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Changes with respect to the DoA 
Not applicable 
 
Dissemination and uptake 

This report is public.  
 
Short Summary of results (<250 words) 
D3.3 – Calibrated water resources models for past conditions was developed by IWW, 
LNEC, NTNU, KWR, AQUALOGY, CYI, and all local partners within WP3 - Integrated 
analysis of the water cycle.  
 
This Deliverable presents the model applications at all six research sites. Special focus in 
this Deliverable is being paid to the modelling objectives, the model types, the data used 
and produced, the model results, as well as the model evaluation and discussion. D3.3 
shows the wide variability of models developed and applied in order to bring innovation 
into water management practices. This is due to the fact that European water problems 
are diverse and BINGO aims at providing as many solutions as possible to mitigate those 
climate change related problems. Thus, D3.3 should not be seen as a model 
intercomparison experiment but as an effort to solve multiple water problems together 
in a community of scientists, local governments, water suppliers and many more 
stakeholders. 
 
D3.3. is identical with Milestone 16, as the availability of calibrated and working models 
is essential for the calculation of climate and land-use scenarios. 
 

Evidence of accomplishment 
This report as well as the model output. 
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1. INTRODUCTION  

This document is developed as part of the BINGO (Bringing INnovation to onGOing water management – 

a better future under climate change) project, which has received funding from the European Union’s 

Horizon 2020 Research and Innovation programme, under the Grant Agreement number 641739. The 

Project website (http://www.projectbingo.eu) represents Deliverable 3.3 of Work Package 3 (WP3) – 

Calibrated water resources models for past conditions. 

………………….. 

2. BINGO Calibrated water resources models for past conditions 

The following chapters provide an overview of the hydrological model results for past conditions at the six 

BINGO research sites in Cyprus, Germany, the Netherlands, Norway, Portugal, and Spain. Each model 

development/application description is reported per site and includes information on model objectives, 

model application, model description, data used for modelling, calibration and validation strategies, model 

results, and model evaluation and discussion. At some sites, e.g. in Portugal and Cyprus, multiple model 

domains exist. Here, D3.3 provides structured information for each domain. 

 

  



D3.3 – Calibrated water resources models for past conditions 
 

18 
 

3. Cyprus 

In Cyprus, two case studies are being studied. The Pedieos case study focuses on the impacts of climate 

and land-use change to single flood events. Thus, HEC-HMS with HEC-RAS models have been employed 

to simulate the flood profiles and the extent of the flooded area. The Peristerona case study focuses on the 

impacts of climate change to droughts. Here the use of WRF-Hydro is being explored to couple the 

atmospheric (WP2) and hydrologic processes (WP3). 

3.1. Peristerona Watershed 

3.1.1. Model objectives in BINGO 

Due to limited rainfall concentrated in the winter months and long dry summers, storage and management 

of water resources is of paramount importance in Cyprus. For the purpose of water storage, the Cyprus 

Water Development Department is responsible for the operation of 56 relatively large dams (total volume 

of 310 Mm3) and 51 smaller reservoirs (total volume of 17 Mm3) over the island. Climate change is also 

expected to heavily affect Cyprus water resources with a 1.5 % - 12 % decrease in mean annual rainfall 

(Camera et al. 2016) projected for the period 2020-2050, relative to 1980-2010. This will make reliable 

seasonal water inflow forecasts even more important for water managers. The overall aim of this study is 

to set-up the Weather Research and Forecasting (WRF) model with its hydrologic extension (WRF-Hydro) 

for seasonal forecasts of water inflow into dams located in the Troodos Mountains of Cyprus. The specific 

objectives of this study are: i) the calibration of WRF-Hydro for the simulation of past observed seasonal 

rainfall events and flows in the Troodos Mountains; ii) a sensitivity analysis of the model parameters.  

WRF-Hydro was the selected modelling instrument since it allows the coupling of hydrologic and 

atmospheric processes, perfectly matching the overarching goal of the BINGO project, which is to analyze 

effects of climate change on the hydrologic cycle. Research on the coupling of atmospheric models with 

hydrologic models or the improvement of hydrologic processes in land surface component of atmospheric 

models started during the last decade. Thus, there are relatively few coupled models available (Senatore 

et al. 2015). WRF-Hydro represents one of the most complete model environments for the analysis of 

coupled atmospheric-hydrologic processes. The model source code and documentation are freely available 

and there is an active and growing user community (Gochis et al. 2015). WRF is a well-established and 

widely used atmospheric model. The Atmosphere and Climate Group of the Cyprus Institute is using WRF 

for the modeling of past and future climate in WP2.  

The WRF-Hydro calibration is conducted in the Peristerona Watershed (Figure 1), located along the 

northern slopes of the Troodos Mountains. The Peristerona Watershed has an area of 120 km2 at its outflow 

in the Serrachis River, just north of the Green Line. The watershed is characterized by an ephemeral river 

with an average long-term annual stream flow of 11.75 Mm3 (1980-2010) for the 77 km² upstream area, as 

observed at Panagia Bridge station in the foothills of the mountains (Figure 1 and Figure 2). The main 

rainfall season is from October to May, while summers are very hot and dry. December, January and 

February are the wettest months. In the upstream area of the watershed we find sclerophylous vegetation 

and agricultural terraces with dry stone walls. The fractured volcanic formations in the steep sloping 

midstream areas are covered by state forests, which are dominated by Pinus brutia trees. In the upstream 

and midstream areas of Peristerona Watershed agricultural lands are often located on terraces next to the 

streams, while the forested areas covers the steeper slopes above these lands. In the foothills and 

downstream, both rainfed and irrigated crops can be found. Cereals, especially barley, are the main rainfed 

crop. Irrigated crops are found on small fields and terraces along the river (olives, vegetables). 
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Figure 1 Location of the island of Cyprus and WRF-Hydro domain and calibration catchment 

 

 

Figure 2 Panagia Bridge streamflow station 
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3.1.2. Model application 

3.1.2.1. Model description 

The WRF-Hydro model is an extension package of the traditional one-dimensional Noah Land Surface 

Model (Noah LSM) of WRF that provides a framework for multi-scale representation and multiple physics 

options for surface overland flow, saturated subsurface flow, channel routing, lake/reservoir routing, and 

baseflow processes (Gochis et al., 2015). A summary of the model structure is presented in Figure 3.  

