discolouration pro-

cesses were dominated by iron, although manganese, which

has been shown to be the other dominant metal in UK dis-

colouration samples (Seth et al. ), was not available. It

was not possible to explore seasonal effects for this data

set as flushing was at identical times of the year.

In the Dutch systems, local areas were used with identi-

cal source water, treatment type and exclusively plastic or

AC material pipelines. For case study 2, flushing operations

were deemed less repeatable in nature, evidently an impact

of the variability in the flushing shear stress between repeat

visits. Schematics showing accumulation per pipe did not

show repeatable patterns (Figure 7). However, when

summed over the area, generally similar regeneration rates

were observed except for a slight difference during the

third period (Figure 8). Only four repeats were conducted

(and extrapolated to an annual regeneration rate), but with

different durations between flushing operations such that

it was not possible to explore seasonal or temperature-

dependent effects. Difficulties in obtaining pipe level under-

standing and expressions from case study 2 highlight the
need for trial accuracy, replication (since the number of

data points available here was very small) and control.

Case study 3 was a very extensive and intensive flushing

programme concentrating on regular and repeated flushing

of 21 specific locations (still within one section of the supply

system). These were flushed 33 times each, over multiple

years, with a return period of between 3 and 6 weeks. Pairs

of flushes from this data set allowed calculation of daily regen-

eration rates at high spatial and temporal resolution with

results revealing seasonality, or more specifically, temperature

dependent, effects (Figure 11andTable 4). Temperature has an

obvious link to biological reactions (Sharpe ) and suggests

the importance of biofilm processes in material accumulation

within pipes. At the scale of 3–6 weeks, linearity of regener-

ation rate is suggested (Table 4); this is in agreement with

field data and analysis reported by Cook & Boxall ().

It might be queried whether the use of SOM and EPR

can be complementary? In case study 3, we can see that

when EPR was applied, this was dominated by Flush2A-

mount and soil temperature (see Table 4). However, by

inspecting the SOM (Figure 10) we can see evidence for

the combination of high soil temperature and high diameter

being linked to higher daily regeneration rate (bottom right

area of component plane). It is only when Flush2Amount

is specifically excluded from the EPR input list that the

best performing equation which uses these two variables

emerges (Equation (5)). Hence, the SOM can suggest and

inform combinations of variables for EPR particularly if

equations may be required using variables of certain types.

The equations that have been derived here provide the

opportunity to make estimates of regeneration rates/dis-

colouration material accumulation rates. Such estimates

are vital for planning proactive management, in particular

the return frequency between operations to maintain a

desired level of system cleanliness or level of discolouration

risk. The Dutch data sets suggest that pipe-specific estimates

can be made with a high degree of accuracy from previous

flushing results for a given pipe. However, such data are

often unavailable, and the UK data set suggests that where

only general asset and bulk water quantity is available esti-

mates have a high degree of uncertainty. In this case, the

ability to quantify uncertainty would be desirable to allow

practitioners to calculate a range of scenarios and hence

inform risk-based management decisions.
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It should be noted that UK and Dutch systems have

some fundamental differences, affecting both in-pipe

hydraulic conditions and bulk water qualities. For example,

Dutch systems have reduced diameters and generally plastic

materials whereas UK systems generally have older, larger

pipes and much more diverse materials. There is also the

issue of chlorinated versus non-chlorinated systems. While

these differences will have significant effects on discolour-

ation processes, important and relevant findings were

revealed here irrespective of these. It is suggested that

future work in each country should address the other factors

that seem to have dominated the results presented here.

