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BTO Management samenvatting

Clustering en prioritering voor het ontwerpen van een op risico 

gebaseerd monitoringprogramma in grondwaterbronnen voor 

drinkwater 

Auteur(s) Rosa M.A. Sjerpsa, Andrea M. Brunnera, Yuki Fujitaa, Bernard Bajemab, Martin de Jongeb, Patrick 

Bauerleina, Joost de Munka, Merijn Schriksb

a=KWR Watercycle Research Institute, b=Vitens 

Het aantal chemische parameters in monitoringprogramma's voor waterbedrijven is in het afgelopen 

decennium sterk toegenomen. In overeenstemming met de Europese Drinkwaterrichtlijn (EU DWD) richten 

de waterbedrijven zich op een op maat gesneden en risico gebaseerd monitoringprogramma. In dit 

project hebben we een dergelijk monitoringprogramma ontwikkeld voor Vitens, dat voornamelijk 

grondwater als bron gebruikt.  

Methode We gebruiken reeds beschikbare 

gegevens om de Vitens bronnen te clusteren, 

zowel doelstofgegevens als screeninggegevens 

op basis van hoge resolutie massaspectrometrie 

(HRMS). We stellen prioriteiten op basis van 

(voorlopige) drinkwater richtwaarden of van de 

‘threshold of toxicological concern’ (TTC) en 

suggereren een op risico's gebaseerd 

monitoringprogramma voor elk cluster van 

bronnen. Voor de screeningsgegevens 

prioriteren we de gevonden ‘suspects’ voor 

verdere bevestiging van de identiteit op basis 

van semi-kwantitatieve concentraties in 

combinatie met informatie over in vitro toxiciteit 

op basis van de ToxCast-database. 

Resultaten 

Van de 731 gemeten doelstoffen worden er 153 

één of meerdere malen gedetecteerd gedurende 

een periode van vijf jaar. Een fractie (1.398 van 

de 12.294) van de responsen uit de HRMS 

screening komt overeen met 3.590 mogelijk te 

verwachten stoffen die in gebruik zijn of elders 

eerder aangetroffen (suspects). 108 bronnen 

zijn vervolgens op basis van zowel de 

doelstoffen als de suspects ingedeeld in 7 

clusters. De relatief schone bronnen met een 

laag aantal organische chemicaliën en lage 

concentraties komen voor in gebieden met alle 

soorten landgebruik. Clusters van bronnen met 

relatief hogere aantallen chemicaliën en hogere 

concentraties komen vaak voor daar waar 

relatief veel oppervlaktewater infiltreert. Voor 

geperfluoreerde chemicaliën worden 25 van de 

691 mogelijk te verwachten stoffen aangetroffen 

in de bronnen, terwijl 7 suspects ook voorkomen 

in drinkwater. De identiteit hiervan is nog verder 

te bevestigen. Voor de doelstoffen vertoont de 

eenvoudige behandeling de laagste verwijdering, 

terwijl op sorptie gebaseerde technieken relatief 

hoge verwijderingsrendementen vertonen. 

(Voorlopige) richtwaarden ((p)GLV's) zijn 

beschikbaar voor 45 van de aangetroffen 

doelchemicaliën, en worden gebruikt voor 

prioritering voor het bewaken van frequenties. 

Deze chemicaliën leiden individueel niet tot zorg 

voor de menselijke gezondheid. We geven 

prioriteit aan suspects voor verdere 

identiteitsbevestiging op basis van 

semikwantitatief voorkomen in geproduceerd 

water, detectiefrequenties en informatie over 

toxische potentie op basis van in vitro 

toxiciteitgegevens. Zodra de identiteiten van 

deze suspects bevestigd zijn en ze beoordeeld 

zijn als relevant, kunnen de suspects worden 

toegevoegd aan doelstofanalyses.
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Implementatie De aanpak in dit project geeft een 

werkbare ‘workflow’ voor risicogebaseerde 

monitoring voor doelchemicaliën op basis van 

clusters van grondwaterbronnen. Ook leidt deze 

aanpak tot inzicht welke nieuwe relevante 

chemicaliën nadere aandacht behoeven op basis 

van HRMS screening.  
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Summary 

The number of chemical parameters included in monitoring programs of water utilities 

increased in the last decade. In accordance with the European Drinking Water Directive 

(EU DWD), utilities aim at a tailored risk-based monitoring program. Here, such a risk-

based monitoring program is developed for the largest Dutch water utility, mostly using 

groundwater as a source. We use available data to cluster the different source waters, 

both target data as non-target/suspect monitoring data based on high resolution mass 

spectrometry (HRMS). We prioritise targets based on (preliminary) drinking water 

guideline values or the threshold of toxicological concern (TTC) and suggest a risk 

based monitoring program for each cluster of source waters. We prioritize the suspects 

for further identity confirmation based on semi-quantitative occurrence concentrations 

combined with in vitro toxicity information based on the ToxCast database.  

