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A method for quantitative discrimination in flow pattern

evolution of water distribution supply areas with

interpretation in terms of demand and leakage

Peter van Thienen
ABSTRACT
A method, the comparison of flow pattern distributions (CFPD), is described in which the specific

representation of flow measurements for two different time periods allows a direct, quantitative

interpretation of changes in the pattern. Two types of changes can be distinguished. The first is

changes from one period to the next in demand consistent with the existing pattern, e.g. due to

changing weather or changes in the population size. The second type is inconsistent changes which

may be due to increased leakage. The method is successfully applied to drinking water distribution

systems of different sizes and characteristics. Being data driven, it is independent of model

assumptions and therefore insensitive to uncertainties therein which may hinder some other leakage

determination methods. Because it is simple to implement and apply but nevertheless powerful in

distinguishing between consistent and inconsistent changes in water demand, the method provides

water companies with a way to constantly monitor their networks for possible changes in customer

demand and the possible occurrence of new leakages and also check archived data for similar

changes. This could render additional information about customer behavior and the evolving

condition of the network from data which is usually readily available at water companies.
doi: 10.2166/hydro.2012.171
Peter van Thienen
KWR Watercycle Research Institute,
Post Box 1072,
3430 BB Nieuwegein,
The Netherlands
E-mail: peter.vanthienen@kwrwater.nl
Key words | demand patterns, leakage, numerical methods
INTRODUCTION
Knowledge and understanding of flow patterns into drinking

water supply areas are important for the proper operation,

maintenance and rehabilitation of existing drinking water

distribution systems and for the design of new networks.

Flow patterns may also provide valuable information

about the occurrence of leaks and bursts, but this infor-

mation is not always easy to distill from the data.

Leakage continues to be a problem for water companies

around the world, with numbers ranging from 3% to more

than 50% (Lambert ; Beuken et al. ). The water

which is lost in this way represents a financial value, but

its disappearance is also undesirable from a sustainability

point of view. Classically, the two main methods to deter-

mine the amount of non-revenue water (NRW; water

losses including, in addition to leakage, unauthorized
consumption and unbilled authorized consumption) in a

supply area are the top-down and the bottom-up methods

(Farley & Trow ; Wu ). The top-down method con-

sists of a water balance in which the registered amount of

water delivered to a supply area over the period of a year

is compared to the billed amount of water. The bottom-up

method essentially compares the minimum flow rate

during the quiet night hours into a district metered area

(DMA) or demand zone or the integrated flow of a 24-h

period to an estimate for the demand in this DMA or

demand zone based on the number of connections (Puust

et al. ).

Because the former method is rather labor-intensive

and has large error margins (Farley & Trow ) and the

latter method is only applicable to small supply areas
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with predictable demands, several researchers have tried to

develop alternative methods to determine the amount of

NRW and/or leakage. Also, methods to determine the

location of leakages have been the focus of research. Sev-

eral methods which combine both are based on the

optimization of a hydraulic model including leaks to

match measurements of flow rate and/or pressure. These

include inverse transient analysis (Liggett & Chen ;

Savic et al. ; Vítkovský et al. ), probabilistic leak

detection (Poulakis et al. ; Puust et al. ), and

pressure dependent leak detection (Wu et al. ). Appli-

cations of these methods to real water distribution

networks are few (e.g. Saldarriaga et al. ; Wu et al.

). These model optimization based methods generally

require a hydraulic model of (or information about the

system in) the supply area and can be computationally

demanding (Vítkovský et al. ; Colombo et al. ).

Developments in other transient test-based techniques for

the detection of leaks and illegal connections are promising

(Menicone et al. ).

A statistical approach to leak detection from night flow

patterns was presented by Buchberger & Nadimpalli

(). However, the literature does not contain any

reports on application of the method in practice, and our

own investigation of night flow data (see Figure 1) shows

that, at least in the cases which were considered, the
Figure 1 | Normal probability plots (with scaled flow rates) for three data sets from the

Netherlands (38 and 500 connections) and Belgium (70 connections), each of

which show significant periods of zero demand during the night. None of

these curves is a straight line, which would indicate a (truncated) normal

distribution of the data.
assumption in their method that the statistics of the night

flow pattern follow a truncated normal distribution does

not hold.

In addition to these mostly retrospective methods for

determining leakage rates, several sensor based field

methods for locating leaks and on-line monitoring tech-

niques for burst detection are described in the literature.

