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Automated feature recognition in CFPD analyses of DMA

or supply area flow data

Peter van Thienen and Ina Vertommen
ABSTRACT
The recently introduced comparison of flow pattern distributions (CFPD) method for the

identification, quantification and interpretation of anomalies in district metered areas (DMAs) or

supply area flow time series relies, for practical applications, on visual identification and

interpretation of features in CFPD block diagrams. This paper presents an algorithm for automated

feature recognition in CFPD analyses of DMA or supply area flow data, called CuBOid, which is useful

for objective selection and analysis of features and automated (pre-)screening of data. As such, it can

contribute to rapid identification of new leakages, unregistered changes in valve status or network

configuration, etc., in DMAs and supply areas. The method is tested on synthetic and real flow data.

The obtained results show that the method performs well in synthetic tests and allows an objective

identification of most anomalies in flow patterns in a real life dataset.
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INTRODUCTION
In recent years, utilities have been moving towards more

data based decision making for network operation and man-

agement. Flow rate time series for district metered areas

(DMAs) and distribution areas provide meaningful insights

into the flow performance of the network, but due to their

complexity these are not always fully explored and used.

These data contain information about leakage (which con-

tinues to be an issue, with numbers worldwide ranging

from 3% to more than 50% (Lambert ; Beuken et al.

)), unauthorized consumption, customer behavior, net-

work configuration and isolation (valve statuses), among

others. Many methods exist to obtain information out of

these data, and most focus on leakage. Classically, the

most important are top-down and bottom-up methods

(Farley & Trow ; Wu ). The top-down method con-

sists of a water balance in which the registered amount of

water delivered to a supply area over the period of a year

is compared to the billed amount of water. The bottom-up

method essentially compares the minimum flow rate

during the quiet night hours into a DMA or demand zone,
or the integrated flow of a 24-hour period, to an estimate

for the demand for this DMA or demand zone based on

the number of connections (Puust et al. ).

Different methods to determine the amount of non-rev-

enue water, leakage, bursts and the location of leakages

have been the focus of research. These methods include

inverse transient analysis (Liggett & Chen ; Savic

et al. ; Vítkovský et al. ), alternative statistical

(e.g. Palau et al. ; Romano et al. ) and machine learn-

ing methods (e.g. Aksela et al. ; Mounce et al. ;

Mamo et al. ), or a combination of both (e.g. Romano

et al. ), probabilistic leak detection (Poulakis et al.

; Puust et al. ), pressure dependent leak detection

(Wu et al. ), and meta-methods including a comparison

of results for neighboring DMAs (Montiel & Nguyen ,

).

The comparison of flow pattern distributions (CFPD)

method was introduced (Van Thienen ; Van Thienen

et al. a) as a new tool to assess flow data of a DMA or

supply area in order to pinpoint (in time, not space), identify,
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and quantify changes in the amount of water supplied (see

Figure 1). It has since been successfully applied in multiple

projects with Dutch drinking water companies to identify,

for example, leakages and incorrect valves statuses and net-

work connections (Van Thienen et al. b).

The interpretation of changes in water flow time series

through CFPD block diagrams is intuitive in all but the

most complex cases. However, it relies on the visual

interpretation of these diagrams, which is still a limitation.

This paper is aimed at overcoming this limitation by present-

ing a support algorithm for automated feature recognition in

CFPD block diagrams. Such an algorithm offers several

advantages: automated pre-screening of data to limit

manual inspection and interpretation to the most interesting

cases; objective rather than (to some degree) subjective

selection and analysis of features.

This paper presents a method for automated feature rec-

ognition in CFPD block diagrams, called the CuBOid

(CFPD Block Optimization) algorithm. Its principle is
Figure 1 | CFPD analysis procedure and interpretation. (1) Flow time series; (2) CFPD analysis

changes in terms of known and unknown mechanisms; (6) discarding changes by kno

of unknown events that can be responsible for the change, making the interpretat

measurements. Copied from Van Thienen et al. (2013b).
presented, and the method is applied to synthetic and real

network data to evaluate its performance.
METHODS

For a complete description of the CFPD method, the reader

is referred to Van Thienen (). A concise introduction is

provided in Appendix 1 (available with the online version

of this paper). An overview of the analysis and interpretation

of the method is presented in Figure 1. In the matrices result-

ing from the analysis, each event (change in the flow

pattern) is characterized by a typical structure (Figure 2).

These matrices should be read as follows: going from the

left to the right (i.e. time arrow), a change in color or

color intensity represents a change of the CFPD parameter.

The CFPD parameter changes as a consequence of a flow

pattern alteration: the color intensity is proportional to mag-

nitude of the alteration. The presence of this change in
; (3), (4) identification of consistent and inconsistent changes; (5) interpretation of these

wn mechanisms such as vacation periods, weather, among others, results in a reduced list

ion easier; (7) any data quality issues which are found may initiate improvement of



Figure 2 | CFPD block diagrams are upper triangle matrices with matrix values indicated by color (a). The diagonal is always 1 (slope factor a) or 0 (intercept factor b). Slope factor a values

may range from 0 towards infinity; intercept factors b may range from minus infinity towards infinity. Logically permissible block patterns either meet both the upper and right

hand side edge (b), (c) or appear in opposite sign combinations of two blocks, one of which touches the upper edge and the other the right hand side edge (d), (e). Weekdays and

weekends are generally somewhat different, and show up as distinctive regular banded patterns (f). Please refer to the online version of this paper to see this figure in color:

http://dx.doi.org/10.2166/hydro.2015.056.
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multiple rows of the matrix means that the anomaly is not

caused by an anomaly in the reference signal. Changes in

flow patterns which are most interesting are systematic

changes, which are indicative of changes in demand, net-

work configuration, leakage, etc., rather than stochastic

variations of short duration. These systematic changes

show up in CFPD block diagrams as blocks with a similar

color intensity (see Figure 2(b)–2(e)).