Out of 731 measured target chemicals, 153 are once or multiple times detected over a 

five year period. A fraction (1,398 out of 12,294) of occurring non-target features 

matches to 3,590 suspects. 108 source waters are clustered into 7 clusters. Source 

waters with a low number of organic chemicals which are detected in low 

concentrations, are located in areas with all land-use types. Clusters of source waters in 

which higher numbers of chemicals occur are related to high levels of infiltrated surface 

water. For perfluorinated chemicals, 25 out of 691 suspects match detected features in 

source waters while 7 suspects are also found in drinking water. For the target 

chemicals simple treatment shows lowest removal rates, while sorption based 

techniques show relatively high removal efficiencies. The chemical composition of all 

drinking waters relates to non-contaminated source waters. (Preliminary) guideline 

values ((p)GLVs) are available for 45 of the retrieved target chemicals, and are used for 

prioritisation for monitoring frequencies. These chemicals individually pose no 

appreciable concern to human health. We prioritize suspects for further identity 

confirmation based on semi-quantitative occurrence in produced water, detection 

frequencies and information on toxic potency. Once confirmed and assessed as 

relevant, the suspects can be added to target monitoring.  

This approach provides a feasible workflow for risk based monitoring for target 

chemicals for clusters of groundwater sources, connected to a feed of new relevant 

chemicals based on HRMS suspect screening. 
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1 Introduction 

1.1 Towards risk based monitoring 

Worldwide, drinking water regulations prescribe drinking water quality standards for a 

selection of chemicals. The EU Drinking Water Directive (EU DWD) for example lists 

standards for 26 chemical parameters. Most drinking water utilities monitor a broad set 

of parent chemicals and their transformation products, using target, non-target 

(Hollender et al. 2017) and bioanalytical methods (Leusch et al. 2017). The EU DWD 

stimulates that drinking water monitoring is performed in a more flexible way, provided 

that protection of public health is ensured. The aim is to reduce obsolete analyses and 

concentrate on relevant issues, following the principle of ‘hazard analysis and critical 

control point’ (HACCP) (Van Wezel et al. 2010) and the water safety plan approach as 

developed by WHO (Kot et al. 2015).  

Compared to surface water, groundwater is less intensively studied and monitored 

(Loos et al. 2010, Lapworth et al. 2012, Jurado et al. 2012). Groundwater can however 

be highly influenced by anthropogenic activities related to the land-use (Ter Laak et al. 

2012), by infiltrating surface water (Sui et al. 2015), by historical contamination (Eggen 

et al. 2010) or by activities in the sub-soil (Bonte et al. 2011). The susceptibility of the 

groundwater aquifers to these pressures depends on soil characteristics and 

groundwater hydrology (Mendizibal et al. 2012, Van Wezel et al. 2009). Chemical 

properties, such as persistence and mobility, are reflected in spatio-temporal patterns 

of chemical occurence in groundwater after emissions. The chemical properties also 

influence removal efficiencies during drinking water production, depending on the 

water treatment techniques applied (Van Wezel et al. 2017).  

Water utility Vitens services drinking water in a large area in the Netherlands, using 

groundwater as a major source. The set of organic chemical parameters in their 

monitoring program tripled the last decade. In accordance with the EU DWD, the water 

utility aims to prioritize measured chemicals and to develop a tailored risk-based 

monitoring program. In literature several prioritisation methods for chemicals of 

emerging concern (CEC) have been developed (Guillén et al., 2012), that make use of 

target monitoring data (von der Ohe et al., 2011), non-target and suspect screening 

data (Hollender et al., 2017; Moschet et al., 2014; Sjerps et al., 2016), exposure models 

(Arnot et al., 2012; Wambaugh et al., 2013) or chemo-informatics (Guha et al., 2016). 

The aim here is to develop a risk-based monitoring program for the drinking water 

sources involved in the service area of the water utility. We use available target and 

non-target/suspect monitoring data and characteristics of the supply zones. We use 

clustering techniques to cluster the supply zones based on target and suspect data. We 

prioritise targets based on (preliminary) drinking water guideline ((p)GLVs) values or 

threshold of toxicological concern (TTC). Based on this information we suggest a risk 

based monitoring for each clusters of supply zones. We prioritize the suspects for 

identity confirmation based on semi-quantitative concentrations combined with in vitro 

toxicity information. 
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2 Materials and methods 

2.1 Typology drinking water supply zones  

The data used originate from 141 source waters, mixed water from one or multiple 

pumping wells prior to drinking water treatment in the central, eastern and northern 

parts of the Netherlands. Two drinking water supply zones are mainly fed by river bank 

filtrate, the other supply zones use groundwater as a source. Per source water the 

percentage infiltrated surface water is given, expressed in four classes i.e. i) 5-10%, ii) 

10-20%, iii) 20-50% and iv) 50-70%. The supply zones are classified following the 

ABIKOU typology (Stuyfzand 1996, Van Wezel et al. 2009), in which A corresponds to 

phreatic groundwater in sandy soil, B for (semi-)confined groundwater, I for artificially 

infiltrated surface water and U for riverbank infiltrated surface water. The land-use in 

the 25 year infiltration zone is defined as the percentages of urban, agriculture and 

nature area in the total recharge area.  

The water is treated at 96 production stations. The drinking water treatment techniques 

consist mostly of commonly used drinking water treatment techniques such as 

flocculation, sand filtration, aeration, water softening, pH adjustment and more 

occasionally also includes reverse osmosis (RO) and active carbon filtration. 