For an overview, the reader is referred to, for example, Wu

().

In this paper, a method called the comparison of flow

pattern distributions (CFPD) is presented which allows its

user to compare flow patterns of arbitrary duration for an

arbitrarily sized supply area and distinguish consistent

from inconsistent changes in the pattern. Consistent and

inconsistent changes will be defined below. The former

can be interpreted in terms of changes in demand due to

changes in the population characteristics (growth or

shrink on longer term, holiday periods on shorter term).

The latter can be interpreted in terms of new large volume

customers, new types of water use or a change in leakage.

As water companies have (access to) information about

the first two (and provided their interpretations are correct),

the method allows quantitative statements about the third:

leakage.

The method presented here is relatively simple, not

computationally intensive, independent of any model

assumptions and easily implemented. Nevertheless, it pro-

vides water companies with a new tool to monitor their

distribution systems on arbitrary time scale for possible

changes in customer demand and the possible occurrence

of new leaks. Also, archived flow data can be checked for

the occurrence of new leaks which may still be present.

When looking for leaks, the CFPD method provides an

alternative for the classical top-down and bottom-up

methods, rendering more information with fewer assump-

tions. More generally, the method provides additional

information about both customer behavior and the evolving

condition of the network from data which is usually readily

available at water companies. This paper aims to describe

the basic principles of the CFPD method, illustrate its oper-

ation and the interpretation of its results with a number of

simple field data sets, test its sensitivity, and discuss direc-

tions for further research and development and suggested

application at water companies.
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METHODS

Procedure

Consider a supply area for which the flow rate into the area

(accounting for all inflow, outflow and storage) is registered

for a period of time (e.g. a day, a week, a month or an entire

year) and again for a comparable (in terms of parameters

affecting water use, such as average air temperature, rainfall,

holiday periods, etc.) period in the next year, not necessarily

of the same length of time. Examples include comparing pat-

terns for January (winter in Northern hemisphere temperate

zones, no garden watering) or August (holiday periods in

Northern hemisphere temperate zones, significantly fewer

people in urban areas but possibly significant garden water-

ing). The registered patterns are likely to be similar in shape

but not exactly the same (Figure 2(a), showing flow rates φ1

and φ2 into a single supply area for two different periods as a

function of time). The simple procedure which is presented

here allows a quantitative comparison of these patterns,

taking the following steps:

1. Sort both data sets from small to large magnitude

(Figure 2(b)). Sorted measurement ordinal numbers are

on the horizontal axis, flow rates are on the vertical

axis. Note that the ordinal numbers have been scaled to
Figure 2 | Comparison procedure for flow patterns. (a) Flow patterns, (b) sorted flow patterns, (

linear fit. Note that these images merely illustrate the procedure but do not include
have the same ordinal range [0,1] for both series in

spite of their different lengths.

2. When the sets are not of equal length, resample the

sorted curve of one of them so that the number of data

points is equal for both (Figure 2(c)). If, for example,

set 1 has 5 data points and set 2 has 10 data points,

interpolation of the sorted curve of set 2 is done at

x¼ [0, 0.25, 0.5, 0.75, 1]. Note that it is preferable to

resample the longest of the two datasets in order to

reduce the amount of data. In the example shown in

Figure 2, interpolation of the dashed curve for the

second period on the scaled ordinal points of the solid

curve for the first period is performed.

3. Plot one data set against the other in a CFPD plot

(Figure 2(d)).

4. Determine a linear best fit with slope a and intercept b

(Figure 2(e)).

Note that when comparing individual day patterns to

each other, stochastic effects may have a significant influ-

ence on the resulting CFPD plot, which may deviate from

a linear pattern. Using a longer comparison period (e.g. a

week or longer) will dampen these effects. The user is free

to choose which period is put on the horizontal axis and

which is put on the vertical in the CFPD plot, but this

choice should be taken into account when interpreting the
c) zoom-ins on small part of sorted flow patterns, (d) CFPD diagram, (e) CFDP diagram with

real measured data.
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results. When the horizontally plotted period precedes the

vertically plotted period, a> 1 and/or b> 0 corresponds to

an increase in flow rate. In general, this is preferable. How-

ever, in some cases it may be preferable to plot the more

recent of the two patterns on the horizontal axis, in case

the latter can be considered a reference pattern for some

reason and the former is deviating from it. When two data-

sets of the same length are compared, step 2 can be

skipped and the procedure can easily be performed in an

ordinary spreadsheet program.