The CuBOid feature recognition algorithm presented in

this paper seeks to describe these typical patterns observed

in a CFPD block diagram as a summation of permissible

block functions. In this way, it is somewhat similar to, for

example, the Discrete Cosine Transform (Ahmed et al.

) or the Discrete Wavelet Transform (e.g. Akansu et al.

) which are used, for example, in image compression

methods. The typical shape of the permissible blocks repre-

senting anomalies in the flow pattern stems from the nature

of the CFPD analysis procedure (see Figure 2). This typical
shape can be described by the following function:

f(i, j) ¼
1 for 1 � i � j1, j1 � j � j2
�1 for j1 � i � j2, j> j2
0 for all other i, j

8<
: (1)

In this expression, i and j are the row and column

number, respectively, and j1 and j2 are the first and last

column of a perturbation block. Note that consecutive col-

umns in a CFPD block diagram correspond to consecutive

days (or weeks, or some other duration), which are com-

pared to each other in consecutive rows (for more details

see Van Thienen ()).

Since people behave differently in the weekend compared

to weekdays, CFPD block diagrams generally also show a dis-

tinct pattern setting apart weekdays from weekends and vice

versa. An expression similar to the one above can be used to

describe weekend day anomalies in CFPD block diagrams:

http://dx.doi.org/10.2166/hydro.2015.056


f i, jð Þ ¼
w1 for i ∈ 6, 7½ �, j ∈ 1, 5½ �
w2 for i ∈ 1, 5½ �, j ∈ 6, 7½ �
w1 þw2 for i ∈ 6, 7½ �, j ∈ 6, 7½ �
0 for all other i, j

8>><
>>:

Weekends compared toweekdays
Weekdays compared toweekends
Weekends compared toweekends
Weekdays compared toweekdays

(2)
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In this expression, w1 and w2 are two weight factors.

The approach to automatically identify the block func-

tions representing anomalies, whilst ignoring the regular

weekday-weekend pattern, is by means of an optimization

algorithm, in which only a limited number of block configur-

ations, which can logically be present in a CFPD block

diagram (shown in Figure 2), combined with the typical

weekend pattern, are considered. The process has six

steps, which are as follows (for a block (slopes or intercepts)

of dimensions mxm).

1. Break detection: in order to quantify changes (breaks)

between neighboring columns, firstly the Lx norm (with x

having a value typically around 1.0) is computed for the

difference vector of each pair of consecutive column vectors

(skipping the first column of the matrix and the last item of

each second vector). The values of these norms are divided

by the size of the column vectors – m, obtaining a measure

for the step sizes between consecutive columns, represent-

ing analysis periods. The exponent of the norm determines

the focus of sensitivity of break detection within the

matrix: smaller values result in more breaks being detected

on the left side of the matrix, while larger values result in

more breaks being detected on the right side of the matrix.

2. Generation of permissible blocks: using the n biggest

changes (withndecided by the user), all permissible block func-

tions are generated for n ∈ N, n<m. These permissible block

functions correspond to all possible combinations of two steps

(starting and ending) which are taken from the n biggest

changes. The number of functions generated is k ¼ n(n� 1).

3. Combination of block functions: the user choses the

number of block functions p, with p ∈ N, p< k, which is

used to resolve a single CFPD block diagram. All possible

combinations of p block functions from the k functions gen-

erated in step 2 are generated. Thus, in total there are

k!=(k� p)! combinations.

4. For each combination, an optimization is performed

in which the function amplitudes are the decision variables

and the objective is to minimize the difference between the
summation of this function combination and the block

matrix which is being fitted. The weekday-weekend pattern

is included in this computation, so the parameters w1 and

w2 are free parameters of the optimization problem as

well. This is described by the following objective function:

Ci ¼ (

Pm
j¼1

Pm
k¼1 ((

Pp
l¼1 WilBiljk þ

P2
q¼1 wqbqjk)�Mjk)

2
)
1
2

m
(3)

for combination i, with j and k the indices for the matrix

rows and columns, Wil the weights or amplitudes for block

function l in combination i, Biljk the amplitude of block

function l of combination i at matrix row j and column k

(expression (1)), wq the weekend day factor for weekend

day q, bij the amplitude of the weekend block function for

day q at matrix row j and column k, and Mjk the actual

CFPD matrix value at at matrix row j and column k. No con-

straints were applied to the optimization.

This optimization can be done in parallel. This step

results in block amplitudes Wil for each combination gener-

ated in step 3. Note that the amplitude is dimensionless for

the matrix of slope factors a and has the same unit of volu-

metric flow rate as the original input time series for the

matrix of intercept factors b.