Future UK flushing programmes could usefully explore the

effect of seasonality by conducting repeat trials at less than

annual return intervals. Such a study was reported in

Boxall et al. (b) but for one groundwater supplied site

only that experienced very little change in water tempera-

ture at the pipeline studied, hence showing little

temperature or seasonal dependence. From this and the

case study 3 results reported here, it is interesting to specu-

late if it is variation in source water temperature or change

in water temperature due to soil/ground conditions that is

more important or a combination of the two. In the Nether-

lands, future work could explore a wider range of systems,

perhaps using a similar strategy to case study 1 to investigate

the effects of bulk water, as bulk water iron concentration

was found to be the dominant factor in the UK data set

reported here.
CONCLUSIONS

Improved comprehension of discolouration material

accumulation processes and prediction of accumulation

rates in WDS are essential for proactively managing mains

rehabilitation and subsequently assessing the effectiveness

of any interventions made. Discolouration risk and material

accumulation rate are not the same. Discolouration risk con-

sequence may be considered primarily a function of the

location of an event within a network and the population

exposed. Discolouration risk probability may be considered

as a cross product of the duration since last disturbance or

cleaning operation, the accumulation rate and the specifics

of a given hydraulic mobilisation event. Of the three
components, accumulation or regeneration rate is currently

the most uncertain, but potentially controllable through

treatment works or network interventions.

This paper presents some findings of applying data

mining techniques to investigate material accumulation

(regeneration) rate and the dependence on factors believed

to influence the process. Three case studies were examined,

having differing data quantity and quality resolutions: (1) a

high quality and representative data set compiled across

the whole of the UK (including varying conditions and

source waters); (2) a Dutch local scale area flushed four

times in 5 years; and (3) a Dutch local scale area very exten-

sively flushed 32 times (periods of between 3 and 6 weeks)

in 21 locations over multiple years. Case studies 2 and 3

had identical source waters and treatment. Key findings

include the following:

• SOMs are a very useful tool for visual correlation discov-

ery, that is, in inspecting the possible correlations in the

input data across multiple dimensions, with each com-

ponent plane being effectively a slice of the SOM. By

comparing component planes we can see if two or more

components (dimensions) correlate. This ability to syn-

thesise and present multi-dimensional data (which might

otherwise be impossible for humans to interpret) in a

higher-fidelity representation is particularly useful for

qualitative and intuitive communication with practising

engineers. While not as definitive as equations derived

from EPR, this data-driven approach still provides a level

of knowledge discovery and evidence/audit trail beyond

‘engineering judgement’. For the nationwide UK case

study, the SOM helped confirm that high bulk water iron

concentration, surface source water sites, non-plastic

pipes, iron coagulation treatment and the presence of

unlined upstream cast iron pipe are all factors contributing

to a higher material accumulation rate.

• The EPR modelling paradigm implements a multi-objec-

tive genetic search algorithm, where the objective

functions are accuracy (measured using CoD) and parsi-

mony (number of covariates and equation complexity).

EPR was applied to the application of predicting material

accumulation (regeneration) rate for two of the case

studies. In case study 1, the simplest equations involved

bulk iron concentration, pipe material and looped
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network areas. In case study 3, the significantly increased

data set allowed K-fold cross validation. The optimal

equations utilised the amount of material mobilised and

soil temperature. Mean cross validation CoD was 0.945

for training data and 0.930 for testing data for an equation

with both terms. When not using the material from the

second flush as one of the inputs, an equation was

derived with only diameter and soil temperature which

illustrates the potential for ultimately developing transfer-

able expressions for WDS.

• The type of EPR-derived equations that appear in Table 1

relate to bulk water iron concentrations and treatment

and more definitive versions would allow network scale

adjustments in these parameters to be assessed. The

type of equations in Table 4 would be useful for stable

networks and planning operations and their frequency.

There is expected to be much more potential for MCS

experimentation for predicting accumulation rates based

on pipe material and other cohort sub-divisions (such as

source water or treatment type) as increased data sets

become available as part of the PODDS programme of

work (www.podds.co.uk), and with further international

partners. Manganese would be a very useful input variable

for future work, and other parameters identified through

improved understanding of biofilm physiology due to the

emerging importance of biofilm processes in discolouration

(Douterelo et al. a, b). More definitive EPR generated

expressions should follow. Such predictive models could

be very valuable for discolouration risk models (e.g., McCly-

mont et al. ; Furnass et al. ).
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