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Abstract: Improving the risk models to include the possible infection risk linked to pathogen intrusion
into distribution systems during pressure-deficient conditions (PDCs) is essential. The objective of the
present study was to assess the public health impact of accidental intrusion through leakage points in
a full-scale water distribution system by coupling a quantitative microbial risk assessment (QMRA)
model with water quality calculations based on pressure-driven hydraulic analysis. The impacts on
the infection risk of different concentrations of Cryptosporidium in raw sewage (minimum, geometric
mean, mean, and maximum) and various durations of intrusion/PDCs (24 h, 10 h, and 1 h) were
investigated. For each scenario, 200 runs of Monte Carlo simulations were carried out to assess the
uncertainty associated with the consumers’ behavioral variability. By increasing the concentrations
of Cryptosporidium in raw sewage from 1 to 560 oocysts/L for a 24-h intrusion, or by increasing the
duration of intrusion from 1 to 24 h, with a constant concentration (560 oocysts/L), the simulated
number of infected people was increased by 235-fold and 17-fold, respectively. On the first day of the
1-h PDCs/intrusion scenario, a 65% decrease in the number of infected people was observed when
supposing no drinking water withdrawals during low-pressure conditions at nodes with low demand
available (<5%) compared to no demand. Besides assessing the event risk for an intrusion scenario,
defined as four days of observation, the daily number of infected people and nodal risk were also
modeled on different days, including during and after intrusion days. The results indicate that, for
the case of a 1-h intrusion, delaying the start of the necessary preventive/corrective actions for 5 h
after the beginning of the intrusion may result in the infection of up to 71 people.

Keywords: QMRA; sustained pressure drops; accidental intrusion; infection risk from Cryptosporidium;
pressure-driven hydraulic analysis

1. Introduction

Distribution system (DS) deficiencies may play a role in the occurrence of waterborne disease
outbreaks [1]. Ageing of pipeline infrastructure is going to become more problematic over time by
increasing the probability of experiencing sustained low/negative pressure conditions in the network
(pipe breaks), leading to possible intrusion from points of leakage. Assessment of public health risk
associated with such type of events may be achieved through modeling. While reliable hydraulic and

Water 2019, 11, 1372; doi:10.3390/w11071372 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-4578-4158
http://www.mdpi.com/2073-4441/11/7/1372?type=check_update&version=1
http://dx.doi.org/10.3390/w11071372
http://www.mdpi.com/journal/water


Water 2019, 11, 1372 2 of 17

water quality models can be used to simulate ingress of contaminated water and its propagation into a
network, the use of quantitative microbial risk assessment (QMRA) models is required to estimate the
potential health risk. QMRA and management approaches can contribute in bringing safer water to
consumers [2].

Modeling of water quality under pressure deficient conditions. Integration of pressure-driven
hydraulic analysis into QMRA models is required for a more accurate risk analysis of water
contamination resulting from accidental intrusion under sustained pressure-deficient conditions
(PDCs). In such conditions, a reliable estimation of intrusion points, contamination mass rate entering
the DS, and fate/transport of contamination through the network cannot be achieved using traditional
demand driven-analysis (DDA) models such as EPANET 2 [3]. Pressure-driven analysis (PDA) was
coupled to single species water quality modeling to optimize management strategies (e.g., flushing and
isolation actions) by minimizing the mass of consumed contaminant [4–6]. A more detailed literature
review on hydraulic and water quality modeling under sustained PDCs can be found elsewhere [7].

Applications of QMRA to drinking water DSs. Despite evidence of drinking water DS
deficiencies causing infectious waterborne diseases [8,9], the majority of QMRA work has been
devoted to assessing risk of drinking water treatment failures [2]. Viñas et al. [10] and Hamouda et
al. [11] presented detailed literature reviews on QMRA models applied to microbial contaminants in
drinking water DSs. Besner et al. [12] developed a conceptual model to assess the public health risk
associated with intrusion events. QMRA models have been applied to real DSs to evaluate the infection
risk associated with the presence of viruses resulting from intrusion events caused from transient
PDCs [13–15]. Standard QMRA models consider the water is consumed randomly at any time or at
fixed times during the day [14,16,17]. The timing of water withdrawals for drinking purpose is an
important factor when assessing the probability of infection as a result of intrusion events and may not
be the same as the timing of the total consumption [17,18]. An improved QMRA that integrates the
consumer’s behavior (probability density functions (PDFs) of the numbers of glasses and the volume
consumed, and kitchen tap use) was developed and applied to assess the infection risk associated with
contamination after main repairs [18,19]. They investigated the impact of different parameters such
as the location of contamination and the times of valve openings on the infection risk with various
pathogens (Campylobacter, Cryptosporidium, Giardia and rotavirus), in the absence of any disinfectant
residual. Schijven et al. [20] also considered consumer behavior to estimate the infection risk from
ingestion of contaminated water or inhalation of contaminated aerosol droplets in the case of intentional
contamination of different durations and seeding concentrations in a DS.