2.2 Analytical chemistry 

We use monitoring data generated by Vitens drinking water laboratory. This laboratory 

works via strictly defined QA/QC criteria, takes part in round robin tests, works via ISO, 

OECD or NEN standard procedures when available, and is officially accredited via the 

Dutch Board for Accreditation. Vitens routinely performs monitoring in both the source 

and produced waters, for 731 target chemicals using several methods (See S.I. RBM.xlsx 

‘s.i. targets’). Current monitoring frequency in source water is at least once per year. 

The frequency depends on the estimated susceptibility of the supply zone and on if the 

parameter is explicitly mentioned in current legislation. Here we use routine target 

monitoring data produced in the period 2010 to 2016. This dataset consists of 553,440 

entries for source water including 8,954 entries above reporting limits, and 760,339 

entries for drinking water including 5,352 entries above reporting limits. For each 

parameter, the frequency of detection and variability (averages and 90th percentiles) 

over 2010-2016 of the detected concentrations is deduced averaged over all samples 

from source waters, and averaged per cluster of source waters and drinking water. 

In addition, the source and produced waters of all supply zones are in 2016 once 

monitored using non-target high-resolution mass-spectrometry (high-pressure liquid 

chromatography). Vitens is equipped with an AB Sciex Q-TOF (API Triple TOF 5600+), 

used in positive and negative ionization mode. In total, this dataset consists of 41,267 

detected entries in source water and 12,123 detected entries in drinking water. All 

results are expressed in terms of internal standard equivalent (IS-eqs.), for both positive 

and negative ionization mode neburon was used as internal standard. A total of 12,294 

non-targets features (7,503 using positive ionization mode and 4,791 using negative 

ionization mode) are matched to NORMAN SusDat (14,632 entries, www.norman-

network) and Sjerps et al. (2016) (5,219 entries) for the purpose of suspect screening. 

The latter consists of industrial chemicals (>100 ton), pharmaceuticals, veterinary 

pharmaceuticals, pesticides and biocides which are authorized on the European market. 
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Specific attention is paid to perfluorinated chemicals, for which the Norman PFAS 

suspect list was used comprising 691 CAS-numbers. Suspect data are filtered according 

to their accurate mass (tolerance <5ppm) and predicted retention time (tolerance <3 

min). In the present study, confidence levels of the retrieved suspects, according to the 

scheme by Schymanski et al. (2014), are not defined. For each parameter, the frequency 

of detection and variability (averages and 90th percentiles) of the semi-quantitative 

concentrations is given. 

2.3 Clustering 

To cluster the source water samples, average concentrations of each target chemical 

are calculated over a period of 6 years for each sampling location. Average 

concentrations are based on detected concentrations above the reporting limit (RL); 

when all measurements on a sampling location over 2010-2016 are below RL the 

concentration is expressed as 0.5*RL, based on the lowest RL for the target chemical in 

the dataset. The following is excluded from the dataset; a) CH4, DOC, TOC, b) 

chemicals that are not found above RL in any of the source water samples, c) chemicals 

that are measured in less than 100 water samples and d) source water samples for 

which less than 50 chemicals are measured. All chemical concentrations are log-

transformed. This results in a subset of 108 source water samples and 152 target 

chemicals. 

The 108 source waters are clustered using k-means clustering. This is a commonly used 

algorithm of unsupervised learning, and is used to partition a number of observations 

into k clusters based on their similarity. To relate the clusters of source water to 

information of a large number of chemicals, we reduce dimensionality of the dataset 

using principal component analysis (PCA). The chemicals that are detected in only one 

water sample are excluded. The major axes of variations extracted with PCA are 

interpreted based on the loading of each chemical. The clusters of source waters are 

projected on the reduced dimensions of PCA. In addition, the clusters are also 

projected on a plane of two metrics which represent overall abundance of target 

chemicals, i.e. total concentrations and number of all detected chemicals. Finally, the 

clusters of source waters are compared to surface water influence, the proportion of 

land-use types (urban, agriculture, nature), and the ABIKOU class. For the sake of 

presentation, the clusters are numbered based on their median values of total 

concentration of all detected chemicals.  

Identically, drinking water samples are also clustered based on target chemicals. The 

above mentioned exclusions result in a subset of 101 drinking water samples and 112 

target chemicals. Chemicals that are detected in only one water sample are excluded, 

leaving 72 chemicals. K-means clusters are related to treatment class applied to each 

drinking water (Table 1).  

Using the PCA loadings of detected target chemicals in source water, the PCA scores of 

101 drinking water samples are calculated and plotted on the PCA plane based on 

source water. The PCA scores of drinking water are derived by multiplying the 

concentrations of target chemicals in drinking water with the PCA loadings computed 

from target chemicals in source water. Known pairs of source water and produced 

drinking water are connected by arrows. In this way, the chemical composition of 

drinking water can be projected on the same 2D plane as source water, enabling a 

visualization of change in water quality due to treatment.  
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Source water samples are also clustered based on suspect chemicals. After the same 

exclusion procedure as target chemicals, source water samples and 1,297 suspect 

chemicals are used for k-means clustering.  Prior to the analysis, suspect chemical 

concentrations are log-transformed after adding 0.0001 µg/L IS-eq. Since the number 

of suspects is too large compared to the number of water samples to conduct PCA, we 

reduce the number of suspects from 1,297 to 162 by selecting only those that are 

detected in more than 5 water samples and with 90th percentiles greater than 0.01 

µg/L IS-eq (see Figure S.I.1).  