The Noah LSM allows the modelling of hydrologic processes such as throughfall and interception of rainfall, 

the re-evaporation of intercepted precipitation, water infiltration in soil, vertical movement of water in the 

soil, direct evaporation from the soil, surface and subsurface runoff (Ek et al., 2003). Among the outputs, 

the Noah LSM model can return values of soil moisture (both in liquid and frozen state), soil temperature, 

skin temperature, snowpack water equivalent, canopy water content, and the energy and moisture fluxes 

at the earth surface (Niu et al., 2011). The Noah LSM is run on a 1 x 1 km2 resolution grid. 

The WRF-Hydro extension package allows an improvement of the 1D land surface model. Water unable to 

enter the soil due to infiltration exceedance is not removed from the domain but it is kept as ponded water, 

laterally redistributed, and summed to streamflow (if it reaches the channel network) or throughfall in the 

following step (if it does not reach the river network). As reported in Yucel et al. (2015), “subsurface lateral 

flow is calculated before the surface routing so that exfiltration from fully saturated soil columns can be 

combined with existing infiltration capacity excess prior to surface routing. The method used to calculate 

the lateral flow of moisture in saturated soil columns is that of Wigmosta et al. (1994) and Wigmosta and 

Lettenmaier (1999), which is also implemented in the Distributed Hydrology Soil Vegetation Model 

(DHSVM). Overland flow is calculated when the depth of ponded water in a grid cell exceeds a specified 

retention depth, which is a tunable parameter. Ponded water depths below the retention depth do not move 

and are subject to future infiltration. A steepest descent directionality search based on total head gradient 

(i.e. elevation plus water depth) is used and the fully-unsteady spatially explicit diffusive wave formulation 

of Julien et al. (1995) with a later modification by Ogden (1997) calculates the propagation of shallow 

overland flow waves”. For more details see the description of surface and subsurface routing modules in 

Gochis et al. (2015).  

Deep percolation might be added to channel discharge as baseflow with the use of an optional exponential 

bucket model, which is based on an empirical-derived function of recharge (see Gochis et al. 2015 for more 

details). However, preliminary runs indicated that little improvements could be achieved using the baseflow 

routine, while being computationally costly to run. Similar findings were reported by Senatore et al. (2015). 

For these reasons, the baseflow routine is not activated in the current study,. The channel routing module 

makes use of an algorithm based on the explicit, one-dimensional, variable time-stepping diffusive wave 

formulation, which is a simplification of the more general St. Venant equations (Gochis et al. 2015 for more 

details). WRF-Hydro also includes an optional routing sub-routine to model water storage and outflow from 

reservoirs along the channel network. The sub-routine makes its calculation based on mass balance 

equations and a level-pool threshold so to estimate the impact of reservoirs on hydrologic response (Gochis 

et al. 2015). However, also this routine is not activated in this study. Our current research focusses on the 

areas uphill of reservoirs since our main aim is the simulation of dam inflow.  

For each LSM time step (1 day in our case), soil column moisture states (maximum soil moisture, infiltration 

capacity excess, lateral saturated hydraulic conductivity and soil moisture content) are disaggregated and 
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passed to the WRF-Hydro routines (Yucel et al. 2015). WRF-Hydro routines 

can in fact make use of a higher resolution grid, which needs to include an integer number of cells inside a 

single pixel of the LSM grid. In our study we use a high resolution grid of 100 x 100 m2, thus having 100 

cells inside each pixel of the LSM model. For this high resolution grid, some additional base maps need to 

be defined: latitude, longitude, topography, flow direction, channel network, stream order, retention depth 

routing factor, overland roughness routing factor, and location of streamflow gauges for exporting modelled 

river discharge. The time step for the routing modules is set to 6 seconds, as suggested in the WRF Hydro 

User’s Guide (Gochis et al. 2015) for grids with a horizontal resolution of 100 m. 

 

Figure 3 Sketch of WRF-Hydro model structure as presented in Gochis et al. (2015) 

3.1.2.2. Data 

For parameterization of the Noah LSM, all the necessary base maps - including soil type, landuse 

categories, monthly green fraction, monthly leaf area index and elevation – were derived from MODIS 

datasets with resolution 30” (around 900 m) and re-interpolated on the 1 x 1 km2 grid specified in section 

3.1.2.1 (Model description). Initial values of soil moisture and soil temperature were derived for four soil 

layers (0-10 cm, 10-40 cm, 40-100 cm, 100-200cm) using field data as a reference. These data come from 

5TM DECAGON sensors that were installed for the BINGO project (Task 3.2) at two environmental 

monitoring stations CyI is running in the Peristerona Watershed and in its proximity. The two stations are 

located in Agia Marina/Xyliatos forestry area (around 600 m a.s.l., just outside the watershed boundary), 

and in the terraced slopes uphill the village of Alona (around 1300 m a.s.l., inside the watershed 

boundaries). The set initial values were considered constant over the entire model domain (see Figure 1) 

and were used to initialize the spin-up runs of the model. 

Most of the high resolution datasets (100 x 100 m2) necessary to run the WRF-Hydro model routines (see 

section 3.1.2.1 Model Description for the detailed list) were derived using the hydrology toolbox of ArcGIS. 

The main input was the digital elevation model (DEM) of the island of Cyprus, provided by the Cyprus 
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Geological Survey Department, with an original cell size of 25 x 25 m2 and re-

scaled to the selected 100 m horizontal resolution. In detail, the maps derived using these methods are: 

flow direction, stream order, channel network (cutoff threshold of 250,000 m2 contribution to be considered 

a stream cell), and watershed areas. Latitude and longitude where automatically extracted with ArcGIS 

functions. The exact location of the monitoring stream gauge (Panagia Bridge station) to generate time 

series of modelled streamflow were provided by the Cyprus Water Development Department, together with 

daily average discharge data for the period 1980-2010. The retention depth and overland roughness routing 

factors were adjusted during calibration.  

The meteorological data necessary to run WRF-Hydro coupled with the Noah LSM model include: incoming 

shortwave and longwave radiation (W/m2), specific humidity (kg/kg), air temperature (K), surface pressure 

(Pa), near surface wind in the u- and v- components (m/s), and precipitation (mm). For our simulations we 

used daily forcing. Precipitation was input from the observed daily gridded dataset (1 x 1 km2) that was 

produced for Cyprus - interpolating data from 145 stations - for the period 1980-2010 by Camera et al. 

(2014). All the other data came from long term (2000-2009) WRF simulations run with initial conditions 

constrained, and boundaries forced every 6 hours, with ERA-INTERIM reanalysis data. The original 

horizontal resolution of these simulations is 12 km but data were re-gridded on the 1-km Noah LSM grid for 

input. These simulations are part of the climate modeling activities of BINGO WP2.  