Improving estimations of the infection risks due to sustained pressure deficient conditions requires
numerical approaches that produce realistic estimations of nodal ingress volumes, predictions of
propagation throughout the network, and integration of the consumer’s behavior during and after
pressure losses. Besner et al. [16] emphasized the necessity of performing PDA instead of DDA to
simulate the infection risk associated with PDCs in future studies. Besides low pressure, the presence of
external contamination and pathways are essential for intrusion to occur [21]. Adjusting the presence
of potential pathway for intrusion based on the state of decay of the piping has been proposed [22,23].

The primary objective of this work was to estimate the infection risk associated with accidental
intrusion through leakage points into a DS as a result of unplanned sustained low/negative pressure
events (24 h, 10 h, and 1 h). To achieve this goal, several original improvements to the various models
were made. First, the QMRA model developed by Blokker et al. [18] was customized and linked
with water quality calculations based on a pressure-driven hydraulic analysis. Then, the estimated
contamination mass rate at each intrusion node was adjusted by the assigned leakage demand (proxy
for pipe age and material) and the pressure values during PDCs, computed using PDA. Finally, to
better simulate the consumers behavior during low-pressure conditions, the consumption of tap water
was adjusted based on demand availability (no demand or <5%) on the infection risk. The secondary
objective of this work was to propose a basis for the analysis of risk to guide the definition of areas
subjected to a boil water advisory or corrective actions. To achieve this goal, we assessed the potential
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use of the temporal (daily versus event) and spatial distribution of nodal risks to determine the location
and the duration of advisories. To the knowledge of the authors, no study so far has quantified the
infection risk of accidental intrusion resulting from sustained PDCs, using realistic PDA to adjust
intrusion volume for nodal pressure, perform water quality analysis and integrate the impact of
demand availability on the consumption during pressure drops.

2. Methodology

The QMRA model developed by Blokker et al. [18] was customized to be coupled with water
quality calculations based on pressure-driven hydraulic analysis. The model was used to quantify the
infection risk associated with accidental intrusion events as a result of sustained PDCs in a full-scale
DS. The main steps for risk analysis are exposure analysis and calculation of infection risk. A simplified
flow chart of the QMRA steps is illustrated in Figure 1. These steps include: (a) simulating the hydraulic
behavior of the network under the intended PDCs to define the intrusion nodes, intrusion flow rates
(based on size of opening leaks and pressure differential), and nodes with unsatisfied demand; (b)
defining the outside pipe conditions to calculate the potential contaminant mass rate entering the
system; (c) modeling fate/transport of ingress microorganisms through network; (d) specifying the
microbial exposure (dose) considering consumers’ drinking water behavior; and (e) estimating the risk
of infection based on dose–response models.
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Figure 1. Flowchart for QMRA of accidental intrusion during sustained PDCs; WL, water level;
MO, microorganism.

2.1. Exposure Analysis

2.1.1. Hydraulic and Water Quality Analysis

To estimate the ingested dose, fate/transport of contaminants through the network should first
be estimated using appropriate hydraulic and water quality models. Water quality modeling based
on PDA was performed using WaterGEMS V8i (SELECTseries 5) [24]. Transport of Cryptosporidium
oocysts through the network was simulated over time and, because Cryptosporidium is highly resistant
to chlorine disinfection [25], the chlorine decay was not included in the model. Sewage is defined as the
source of contamination outside the pipes. Minimum, geometric mean, arithmetic mean, and maximum
levels of Cryptosporidium in sewage were assumed to be 1, 6, 26, and 560 oocysts/L, respectively [26].
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The DS model used in this study includes 30,077 nodes and 3 water treatment plants (WTPs),
which serve nearly 400,000 residents. More details on the simulated full-scale network can be found in
Hatam et al. [7]. The unplanned shutdown of one WTP was simulated and a 5 m decrement in the
outlet pressure of the two other WTPs was assumed as a result of the flow-rate increase. It should
be noted that the two other WTPs might (partially) compensate the shutdown of the other WTP as
the entire network is hydraulically interconnected. Following the shutdown duration (1, 10 or 24
h), the simulation was continued for 3 days to investigate the long-term public health impacts of
the accidental intrusion events in this large DS. The impacts of intrusion duration on exposure and,
consequently, risk of infection were studied. More details on accidental intrusion modeling can be
found in the Supplementary Materials. Nodes with pressure head less than 1 m were considered as the
potential intrusion sites (Figure S4). In the hydraulic model, for the sake of simplicity, the demand is
considered constant during the day and equal to the peak hour demand (i.e., 19:00) for the scenarios of
1, 10 and 24 h of PDCs/intrusion. Additional scenario with the daily water consumption pattern in the
hydraulic model was studied for the intrusion event resulting from 1 h PDCs set to start at 18:30.