Properties

The characteristics of the curve which is thus produced

depend in a simple way on the differences between the

flow patterns on which it is based. If the shape of the flow

patterns is identical, the resulting curve will be a straight

line (Figure 3(a)). If the shapes are the same, but one is

offset relative to the other by a constant value (e.g. a con-

stant amount of leakage), the slope of the curve will be

one but it will be offset (Figure 3(b)). This change is defined

here as an inconsistent change, since it does not follow the

existing flow rate distribution but is uniform. The corre-

sponding offset b (unit is the same as the flow rate unit

used in the input data, e.g. m3/h) in the CFPD-plot is
Figure 3 | Addition and scaling properties of flow patterns (left) in CFPD-plots (right). (a) Ident

causing a local deviation in the CFPD diagram.
equal to the offset value of the pattern, so an inconsistent

change of þ40 m3/h in the second flow pattern compared

to the first results in a factor b of þ40 m3/h. If the shape is

the same but the pattern has been scaled by a certain

value, this scale factor will be reflected in the slope a

(dimensionless) of the curve (Figure 3(c)), which continues

to cross the origin of the plot. This change is defined here

as a consistent change, since it does follow the existing

flow rate distribution. If, for example, the water demand

increases by 10% during all parts of the day, the value of a

will be 1.1. Note that consistent and inconsistent changes

are purely numerical characteristics of the comparison of

the two periods.

If the second pattern differs from the first only during a

part of the day, a deviation from the ideal line is observed for

a part of the curve (Figure 3(d)). The interpretation of con-

sistent and inconsistent changes is summarized in Table 1.

It can be easily verified that when a measured flow pat-

tern is compared to a uniformly perturbed (scaled and/or

shifted) version of itself, the scaling and shifting factors are

retrieved with high accuracy. In fact, only rounding errors

in the numerical operations of the procedure might cause

a slight deviation.

Comparison of periods of different length requires some

caution. For example, if one would compare a 5 day
ical patterns, (b) inconsistent change, (c) consistent change, (d) time-windowed change



Table 1 | Interpretation of consistent and inconsistent changes (factors a and b)

No inconsistent
change Inconsistent change
b¼ 0 b≠ 0

No consistent
change

a¼ 1 No change in
demand

Increase in leakage or
increase in demand
not following
established pattern

Consistent
change

a≠ 1 Increase in
demand
following
established
pattern

Combination of
increase in demand
following established
pattern and increase
not following the
established pattern
and/or increase in
leakage
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workweek period to a 7 day full week period, the former pat-

tern would not include the weekend days, which have a

significantly different pattern from week days, whereas the

latter would. These differences are sure to show up in the

a and b factors of the CFPD analysis, likely drowning any
Table 2 | Different scenarios causing changes in the water demand in a supply area and the c

Scenario Aspect Change

Population size
changes

New neighborhood is
built and populated

Increase consistent w
household part of
demand pattern

Vacation period Decrease consistent
household part of
demand pattern

Seasonally visiting
tourists

Part consistent, part
inconsistent

Warm season
(temperate climate)

Showering/ bathroom Increase
Laundry Increase
Toilet use Same/decrease?
Kitchen Increase
Outside tapa Inconsistent increase
Evaporative coolersa Inconsistent increase

Cold season
(temperate and
cold climates)

Prevention of pipe
freezinga

Inconsistent increase

Large volume customer sets up or leaves Inconsistent change

Change in network configuration Consistent and incon
changes expected

New leak Inconsistent change

Repair of a leak Inconsistent change

aBillings & Jones (2008).
other changes in a and/or b. Therefore, periods should be

longer than the time scale of natural variability in the signal

one is not interested in (such as weekly variations) and/or

include proportionate numbers of days of different types.

Consistent and inconsistent changes in the water

demand can be caused by several factors. Table 2 lists a

range of demand change scenarios and the corresponding

consistent and inconsistent demand pattern changes.

These need to be kept in mind when interpreting a CFPD-

plot. In general, significant inconsistent changes are likely

attributable to either large volume costumers or leaks.

Note that changes in the network configuration (e.g. open-

ing and/or closing of valves) or flow meters may also

induce consistent and/or inconsistent changes.