3.1.2.3. Calibration and validation strategies 

WRF-Hydro is calibrated and validated over 1-year periods (October 2006 – September 2007 for 

calibration, October 2000 – September 2001 for validation) following a single month spin-up (September). 

The two periods were selected as years with an annual rainfall close to the long-term average and with the 

presence of multiple extreme rainfall and flow events. The spin-up is limited to a single month due to the 

very dry conditions occurring at the end of the summer period in Cyprus. Soil moisture is very low and rivers 

are usually completely dry, so not much time is needed to bring conditions to the actual initial state. The 

initial soil moisture and soil temperature values discussed in the previous section are presented in Table 1. 

As initial conditions for the spin-up run, the rivers were considered completely dry (see HLINK in Table 2).  

Table 1 Initial values of soil moisture and soil temperature for the considered four layers of soil 

 Depth [cm] Moisture [kg/kg] Temperature [K] 

Soil layer 1 0-10 0.06 298 

Soil layer 2 10-40 0.07 296 

Soil layer 3 40-100 0.10 292 

Soil layer 4 100-200 0.12 290 

Calibration was performed manually with a stepwise approach since the use of an automated calibration 

method would have required a very high number of model runs and an excessive computational time. 

Calibration focused on two aspects: the average streamflow for the whole calibration period, and the match 

between observed and modelled time series. Four statistics were derived for the second purpose: i) Nash-

Sutcliffe Efficiency (NSE), to assess the fit between observed and modelled time series with emphasis on 

high-flow simulations; ii) logarithmic Nash-Sutcliffe efficiency (LNSE) to assess the fit between observed 

and modelled time series with emphasis on low-flow simulations (Oudin et al. 2006); iii) mean absolute 

error (MAE); and iv) root mean squared error (RMSE) to describe the difference between the model 

simulations and observations in the units of the variable (Legates and McCabe, 1999).  The calibration was 
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considered successful for errors in the average streamflow lower than 20%, 

positive NSE and LNSE coefficients, and maximum MAE comparable to the average daily streamflow. 

Following the indications of previous WRF-hydro studies (Senatore et al. 2015; Yucel et al. 2015; Arnault 

et al. 2016; Givati et al. 2016) calibration focused on the following parameters: partitioning of rainfall into 

runoff and infiltration (REFKDT);  empirical coefficient ranging from 0.1 and 1 which controls the drainage 

out the bottom of the deeper soil layer (SLOPE); water retention depth routing factor (RETDEPRTFAC); 

overland roughness routing factor (OVROUGHRTFAC); and channel Manning coefficients factor (MANN). 

WRF-Hydro assigns channel Manning coefficients, together with other channel properties, through a simple 

table based on stream order (Table 2). For this reason, instead of changing Manning coefficients for each 

stream order independently, during the calibration phase all the values were adjusted through a 

multiplicative factor (MANN), which is the actual calibrated parameter. This is the same approach as used 

by Yucel et al. (2015). The reported Manning roughness values for the Peristerona Watershed were 

artificially high, because here we calibrated WRF-Hydro with observed daily rainfall data. New simulations 

with observed hourly data had Manning roughness coefficients of 0.14, 0.12, 0.9, for the first, second and 

third order streams, respectively. In the Pedieos Watershed the Manning coefficient for the upstream area, 

which is somewhat similar to Peristerona Watershed, were not calibrated, because of low sensitivity. The 

selected Manning coefficients ranged between 0.045 and 0.060. 

Firstly, the parameters controlling the volume were calibrated following the order REFKDT, SLOPE, 

RETDEPRTFAC. Secondly, those controlling the shape of the hydrograph were tuned following the order 

OVROUGHRTFAC, MANN. Once a parameter was considered tuned, it was not modified anymore. 

REFKDT, SLOPE, and MANN parameters are pre-defined tabulated values constant for definition over the 

all model domain, while RETDEPRT and OVROUGHRT parameters are pixel specific (Yucel et al. 2015). 

For this study we kept also the mapped values constant throughout the modelled catchment. All the other 

parameter values were kept at their default values as provided in the hydrologic (HYDRO.TBL) and general 

parameters (GENPARM.TBL) tables of WRF-Hydro V3.0 release. These parameters include overland 

roughness coefficients defined based on landuse type and several parameters defined on soil type 

(saturated soil hydraulic conductivity, maximum volumetric soil moisture value, reference volumetric soil 

moisture value wilting point for volumetric soil water). 

The calibrated parameters were investigated for sensitivity, too. For this purpose, the best (calibrated) value 

for each parameter was increased or decreased by 20% and the results analyzed in terms of average daily 

discharge impact, and statistics impacts. Also, a sensitivity index (SI) was derived as follows: 

CalSenCal

CalSenCal

ParParPar

AvFlowAvFlowAvFlow
SI

)(

)(




       (1) 

where AvFlowCal is the daily average stream flow resulting from the calibrated model, AvFlowSen is the 

daily average steamflow resulting from a parameter modification, ParCal is the calibrated value of the 

parameter under analysis and PArSen is the modified value of the parameter under analysis. 
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Table 2 Default channel parameter values, based on stream order, used 
for WRF-Hydro simulations in this study. Bw is the channel base width, HLINK the initial water depth 
at the beginning of the spinup period, Ch SSlp is the channel slope and MannN the Manning 
coefficient 

Stream order Bw [m] HLINK [m] Ch SSlp [%] MannN[-] 

1 5 0.00 1 0.65 

2 10 0.00 0.6 0.50 

3 20 0.00 0.3 0.45 
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3.1.2.4. Results 

The time series comparisons between observed and modelled streamflow for the calibration and validation 

years are presented in Figure 4 together with the statistics for model evaluation. Total rainfall over the 

watershed upstream of Panagia Bridge was 714.1 mm during the 2006/07 calibration season and 623.6 

mm during the 2000/01 validation season. The observed average daily streamflow for the calibration period 

is 0.29 m3/s, while the calibrated modelled value is 0.23 m3/s. For the validation period the observed 

average daily streamflow is 0.30 m3/s, while the modelled value is 0.23 m3/s. In Figure 5 zoom-in of the two 

main extreme events that occurred during the calibration period is presented. The calibrated parameters 

are presented in Table 3, while the results of the sensitivity analysis are summarized in Table 4.   