All statistical analyses are conducted using R version 3.4.1. 

2.4 Analysis of treatment efficiencies 

Removal efficiencies are derived for all detected target chemicals in source water for 

locations with comparable combination of treatment techniques. For each drinking 

water production location and per target chemical, individual measurement of the 

concentration in the (mixed) source water is compared to the corresponding individual 

measurement of the concentration in the produced drinking water. The calculated 

removal efficiencies are expressed per group of production locations with similar 

treatment techniques (Table 1) and over all production locations. For parameters for 

which concentrations in drinking water are <RL, RL is assumed as a realistic worst case 

approach. Removal efficiencies are calculated as (Csource – C drinking water)/(Csource). 

Table 1. Treatment technology classes of the drinking water production locations. 

Treatment 

class 

Rapid sand 

filtration / 

marble filtration 

Active carbon 

filtration 

Nanofiltration or 

reversed osmisis 

# production 

locations 

Simple x - - 81 

Sorption x x - 4 

Size excusion x - x 10 

Sorption combined 

with size 

exclusion 

x x x 3 

2.5 Prioritisation and risk based monitoring for target chemicals 

When (preliminary) drinking water guideline values ((p)GLVs) are available for target 

chemicals present in source waters or produced drinking water, these are used for 

further prioritisation (eg. Baken et al. submitted). Chemicals are prioritized for all 

supply zones and per cluster by comparing averages and 90th percentiles of the 

concentration in source water and produced drinking water to the (p)GLVs. The ratio of 

both is expressed as the Benchmark Quotient (BQ, Schriks et al. 2010). For those target 

chemicals for which no (p)GLVs are available, the concentrations in produced drinking 
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and source water are compared to the TTC (threshold of toxicological concern) value 

(Mons et al., 2013).  

We suggest that all target chemicals that are not detected in any source or produced 

water, can be monitored in a lower frequency, in accordance to the monitoring 

obligations related to the EU Water Framework Directive. Higher frequencies are 

recommended for all chemicals that are found in produced or source water, according 

to Table 2. This risk-based monitoring program for target chemicals is defined per 

cluster of source waters based on the criteria for monitoring frequency. 

Table 2. Criteria for frequency of monitoring of target chemicals in source and drinking water. 

Criteria for target chemicals 
Advice for frequency in monitoring 

program 

Non-detect Low frequency 

Detected only in source water not in produced 

water, BQ <0,001 or <0,01 µg/L for targets 

without (p)GLV 

Moderate low frequency 

Detected in produced drinking water, BQ<0,001 

or <0,01 µg/L for targets without (p)GLV 
Moderate high frequency 

Other High frequency 
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2.6 Prioritisation for identity confirmation for suspect chemicals

For both target and suspect chemicals, octanol water partition coefficient (log Kow) and 

half-life (DT50) values are gathered via EPI Suite (US EPA, 2012). When available, 

experimental data are preferred over modelled data. DT50 values are predicted 

according to Biowin 3, which is built on measured biodegradability data of over 200 

substances for which molecular fragments are described. Likely biodegradation half-

lives are expressed by a score system, i.e. 5 reflects hours, 4 reflects days, 3 reflects 

weeks, 2 reflects months and 1 reflects years (Aronson et al. 2006). For further analysis 

of the suspects in relation to log Kow and DT50, all features that match to more than 5 

suspects are neglected for further analyses, to reduce uncertainty. 

For further analysis of the suspects in relation to their toxicity, features that match a 

similar suspect from the different suspect lists are reduced to one entry. Minimum and 

5th percentile AC50 values, i.e. the concentration at which 50% of the maximum 

response is achieved per chemical per in vitro bioassay, are gathered from EPA’s 

ToxCast database (e.g. Richard et al. 2016, US EPA, 2015). ToxCast chemical codes are 

linked to CAS numbers of the suspects retrieved. AC50 values are extracted for all in 

vitro assays in which a chemical is tested. For more details we refer to Brunner et al. 

(submitted). The features are prioritized for further confirmation based on the ratio of 

average IS-eq occurrence in all produced waters divided by the minimum AC50 per 

feature. 
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3 Results and discussion 

3.1 Clustering of source waters based on targets 

Out of 731 measured target chemicals, 153 chemicals are once or multiple times 

detected.  