2.1.2. Consumption Events

The temporal concentrations of Cryptosporidium calculated from water quality analysis were then
imported into MATLAB (MathWorks, Natick, MA, USA) where the QMRA was performed for exposure
assessment and dose–response analysis. Consumption events or consumers’ behavior in this study
refer to: (1) the volume of consumption; (2) the number of times that one fills a glass; and (3) the times
at which the glass is filled from the tap. In the present study, consumption times corresponded to
the water use at the kitchen tap as proposed by Blokker et al. [18]. In the simulations, the average
kitchen tap use was then modified for each node of the studied network based on the nodal residential
demand and the availability of demand, calculated from PDA under PDCs. In this study, the average
kitchen tap use for non-residential nodes (about 60% of the nodes) was set to zero. This differed from
Blokker et al. [18], who adjusted the average kitchen tap use at certain times to include zero demand
periods identified by detailed residential demand. In this study, to account for demand satisfaction
as computed by PDA at each node, the kitchen tap use was set to zero at times when there was no
demand available under PDCs (Figure S1). For PDCs with some demand satisfaction, it was assumed
that consumers can adjust the filling duration based on the available flow at the tap. If the PDCs did
not last for the whole day, the total daily volume of water consumed by each person at the nodes with
no demand under PDCs would not be affected. The sensitivity of the results to the demand satisfaction
ratio (DSR) was investigated in an additional scenario by fixing the kitchen tap use to zero at the time
when there is low (<5%) demand available at the nodes. This approach is more realistic as the required
time to fill a glass of water at a kitchen tap will increase by more than 20 times when the DSR is less
than 5%.

The other important parameter for estimating the risk of exposure to microbial contamination is
the volume of water that is ingested per person per day. The number of times each person would fill
his/her glass or bottle during a day was estimated using a Poisson distribution. The ingested volume
at each filling time was defined by a lognormal distribution. Due to the lack of information for the
studied network, the data from Blokker et al. [18] were used for the simulation and more details can be
found in their paper.

In this study, the hydraulic and water quality conditions were assumed to be known for each
scenario, and 200 runs of Monte Carlo simulations were performed to investigate consumers’ behavior.
In each Monte Carlo run, the number and times of consumption events as well as the ingested volume
for each consumption event were randomly picked for each person every day of the simulation.

In the studied hydraulic model, the total nodal demands could be a combination of different
types of demand defined as: residential, commercial, industrial, institutional, municipal or, leakage. In
total, 11,194 of the nodes included residential demand. To determine the number of people supplied
per node, the residential demand per node was considered and the daily per capita average demand
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was set to 220 L/person/day. Consequently, only the residential exposure from tap water as a result
of the simulated accidental intrusion was investigated (e.g., exposure at school was not considered).
More information on the estimation of the number of people at each node and the distribution of
population is in the Supplementary Materials. Dose is equal to the number of consumed pathogens
and was calculated by multiplying the intake volume by the concentration of pathogens at the time of
withdrawal. This step was repeated for all the glasses that a person takes over the simulation duration,
which is 1 day for daily risk and 4 days for the event risk. For each person, the total dose was calculated
by summing the dose in each glass consumed.

2.2. Calculation of Infection Risk

Dose–response analysis was performed to calculate the infection risk for each person resulting
from accidental intrusion during sustained PDCs. The computed dose was implemented in the
dose–response model employed by Blokker et al. [19] for Cryptosporidium using the median (50th
percentile) and maximum (100th percentile) dose–response relationships. The median infection risk is
reported everywhere in this study unless otherwise stated.

The calculated infection risks of all the people in the network were summed up and rounded to
the nearest integer greater than or equal to the calculated value to estimate the equivalent number
of infected people for the simulated event [18]. The number of infected people was calculated either
for the whole observation period (4 days) or for each day separately. To calculate the nodal risk, the
infection risks corresponding to all the people at the same node were summed up.