  

Figure 4 Comparison between observed and modelled time series for calibration (October 2006 – 
September 2007, on the left) and validation (October 2000 – September 2001, on the right) time 
periods. Flow obs is the daily average observed flow at Panagia Bridge station, flow mod the 
corresponding modelled streamflow and rain obs is the observed rainfall. NSE is Nash-Sutcliffe 
efficiency, LNSE is logarithmic Nash-Sutcliffe efficiency, MAE is mean absolute error, and RMSE is 
root mean squared error 

 

  

Figure 5 The two extreme events that occurred during the calibration year in February 2007 (left) 
and in May 2007 (right). Flow obs is the daily average observed flow at Panagia Bridge station, flow 
mod is the corresponding modelled streamflow and rain obs is the observed rainfall 
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Table 3 Values of the calibrated model parameters. The parameter 
REFKDT controls the partitioning of rainfall into runoff and infiltration, LOSS_BASE controls the 
partitioning of deep percolation between losses and baseflow contribution, RETDEPRTFAC is the 
water retention depth factor, OVROUGHRTFAC is the overland flow roughness factor, and MANN 
is the channel Manning coefficient 

 REFKDT LOSS_BASE RETDEPRTFAC OVROUGHRTFAC MANN 

Calibration 

values 
0.01 0.1 0.2 1 10 

 

Table 4 Sensitivity analysis results expressed in terms of Nash-Sutcliffe efficiency (NSE), 
logarithmic Nash-Sutcliffe efficiency (LNSE), mean absolute error (MAE), root mean squared error 
(RMSE), and sensitivity index (SI). Parameters were changed ±20% based on their calibrated values. 
See Table 3 for parameter descriptions 

 NSE 

[-] 

LNSE 

[-] 

MAE 

[m3/s day] 

RMSE 

[m3/s day] 

SI 

[-] 

Calibration 0.13 0.23 0.30 0.77 NA 

REFKDT +20% 0.15 0.21 0.29 0.76 -0.18 

REFKDT -20% 0.10 0.22 0.30 0.78 +0.30 

LOSS_BASE +20% 0.13 0.22 0.30 0.76 0.00 

LOSS_BASE -20% 0.13 0.22 0.30 0.76 0.00 

RETDEPRTFAC +20% 0.13 0.24 0.30 0.77 +0.01 

RETDEPRTFAC -20% 0.13 0.23 0.30 0.77 -0.01 

MANN +20% 0.19 0.22 0.28 0.74 -0.03 

MANN -20% -0.03 0.16 0.32 0.83 +0.10 

OVROUGHRTFAC +20% 0.13 0.21 0.30 0.76 -0.02 

OVROUGHRTFAC -20% 0.13 0.22 0.30 0.77 +0.03 

      

3.1.3. Model evaluation and discussion 

The NSE value obtained during the calibration of the model cannot be considered a good result. According 

to Moriasi et al. (2007) a satisfactory NSE value is greater than 0.5. However, some considerations need 

to be made. Our study deals with ephemeral streams in semi-arid environments, which represent peculiar 

conditions particularly difficult to model. This is mainly due to generally (intermittent) low flow and sudden 

peaks. A higher value was obtained for the LNSE than for the standard NSE, which is a better evaluation 

metric for low flows than the NSE. Also, considering peak flows, it should be noted that the model is run 

with daily data and precipitation is applied all at once at midnight of each day, while the following routing is 

performed with a 6 seconds time step. Very high Manning coefficients were used to delay the peak to the 

next day, to match the observations, but it is not always sufficient. Another shortcoming of modelling flow 

peaks can be seen in Figure 5. For both examples, the second rainfall peak does not produce a second 

rise of the hydrograph, although in many other circumstances the model demonstrated to react fast to 

rainfall input. This model behavior is still under investigation. Conversely, the first discharge peak is usually 
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overestimated. The relative high MAE and RMSE (comparable to average 

daily streamflow) also point out this general underestimation and overestimation of peak flows. 

The results of the sensitivity analysis strengthen the statement that the main problems of the model relate 

to extreme behavior. This is pointed out by a LNSE value similar to that of the calibration run but a much 

worse NSE value, which is even negative for the sensitivity run. Also, comparing calibration and validation 

it is possible to notice that in both cases the peaks at the beginning of the rainfall season are overestimated, 

while the peaks in the middle and end of the rainy season are usually underestimated. Probably, soil and 

watershed conditions are changing radically over the season, so that hydrologic processes are not 

comparable, and the model, although physically based, does not have the flexibility to catch those 

modifications with parameter values that are constant over the year. As an example, it is probable that 

rainfall partitioning into runoff and infiltration - which is controlled by REFKDT, one of the most sensitive 

parameters of the model (Table 4) – changes during the year, possibly even after each rainfall event.  

The channel Manning coefficients, as already said, are set to very high values, which makes this parameter 

more a calibration than an actual physical parameter. However, because of the intermittent nature of the 

flows and sedimentation due to erosion of degrading mountain terraces in the upstream areas, heavy 

vegetation growth can be observed inside the river bed, especially for streams of low order (Figure 6).  

The results of the sensitivity analysis show that REFKDT and MANN are the most sensitive parameters 

(highest SI values), affecting both the average daily streamflow (volume) over the modelling period and the 

fit and error statistics. REFKDT is suggested as the most sensitive parameter also by other authors 

(Senatore et al. 2015; Arnault et al. 2016; Givati et al. 2016). The high sensitivity of the MANN parameter 

could be partly due to the combination of very high calibrated values and the sensitivity analysis strategy 

of modifying values of ±20%, resulting in large differences between the values used for the calibration and 

the sensitivity runs. 

 

Figure 6 Overgrown streambed in the upstream areas of Peristerona Watershed, in Platanistasa 
(left) and Fterikoudi (right) 
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3.2. Pedieos Watershed 

3.2.1. Model objectives in BINGO 

The six research sites that BINGO is built around, include a Cyprus part focused on the Pedieos watershed 

(see Figure 7) for which climatic impacts such as floods are evaluated. The development of a hydrologic 

model calibrated over past conditions will enable assessment and management for coping with future 

climate change challenges. 

As per the objectives of WP2 – “Climate predictions and downscaling to extreme weather”, Task 2.3 “High-

resolution downscaling (3-1km/1h) for floods” for the research site of Pedieos watershed in Cyprus, the 

episode of the extreme precipitation event of 8th - 11th of January of 1989 of present climate reanalysis and 

decadal climate predictions to a high resolution for use in the hydrological and hydraulic model was 

performed. 

These rainfall data and as per the objectives of WP3 – “Integrated analysis of the water cycle” the model 

performance for Pedieos watershed at the Cyprus site has been run, calibrated on the basis of past 

conditions (rain event of 8th – 11th  of January 1989) and evaluated. This will allow subsequently a step by 

step adjustment to become a reliable tool for local users, for future climate events. 