PCA axes 1 and 2 of target chemicals in source water explain respectively 14,8% and 

9,4% of the total variance. Axis 1 is associated with negative loading of almost all 

chemicals and therefore reflects cleanness of water (Figure S.1.2.a). This axis is highly 

and negatively correlated with the number of detected target chemicals (spearman 

correlation coefficient ρ= -0.64, p < 0.001) and the total concentrations of the target 

chemicals (ρ= -0.46, p < 0.001). Source water which is influenced with a large amount 

of surface water scores low on this axis (Figure S.I.2.a). PCA axis 2 reflects the type of 

chemicals present in the sample, since most of the pesticides, pharmaceuticals or 

artificial sweeteners are positively related to this axis while industrial chemicals are 

negatively related (Figure S.I.2.b). Accordingly, the scores of samples on this axis are 

positively correlated with the proportion of agricultural land-use (ρ= 0.44, p < 0.001) 

and negatively correlated with the proportion of urban land-use (ρ= -0.63, p < 0.001). 

The clustering of the source waters based on target chemicals is depicted in Figure 1a 

and Figure 1b (see S.I.RBM.xlx ‘s.i. sources’) for clustering of the individual source 

waters and their properties). A k-value of 7 is chosen because the variance explained by 

the clusters starts to plateau at k-values between 7 and 10. Cluster 7, which are the 

relatively non-vulnerable source waters with low concentrations and low number of 

target chemicals, occurs in all land-use types. Source waters consisting solely of the 

land-use nature are clustered into cluster 7. Source waters in cluster 3 and 4, in which 

higher number of target chemicals are found, consist of more than 50% of infiltrated 

surface water. Two wells influenced by point source contamination with chlorinated 

hydrocarbons are separately clustered in cluster 1. See Figure S.I.3. for more 

information on clustering of source waters related to the supply zone typology in terms 

of land-use and influence of surface water infiltration. 

3.2 Clustering of source waters based on suspects 

In all 141 individual source waters, 1,398 features are retrieved that match to 3,590 

suspects as described. Detected suspects do not show a different pattern in 

hydrophobicity of toxicity compared to non-detected suspects (Fig. S.I.4.). Features can 

match to a maximum of 36 different suspects, on average features match to 3 different 

suspects both in the positive and negative ionisation mode (Fig. S.I.5). The majority of 

the suspects retrieved will therefore be false positives. Using smaller suspect lists will 

lead to fewer hits and fewer false positives, but potentially also to false negatives. 

Similar, to clustering based on the detected target chemicals, 7 clusters of source 

waters were distinguished based on the detected suspects (Figure 1c & 1d, 

S.I.RBM.xlsx). 

PCA axis 1 and 2 of suspect chemicals in source water explain respectively 19.8% and 

7.4% of the total variance (Figure 1c & d). For source waters in cluster 7, again the 

relatively non-vulnerable source waters, all land-use types are present in their recharge 

areas; however recharge areas with a high proportion of agricultural area are less 
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frequently present. A high number of suspect chemicals are found in source waters 

from cluster 1, 3 and 4, influenced by more than 50% infiltrated surface water. See 

Figure S.I.3. for more information on clustering of source waters related to typology in 

terms of land-use, influence of surface water infiltration and structure of the subsoil. 

A comparison of clustering based on target and suspect chemicals (Table 3) shows that 

approximately half of the source waters (56 out of 108, grouped as cluster 7 for both) 

can be considered as relatively non-vulnerable to anthropogenic influences in terms of 

both target chemical composition and non-target chemical composition. Seven of the 

source waters, i.e. cluster 3 and 4 for the targets and cluster 1,3, and 4 of the suspects, 

are similar with relatively high levels of surface water infiltration. There is an large 

overlap between cluster 6 based on targets and cluster 6 based on suspects, which 

consists of source waters with a high percentage of agricultural land-use.  

However it is also clear that suspect screening gives complementary information to the 

target analyses (Sjerps et al. 2016), as many other source waters clustered differently 

based on either target or suspect data. An example are 5 source waters from cluster 7 

based on the suspects, consisting of relative clean waters, that occur in cluster 1 and 2 

according to the targets, consisting of relatively contaminated waters. On the other 

hand, 5 source waters from cluster 1 and 2 based on the suspects, consisting of 

relatively contaminated water also cluster in clusters 6 and 7 based on the targets, 

consisting of relatively clean waters. An explanation for these differences is chemicals 

that are not well ionized or that are very volatile cannot easily be detected via liquid 

chromatography high resolution mass spectrometry (LC-HRMS) used for suspect 

screening. 
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Target Chemicals 

a b 

Suspect chemicals 

c d 

Figure 1: Clustering of source water target data (a) and suspect data (c), plotted on PCA axis 1 and 

2, and plotted according to total concentration and number of detected chemicals per sample for 

target data in µg/L (b) and suspect data in IS eq/L (d). 
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Table 3: Clustering of 108 out of 141 source waters based on target chemicals and suspect 

chemicals compared (see also SI RBM.xlsx ´S.I. sources´) 