5. The performance of each combination (blocks and

amplitudes) is quantified using the following expression:

Fi ¼ Ci
� 1þ f1

� np þ f2
� no=s

� �
(4)

in which F is the fitness of the solution, Ci is the Euclidian

2-norm of the difference between the original matrix and

the reconstructed matrix (Equation (3)), f1 is the penalty

factor for the number of block functions, np is the number

of block functions used (� p), f2 is the overlap penalty

factor, no is the number of overlapping blocks in the set of

block functions (
P

matrix columns (number of block functions

in column - 1)), and s is the sum of the lengths of the



Table 1 | Summary of the performed tests. Distinguishing parameter values are indicated

by a grey background color

Test description
Test
code

Number of
clusters

Number of
steps (n)

Lx
norm f1 f2

Default 1 3 5 1 0.33 0.33

Influence of
the number
of clusters

2 2 5 1 0.33 0.33
3 4 5 1 0.33 0.33

Influence of
the number
of steps

6 3 4 1 0.33 0.33
7 3 6 1 0.33 0.33

Influence of
the norm

8 3 5 0.7 0.33 0.33
9 3 5 1.25 0.33 0.33
10 3 5 2 0.33 0.33

Influence of
the f1
penalty

11 3 5 1 0.01 0.33
12 3 5 1 0.2 0.33
13 3 5 1 0.4 0.33
14 3 5 1 0.7 0.33
15 3 5 1 0.9 0.33

Influence of
the f2
penalty

16 3 5 1 0.33 0.01
17 3 5 1 0.33 0.2
18 3 5 1 0.33 0.4
19 3 5 1 0.33 0.7
20 3 5 1 0.33 0.9
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block functions. This cost function reflects the fit of the can-

didate blocks with respect to the actual CFPD matrix. It is

designed to penalize both a large number of block functions

and a large degree of overlap. The fitness parameter F is

minimized.

6. The best performing combination of block functions

and weekend parameters is selected.

Thus, the process combines a combinatorial problem

with a parameter fitting problem. The former is addressed

in steps 2, 3, 5, 6, the latter in step 4.

Note that the method can be asked to fit a large number

of functions simultaneously, but this will most certainly lead

to overfitting the data, with noise being described by

additional block functions. Therefore, parsimony is impor-

tant to obtain meaningful results. This will be illustrated

later. The penalty parameters become relevant for larger

values of n and p. Choosing a larger value of n and/or p

results in a significant increase in computation time,

which is the reason why these parameters were introduced.

With unlimited computation power, n should be the number

of columns – 2, and p should be chosen to represent the lar-

gest number of anomalies expected in a single matrix.

The optimization criterion is formulated in terms of a

Euclidean norm of the difference vector of the diagram

data and sum of all block and weekday/weekend functions

for which the optimization is being performed. For slope

diagrams, the log of the actual values is taken, since multiple

anomalies simply add up in log space and values are zero

centered. The optimization method used for the parameter

fitting part of the algorithm is the quasi-Newton method of

Broyden, Fletcher, Goldfarb, and Shanno, as implemented

in scipy (Oliphant ).
RESULTS AND DISCUSSION

In order to test the performance of the proposed approach

and the influence of the different parameters on the results,

a series of tests was performed on synthetic data. Bearing in

mind that several combinations of parameter values are

possible, note that only a limited set of tests that focus on

the influence of each parameter one at a time (and hence

facilitate interpretation) have been carried out and reported

in this paper. Table 1 summarizes the considered tests
and corresponding parameter values. In addition to this,

the results of a series of tests on real flow data are also

reported.
Synthetic data

The synthetic data considered for the tests consist of rep-

etitions of actual measured flow patterns, with in total

three sequences of five identical weekdays and two identical

weekend days, starting at day 2 and ending at day 22 of an

arbitrary month in an arbitrary year. Different datasets

were generated from these original data, by adding

anomalies with different amplitude and duration, as well

as different levels of normally distributed noise. The charac-

teristics of the generated datasets are summarized in

Table 2, and the flow patterns corresponding to the unper-

turbed signal and datasets 1a, 2a and 3a can be seen in

Figure 3.

The difference between week and weekend days is

clearly visible in the flow patterns. The added anomalies

are also visible, corresponding to upward shifts in the

patterns.



Table 2 | Summary of the generated datasets used to test the CuBOid algorithm

Anomaly 1 Anomaly 2

(%)
Dataset
ID

Start-
end day

Amplitude
(m3/h)

Start-
end day

Amplitude
(m3/h)

Gaussian
noise

0 None – None – None

1a 05–08 10 15–18 5 None

1b 05–08 10 15–18 5 5

1c 05–08 10 15–18 5 10

1d 05–08 10 15–18 5 20

2a 04–10 10 14–20 5 None

2b 04–10 10 14–20 5 5

2c 04–10 10 14–20 5 10

2d 04–10 10 14–20 5 20

3a 05–15 10 12–20 5 None

3b 05–15 10 12–20 5 5

3c 05–15 10 12–20 5 10

3d 05–15 10 12–20 5 20
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Block functions

The CuBOid algorithm identifies block functions represent-

ing anomalies in flow patterns of some days with respect to

earlier days (or any other time scale – weeks, months, …) in

a certain period of time. Since for the different datasets the

anomalies were manually added to the data, it is known

beforehand what the block functions should look like. The

block functions are described by a start and an end

column in the matrix diagram, and by an amplitude. The

start and end columns should correspond to the start and

end dates of the anomalies, and the amplitude should be

equal to the amplitude of the actual anomaly (recall

Table 2).

For datasets 1a to 1d, two block functions should be

identified. The start and end days of the block function

describing the first anomaly should be 5 and 8, and the

amplitude should be 10 m3/h. For the second anomaly the

start and end columns of the block function should be 15

and 18, and the amplitude should be 5 m3/h. Table 3 sum-

marizes the start and end days as well as the amplitudes of

the block functions obtained by the different tests. The last

two columns in the table display the actual used steps to

form the block functions and the Ci norm (Equation (3)),

i.e. the difference (or distance) between the difference
between the original matrix and the reconstructed matrix.

This norm can also be used to compare results obtained

by different tests in a more straightforward way.