The Cyprus Research Site is located along the northern slopes of the Troodos Mountains in Cyprus. The 

Troodos Mountains form the water tower of the island, with many streams running down its steep slopes, 

in deeply incised valleys (see Deliverable 3.1). The northern slopes are in the rain shadow of the mountains 

and are less endowed with water resources than the southern slopes. Investigations in the agro-ecological 

and hydrological processes along the northern slopes of the Troodos Mountains could also present insights 

in the potential effects of climate change on the southern slopes.  

 
Figure 7 The Troodos mountains in Cyprus with the Peristerona and Pedieos Watersheds along the 
northern slopes 
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The water resources model focusses on the Pedieos watershed which is one 

of the two representative watersheds along the northern slopes of the Troodos Mountains: The Pedieos 

and the Peristerona Watersheds (Figure 7). This river with a watershed area of 120 km2 flows across the 

buffer zone into the northern part of the island, inhabited by the Turkish Cypriot community. Figure 8 shows 

the Pedieos sub basins, the two weirs just upstream the Tamassos Dam and the grid of the downscaled 

rainfall.  

 
Figure 8 The Pedieos basin, subbasins, weirs location and the grid of downscaled rainfall at 1 × 1 
Resolution  
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Flood modelling studies covering, among others, the Pedieos watershed, have been conducted by the 

Water Development Department as a requirement of the European Flood Directive (2007/60/EC). Flood 

hazard and flood risk maps and a flood management plan have been prepared for the flood sensitive areas 

(WDD 2015). 

The flood modelling which has been conducted for the Pedieos Watershed by WDD was with the use of 

the HEC (Hydrologic Engineering Center) models, developed by the U.S. Army Corps of Engineers 

(http://www.hec.usace.army.mil/software/). Both the Hydrologic Modeling System (HEC-HMS) and the 

River Analysis System (HEC-RAS) were used.  

In view of the above, and so that this work is comparable and compatible with existing studies, the models 

which were chosen to be used for BINGO are the same, namely the HEC-HMS rainfall /runoff model and 

the HEC-RAS together with the HEC-GeoRas for the hydraulic modelling and the flooding configuration. 

3.2.2. Model application 

3.2.2.1. Model description 

A brief description of the models that were used is provided here below together with some graphical 

information (main screen, or user interface, or process flowchart): 

 The HEC-HMS (Hydrologic Engineering Center – Hydrologic Modeling System) 

HEC-HMS is designed to simulate the precipitation-runoff processes of dendritic watershed systems. It is 

designed to be applicable in a wide range of geographic areas for solving a broad range of problems. This 

includes large river basin water supply and flood hydrology to small urban or natural watershed runoff. 

Hydrographs produced by the program can be used directly or in conjunction with other software for studies 

of water availability, urban drainage, flow forecasting, future urbanization impact, reservoir spillway design, 

flood damage reduction, floodplain regulation, wetlands hydrology, and systems operation. Figure 9 shows 

the “main software screen” as used for the Pedieos model. 

 The HEC-RAS (Hydrologic Engineering Center – River Analysis System) 

HEC-RAS is an integrated system of software, designed for interactive use in a multi-tasking environment. 

The system is comprised of a graphical user interface, separate analysis components, data storage and 

management capabilities, graphics and reporting facilities. 

The HEC-RAS system contains four one-dimensional river analysis components for: (1) steady flow water 

surface profile computations; (2) unsteady flow simulation; (3) movable boundary sediment transport 

computations; and (4) water quality analysis. A key element is that all four components use a common 

geometric data representation and common geometric and hydraulic computation routines. In addition to 

the four river analysis components, the system contains several hydraulic design features that can be 

invoked once the basic water surface profiles are computed. Figure 10 shows the user interface of the 

HEC-RAS software. 

 The HEC- GeoRAS (Hydrologic Engineering Center –Geospatial River Analysis System) 

HEC-GeoRAS is set of ArcGIS tools specifically designed to process geospatial data for use with the 

Hydrologic Engineering Centre’s River Analysis System (HEC-RAS). The extension allows users to create 

an HEC-RAS import file containing geometric data from an existing digital terrain model (DTM) and 
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complementary data sets. Results exported from HEC-RAS may also be 

processed for the production of the flood maps. Figure 11 shows the “Process flow Diagram” of the HEC-

GeoRAS. 

  

Figure 9 The event model structure and the main program screen of the HEC-HMS as used for 
Pedieos watershed 

 
Figure 10 Main user interface of HEC-RAS 
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Figure 11 Process flow diagram of HEC-GeoRAS 

3.2.2.2. Data 

3.2.2.2.1. Parameter input and data of the WDD Hydrologic Model for Pedieos 

The  HEC-HMS Hydrologic Model for the Pedieos watershed as it was calibrated by the Water Development 

Department was used for the BINGO WRF precipitation configurations.. As such, no further calibration or 

adjustment of the model was made, so that the results of the present work are comparable and compatible 

to those of the WDD which are already available to decision and stake-holders of the area. Some pertinent 

points on the parameters used for the WDD model and assumed as input data are as follows: 
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 Delineation of the basins: 

This was carried out with the tools of Geo-HMS. The original DEM was modified and a new DEM, with a 

linear increase of the elevations to the desired limits of the sub-basins except where streams pass and the 

ground is not changed, was done (with the use of the command “Build wall”.) 

 Mean basin slope: 

Automatically determined with the use of the DEM. The Geo-HMS tool was used for the calculation of the 

percent mean slope of each basin used on the slope grid determined of the larger area. 

 Curve Number (CN): 

This was determined in ArcMAP, based on soil characteristics defined by the layers Soil250k, for the whole 

area, but at reduced analysis, and Soil250k covering only part of the basin but at higher analysis. For each 

soil group in the area, the four hydrological soil groups A to D were determined1. The land use map of 

Corine2006 was used and compared to the SCS tables of TR-55 as well as to other papers on the subject. 

A CNGrid raster was finally constructed with a value for CN at each cell.  

 Dimensions of the stream: 

These were based on LiDAR where this was available. Elsewhere, these were based on site visits and on 

Google Earth.  

 Manning’s roughness coefficients:  

These were based on evidence on hydraulic structures from site visits with values based on literature2.  

 Stream gradient: 

Done by ArcMAP and the GeoHMS tool. 

 Hydraulic evaluations: 

All the hydraulic evaluations were done with HEC-RAS for non-steady flow. Conditions of subcritical flow 

were adjusted accordingly in areas where flow becomes supercritical (Mixed flow regime). 

 Geometry for hydraulic model: 

Carried out with the use of HEC-GeoRAS in ArcGIS with micro-adjustments with HEC-RAS. 