3. Results

Estimating ingress volumes. Histograms of nodal pressures and demand satisfaction ratios
(DSRs: available nodal demand divided by the required demand) using PDA are illustrated in Figure 2.
Fewer than 1% of the nodes (93 nodes) were prone to intrusion as they experienced pressures less than
1 m under PDCs, which corresponded to the set pressure head above pipes. For about 30% of the nodes,
the pressure was less than or equal to the required pressure value assumed in this study for full demand
satisfaction (15 m). The DSRs for these nodes are shown in Figure 2b, excluding nodes with no required
demand. Figure 2b shows that 1103 nodes have a DSR of less than 50% during depressurization.
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Figure 2. Distribution of: (a) nodal pressures for the whole network (30,077 nodes); and (b) demand
satisfaction ratios (DSRs) for nodes under pressure-deficient conditions (8578 nodes), excluding the
nodes with zero demand.

The distribution of intrusion flow rates at the ingress nodes is illustrated in Figure 3. The
maximum flow rate was 56 L/h and about half of the nodes had an intrusion flow rate less than 5 L/h.
The contaminated water entered the network at a flow rate of 804 L/h through all the leakage orifices.
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For the scenarios of 10 and 24 h PDCs, the intrusion flow rate at each node remained constant during
the event because of the use of a constant demand. As the 1 h event, with daily consumption pattern,
was assumed to occur at the peak demand hour, the nodal intrusion flow rates also corresponded to
those shown in Figure 3.
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Figure 3. Distribution of nodal intrusion flow rates through 93 leak openings under the simulated
pressure-deficient conditions.

Concentrations of pathogens in sewage. To cover different consumption behaviors, 200 Monte
Carlo simulations were carried out for each scenario of Cryptosporidium concentration in sewage (1, 6,
26, and 560 oocysts/L). The resulting cumulative probability distributions of the number of infected
people are plotted in Figure 4. In this figure, the solid lines correspond to the median infection risk,
and the dotted lines are the maximum infection risk. For all concentrations, the number of infected
people associated to the maximum infection risk was increased by about two folds compared to the
median infection risk. For the concentration of 560 oocysts/L, 50% of the consumption events led to
at least 1378 (2652) infected people considering the median (maximum) infection risk. As expected,
the number of infected people increased when the Cryptosporidium concentration increases from 1 to
560 oocysts/L.

Consumption behavior. Figure 5 shows the sensitivity of the number of infected people over
the four-day observation period to the volume of consumption (300 mL, 500 mL or 1 L per day per
person) and number of glasses per day (1, 3, or 10). A total of nine scenarios were considered with
a Cryptosporidium concentration of 560 oocysts/L and 24 h of PDCs. As expected, lower volumes of
unboiled tap drinking water per person per day largely reduced the infection risk. By decreasing the
volume by half (500 mL), the number of infected people decreased by 40%; decreasing the volume to
300 mL reduced the risk further by about 60%. By increasing the number of glasses per day from 1 to
3, 19 more people were likely to be infected for a 300 mL volume, and this value became 62 for a 1 L
consumption volume per day per person (based on the values of F(x) = 1).
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Duration. Shorter duration PDCs can take place in real networks because of WTP shutdowns,
pipe breaks or fire flows. The cumulative probability distribution of the number of infected people for
200 random consumption behaviors is shown for different durations of PDCs: 1, 10, and 24 h (Figure 6).
In all scenarios, the timing of the event was adjusted so that the network experienced low/negative
pressures at the peak consumption time (i.e., 19:00) of the first day. A significant dependence of
the infection risk with the intrusion duration was observed: a lower maximum number of infected
people (84) was observed for a 1-h intrusion compared to 502 and 1410 for 10 and 24 h intrusion
events, respectively.
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Figure 6. Comparing the probability distribution of the number of infected people over a four-day
period for 200 Monte Carlo simulations for each duration of PDCs: 1, 10, and 24 h; Cryptosporidium
concentration in sewage = 560 oocysts/L.

Spatial distribution of nodal infection risk. Besides the number of infected people under PDCs,
the temporal and geographical distribution of infection risk is also essential in defining appropriate
preventive/corrective actions. In this regard, the probability of infection of the individuals who were
assigned to the same node were summed up to predict the nodal risk. Figure 7 shows the spatial
distribution of risk for above-mentioned scenarios corresponding to the consumption events with the
maximum number of infected people (F(x) = 1 in Figure 6). As shown, with increasing duration of
intrusion event, not only the nodal risks are were, but also larger areas were at risk.