First of all, the influence of added noise on the estimated

amplitude of the block functions is clearly visible: when

adding more noise to the data, the estimated amplitude

decreases, and the estimated end day of the second block

also tends to get worse, being shifted forward (this is,

ending later than it should). Accordingly, the Ci norm

increases with the increase of random Gaussian noise.

When no noise is added to the data (dataset 1a), all per-

formed tests lead to the same resulting block functions, and

these are a very close fit to the actual introduced anomalies.

The slight deviation from the actual values is presumably

due to numerical issues and/or the stop criterion for the

optimization algorithm.

When adding 5% random Gaussian noise, not all tests

lead to the same block functions. While most tests perform

well in identifying the two anomalies, test 11 (lowest f1 pen-

alty coefficient), leads to the identification of three blocks

instead. The third block is probably fitting the noise added

to the data.

When adding 10% of noise, the tests perform generally

worse, overestimating the duration of the second anomaly

(by identifying the end column as being 20 instead of 18),

and underestimating the amplitudes of the anomalies. The

best results are obtained for test 7 and 8 (with

higher number of steps and a lower Lx norm, respectively)

Figure 4(a) and 4(b) illustrate the obtained results when per-

forming test 7. In Figure 4(a), the matrix of b-factors is

visible. In Figure 4(b), the estimated block functions are vis-

ible. The visual interpretation of Figure 4(b) is clearer, since

the added noise is not visually represented.

For 20% of random noise, all tests underestimate the

amplitudes of both anomalies, and overestimate the

duration of the second anomaly. The best performance,

in terms of the Ci norm, is obtained for test 11 (with

the lowest f1 penalty). However, for this case, the algor-

ithm identifies three block functions, i.e. a false positive

which is fitting the noise. For test 15 (highest f1 penalty

coefficient) the algorithm does not identify block

functions, i.e. the results are false negatives. Figure 5(a)

and 5(b) illustrate the obtained results when performing

test 1. In Figure 5(a), the matrix of b-factors is visible.



Figure 3 | Considered flow patterns: (a) original flow pattern, with distinct week and weekend days; (b) flow pattern corresponding to dataset 1a; (c) flow pattern corresponding to dataset

2a; (d) flow pattern corresponding to dataset 3a.
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Table 3 | Characteristics of the block functions obtained by the performed tests on datasets 1a–1d, corresponding used steps and Ci norm

Block function 1 Block function 2 Block function 3

Dataset Test Start End Amplitude (m3/h) Start End Amplitude (m3/h) Start End Amplitude (m3/h) Ci Number of steps used

1a All 5 8 10.05 15 18 5.04 . . . 3.5 4

1b All except 5 8 9.84 15 18 4.48 . . . 4.3 4
11 5 8 9.75 15 18 4.39 9 14 –0.21 4.6 4

1c All except 5 8 8.96 15 20 3.75 . . . 22.0 4
7, 8 5 8 9.03 15 18 5.04 . . . 7.6 4

1d All except 5 8 8.18 15 20 3.68 . . . 19.2 4
6, 10 5 8 8.51 15 22 3.32 . . . 24.1 4
11 5 8 8.82 15 20 4.50 6 13 1.68 17.1 5
15 . . . . . . . . . 50.8 0

Figure 4 | Graphical results for test 7 performed on dataset 1c: (a) diagram with matrix of b-factors; (b) diagram with estimated block functions.
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In Figure 5(b), the estimated block functions are visible.

With the increased noise, it becomes more difficult to

interpret and visually identify anomalies in the matrix of

b-factors. The visual interpretation of Figure 5(b) is

much easier, since the added noise is not visually rep-

resented. The longer duration of the second block

function and the lower estimated amplitude are also

clear in Figure 5(b).

Regarding datasets 2a–2d, two block functions should

be identified. The start and end columns of the block func-

tion describing the first anomaly should be 4 and 10, and

the amplitude should be 10 m3/h. For the second anomaly

the start and end columns of the block function should be
14 and 20, and the amplitude should be 5 m3/h. Table 4

summarizes the obtained results from the different tests per-

formed to datasets 2a–2d.

For datasets 2a, the majority of the performed tests

identify three block functions. The start day of the second

anomaly is identified 2 days later than the actual start date

of the anomaly.

For dataset 2b, with 5% of Gaussian noise, several tests

identify three block functions, overestimate the amplitude of

both anomalies, and test three even identifies four blocks.

Tests 2, 10, 13, 14, 15 lead to the identification of two

block functions, solving the false positive issue. When

adding 10% of noise to the data, the average Ci norm



Figure 5 | Graphical results for test 1 performed on dataset 1d: (a) diagram with matrix of b-factors; (b) diagram with estimated block functions.
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increases. The algorithm continues to overestimate the

amplitude of the anomalies. Several tests identify the two

anomalies, although the best results in terms of the Ci norm

are obtained for test 7. Figure 6(a)–6(c) represents the results

for dataset 2c. Figure 6(a) represents the matrix of b-factors.

Figure 6(b) represents the block functions estimated by

test 1, and Figure 6(c) represents the block function esti-

mated by test 14. In Figure 6(a), the effect of the added

noise is visible. When performing test 1, this noise is

approximated by a third block function, visible in Figure 6

(b). Test 14 is able to ignore this noise and identifies only

two block functions (Figure 6(c)).

For the last dataset, with 20% of added noise, most tests

are able to identify the two block functions describing the

added anomalies. The best results in terms of the Ci norm

are again obtained by test 7. For test 10, affecting the step

size, only one block function is identified and the Ci norm

is the highest of all tests. For test 15 (highest f1 penalty coef-

ficient), no blocks are identified.