 Info used for the hydraulic model:  

Land model as per LiDAR, aerial photos during LiDAR, 5-meter Raster DEM of WDD, Photos from field 

visits for evaluating coefficients of linear friction losses, sketches of dimensions of bridges, culverts etc. 

 

 Boundary conditions: 

Location of entry of hydrographs: a) u/s entry Flow Hydrograph, b) from side basins Lateral Inflow 

Hydrograph, and c) in between sub-streams Uniform Lateral Inflow)  

Normal Depth assumed = stream gradient (=0.65%) 

 Linear Losses 

The evaluation of coefficients of linear losses is carried out using the Manning’s coefficient and the Cowan 

method3.  

                                                           
1 Part 630 Hydrology National Engineering Handbook of Natural Resources Conservation Service (ex 
SCS) – Chapter 7, Hydrologic Soil Groups 

2 Ven Te Chow: Open Channel Hydraulics, table D page 112 
3 Ven Te Chow (1959): Open Channel Hydraulics pg 106-109 
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The coefficient of local losses at the entry of culverts in HEC-RAS are as 

listed in its manual4. 

 Method used for the Time of Concentration: 

The method described in the TR-55 publication of “The Natural Resource Conservation Service (NRCS 

(ex SCS)” was used.  The data needed are:   

 The 24-hour rainfall for a 2-year return period,  

 The basin slope, 

 The flow distance on the land surface for the three flow conditions as defined by NRCS and 

which are: sheet flow, shallow concentrated flow and stream flow. 

The time of concentration is calculated as the sum of the time of concentration of the upstream basin and 

the flow time of each sub-basin which is included in the main flow path of the stream. 

The 24-hour rainfall for a 2-year return period is computed, for each sub-basin, by considering the weight 

of each meteorological station on the sub-basin. These values are written on the Table of ArcMAP. 

Subsequently, and using the tools of HEC-GeoHMS, the tc (concentration time) is evaluated, for the 

definition of which, a roughness coefficient for “sheet flow” is given (as shown in Table 3.1 in the WDD Final 

report for Pedieos). 

The stream gradient is derived by ArcMAP and the GeoHMS tool. 

 Conversion of point rainfall to areal: 

For the cases of large (>20km2) and very large (>150km2) basins the point rainfall is reduced to areal by 

using the diagrams provided by WMO5.  

The assumed ARF (Area Reduction Factors) are: 

 ARF= 0.93 was assumed for the total of the basin at the point of discharge (122.44 km2 and 

tc=9.6 hours) 

 ARF=0.98 at the weir location 6-1-1-85 (30.18km2 and tc =3.26 hours) 

 At weir 6-1-1-80 no reduction factor was used (<20 km2).  

The Area Reduction Factors (ARF) are included in the Simulation Runs for each position as a ratio of 

rainfall. 

 ength of data series: 

- The maximum annual values (m3/s) of the period 1968 to 2010 (or 42 values available with the 

year 1973 missing) were used for the weir 6-1-1-80. 

- The maximum annual values (m3/s) of the period 1968 to 2001 (or 33 values available with the 

year 1973 missing) were used for the weir 6-1-1-85. 
 

 Probability Distribution: 

- The selected as the most suitable distribution was the EV2-Max (L-Moments) after examining all 

possible distributions.  
 

  Validation: 

- A comparison of the peak flows obtained by the statistical analysis of the measured annual 

maximum values for 20, 100 and 500 years was made with the peak flows derived by the 

hydrological models based on design storms of such frequency. 

 

                                                           
4 HEC-RAS - Hydraulic Reference Manual AND Hydraulic Design of Highway Culverts (FHWA 1985). 

5 Ven Te Chow et al, 1988: Applied Hydrology, International Edition. 
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 Initial Moisture (Ia): 

This is based on the SCS instructions and constitutes 20 % of the maximum storage S on the occasion that 

the antecedent soil condition is wet or dry, and is a function of the coefficient of CN, where:  

Ia = 0.2xS, and S(mm) =(25400-254xCN)/CN  6 thus Ia=0.20 x (25400-254 x CN)/CN)  

 Antecedent soil moisture conditions before the start of storm:  

For the simulation of the 20-year storm event, a mean initial moisture was assumed for which the CN was 

calculated and the initial losses were evaluated. 

For the 100 and 500-year storm event, the soil is assumed saturated and the initial conditions were 

considered wet (AMCIII) and the relevant CN values and initial losses were accordingly calculated. 

Additional models with other antecedent soil moisture conditions (wet or dry) instead of the initial model 

which assumed mean moisture conditions were examined7.  

 The SCS Synthetic Unit Hydrograph (UH) used:  

This is a single-peak dimensionless UH. This UH shows the flow of Ut as a ratio to the peak flow Up for 

each time t, a fraction of Tp, the time to peak, Up.  

Where: 

 Up=C (A/Tp) where A= area, and C=2.08, and 

 Tp=(Δt/2)+tlag where Δt=duration of excess rain, and tlag = basin time lag (time difference 

between the mass of excess rain and the peak flow of the UH) 

and 

 Ut is the volume of the Unit Hydrograph (m3) 

 Up is the unit hydrograph peak discharge (m3/s) 

 Tp is the time to peak discharge (hr) 

 A is the area of the watershed (km2) 

 The coefficient C of 2.08 is for unit rainfall of 1 cm (In the case study the rainfall input to the model 
is in mm) 

With known Tp and Up the UH could be constructed from the dimensionless shape. 

For the basins that have no rainfall and runoff measurements tlag (lag-time) can be related to the time of 

concentration tc, as: tlag =0.6tc 

 Summary of the calibration procedure: 

Initially for all events, a choice of moisture conditions on the basis of antecedent rainfall was made.  

This was followed by optimization of the basin hydrologic parameters at all stations for all events, through 

the optimization trials of HEC-HMS.  

The SCS model that is used is an “event model” and not for long-term simulation (continuous). Thus some 

historic rain graphs that were available with the WDD could not be accepted. In this case the calibration 

aimed at the optimal modelling of the first main peak event. 

The parameter values of the optimization trials of a single event or the mean of these from a number of 

single events for which the procedure gave values of the same order, were tried in the remaining historic 

events.  

                                                           
6 Soil Conservation Service (USA) where (S (inches)=1000/CN -10) 

7 Ven Te Chow et al 1988: Applied Hydrology, International Edition Page 149  
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The CN, the quantity of initial losses and the lag time of the basins are the 

parameters which were modified for improved model adaptation to observed values during calibration. 