The power of this method stems from the fact that the

time factor is removed from the comparison. Any stochastic

variation is only seen in terms of its amplitude and can be

expected to occur at some time in each of the compared

sets of measurements. Also, the somewhat different charac-

teristics of different weekdays are caught in the same way.
orresponding differentiation between consistent and inconsistent effects

Note

ith
existing

Assuming behavior is comparable to that of existing
population

with
existing

Fewer people present, but with the same demand
pattern

Tourists may have comparable habits of water use,
but probably not identical

Combined effect is an increase which has a large
consistent component and a small inconsistent
component in household demand

Typical pattern of garden watering
Probably a typical pattern

Costumer specific demand pattern

sistent

Sign opposite to new leak
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Block analysis

The procedure described above allows the user to compare

two preselected periods from a dataset to each other. How-

ever, when it is unknown at what time specific events occur,

as is generally the case in practice, manual preselection of

comparison periods is undesirable. Instead, a comparison

of all periods of prescribed characteristics (to make the

number of combinations less than infinite) would circum-

vent this issue. Figure 4 illustrates the procedure and

results of such a block analysis. A CFPD analysis is made

(Figure 4(a)) of all possible combinations of time blocks of

a preselected length of the comparison frame ℓ (unit of

time, in this example 1 week) within the complete dataset

of length L (unit of time, in this example 4 weeks). For a pre-

selected comparison frame length ℓ, the dataset is split into

L/ℓ frames (rounded up, in this case four frames), the first

starting at the starting time of the dataset t0 and each con-

secutive frame starting at tiþ1¼ tiþ ℓ. Two matrices A

(Figure 4(b)) and B (Figure 4(c)) are made, in which row i

and column j represent frames i and j, respectively, and

entries Aij and Bij are the factors a and b, respectively, result-

ing from a CFPD comparison of frame i with frame j. Since

both matrices are antisymmetric about the main diagonal,

only the upper triangle is shown. As the main diagonals

show the results of a comparison of each frame with itself,

these consist of ones (A) and zeros (B) exclusively. The

entries in the upper triangle are gray-toned as a function of
Figure 4 | Procedure of the CFPD block analysis. (a) CFPD analysis of combinations of individ

combinations; (c) gray tone representation of b coefficients for all combinations. A
their deviation from 1 (A) and 0 (B), respectively, with

small deviation having a light tone close to white and

larger deviations having a darker tone. The sign of the devi-

ations is indicated as well (þ/–/¼). Note that it is important

to perform a comparison of all possible combinations, since

beforehand it is usually not clear which time block is suit-

able as a reference time block.

Changes in a or bwhich remain in the signal longer than

the frame length will show up in the block analysis as blocks

of similar gray tone and sign, allowing direct pinpointing of

events which cause these changes. This will be illustrated

below.

Data quality

The effectiveness of the CFPD method will depend on the

quality of the input data. If flows into and out of tanks are

derived from level meters rather than flow meters, signifi-

cant errors may be introduced when transported volumes

are relatively small and the surface area of the reservoir is

large, resulting in very small level changes. Also, when the

registered flow data are instantaneous values rather than

integrated values, errors may be introduced when large vari-

ations occur between sensor readings, e.g. related to the

cycling on or off of pumps. Therefore, storing and using inte-

grated rather than instantaneous flow data is preferable.

Systematic errors in flow meters will affect coefficient b.

Random errors in flow meter readings or related to the
ual periods within a long time series; (b) gray tone representation of a coefficients for all

rrows indicate the comparison of week 3 to week 2 (reference).
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issues described above are expected to average out to some

degree in the CFPD analysis, since the mechanisms introdu-

cing the errors behave similarly under similar conditions

(e.g. larger errors in flow measurements at low flow rates,

larger errors in tank flow determinations for small level

changes) and are sampled with each reading. Below, the sen-

sitivity of the method to Gaussian noise is studied.
Testing data

Several Dutch and Flemish water companies have supplied

recent flow rate measurement data for selected supply areas

with measurement intervals of 1–15 min. These supply areas

are individually discussed in the next section.
RESULTS AND DISCUSSION

The method presented above is applied to a number of real

life cases. In addition to this, a number of synthetic tests are

performed to determine the sensitivity of the method.
Figure 5 | Flow patterns for case 1 in the weeks before (top) and after (bottom) the fixing of
Case 1: Fixing of a leak