Datasets 3a–3d consider two anomalies that overlap

during a few days. Two block functions should be identified.

The start and end columns of the block function describing

the first anomaly should be 5 and 15, and the amplitude

should be 10 m3/h. For the second anomaly the start and

end columns of the block function should be 12 and 20,

and the amplitude should be 5 m3/h. Table 5 summarizes

the results obtained by performing the different tests.
For dataset 3a, all tests except the default test identify

two block functions. The estimated amplitudes are close to

real amplitudes of the anomalies. For test 1, where the

start and end dates are less accurate, the algorithm also

identifies a third block function with positive amplitude.

When adding 5% Gaussian noise, the results are similar.

However, for test 1 the first identified block function actu-

ally describes the overlap of both anomalies, by estimating

an amplitude equal to 15.46 m3/h, and estimating accurately

the start and end days of the overlap, this is 12–15.

For dataset 3c, most of the tests identify two block

functions.

For dataset 3d, with 20% added noise, the Ci becomes

significantly higher. Again, test 1 leads to the best fit

between the block functions and the anomalies. Figure 7(a)

and 7(b) illustrate some of the obtained results when consid-

ering dataset 3c, namely the block functions obtained by test

1. Between days 12 and 15 the block functions overlap and

the color of the block is darker, illustrating the higher

amplitude.
Influence of noise and parameters

Table 6 gives an overview of the influence of the noise, gap

between anomalies, and the parameters considered to run

the algorithm on the obtained results.



Table 4 | Characteristics of the block functions obtained by the performed tests on datasets 2a–2d, corresponding used steps and Ci norm

Block function 1 Block function 2 Block function 3 Block function 4

Dataset Test Start End
Amplitude
(m3/h) Start End

Amplitude
(m3/h) Start End

Amplitude
(m3/h) Start End

Amplitude
(m3/h) Ci Number of steps used

2a All except 4 10 8.80 16 20 4.19 21 22 –3.51 . . . 16.4 4
2, 14, 15 4 10 9.18 16 20 4.62 . . . . . . 19.6 4
6, 9, 10 4 10 10.50 11 20 3.92 . . . . . . 27.2 3

2b All except 4 10 10.56 16 20 5.86 11 15 2.2 . . . 15.5 4
2, 13, 14, 15 4 10 9.26 16 20 4.61 . . . 17.9 4
3 4 6 10.23 7 10 7.96 16 20 4.42 21 22 �3.56 14.1 5
10 4 10 10.55 11 20 3.78 . . . . . . 26.8 3
16 4 10 12.39 11 20 5.68 7 16 –3.01 . . . 14.9 5

2c 1, 3, 11, 12, 16, 17 4 10 10.61 16 20 7.189 9 16 2.08 . . . 17.6 5
2, 13, 14, 15, 18, 19, 20 4 10 10.002 16 20 5.815 . . . . . . 21.5 4
6, 9, 10 4 10 11.37 11 20 4.41 . . . . . . 34.7 3
7 4 10 12 9 20 7.5 7 16 –5.61 . . . 16.7 6

2d All except 4 10 9.51 16 20 5.08 . . . . . . 23.9 4
7 4 10 11.74 9 20 6.22 6 15 –4.54 . . . 17.7 6
10 4 10 7.9 . . . . . . . . . 40.9 2
11, 12, 16 4 10 10.17 16 20 6.56 9 15 2.24 . . . 23.7 5
15 . . . . . . . . . . . . 69.6 0
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Figure 6 | Graphical results for dataset 2c: test 1 and 14 performed on dataset 2c: (a) diagram with matrix of b-factors; (b) diagram with estimated block functions by test 1; (c) diagram

with estimated block functions by test 14.

Table 5 | Characteristics of the block functions obtained by the performed tests on datasets 3a–3d, corresponding used steps and Ci norm

Block function 1 Block function 2 Block function 3

Dataset Test Start End Amplitude (m3/h) Start End Amplitude (m3/h) Start End Amplitude (m3/h) Ci Number of steps used

3a All except 5 15 10.16 12 20 5.01 . . . 4.2 4
1 5 13 10.25 14 16 9.7 12 20 5.16 4 5

3b All except 5 15 10.08 12 20 5.39 . . . 4.4 4
1 12 15 15.46 7 11 10.11 16 20 5.43 4.4 4

3c All except 5 15 9.98 12 20 5.12 . . . 7.1 4
1 5 15 9.69 12 20 4.86 21 22 –1.28 5.9 4

3d All except 5 15 10.71 14 20 4.49 . . . 20.4 4
1 9 15 12.76 5 9 9.42 16 20 5.59 16.9 4
10 5 15 8.12 9 20 4.45 . . . 18.8 4
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Figure 7 | Graphical results for dataset 3c: (a) diagram with matrix of b-factors; (b) diagram with estimated block functions by test 1.
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Real data

The aforementioned synthetic data share a common charac-

teristic: the introduced anomalies are relatively abrupt. In

real data anomalies can occur either in a progressive or

in an abrupt manner and the signal may be noisier than that

in the considered synthetic tests. Therefore, anomalies can

be harder to detect. Thus, to assess the performance and capa-

bility of the CuBOid algorithm on the detection of natural

anomalies in real data with varying noise conditions, flow

measurements series from the municipal drinking water com-

pany of the city of Paris, Eau de Paris, were considered. The

water company serves 4 million consumers during the day,

and 2million during night time, and has an averagewater con-

sumption of 550,000 m³/day. For a detailed description of the

Parisian drinking water distribution system the reader is

referred to Montiel & Nguyen (, ).