Target based cluster → 1 2 3 4 5 6 7 Sum 

Suspect based cluster ↓ 

1 0 0 2 0 0 1 0 3

2 0 3 0 1 0 2 2 8

3 0 0 1 0 0 0 0 1

4 0 0 0 3 0 0 0 3

5 0 1 0 0 3 1 7 12

6 0 0 0 0 1 9 2 12

7 2 3 0 0 3 5 56 69

Sum 2 7 3 4 7 18 67 108

3.3 Perfluorinated chemicals 

For the perfluorinated chemicals, 25 suspects from the Norman PFAS suspect list match 

features in the source waters. Depending on the exact suspect 1 to 33 different supply 

zones for source water contain these suspects, while 7 suspects are also retrieved in 

drinking water, in 1 to 14 different production stations (Table S.I.1). Merely four of 

these 25 retrieved suspect perfluorinated chemicals are REACH registered. For 17 

chemicals the registration status is “pre-registered”. For these chemicals information on 

which companies are actually producing/using them cannot be retrieved. Furthermore, 

only for a few chemicals it is known what they are actually used for. They are mainly 

employed as surfactants. A total of 14 of these chemicals could not be found as 

mentioned in scientific literature. However, there are two papers dealing with the global 

emission of several C4-C14 PFCA’s (Wang et al. 2014ab). In Korea mean concentrations 

of PF’s in WWTP effluent and sludge are between 1 ng/L – 800 ng/L and 1 – 100 ng/g 

(Kwon et al. 2017). At least two chemicals from the list are found in WWTP’s in Korea: 5 

ng/L (355-46-4) and 80 ng/L (335-67-1) (Kwon et al. 2017). 

3.4 Analysis of treatment efficiencies 

When samples of produced drinking water are plotted on the PCA planes derived from 

target chemicals in source water (Figure 1a), they coincide with cluster 7 of the non-

vulnerable source waters (Figure 2). Both simple and sorption techniques, combined 

with mixing of individual source waters, have a positive effect on the composition of 

the water quality. 
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Figure 2. PCA scores for source water (black) and drinking water samples (red) plotted on the PCA 

axes as derived in Figure 1a. The source water is connected to the complementary drinking water 

by lines.  

The mean removal efficiencies for simple, sorption and size exclusion treatment 

techniques differ significantly (ANOVA, p<0.01, Figure 3a). Variability in removal 

efficiency within locations with the same treatment techniques does occur. Drinking 

water treatment based on only simple treatment techniques shows as expected the 

lowest removal rates, while sorption based techniques -granulated activated and 

powder activated charcoal- show relatively high removal efficiencies. Techniques for 

size exclusion include reverse osmosis and nanofiltration and generally treat only half 

of the drinking water volume at the production locations of the water utility and 

followed by mixing with differently treated water. The removal rates presented in Figure 

3a are based on concentrations in mixed drinking water which explains the relatively 

low removal efficiencies. Removal efficiencies for target chemicals treated with sorption 

techniques, i.e. active carbon filtration, show as expected (Westerhoff et al. 2005) a 

significant correlation with hydrophobicity (p<0.01, Figure 3b), however the explained 

variance is low (R2=0.02). Several target chemicals, at few points in time and at few 

production locations, are introduced or show an increase in concentration during 

drinking water treatment as a result of transformation processes. This holds for 65 

chemicals and for 69 production locations. 
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Figure 3. (a.) Distribution of removal efficiencies, including removal efficiencies based on <RL in 

drinking water, for target chemicals per treatment type. Box extends from 25th to 75th percentiles 

and whiskers extent from 1 to 99th percentiles, size exclusion is applied on only half of the 

produced drinking water volume. (b.) Relation between removal efficiencies for individual target 

chemicals for production stations where sorptive techniques are included and hydrophobicity 

(p<0.01, R2=0.02). 

3.5 Prioritisation and risk based monitoring for target chemicals 

For the prioritisation of target chemicals (provisional) drinking water guideline values 

((p)GLVs) are used, which are available for 45 of the 153 target chemicals found in 

source and drinking water. For all these target chemicals, concentrations in drinking 

water are below the benchmark quotient of 0.1 (Figure 4). So, these individual target 

chemicals pose individually no appreciable concern to human health, which is in line 

with earlier conclusions (Schriks et al. 2010, Baken et al. submitted, Bruce et al. 2010, 

De Jongh et al. 2012, Houtman et al. 2014).  

In drinking water, 19 chemicals with a pGLV and 22 chemicals without an pGLV have a 

BQ>0.001 based on the 90th percentile concentration. According to Table 2, these 

chemicals are advised to be most frequently monitored in drinking and source water. 

For source water, 32 chemicals with an available pGLV and 81 chemicals without an 

pGLV have a BQ>0.001 based on the 90th percentile concentration. Again, these 

chemicals are advised to be most frequently monitored in drinking and source water, 

and when possible to derive a pGLV if this is absent. For each cluster of source waters, 

according to the established criteria for frequency of monitoring of target chemicals in 

source and drinking water (Table 2), a suggestion for a risk based monitoring program 

for the target chemicals is given (Table SI RBM.xlsx sheet ‘s.i. targets’). 
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FIGURE 4. PROVISIONAL DRINKING WATER GUIDELINE VALUES (BAKEN ET AL. SUBMITTED) 