Finally, the optimal values of these parameters that gave the optimal result to most of the historic cases 

were selected. 

 Time step used for calibration/validation runs: 

Historic floods used for the calibration procedure: 

 Floods of 09/01/1989 and 12/02/2003 at the weir 6-1-1-80 

 Floods of 09/01/1989 and 02/12/1992 at the weir 6-1-1-85 

both weirs are upstream of the Tamassos Dam. 

The storm data are introduced as “Time series Data”, “Precipitation Gage”.  

 Time step: 

A time window was set up starting at 08:05 am and lasting for some multiple of 24hours. The time window 

normally covered 2 days before the time of the peak flow and 1 day after.   

This way, the information on the amount of rain of the previous days is given and thus an evaluation of the 

soil moisture condition can be made when the storm event, that is to be used for the calibration, starts.   

The time step was 5 min. For the cases that the time step of 5 min was greater than (0.29*tlag) for any 

basin, then the time step of 1 min was applied. This did not produce any changes to the results.  

 Evaluation method for the calibration run 

Calibration by comparison with statistically estimated flood peak flows: 

Analysis of flood frequency is done by use of the software “Hydrogromon Ver. 4.1.0” developed at the 

National Technical University of Athens, Greece. Use of the sub-system “Pythia-Statistical Analysis” was 

made where after introducing the maximum annual rainfall there is the capability to examine which 

theoretical distribution fits best to the sample with the maximum annual values for each station. The 

suitability control is made with the X2 test with an importance level for a=10 %. 

Finally, the best distribution was selected and the flow at the return period of 20, 100 and 500 years was 

selected, as shown below: 

 

Independent calibration and validation 

Peak flow estimation was made for validation using Fuller’s equation8: 

Q=Qi x F0.8 x (1 + 0.80 x logT) x {1+(2.66 / F0.30)} 

Where: 

Q is flow in m3/s, F the area of the basin in km2, T the period and Qi a coefficient depending on the return 

period. 

                                                           
8 Fuller and the incremental coefficients are derived from the Directions of Writing Studies of Road works 

(Ο.Σ.Μ.Ο. chapter 8, revision A3) of the Egnatia Road A.E. (WDD 2015)  
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Fuller’s is an approximation of flow being used when there are no detailed 

data for the characteristics of the basin and of rainfall. The incremental coefficients Qi that have been used 

are 2.0 for 20-year, 2.6 for the 100-year and 3.0 for the 500-year.  

The Fuller equation has been developed from statistical analysis of a large number of basins and accepts 

input on the extent of the area and the return period. It is normally used for evaluation of results computed 

more accurately by other methods that require more data. 

 

No calibration was made for the hydraulic evaluations, which is the flooding through the use of the HEC-

RAS model, downstream the weirs 6-1-1-80 and 6-1-1-85 since no flow data exist within this part of the 

examined stream. The calibration was made only for the hydrologic evaluation (HEC-HMS) at the point of 

the two weirs. 

3.2.2.2.2. Sources and Input data, together with format, spatial and temporal 

resolution for the BINGO Hydrologic Model for Pedieos watershed 

For the present model application and for calibration on past conditions an ensemble set of five precipitation 

configurations was used. Each rainfall configuration was used as input data for the calibration by the WDD 

model, and its response in terms of runoff is evaluated. In addition to this, the mean precipitation of the 

ensemble set was examined as well. The ensemble set was derived as follows:  

Precipitation output from WP2 was used as input for the hydrological modelling. In more detail, extreme 

precipitation events of the recent past were simulated using the widely-used Weather Research and 

Forecasting (WRF) model (Skamarock et al. 2008) for the research site of Cyprus. The coarse-resolution 

global ERA-Interim reanalysis dataset (Dee et al. 2011) was dynamically downscaled to 1-km (1-hour) 

horizontal (time) resolution.  

The most crucial atmospheric model components for rainfall generation are the parameterization schemes 

of convection and microphysical processes that occur in sub-grid scales. These processes in atmospheric 

models are empirically described either because the complexity and small scales involved make them too 

expensive to be modelled or because there is insufficient knowledge about a specific process to represent 

it mathematically (Warner 2011). Therefore, after testing a large number of microphysics and 

convection parameterization schemes in WP2, our final ensemble set includes precipitation output from 

five WRF configurations. 

The WRF ensemble set is made up of five configurations “p16, p17, p18, p19 and p20” as shown in the 

following Figures. The precipitation data series was confined to the Pedieos watershed for the storm event 

of the 8th to 11th of January 1989.  

The runoff data for the above period at the two weir stations 6-1-1-80 and 6-1-1-85 on the two main 

tributaries of the Pedieos River were obtained from the records of the WDD. 

The rest of the parameters for the model were adapted as these were used for the calibrated model 

developed by WDD under the flood modelling implemented in meeting the European Flood Directive 

(2007/60/EC) by the WDD. It should be noted that this hydrologic modelling was calibrated then for the 

same storm as in the present case. 
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3.2.2.2.3. Sample Rainfall – Runoff graphs for each of the 

WRF configuration of the ensemble set  

A sample of the rainfall-runoff graphs for each of the WRF as produced by the HEC-HMS model for the 

largest sub-basin (W910, see Figure 8) of Pedieos watershed is shown here-below. The graph for the same 

subbasin produced by the WDD hydrologic model using the actual recorded rainfall, is shown first (Figure 

12), so that a comparison can be made between the recorded rainfall event and the one depicted by the 

ensemble set (Figure 13 to Figure 18). 

 

 

 

 

 

Figure 12 Hyetograph of the rain event (loss in red and effective in blue) and the simulated runoff 
by the WDD model 
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Figure 13 Hyetograph of configuration “p16” and the simulated runoff for sub-basin W910 
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Figure 14 Hyetograph of configuration “p17” and the simulated runoff for sub-basin W910 
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Figure 15 Hyetograph of configuration “p18” and the simulated runoff for sub-basin W910 
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Figure 16 Hyetograph of configuration “p19” and the simulated runoff for sub-basin W910 
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Figure 17 Hyetograph of configuration “p20” and the simulated runoff for sub-basin W910 
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Figure 18 Hyetograph of the mean of the ensemble set and the simulated runoff for sub-basin W910 
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3.2.2.3. Calibration and validation strategies 

As indicated earlier, the model that was calibrated by the WDD was employed for the BINGO research on 

Pedieos for consistency purposes with the decision authorities and local stakeholders. As such, the present 

effort adapted in full the model as it was calibrated by the WDD and assumed the same parameters that 

were used for running the model. Some pertinent points on the parameters, the calibration etc. are as 

shown above.  