From top-down method results, Vitens water supply com-

pany (The Netherlands) suspected that one or more

significant leaks were present in one of their supply

areas (about 13,000 connections). Eventually a leak of

about 40–50 m3/h was found and fixed. Figure 5 shows

the flow patterns for a period of 3 weeks before and

about 6 weeks after the fixing of the leak. The shape of

the pattern is quite similar but a significant shift has

been caused by the fixing of the leak. This can be readily

seen in the CFPD-plot of Figure 6. The good fit of the

curve to a straight line demonstrates the similarity of the

flow pattern between the two periods. However, a shift

is clearly visible. Quantitatively, the slope of the curve is

1.0008, showing almost no consistent change in the pat-

tern. The intercept is located at –56.5 m3/h. The

estimate of the size of the leak made here is somewhat

higher than the estimate of the water company. However,

their estimate was based on observations at a single

pumping station, whereas the present estimate is based

on the complete patterns of several weeks and is therefore
a big leak.



Figure 6 | CFPD-plot combining flow patterns for case 1.
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more representative. The intercept value is also quite

close to the difference of the mean flow rates over the

two periods, which is –54.0 m3/h. Note that the stepped
Figure 7 | Flow patterns for case 2 in spring (top) and fall (bottom).
shape of the curve in Figure 6 is related to the limited

flow rate resolution of the flow patterns supplied. How-

ever, this poses no problem for applying the method.

Case 2: Spring versus fall

One of the supply areas of Evides water company (The

Netherlands) has a number of small towns, some agricul-

ture and some camping and holiday houses (in total less

than 10,000 connections). Measurements of the flow pat-

tern for the period from the end of April through to the

end of May 2010 and for October 2010 were supplied to

us. These are shown in Figure 7. A larger variability in

the peak flow rates can be seen in the flow pattern for

spring compared to fall. The CFPD-plot which was made

with these data (Figure 8) shows again a good linear fit

of the curve, with a slope a¼ 0.874 and an intercept b¼
12.6 m3/h (with the minimum night flow increasing from

23.3 to 32.0 m3/h). This can be interpreted as a reduction

in the actual water demand in fall (cool) compared to

spring (warmer, more tourists) by about 1.0� a¼ 13%

combined with an inconsistent increase b¼ 12.6 m3/h,

possibly due to increased leakage. Note that this



Figure 8 | CFPD-plot combining flow patterns for case 2.
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inconsistent increase is in line with but somewhat larger

than the increase in the minimum observed flow rate of

8.7 m3/h.
Figure 9 | Flow patterns for case 3.
Case 3: A small supply area

The third case presented is a special one in that it consists

of only ∼70 connections, including houses, agricultural

customers and an abbey which is a tourist attraction.

Figure 9 shows flow patterns for the period of August–

September 2009 and November–December 2010, respect-

ively. The latter pattern shows a peak demand which is

generally around 0.6 m3/h and many nights in which the

demand drops to 0. This means that total leakage in this

supply area is less than the smallest measurable flow

rate. The pattern in summer, however, shows a signifi-

cantly higher demand, both during the day (peak

demand generally around 2 m3/h) and during the night

(consistently around 0.8 m3/h). Figure 10 shows a

CFPD-plot combining these two time series. A very con-

vincing linear fit can be made, with a few small

deviations at the peak demand end. The fit parameters

show a consistent doubling of the demand (a¼ 1.98) and

in addition to this an inconsistent increase of 0.31 m3/h.

The consistent change can be attributed to the increased

presence of tourists in summer. In this case, we



Figure 10 | CFPD-plot combining two flow patterns for case 3.
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know there is no leakage which could explain the

inconsistent increase. The water company suspects (on

different grounds) some illegitimate water use during

spring and summer in this area, to which the inconsistent

increase may be attributed. This case shows that the

method can also be successfully applied to very small

supply areas.
Figure 11 | Synthetic pressure curves for the determination of the effect of pressure depend
Case 4 (theoretical): Varying leakage rate due to

pressure variations

Real life leaks are thought to have a pressure dependent

leakage rate. This is generally modeled (for an individual

leak) using an equation of the following form:

Ql(t) ¼ K � P(t)α

in which Ql (t) is the leakage rate as a function of time t, K a

constant which is defined for an individual leak, P(t) the

local pressure as a function of time and α an exponent, the

value of which is usually assumed to be close to 0.5 but

may be higher in some cases (Greyvenstein & van Zyl

; Wu ). In order to test its effect on CFPD-curves,

a pressure dependent leakage is added to a measured data

set. This measured set is a 1 month pattern with a 1 min

measuring interval and minimum and maximum observed

flow rates of 32 and 366 m3/h, respectively (fall period of

case 2). Two different pressure scenarios are applied

(Figure 11). The first assumes that during the morning and

evening water demand peaks, pressure drops to 50 and

60%, respectively, of the reference level. In the second scen-

ario, it is assumed that the water company actively manages

the pressure and increases its value by a factor of 2 during

the peak hours.