Daily risk for the 1-h event with daily demand patterns. For the prior analyses, demand was
considered constant during the day and equal to the peak hour demand (i.e., 19:00) in the hydraulic
model. The reason is that adjusting different intrusion volumes and nodes at each hour of the
duration of PDCs using PDA would be computationally intensive. However, we investigated a 1 h
PDCs/intrusion using the daily water consumption pattern in the hydraulic model to assess its impact
on the infection risk. Over four days of observation, the maximum number of infected people increased
to 99 (Figure S3) with demand patterns compared to 84 with a constant demand in the hydraulic model
(Figure 6, 1 h).
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Figure 8 illustrates the daily probability of the number of people infected by Cryptosporidium
according to different consumption behaviors for the day that intrusion occurred (at 18:30) and the
three days post-intrusion. The day after the event, the maximum number of infected people was
reduced by 59% as compared to the event day. It indicates that, over time, the contaminated water
left the network as large volumes of water were used for purposes other than drinking, such as toilet
flushing and industrial usage. The maximum numbers of infected people for Days 1–4 were 71, 29,
3 and 1, respectively.

For Days 1–4, the total nodal risk corresponding to the consumption event with the maximum
number of infected people (F(x) = 1 in Figure 8) was estimated, and the spatial distribution is plotted
in Figure 9. The number of nodes at high risk decreased from Day 1 to Day 4 as well as the extent of
the areas at risk. At the end of the first day, when the intrusion ended, the nodal infection was ≤ 1 ×
10−7 at 29,754 nodes and higher than 1 × 10−4 at 123 nodes. Only 16 of the nodes showed total nodal
risks equivalent to more than one person. On Day 2, the total number of infected people through the
whole network decreases to 29 compared to 71 for Day 1, but the number of nodes with an infection
risk ≤ 1 × 10−7 was lower compared to Day 1. The reason is that Cryptosporidium oocysts reached more
nodes in the network on Day 2, but at lower concentrations as the ingress volume became diluted and
flushed out. On Day 2, the nodal infection risk was more than one only at four nodes. On Days 3 and
4, the nodal infection risk was below one for all the nodes.
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Figure 9. Spatial distribution of nodal risk; Days 1–4 for the scenario of 1 h of PDCs with daily
consumption patterns; Cout = 560 oocysts/L; nodes with infection risk below 1 × 10−3 are drawn in
black; infection risks corresponding to consumption events with F(x) = 1 (Figure 8) are illustrated.

Impact of demand satisfaction ratio on risk. In all simulations, when the DSR (pressure ≤ 0)
became zero at a node, the kitchen tap use was set to zero. To study the influence of the DSR (shown in
Figure 2b) on the risk, the situation where no consumption happened at nodes with a DSR less than
5% was also modeled (Figure 10). For this investigation, the number of infected people following a
1-h PDCs/intrusion was computed on the day that intrusion occurred. As expected, the number of
infected people decreased when the consumption only occurred at the nodes with a DSR ≥ 5% during
low/negative pressure conditions (Figure 10).
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4. Discussion

Impact of event duration on the spatial distribution of risk in the network. During an intrusion
event, the intrusion risk was determined by several factors such as the intrusion volume, pathogen
concentration, network hydraulics, fate and transport of the contaminants and consumers’ behavior.
The volume of contaminated water entering the network is a function of the duration of the event. For
the events with 1, 10 and 24 h of sustained depressurization, the estimated intrusion volumes through
all leak openings were 0.8, 8 and 19 m3, respectively. Using the orifice equation, some studies have
produced estimates of the intrusion volumes through leakage points for transient PDCs [1,13,22]. The
total intrusion volumes resulting from a momentary pump shutdown for different intrusion conditions
through leakage orifices and submerged air vacuum valves (AVVs) ranged from 10 to 360 L in the same
network [22]. In contrast, these authors also showed that the maximum volume entering through a
single submerged AVV during a transient could be about 95 times larger than the maximum volume
entering through a single leakage orifice (227 L versus 2.4 L). In their study, the modeled intrusion
volume was driven by the global leakage rate (5% versus 40%) and pressure differential. However,
as these authors also stated, the orifice size at a given node should reflect the local leakage demand.
Using Monte Carlo simulations, Gibson et al. [23] investigated the impact of head differences, diameter
of orifices, pipe age (number of holes), and low pressure duration on the intrusion volumes during
transient negative pressure events. For a 25-year-old pipe, the probability of an intrusion volume
greater than 10 L was low (1%), while it increased to 70% for a 150-year-old pipe.

In the current study, the orifice size at each node was considered proportional to the assigned
nodal leakage demand in the calibrated model under normal operating conditions as described in
detail by Hatam et al. [27]. In the test DS, leakage demand reflects the state of pipes; older areas with
aging cast iron being the dominant pipe material has higher leakage and thus offers more potential
entry points for contaminated water. In this study, the effect of soil–leak interactions was ignored and
the exponent in the orifice equation was considered equal to the theoretical value (0.5) that is valid
for fixed leak openings. It was confirmed that the variation of the area of round hole with pressure
is negligible and therefore the leakage exponent was close to 0.5 [28,29]. However, for longitudinal
slits that have large head-area slope, a modified orifice equation should be used in which the leakage
exponent can change within 0.5 to 1.5 [30].