The flow data considered in this paper are an extract

from Paris real-time SCADA system historical records. The

quality of the registered data is varying, with data gaps and

periods of anomalous signals and many periods of continu-

ous, good quality registration occurring in all of the DMAs.

Van Thienen & Montiel () have presented a non-

censored list of registered leaks, and the results obtained

by the application of the CFPD block analyses (non-

automatized, so no application of CuBOid) to these data.

In most cases, the leaks could be recovered. Presently, we
applied the CuBOid algorithm to the same data in order to

retrieve the anomalies from the same leakage list. Different

sets of parameter values controlling the CuBOid algorithm

were tested and results were compared. For all of the tested

combinations the algorithm was able to identify almost all

of the registered leaks (success of identification and its prac-

tical meaning are discussed below). The differences

consisted of the estimated amplitudes and the number of

identified blocks describing each anomaly. The best results,

in terms of amplitudes and number of blocks, were obtained

for the following set of parameters: number of steps¼ 3,

number of clusters¼ 5, Lx¼ 0.7, f1¼ 0.01, f2¼ 0.7. The results

obtained for this set are shown in Table 7.

As can be seen in Table 7, for most cases, the CuBOid

algorithm has succeeded in autonomously detecting the

anomalies. The algorithm failed to detect four of the 22

registered leaks, namely the leaks at the DMAs of Belleville

Réservoir, Cité Universitaire, Plaine Vaugirard (1) and Sor-

bonne. The registered leak at Belleville Réservoir is a

single day event, harder to detect by the algorithm. In the

case of Cité Universitaire, data gaps prevented the CuBOid

algorithm from finding good solutions. Incomplete event

registrations of anomalies at Plaine Vaugirard (1) and Sor-

bonne hinder the interpretation of results, although in the

latter case, the anomaly which is detected seems unrelated.

For the identified anomalies the results were assessed in

two ways: accuracy of identified start and end-dates and



Table 6 | Overview of the influence of some characteristics of the datasets and the parameters considered to run the algorithm on the obtained results

Characteristics of dataset and
parameter Effect

Noise Higher noise values lead to a decrease of the estimated amplitude of the block functions – especially
visible in dataset 1

Higher noise values make the algorithm more sensitive to the f1 penalty coefficient: for datasets 1 and 2
the algorithm fails to identify block functions when higher values for the f1 penalty coefficient are
considered

Gap between anomalies Overall results for datasets 1 are better than the results for datasets 2. The difference between sets 1 and 2
is the duration of the added anomalies: for sets 2 anomalies last longer, and the gap between them is
shorter. This makes it harder for the algorithm to clearly identify two separate block functions

For datasets 2, the algorithm has more difficulties in identifying the four necessary steps to describe the
block functions. For several tests, the algorithm uses, or less or more steps, than the ones required for
the block identification. For datasets 1 and 3, and for the majority of the tests, the four necessary steps
are well identified

Number of clusters The number of clusters significantly influences the computational time. When three and four clusters are
considered the average computational times are respectively 6 to 17 times longer than when two clusters
are considered. Since the generated datasets have only two anomalies, setting the number of clusters
equal to two is ideal. However, when performing the test to real data, from which anomalies are not
known beforehand, but instead are desired to be identified, setting the number of clusters to two can
entail some risks such as not identifying more anomalies than two, if they exist. On the other hand
increasing the number of clusters can lead to the identification of more blocks than the actual anomalies,
mainly if anomalies occur soon after each other and there is some noise in the data. A suitable value for
the f1 penalty factor should be chosen to prevent this issue

Number of steps The number of considered steps also influences the computational time. When using five or six steps
instead of four, the computational times are five and eight times longer, respectively

Increasing the number of steps can lead to better results, especially when more noise is added to the data.
However, it also leads to the identification of extra block functions in some cases. A suitable value for
the f1 penalty factor should be chosen to prevent this issue

Lx norm Using the L2 norm to determine the steps size leads to worse results in terms of the distance between the
identified block functions and the matrix of b-factors. This effect becomes even more evident when the
added noise increases. On the other hand, the use of the L2 norm seems to decrease the risk of
identifying a third block

Two intermediate values for the Lx norm were also considered (0.7 and 1.25). In some tests the lower value
lead to better results, while the higher value leads to worse results

Penalty f1 For several tests, when using a very small f1 penalty, (0.01), the algorithm identifies a third block function,
located between the anomalies. With this very small penalty, the algorithm is not penalizing the use of
more block functions and adds a block which is fitting the added noise. Increasing the f1 penalty solves
this problem. For datasets 1a–1c, it is sufficient to consider a f1 penalty of 0.33 However, for datasets 2a–d,
the algorithm benefits from higher f1 penalty values, and in some cases to avoid the identification of a
third block it is necessary to increase the f1 value to 0.7

Penalty f2 For most of the performed tests the value of the f2 penalty has no influence on the results. The exceptions
are for datasets 2c where increasing the f2 penalty avoids identifying a third block
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estimated intensity. Regarding the start and end-dates three

situations were identified: good agreement of a single

block, good agreement of combination of blocks and identi-

fication of leakage repair. The first situation refers to

anomalies that are identified by a single block and for

which the start and/or end-dates are the same, or within 1

day difference, of the corresponding reported dates. Since
analysis were carried out on a monthly basis, in some

cases the end-date matches the last day of a month. This hap-

pens, for instance, for Belleville. The start-date is 1 day from

the registered date, but the end-date corresponds to the last

day of the period of analysis (30-4-2011). To overcome this

issue the analysis could be repeated considering a 2 month

period. The second situation refers to anomalies that were



Table 7 | Overview of registered leaks and anomalies identified using CFPD analysis with the CuBOid algorithm
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found not as one single block, but as a succession of blocks.