Figure 12 shows the original and perturbed flow pat-

terns and Figure 13 shows the corresponding CFPD-plots
ent leakage on CFPD-plots.



Figure 12 | Flow patterns for uniformly perturbed case (a), pressure scenario 1 (b), and pressure scenario 2 (c), with a zoom-in on a single day of all three (d).
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comparing the original pattern to the same pattern with a

uniform shift (a), to the pattern perturbed according to

the first scenario (b), and to the pattern perturbed accord-

ing to the second scenario (c). For easier comparison, these

curves are shown together in Figure 13(d). In each case,

the magnitude of the perturbation is 50 m3/h (for a

pressure factor of 1 in the two pressure dependent cases).

A pressure exponent of 0.5 is applied, representative of

round holes and circumferential cracks (Greyvenstein &

van Zyl ).

It can be clearly seen from Figure 13 that the signifi-

cant variations in pressure prescribed in the two

scenarios have a quite small effect on the CFPD-curves.

The corresponding fit parameters are listed in Table 3

and they support this conclusion. The nominal added leak-

age rate of 50 m3/h is recovered to a large degree. It should
be noted that it is overestimated in the first scenario, which

has a pressure reduction during peak hours, and underesti-

mated in the second, which has a pressure increase during

peak hours.

This test is in fact a simplification of the actual situation

in a distribution network. Variations in the demand during

the day and variations in the input pressure at the pumping

station cause the pressure variations at individual leaks to

depend on their location in the network. For example, in

the case where pressure is increased during peak hours, a

leak close to the pumping station may have a higher leakage

rate during peak hours due to the higher pressure at the

pumping station, whereas a leak far from the pumping

station may have a lower leakage rate at the same time

due to the lower local pressure related with the high

demand at that time.



Figure 13 | CFPD-plot for a uniform perturbation of þ50 m3/h (a), a pressure dependent leakage case with lower pressures at peak hours (b), and a pressure dependent leakage case with

increased pressures at peak hours (c), with all combined in a single graph (d).
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Case 5 (theoretical): Measurement interval

The measurement interval of the flow data should be suffi-

cient to characterize the shape of the flow pattern. The

question is, however, what sufficient means, or which mini-

mum measurement interval of the flow data is required for a
successful application of the CFPDmethodology. In order to

establish this, the measured data of case 2 have been aggre-

gated in increasingly large time blocks in order to simulate

the data registration at larger time intervals. Table 3 lists

the fit parameters of the aggregated data at intervals of 15

min, 1 h, 4 h, 8 h and 24 h. It can be seen that at 1 h



Table 3 | Scale factors and intercept values from CFPD-plots for different real life cases,

pressure dependent leakage scenarios and measurement intervals

Case Scenario
Scale
factor a (–)

Intercept b
(m3/hour) Figure

1 Data 1.00 –56.5 Figure 6

2 Data 0.874 12.6 Figure 8

3 Data 1.98 0.310 Figure 10

4 Uniform 1.00 50.0 Figure 13(a)

4 Low pressure during
peak hours

0.988 48.7 Figure 13(b)

4 High pressure during
peak hours

1.03 49.1 Figure 13(c)

5 1 min interval 0.874 12.6

5 15 min interval 0.873 12.8

5 1 h interval 0.870 13.2

5 4 h interval 0.863 14.3

5 8 h interval 0.844 17.5

5 24 h interval 0.716 38.1
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intervals, the resulting fit is still quite close to the fit of the

original data, with deviations only in the third decimals.