In this study, long durations of PDCs were considered as opposed to relatively short durations
of low and negative pressures. Sustained PDCs are reported in the literature due to transmission
main repairs [12,31] and can happen during power outages. This type of event may be less frequent
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than transient pressure fluctuations, but of graver consequences, as shown by the potentially larger
intrusion volumes. The duration of transient negative or low pressures is a key factor affecting the
virus infection risks estimated by QMRA [13–15]. As expected, for the simulated sustained PDCs,
the number of infected people for the three different intrusion durations showed strong dependency
on the intrusion duration (Figure 6), as it determines the total amount of Cryptosporidium oocysts
introduced into the network. The maximum number of infected people was reduced to less than half
when the intrusion duration decreased from 24 h (1410) to 10 h (502), and even more so if the event
only lasted 1 h (84). Our results are in agreement with those of Schijven et al. [20], who used QMRA
to investigate the impact of intentional contamination. Exposed persons were increased by 2–3 folds
when the duration of the injection of contaminants increased from 10 to 120 min.

More importantly, in this study, we showed that the duration determined the areas with high
pathogen concentrations corresponding to a potentially significant infection risk. The geographical
distribution of the nodal risk shown in Figure 7 emphasizes the importance of considering the
duration of PDCs/intrusion when issuing sectorial boil water advisories (BWA) as well as other
preventive/corrective actions. For 24 and 10 h intrusion events, the zones at risk were more or less the
same with different risk levels. However, for a much shorter duration of intrusion (1 h), the zones at
elevated risk were significantly reduced (Figure 8). The arbitrary cutoff line in Figure 8 can be used to
compare the summation of the total risks at nodes in different zones affected by contaminated ingress
water. On its right side, a very small cumulative risk of 0.2 infection for the 1 h intrusion was observed;
this risk increased to 1.4 and 3.5 for the intrusion events of 10 and 24 h, respectively. These values
include all low nodal risks (≤ 1 × 10−3), which are not plotted in Figure 7 for clarity.

Concentration of Cryptosporidium in ingress water. There are scarce data on the actual
concentrations of pathogens in ingress water. Concentrations of pathogens in ingress water could
range from those found in wastewater, representing a high-risk scenario of ingress directly from
undiluted sewage [26], to the much lower concentrations measured in trench water, urban groundwater
or runoff [32,33]. The number of infected people increased from 6 to 1410 when Cryptosporidium
concentrations increased from 1 to 560 oocysts/L (Figure 4, median) for the worst-case consumption
event (out of 200) (F(x) = 1). In agreement with our results, the contaminant concentration outside
the pipe ranked among the top factors in previous QMRA studies [13,15,18,34]. When using the
maximum dose–response relationship rather than the median relationship to account for uncertainties,
the maximum number of infected people increased about two folds (Figure 4). The magnitude of
differences between the median and maximum dose–response relationships is a critical factor to
consider as recent evidence suggests that even higher dose–response values for C. hominis should
be considered [2,25]. Therefore, both the concentrations and the selection of the dose–response will
contribute to uncertainty [2].

Consumption behavior. Standard QMRA models usually consider only one consumption event
per day [14,15] or a constant volume of consumption per day for every person at fixed hours [16,21]. For
the 24 h scenario, the amount of water consumed daily from the kitchen tap had a huge impact on the
maximum number of infected people, with decreases of ~40% and 60% when consumption was reduced
from a baseline of 1 L/day to 500 mL/day and 300 mL/day, respectively. The model was also sensitive,
but to a lesser degree, to the number of glasses per day for a fixed volume (Figure 5). Increasing the
number of glasses per day from 1 to 10 increased the overall infection risk (by up to 2%) for the 24-h
scenario. This rise was more pronounced for larger consumption volumes (Figure 5). Impact of the
number of glasses per day was most noticeable when switching from a single consumption event to 3
or 10 consumption events. Blokker et al. [18] and Van Abel et al. [35] also observed that three ingestion
volumes per day result in higher numbers of infected people compared to only one withdrawal of the
total volume per day.