This is probably related to the noisy character of the dataset

(in the sense that many things are going on). Even though it

would have been more elegant for the algorithm to find

these as a single block, for operational purposes it does

not really make a difference. A special case of this type is

presented by Chapelle. The corresponding signal shows a

huge anomaly, apparently unrelated to the leak, of more

than 4,000 m3/h which drops by approximately 300 m3/h

at the reported date of the fixing of the leak. The third situ-

ation refers to blocks that identify not the leakage, but the

leakage repair. In these cases, the start-date of the block is

closer to the end-date of the registered anomaly. For

instance, for Plaine Vaugirard (2), the algorithm identifies

a block starting at 26-04-2011, 1 day earlier than the end-

date of the registered anomaly. In this case the estimated

intensity of the anomaly is also negative, due to the

reduction in measured flow. This leads us to the estimated

intensities: results were classified using different shades of

green (or grey), representing the relative deviation from

the registered value. In many cases, the amplitude matches

the amplitude estimated by Eau de Paris quite well. Note,

however, that a mismatch in the start date or amplitude

may also be due to an inaccuracy in the original estimate.

Figure 8 illustrates the obtained graphical results forCour-

celles (month of February 2012), Maine (month of May 2012)

and Vaugirard (month of June 2011). It is visible that the

inherent noise of the data make human interpretation of
Figure 8 | Graphical results for: (a) Courcelles, February 2012; (b) Maine, May 2012; (c) Vaugir
these block diagrams more difficult, while the algorithm per-

forms well on clearly identifying the anomalies, emphasizing

the capability and usefulness of the algorithm.

As mentioned above, some natural anomalies have a

smooth rather than an abrupt initiation (a leak with growing

flow rate over time). In an extension of this work, these

could also be included in the analyses with a separate type

of block function, with two non-zero segments, the first lin-

early rising from 0 to 1 and the second a constant 1.

Operational application of the CFPD method and the

CuBOid algorithm will clearly not focus on the rapid detec-

tion of large bursts. More suitable methods exist, e.g.

monitoring for combined flow increases and pressure

drops above threshold levels. As CFPD depends on duration

of anomalies for their detection, it is more appropriate for

detecting smaller, less urgent leakages which nevertheless

may represent a significant amount of water lost over

longer periods of time. As such, an accurate determination

of the amplitude of anomalies is more important than an

accurate determination of the start and end dates. Also, rep-

resentation by the method of a single anomaly as a

succession of multiple blocks rather than a single block, as

sometimes seen in our results, does not present a problem.

The method can be implemented as part of a monitoring

system for relatively small leakages, identifying anomalies,

e.g. one per week or month and sending suspect anomalies

(for which a grading or classification may need to be devel-

oped) to human operators for further analysis.
ard, June 2011.
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CONCLUSIONS

In this paper, we presented the CuBOid algorithm for the

automated detection of anomalies in CFPD block diagrams.

The automated recognition of features in CFPD block

diagrams has several advantages. The tests which have

been performed demonstrate clearly that the method

works well to objectively identify anomalies in synthetic

data, with automated estimation of start and end dates as

well as amplitudes. Successful application of the method

to real flow data from Paris, showing autonomous detection

of 82% of known anomalies, shows that the CuBOid algor-

ithm can also perform well in operational conditions.

However, a broader application to different datasets and dis-

tribution systems is required to generalize this conclusion.

This algorithm can remove the need for human interpret-

ation of matrices of a and b-factors in the CFPD block

analysis method. This means that analysis time is reduced

and greater objectivity and reproducibility of the analyses

are achieved. Moreover, it opens the possibility of appli-

cation to automatized alarms. Therefore, the logical next

step would be application in a real distribution network as

part of the operational framework.

Even though the CuBOid algorithm has been shown to

provide a useful addition to the CFPD algorithm, it will fail

to recognize anomalies with amplitudes significantly below

system noise levels (e.g. stochastic variability). This is a limit-

ation of the CFPDmethod rather than the CuBOid algorithm,

which is investigated in more detail in Van Thienen (),

and is a limitation of other leak detection methods as well.

Also, the main power of the CFPD method is in recognizing

events which last multiple days. The CuBOid algorithm does

not change this, as this issue is intrinsic in the CFPD method.

For the rapid detection of anomalies within minutes or hours,

more suitable methods exist.

There is, however, room for improvement in the CuBOid

algorithm in the sense that events with a less block-like shape,

such as slowly increasing leakage rates, can be included in

the future by defining specific shape functions for these.

Fine tuning the algorithms’ parameters is important to

obtain better results. At this point, the need for setting the

adequate values for these several parameters might be a

drawback of the presented method. This paper provides
some insights on the influence of these parameters on the

outcoming results. For practical applications it would be

easier to provide some rules of thumb for the choice of

these parameters. Deriving these rules requires more exten-

sive tests, considering series of water flow data from several

distribution systems with different characteristics. That is

why future developments should also include: (1) a more

extensive investigation on the influence of the algorithms’

parameter values on subsequent results, including combi-

nations not considered in the present paper (Table 1); (2)

tests on real flow data coming from water distribution sys-

tems with different characteristics and containing different

types of anomalies.
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pipe bursts and other events in water distribution systems.
J. Water Resour. Plann. Manage. 140 (4), 457–467.