Longer measurement intervals result in an underestimation

of the scale factor a and an overestimation of the intercept

factor b.
Case 6 (theoretical): Sensitivity to noise and special

events

Varying types of noise, including stochastic noise, measure-

ment errors, etc., can conceivably affect the functioning of
Table 4 | CFPD fit parameters for a range of test scenarios with varying amounts of Gaussian no

Gaussian noise)

No noise 2% noise

Test a [–] b [m3/h] a [–]

1: Pattern 1.000 0.000 1.001

2: Leak 5 m3/h 1.000 5.000 1.001

3: Leakage 50 m3/h 1.000 50.00 1.003

4: Increase 10% 1.100 0.000 1.101

5: lkg 5 m3/hþ inc 10% 1.100 5.000 1.101

6: lkg 50 m3/hþ inc 10% 1.100 50.00 1.102

7: Single day increase 50 m3/hr 1.004 �0.3673 1.005
the presented method. In order to determine the sensitivity

of the method to noise, the fall data of case 2 (minimum

and maximum observed flow rates of 32 and 366 m3/h,

respectively) have been perturbed (scaled and/or shifted)

with prescribed values of a (1.0 and 1.1) and b (0, 5, and

50 m3/h). Varying amounts of Gaussian noise (standard

deviation being 0, 5 and 10% of individual values, respect-

ively) have been added as well. The resulting data sets have

been compared to the original data in CFPD-plots. The cor-

responding CFPD fit parameters are listed in Table 4.

When no noise is added, recovery of the parameters

a and b is perfect. When 2% noise is added, both

recovered parameters are still quite close to their pre-

scribed values. For 5% noise, slope values (a) still match

quite well, but the relative deviation for small prescribed

values of b starts to become large. For larger amounts of

noise, a values are consistently too high and b values

consistently too low, the former apparently seeping into

the latter.

Special events, such as flushing campaigns, significantly

affect flow rates and may therefore also affect the results of

the CFPD method. An additional flow rate of 50 m3/h has

been added to the fall data set of case 2 on a single day

between 10:00 and 14:00 to represent a series of flushings

in this supply area, again including varying amounts of

noise. As can be seen in Table 4 (test 7), the effect on the

fit parameters is minimal and rapidly drowned by added

noise.

Note that in all cases, the coefficient of determination

R2 of the fit is above 0.99.
ise added (percentage indicates percentage of sample value, used as standard deviation for

5% noise 10% noise

b [m3/h] a [–] b [m3/h] a [–] b [m3/h]

�0.2084 1.008 �1.223 1.030 �4.696

4.805 1.008 3.694 1.032 �0.09075

49.61 1.012 48.03 1.045 42.71

�0.2252 1.109 �1.397 1.135 �5.504

4.776 1.109 3.545 1.133 �0.4520

49.63 1.112 48.08 1.148 42.22

�0.5648 1.011 �1.578 1.034 �5.203
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Processing and stability of long time series

A block analysis has been performed for a selected period

of 8 weeks of the case 1 data (see Figure 14; data have been

aggregated to one measurement per 15 min to reduce com-

putation times). Figure 15 shows cross tables in which (as

described in the Methods section) the magnitude of par-

ameters a (Figures 15(a) and (c)) and b (Figures 15(b) and

(d)) in CFPD analyses of combinations of time blocks

within this 8 week period are indicated by gray tones.

Signs indicate whether the values are above, below or

equal to the neutral values of a¼ 1 and b¼ 0, respectively.

The rows and columns of the tables represent the individ-

ual time blocks, with rows representing reference time

blocks and columns representing the time blocks which

are compared to individual reference time blocks. Figure 15

shows these cross tables for selected time block durations

of 1 day (Figures 15(a), (b)) and 7 days (Figures 15(c), (d)).

When applying a 1-day comparison period, a strikingly

regular pattern emerges in the slope table (Figure 15(a)).

Weekdays are relatively similar to each other, showing

light tones, and weekend days as well, but they are quite

different from each other, as indicated by dark tones.

When looking at the intercept table (Figure 15(b)), the

same pattern is visible, but it is drowned by a dark block

in the upper right quadrant of the table, which represents

the significant decrease in demand by the fixing of the

leak described above. As can be observed from the actual

values of a and b shown in the tables, there is significant

variability, both stochastic (which may be important when

using such short comparison windows) and related to the

deviating flow patterns associated with the fixing of the

leak. By applying a longer comparison window (7 days in
Figure 14 | Eight week set of flow data for case 1 on which Figure 15 is based.
Figures 15(c) and (d)), the magnitude of the (stochastic)

variability strongly decreases (note the changing extrema

of the scale bars) and the general picture stabilizes to

values which are close to those found for case 1.