Several studies have investigated and integrated probabilistic models to better represent the
consumers’ behavior into QMRA models, including PDFs of volume of unboiled tap water, number of
glasses per day, volume per glass, timing of consumption, and household water usage [17,18,20,36].
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Blokker et al. [18] fully integrated consumers’ behavior using a Poisson distribution for the number
of glasses per person per day and a lognormal distribution for the ingested volume per glass and
the kitchen tap use. This model was applied to investigate various scenarios of fecal contamination
resulting from DS repairs and the potential for preventive actions to mitigate risks of infection. In this
study, we used the Blokker model to investigate accidental intrusion due to sustained low/negative
pressure event of various durations, adding 200 simulations to quantify the range of risks corresponding
to different consumers’ behavior. The differences between the numbers of infected people for minimum
(F(x) = 0) and maximum (F(x) = 1) probabilities in Figure 8 reveal the potential impact of consumers’
behavior for a specific event. The ranges were widest for the first day (from 71 to 46 people, 35%
reduction) compared to the following days. The variations observed were less important in the
scenarios of 10 and 24 h (Figure 6). Understanding the uncertainty associated with a combination of
plausible behaviors appears important.

Impact of daily demand. The diurnal consumption patterns result in variable intrusion volumes
and numbers of intrusion nodes during different hours of the day because of the variations in nodal
pressure values. In this study, the demand was set to peak hour demand, which could lead to
overestimation of intrusion volumes if system pressure was not decreased for night flows. On the
other hand, fixed peak water demand overestimated the flushing of contaminants from the network by
leakage, commercial, industrial, institutional demands, etc. during periods of low human consumption,
resulting in an underestimation of the risk. With the scenario of 1 h PDCs/intrusion which incorporates
daily demand patterns in the hydraulic model, it was shown that the underestimation was about 15%,
which we consider to be acceptable (Figure 6 compared to Figure S3).

Integrating demand availability from PDCs. The novelty of this work lies in the coupling of the
PDA and QMRA. Unlike DDA, PDA permits identification of areas with demand shortage, allowing
for more realistic estimations of consumption based on water availability at the tap during pressure
losses. For example, consuming at a DSR of 5% and less would mean that the filling time would
increase by more than 20-fold. As shown on Figure 10, the number of infected people on Day 1
decreased sharply from 71 to 24 (65%) if only consumers at nodes with DSR >5% during low/negative
pressures were considered. It should be noted that limitations to consumption only occur during the
low-pressure conditions. Furthermore, the extent of these differences depends on the consumption
time, and the duration and timing of the event. The results shos that restricting drinking water
consumption during periods of low or intermittent flow would greatly reduce risks. Therefore, utilities
and health authorities could consider educating people not to consume water during these periods of
low flow. Further study is needed to define a minimal DSR criteria based on the amount of reduction
in infection risk.

Implication for risk management. The nodal risks considered the contaminant transport in the
network and the probability of coincidence of passage of contaminants at the tap and consumption.
However, the spatial and temporal distribution of total nodal risks also reflected the distribution of the
population between nodes (Figures 7 and 9). The areas in which to issue a BWA, and those where
corrective actions (e.g., flushing) would be effective, can be determined using nodal risk values in
reference to an acceptable risk level.

QMRA models have been used to evaluate the efficacy of different mitigation strategies such as
BWAs, flushing, and disinfection for reducing the infection risk after main break repairs/transient
pressures [14,18,34]. Yang et al. [34] showed that flushing at >0.9 m/s reduced infection risks by 2–3 logs
for norovirus, E. coli O157:H7 and Cryptosporidium. For viral and bacterial pathogens, disinfection
with a CT of at least 100 mg·min/L using free chlorine was required after flushing to decrease the
risk below the USEPA yearly microbial risk target value (1 × 10−4) [37]. Issuing a system-wide BWA
that decreased by 80% the average number of glasses of unboiled water consumed led to a four-fold
reduction in the number of infected people [18].

Estimating the daily risk, instead of the event risk, after an intrusion event can guide risk
management decisions. The spatial distribution of risk as shown in Figure 9 is a key factor to define
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the boundaries and duration of sectorial BWAs. Figures 8 and 9 show the contribution of each day
to the total event risk over the four-day period. Notably, for the 1-h intrusion, delaying necessary
preventive/corrective actions up to 5 h from the start of the intrusion may result in the infection of
up to 71 people. After that 5-h mark, a BWA or other preventive/corrective actions would still offer
protection for about 33 additional people (sum over the three following days). The reduced benefit
of late interventions on the fourth day was evident with only one equivalent infection prevented.
Timely response to sustained PDCs is therefore essential and can be achieved by improving sampling
strategies using enhanced numerical model [27] and equipping the DS with multiple online pressure
sensors and water quality sensors. The duration of the BWA could be adjusted depending on the
corrective actions implemented to meet the acceptable risk level for an event.