Savic, D., Lambert, A. & Kapelan, Z.  Water losses
management and leakage detection techniques for water
distribution systems. Water Sewer. J. 2, 25–27.

Van Thienen, P.  A method for quantitative discrimination in
flow pattern evolution of water distribution supply areas with
interpretation in terms of demand and leakage. J. Hydroinform.
15 (1), 86–102.

Van Thienen, P. & Montiel, F.  Flow analysis and leak
detection with the CFPD method in the Paris drinking water
distribution system. In: 11th International Conference on
Hydroinformatics. New York City, USA.

Van Thienen, P., Pieterse-Quirijns, I., Vreeburg, J. H. G., Vangeel,
K. & Kapelan, Z. a Applications of discriminative flow
pattern analysis using the CFPD method. Water Sci. Technol.
Water Supply 13 (4), 906–913.

Van Thienen, P., Vreeburg, J. & De Kater, H. b Water flow data
key to pinpointing change. Water21, June 2013, 36.

Vítkovský, J. P., Lambert, M. F., Simpson, A. R. & Liggett, J. A.
 Experimental observation and analysis of inverse
transients for pipeline leak detection. J. Water Resour. Plan.
Manage. 133 (6), 519–530.

Wu, Z. Y. (ed.)  Water Loss Reduction. Bentley Institute Press,
Exton, Pennsylvania.

Wu, Z. Y., Sage, P. & Turtle, D.  Pressure-dependent leak
detection model and its application to a district water system.
J. Water Resour. Plan. Manage. 136 (1), 116–128.
First received 13 March 2015; accepted in revised form 14 October 2015. Available online 27 November 2015

http://dx.doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934)
http://dx.doi.org/10.13176/11.548
http://dx.doi.org/10.13176/11.548
http://dx.doi.org/10.13176/11.548
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000030
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000030
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000030
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000147
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000147
http://dx.doi.org/10.1016/S0266-8920(03)00045-6
http://dx.doi.org/10.1016/S0266-8920(03)00045-6
http://dx.doi.org/10.1016/S0266-8920(03)00045-6
http://dx.doi.org/10.1080/15730621003610878
http://dx.doi.org/10.1080/15730621003610878
http://dx.doi.org/10.2166/hydro.2013.094
http://dx.doi.org/10.2166/hydro.2013.094
http://dx.doi.org/10.2166/hydro.2013.094
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000339
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000339
http://dx.doi.org/10.2166/hydro.2012.171
http://dx.doi.org/10.2166/hydro.2012.171
http://dx.doi.org/10.2166/hydro.2012.171
http://dx.doi.org/10.2166/ws.2013.080
http://dx.doi.org/10.2166/ws.2013.080
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:6(519)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:6(519)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2010)136:1(116)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2010)136:1(116)


i © IWA Publishing 2016 Journal of Hydroinformatics | 18.3 | 2016
Automated feature recognition in CFPD analyses of DMA

or supply area flow data
APPENDIX 1: THE CFPD METHOD
In this section we give a summary of the description pre-

sented in Van Thienen (). Consider a supply area for

which the flow rate into the area (accounting for all

inflow, outflow and storage) is registered for a period of

time (e.g. a day, a week, a month or an entire year) and

again for a comparable period of the same length in another

year. The registered patterns are likely to be similar in shape

but not exactly the same. The simple CFPD procedure

allows a quantitative comparison of these patterns, taking

the following steps:

1. Sort both data sets from small to large magnitude. Sorted

measurement ranks, scaled to a 0–1 range, are on the

horizontal axis, flow rates are on the vertical axis.

2. Plot one data set against the other in a CFPD plot.

3. Determine a linear best fit with slope a and intercept b.

Note that the word pattern is used here in the sense of a

time series which is generally repetitive to a significant

degree with some variations. In general, it is preferable to
Figure A1 | Illustration of the CFPD block analysis. (a) CFPD analysis for each combination of b

B). Copied from Van Thienen (2013).
construct the CFPD plot with the first period on the horizon-

tal axis and the second on the vertical. In this case a> 1

and/or b> 0 corresponds to an increase in flow rate. Note

that comparison of periods of different length is also poss-

ible but requires an additional interpolation step, see Van

Thienen ().

For the application of the CFPD procedure on long time

series, it is desirable to perform a comparison of each period

(which will be called block in the following) within this time

series with each other period. This allows the identification

of changes on the timescale of individual blocks.

Figure A1 illustrates the procedure and results of such a

block analysis. A CFPD analysis is made (Figure A1(a)) of

all possible combinations of time blocks of a preselected

length of the comparison frame within the complete data-

set. Two matrices A (Figure A1(b)) and B (Figure A1(c))

are made, in which row i and column j represent blocks i

and j (within the time series), respectively, and entries Aij

and Bij are the factors a and b, respectively, resulting
locks, (b) visualization of slope values (matrix A), (c) visualization of intercept values (matrix
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from a CFPD comparison of block i with period j. The

entries in the upper triangle (the lower triangle is not

shown, as the matrices are antisymmetric) are grey toned

or colored as a function of their deviation from 1 (A) and

0 (B), respectively, with small deviation having a light

tone close to white and larger deviations having either a

darker tone and a sign (�/¼ /þ) indicating the direction

of the deviation, or a red (þ) or blue (�) color. The com-

plete matrices are constructed because it is usually not

clear beforehand which time block is suitable as a refer-

ence time block.
Changes in a or b which remain in the signal longer than

the frame length will show up in the block analysis as blocks

of similar tone and sign, allowing direct pinpointing

(in time) of events which cause these changes.
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