It is easy to determine the time of occurrence of events

in a block analysis diagram. Figure 15(b) shows that the dark

block, corresponding to the decreased leakage due to the

repair, starts on the second day of week 5. The coarser

time scale image of Figure 15(d) similarly shows that the

event took place close to the boundary between week 4

and week 5. Another interesting observation on Figure 15(b)

is that the significant deviation of b can already be seen in an

analysis on a single day basis. One can speculate that in a

less clean, more noisy dataset, a single day might not be

sufficient.

Interpretation of consistent and inconsistent changes

Interpretation of the results of the pattern distribution com-

parison can only be done with some knowledge of the

operation of the supply area. More specifically, for any

change, consistent or inconsistent, an explanation must

first be found in terms of things that are known to have hap-

pened in the supply area (see Table 2). These range from a

holiday period resulting in a temporary shift and decrease

of the morning demand peak (see the slight deviation in

the upper right part of Figure 6, which is related to the

autumn school holidays) to changes in the operation of a

large industrial client. Also, it is important to know the con-

dition and status of all valves relevant for isolating a supply

area. For example, when a boundary valve is open which

should not be and water flows from the supply area under

investigation into a neighboring supply area, flow



Figure 15 | Cross tables comparing periods of 1 (a, b) and 7 (c, d) days, respectively, of the 8 week set of flow data for case 1. Gray scale values indicate the magnitude of the slope a (a, c)

and intercept b (b, d) for combinations of periods, signs in the cross tables indicate whether the values are positive, negative or neutral. Note that each subfigure has a different

scale bar.
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measurements may represent a much larger supply area

than thought. If the demand characteristics of the uninten-

tionally coupled supply area are similar to those of the

area under investigation, the open valve will result in a con-

sistent demand increase.

Consistent and inconsistent changes which cannot be

explained from the knowledge of the supply area and its

operation can possibly be ascribed to new leakages and
require further investigation, e.g. in the field using noise

correlators.

Suggestions for further research and development

A more detailed study on the sensitivity of the presented

method to high exponent pressure dependencies of specific

types of leaks, as well as the sensitivity of the method to
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specific sources of errors in flow data (such as the level

meter issue mentioned above) would widen the applicability

and strengthen the basis of the CFPD method. Automated

coherent feature detection in CFPD block analyses would

simplify the analysis of long historic time series of flow

data. When performing the CFPD analysis in a moving

time frame instead of a fixed time frame, i.e. comparing

data for the past 24 h to the same 24 h a week before or a

reference pattern of 24 h, on a minute to minute basis, appli-

cation of the method on real time leakage monitoring may

be possible. Further research and development on these

issues are recommended and being pursued.

Suggested implementation at water companies

In its current form, the CFPD method and CFPD block

analysis can be applied by water companies to study their

archived data for changes in demand and possible leakage.

This is expected increase their knowledge on customer be-

havior and the evolution of the condition of their

networks. This gives water companies an (additional) tool

for prioritizing field leakage detection campaigns. As

shown in the processing and stability of long time series

paragraph, significant changes in the b factor can show up

in day to day comparisons, so a daily analysis (near real

time) may be implemented as an additional leakage moni-

toring tool. With the developments suggested in the

previous section, it is expected that the possibilities of the

method as a monitoring tool for both demand and leakage

may be enhanced.
CONCLUSIONS

The comparison of flow pattern distributions (CFPD)

method was introduced as a new tool for supply pattern

analysis with possible applications in leakage detection

and demand management. Because it is simple to

implement and apply but nevertheless powerful in dis-

tinguishing between consistent and inconsistent changes in

water demand, the method provides water companies with

a way to review historic data and monitor current data

with a small time lag (up to some days) for possible changes

in customer demand, increasing leakages and illegal
connections. Additional advantages are that the method is

independent of any model assumptions and that it scales

very well (70 to >10,000 connections, no upper limit in

view). Automated processing of long time series in a

CFPD block analysis allows easy pinpointing and identifi-

cation of events and gives insight into the stochastic

variability of the flow patterns of their supply area, allowing

an appropriate choice of the comparison time window (i.e.

long enough) for the single period CFPD method. More gen-

erally, the method could provide additional information

about both customer behavior and the evolving condition

of the network from data which is usually readily available

at water companies.
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