COMPARED TO MEAN AND 90TH PERCENTILE CONCENTRATIONS FOUND IN DRINKING WATER AND 

SOURCE WATER. CONCENTRATIONS OF CHEMICALS WITHOUT PGLVS ARE COMPARED TO OF THE 

TTC VALUE OF 0.1 µG/L (IN GREY). BLACK LINE REPRESENTS A BENCHMARK QUOTIENT OF 1, WHILE 

DOTTED LINE REPRESENTS AN BENCHMARK QUOTIENT OF 0.1

3.6 Prioritisation for identity confirmation for suspect chemicals 

As features can match multiple suspects, further effort is needed to confirm identity 

based on e.g. isotopic patterns and MS2 fragmentation data (Schymanski et al. 2014) 

and ultimately by obtaining a reference standard and match the retention time and 

spectra. In view of the efforts demanded, automation of structural identification based 

on MS2 data, cross-laboratory exchange of information and open science will be needed 

to achieve this (Schymanski and Williams, 2017). Structured, semi-automated workflows 

are being developed for prioritisation and confirmation (Pochodylo and Helbling 2017, 

Kaserson et al. 2017, Gros et al. 2017, Hollender et al. 2017).  

Here we prioritize suspects for which it is warranted to further confirm identity. Once 

confirmed and assessed as relevant the suspects can be added to the target 

monitoring, as the semi-quantitative expression of concentrations in IS-eq. brings along 

large uncertainties of multiple orders of magnitude related to the concentrations as 

expressed based on reference standards (Sjerps et al. 2016). After a period of more 

intensive monitoring to collect a sufficient body of data, again prioritisation and risk 

based monitoring can be performed as described. 
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Of the 3,590 retrieved suspects 1,017 have a type of use classification (Sjerps et al. 

2016), and for 2,398 and 2,819 of the suspects information is available on respectively 

log Kow and DT50 according to EPI Suite (US EPA, 2012). For 2,400 of the retrieved 

suspects, AC50 data are available in the EPA ToxCast database. 

Average concentrations and frequencies of detection in relation to log Kow and DT50 

show no clear pattern that more hydrophobic and degradable suspects are better 

removed (Fig. S.I.7). Such a pattern  would be expected (Reemtsma et al. 2016), but the 

relation is probably disturbed by false positives occurring in the dataset.  

Data on average I.S.-eq. and AC50 values per feature are given in Figure 5, for source 

and produced drinking water. The number and concentrations of suspects are as 

expected higher in source water as compared to produced drinking water. Many 

suspects retrieved in the source waters are not found in finished drinking water. Only a 

limited number of suspects is found in finished drinking water but not in the source 

water, potentially transformation products formed during drinking water production 

(Bader et al. 2017). This will be further detailed in a separate study.  

The suspects are prioritized for further confirmation based on the ratio of average IS-eq 

occurrence in produced water divided by the minimum AC50 times the detected 

frequency (Table 4 and SI RBM.xlsx sheet ‘s.i. suspects’). For a feature of which the 

suspect is to be confirmed, all possible suspects for that feature are to be considered. 
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FIGURE 5. AVERAGE SUSPECT CONCENTRATION VERSUS IN VITRO TOXICITY AS BASED ON MINIMUM 

AC50 FOR SUSPECTS IN SOURCE (A) AND PRODUCED (B) WATER. 
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Table 4. Top 20 prioritized suspects for further confirmation of identity. 

ionisation 
mode 

Feature (m/z / RT) CAS Suspect Frequency 
of 

detection 

Ratio average 
concentration 

in IS-eq / 
minimum AC50  

+ 114.0913 / 12.54 2687-91-4 1-ethylpyrrolidin-2-one 1.1% 84794 

+ 286.0724 / 16.65 4291-63-8 cladribine 18.1% 116 

+ 276.1967 / 29.87 134-09-8 menthyl anthranilate 31.9% 80 

+ 180.1255 / 15.48 680-31-9 
hexamethylphosphoric triamide; 
hexamethylphosphoramide 2.1% 170 

+ 301.2155 / 27.50 72-63-9 metandienone 1.1% 692 

+ 221.1538 / 29.00 719-22-2 2,6-Di-tert-butylquinone 3.2% 62 

+ 297.1856 / 28.40 57-63-6 ethinylestradiol 1.1% 157 

+ 357.2408 / 30.78 979-32-8 b-Estradiol-17-valerat 1.1% 1477 

+ 102.0912 / 12.88 109-02-4 4-methylmorpholine 1.1% 734 

+ 343.1547 / 22.42 27138-31-4 oxydipropyl dibenzoate 1.1% 196 

- 190.1252 / 22.16 15299-99-7 napropamide 2.1% 4376 

- 233.1191 / 26.53 49763-96-4 stiripentol 8.5% 194 

- 321.1688 / 28.30 26538-44-3 Zeranol (Alfa Zearalanol, a-ZAL) 3.2% 1072 

- 251.1291 / 23.62 2386-87-0 
7-oxabicyclo[4.1.0]hept-3-ylmethyl 7-
oxabicyclo[4.1.0]heptane-3-carboxylate 1.1% 541 

- 265.1592 / 25.63 126-71-6 triisobutyl phosphate1 1.1% 249 

- 219.9843 / 14.47 88-51-7 4-amino-6-chlorotoluene-3-sulphonic acid 2.1% 342 

- 219.1030 / 21.94 77-83-8 ethyl 2,3-epoxy-3-phenylbutyrate 6.4% 43 

- 137.0256 / 14.34 99-06-9 3-hydroxybenzoic acid 1.1% 223 

- 232.9797 / 18.48 120-36-5 dichlorprop 1.1% 353 
1triisobutyl phosphate has a similar mass as tributylphosphate detected in 

concentrations up to 0.2 µg/L 
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4 Conclusion 

 We propose a feasible workflow to design risk based monitoring for drinking 

water utilities. The monitoring program is specified for target chemicals for 

clusters of groundwater supply zones, connected to a feed of new relevant 

chemicals based on LC-HRMS suspect screening.  