Figure 11 offers insights into whether pressure during PDCs can be used to determine areas to
target for preventive/corrective actions. Pressure during the PDCs determine the extent of intrusion.
However, whether contaminants will travel from low-pressure nodes to higher pressure nodes (based
on pressure during PDCs) is determined by water paths during normal and PDCs. This was clearly
illustrated by the fact that, for the 1-h PDCs, consumption of tap water at nodes other than negative
pressure nodes resulted in 63, 28, 3, and 1 infected people on Days 1–4, respectively. This showed that
the benefits of avoiding consumption at negative nodes (based on the pressure values under PDCs)
after the PDCs was limited, as these values for the whole network, including negative nodes, were
71, 29, 3 and 1, respectively. Even with a pressure criterion of 15 m, the number of infected people
on Day 2 would be significant (6) (Figure 11). These results are consistent with the study by Hatam
et al. [27] who showed that E. coli can be transported to higher pressure zones (up to ~40 m) in the
absence of disinfectant residuals during a 5-h PDCs/intrusion. Our results emphasize that issuing
sectorial BWAs based only on pressure is not adequate to protect the population against infection, even
for the scenario of 1-h PDCs/intrusion with a high Cryptosporidium concentration (560 oocyst/L). The
simulation of the fate and transport of contaminants is necessary to define an effective sectorial BWA.Water 2019, 11, x FOR PEER REVIEW 15 of 18 
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Figure 11. Number of infected people for different pressure (P) ranges (based on the pressure values
under PDCs) on Days 1–4; Infection risks corresponding to the consumption event with F(x) = 1
(Figure 8) are illustrated. The event starts at 18:30 on Day 1 for a duration of 1 h. Daily patterns in the
hydraulic model.

In future work, reporting the hourly risk, instead of the daily risk, could be helpful to utilities to
define preventive/corrective actions and timely response. In this study, the PDCs occurred at 18:30 on
Day 1, therefore some of the daily demands were already satisfied before the intrusion event. The
timing of the event impacts the infection risk, which needs to be investigated in future studies. Blokker
et al. [18] showed limited effect for timing of repairs.
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Although the field validation of the transport of pathogens and indicators appears desirable, it is
however not feasible to conduct in complex operating distribution systems. Such validation would
require extensive monitoring during intentional extended loss of pressure events and monitoring of
infections by an epidemiological investigation that utilities and health authorities will not allow. The
conservative modelling presented in this study nevertheless demonstrates the value of numerical tools
combined to QMRA to quantify risk and assist utilities and regulators.

5. Conclusions

• An approach is proposed to couple QMRA and water quality calculations based on pressure-driven
hydraulic analysis to assess the infection risk under sustained low/negative pressure events,
causing accidental intrusion of potentially contaminated water surrounding the pipes. The
intrusion volume at potential intrusion nodes is adjusted for nodal pressure and pipe state (age
and material) using leakage demand.

• By implementing PDA, the pattern of kitchen tap use was dynamically modified to include the
impact of demand availability during PDCs in the analysis. During the PDCs, using a higher
critical value of the DSR (5% instead of no demand) for drinking water withdrawals led to a
significant reduction in the number of infected people (~65% on Day 1 of 1-h PDCs). This reduction
in infection risk if contaminated water is not consumed should be considered to guide preventive
notices. It shows that customers should be advised not to drink water when flow at the tap is low
(i.e., it takes much longer time to fill a glass).

• In this work, depending on the pathogen concentration in sewage, the number of infected people
changed by 235-fold, showing the importance of selecting a representative level of contamination
in a system. Using raw sewage as the ingress water is a conservative scenario as water surrounding
water mains is likely to be less contaminated than sewage.

• Results show that the number of glasses per day (1, 3, or 10) was less important than the
consumption volume (300 mL, 500 mL, or 1 L) for the scenario of 24-h PDCs.

• The duration of PDCs/intrusion is a decisive factor in determining the infection risk, issuing
sectorial boil water advisories and other preventive/corrective actions. Spatial and temporal
distribution of nodal risks presented in this study can help to determine the boundaries and
duration of sectorial BWAs.

• A fast response by the utility is key to reducing the infection risk by limiting the contamination
area. For a 1-h intrusion, delaying 5 h the necessary preventive/corrective actions from the start of
the intrusion may result in the infection of up to 71 people.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/7/1372/s1,
Figure S1: Consumption at kitchen tap use, Figure S2: Distribution of population, Figure S3: Probability
distribution of the number of infected people during four days of simulation with daily pattern in the hydraulic
model, Figure S4: Spatial distribution of pressure.
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