 Out of 731 measured target chemicals, 153 chemicals are once or multiple times 

detected in all sources and produced drinking waters over a five year period.  

 1,398 out of 12,294 occurring non-target HRMS features match to 3,590 

suspects. Detected suspects do not show a different pattern in hydrophobicity of 

toxicity compared to non-detected suspects. Many suspects retrieved in the 

source waters are not found in finished drinking water, while only a limited 

number of suspects is found in finished drinking water but not in the source 

water. We prioritized suspects for which the identity is to be further confirmed 

based on the ratio of occurrence in produced water and potency. Once confirmed 

and assessed as relevant the suspects can be added to the target monitoring. 

 108 source waters are clustered based on target and suspect information in 7 

clusters. Approximately half of the source waters can be considered as relatively 

non-vulnerable to anthropogenic influences. Clusters of source waters where 

higher number of chemicals are detected relate to high levels of infiltrated 

surface water. The chemical composition all drinking waters clusters similar to 

the non-contaminated sources.  

 For perfluorinated chemicals, 25 out of 691 suspects match features in source 

waters. 7 suspects are also retrieved in drinking water. Limited information is 

available for the 25 retrieved suspect perfluorinated chemicals both in the EU 

REACH registration and in scientific literature.  

 Produced drinking water clusters with the non-vulnerable source waters. Both 

simple and sorption techniques, combined with mixing of individual source 

waters, have a positive effect on the composition of the water quality. Mean 

removal efficiencies for simple, sorption and size exclusion drinking water 

treatment technologies differ significantly. Treatment based on only simple 

treatment shows lowest removal rates, while sorption based techniques show 

relatively high removal efficiencies.  

 For prioritisation of target chemicals, (p)GLVs are available for 45 of the153 

retrieved chemicals. These chemicals pose individually no appreciable concern to 

human health.  

 Per cluster of source waters, according to proposed risk-based criteria for 

frequency of monitoring of target chemicals in source and drinking water, a 

suggestion for a risk-based monitoring program for target chemicals is given.  
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6 Attachment(s) 
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Attachment I - Supporting 

Information & Figures  

Figure S.I.1. 90th percentile of suspect concentration and number of water samples in which the 

suspect chemical was detected in source water. For PCA analysis for suspects in source water, 162 

suspects were used which were detected in more than 5 water samples and have a 90th percentiles 

>0.01 ug/L IS eq. 
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a) b) c) 

d) e) f) 

Figure S.1.2.a. Relations between PCA scores of target water samples vs a) proportion of urban 

land-use, b) proportion of agriculture land-use, c) proportion of nature land-use, d) surface water 

category, e) number of detected chemicals, and f) total concentrations of all chemicals (µg/l). 
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Figure S.1.2.b. Loadings of target chemical in source water on PCA axis 1 and 2. Colors of arrows 

depict different chemical uses. 
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Figure S.I.3.a. Occurrence frequency of 7 clusters of source water samples based on target

chemical composition, per well typology. The typologies used are: proportion of agricultural land-

use, proportion of nature land-use, proportion of urban land-use, ABIKOU class, and influence of 

surface water infiltration. ABIKOU and categories for surface water infiltration is described in 

material and method section. 



BTO 2018.072 | July 2018 31 Clustering and prioritisation to design a risk based monitoring program in 
groundwater sources for drinking water 

Figure S.I.3.b. Distribution of 7 clusters of source water samples based on target chemical 

composition, projected on a ternary plot of proportion (%) of three different land-uses: agriculture, 

urban, and nature. Size of the circles depict surface water infiltration category. 

Figure S.I.4. Hydrophobicity and minimum AC50 Toxcast toxicity data compared for detected and 

non-detected suspects. 
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Figure S.I.5. Features match to a maximum of 36 and 35 different suspects in positive and 

negative mode, respectively, median 3 different suspects both in the positive and negative 

ionisation mode 
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S.I.6.a. Occurrence frequency of 7 clusters of source water samples based on suspect chemical 

composition, per well typology. The typologies used are: proportion of agricultural land-use, 

proportion of nature land-use, proportion of urban land-use, ABIKOU class, and influence of 

surface water infiltration. ABIKOU and categories for surface water infiltration is described in 

material and method section. 
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S.I.6.b. Distribution of 7 clusters of source water samples based on suspect chemical composition, 

projected on a ternary plot of proportion (%) of three different land-use: agriculture, urban, and 

nature. Size of the circles depict surface water category. 
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Figure S.I.7. Retrieved suspects in produced drinking water in relation to log Kow and DT50, in 

grey points suspects that occur in source waters but not in produced waters. 
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Table S.I.1. Suspect list (details) 
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