The final calibration run for the WDD model which appears to have reached a good matching level 

comparing the simulated runoff to the observed at the weirs 6-1-1-80 and 6-1-1-85 is shown on Figure 19 

and Figure 20 respectively. 

 

Figure 19 Final calibration of simulated against observed runoff at weir 6-1-1-80 for the storm event 
of 8 to 11 January 1989 of the hydrologic model developed by WDD under the EU Flood Directive 
2007/60/EC 

As it is mentioned in D3.3 the model that was calibrated by the Water Development Department (WDD) for 

the Flood Directive implementation was employed for the BINGO research on Pedieos for consistency 

purposes with the competent authority (WDD) and local stakeholders. The choice of this calibrated model 

was made, so as to have compatible results with the results of the competent authority when the Flood 

Directive study was implemented. 

The methodology used for the rainfall to runoff transformation is the SCS unit hydrograph methodology, 

which is applied to single flood event simulation and not continuous simulation. The objective of the WDD 

calibration procedure was to optimize the first main flood event which this was successfully achieved 

regarding the hydrograph pattern the peak flow and the flood volume. As is shown in the rainfall distribution 

graph below there is one main event followed by two smaller events. It is obvious that the transformed 

methodology creates one hydrograph for each event, fact that does not happen in reality, as the two other 

smaller events were not able to create their own hydrograph. Therefore, the objective of the WDD 

calibration procedure was to optimize the first main flood event which this was successfully achieved 

regarding the hydrograph pattern the peak flow and the flood volume 
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Figure 19b: Rainfall distribution graph for the storm event of 8 to 11 January 1989

 

Figure 20 Final calibration of simulated against observed runoff at weir 6-1-1-85 for the storm event 
of 8 to 11 January 1989 of the hydrologic model developed by WDD under the EU Flood Directive 
2007/60/EC 

 

3.2.2.4. Results 

3.2.2.4.1. Results as time series compared to measured data, e.g. runoff 

In Figure 21 to Figure 23 the results of the BINGO Pedieos hydrologic model showing the simulated runoff 

at each of the two weirs as a result of each precipitation configuration (WRF “p16” to “p20” and for the 

mean values for the whole set) within the ensemble set are shown in comparison to the observed runoff for 

the same weirs. These results refer to the storm of the 8-11 January 1989. 
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The simulated runoff is shown in blue colour and the observed runoff in black. 

 

Figure 21 Simulated runoff as a result of the WRF configuration “p16” against the observed runoff 
at the weir 6-1-1-85 

 

Figure 22 Simulated runoff as a result of the WRF configuration “p16” against the observed runoff 
at the weir 6-1-1-80 
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Figure 23 Simulated runoff as a result of the WRF configuration “p17” against the observed runoff 
at the weir 6-1-1-85 

 

Figure 24 Simulated runoff as a result of the WRF configuration “p17” against the observed runoff 
at the weir 6-1-1-80 
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Figure 25 Figure 25 Simulated runoff as a result of the WRF configuration “p18” against the 
observed runoff at the weir 6-1-1-85 

 

 

Figure 26 Simulated runoff as a result of the WRF configuration “p18” against the observed runoff 
at the weir 6-1-1-80 
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Figure 27 Simulated runoff as a result of the WRF configuration “p19” against the observed runoff 
at the weir 6-1-1-85 

 

 

Figure 28 Simulated runoff as a result of the WRF configuration “p19” against the observed runoff 
at the weir 6-1-1-80 
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Figure 29 Simulated runoff as a result of the WRF configuration “p20” against the observed runoff 
at the weir 6-1-1-85 

 

 

Figure 30 Simulated runoff as a result of the WRF configuration “p20” against the observed runoff 
at the weir 6-1-1-80 
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Figure 31 Simulated runoff as a result of the WRF Ensemble set mean of the five configurations 
against the observed runoff at the weir 6-1-1-85 

 

 

Figure 32 Simulated runoff as a result of the WRF Ensemble set mean of the five configurations 
against the observed runoff at the weir 6-1-1-80 

3.2.2.4.2. Flooding as per the results for each of the Ensemble precipitation 

configurations 

The spatial distribution of the flood in the riparian areas of the Pedieos River downstream the Tamassos 

dam for each of the WRF precipitation configurations will be carried out using the HEC-RAS and the HEC-

GeoRas presented earlier. 

This will be carried out at the next stage of the research activity when the past conditions will be compared 

to future climate change conditions.   
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3.2.3. Model evaluation and discussion 

3.2.3.1. Evaluation of the goodness of fit of the model 

The configurations “p16” and “p17” exhibit a definite lag (about 10 hours) in the arrival of the peak runoff 

as compared to the observed runoff. The volume and the peak flow appear to be sufficiently close. 

The hydrograph pattern of the simulated runoff of configuration “p18” coincides with the observed runoff 

but it appears to be of smaller volume. 

The configuration “p19” exhibits a peak runoff advanced by about 10 hours as compared to the observed 

runoff at both weirs. Volume wise it appears sufficiently reasonable.  

The configuration “p20” shows similarly as the “p19” an advancement of the simulated runoff but also a 

sizable reduction of volume and peak flow. 

The mean of the ensemble set shows reasonable coincidence of the simulated runoff hydrograph to that of 

the observed runoff but both the peak and volume are much less. 

Table 4 shows a summary of the results on volume, lag time of peaks and other statistical evaluations for 

all the configurations both for the simulated and the observed flows at each weir. 

3.2.3.2. Discussion on the model results as presented above 

The variation in the simulated results to the observed runoff for the various precipitation configurations are 

the result of the downscaling, mainly on the rainfall time distribution as compared to the real occurrence of 

the storm. These results should enable an improvement on the choice and manipulation of the rainfall as 

obtained from the WRF.  

A potential reason for some shortcomings could be the accuracy of the weirs especially on low flows where 

diversions may be carried out. 

The model was applied on an extreme event which is rather well represented which is important for decadal 

predictions. 

As per the NSE results shown in Table 5 below, the runs for the WRF ensemble configurations number 

“p18” and for the mean of all configurations appear to give acceptable matching of the simulated flows to 

the observed ones. These results could be improved if further adjustment is made on the precipitation 

configurations, mainly on the time distribution, so that the distribution of flow in time is more in line with the 

observed flows or if the model parameters are further adjusted, something though that would come in 

contrast with the available final flooding model for the Pedieos as produced by the WDD. 

The hydrologic modelling results obtained should enable further refinement in the production of the 

precipitation ensemble set configurations. 
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Table 5 Summary of results for each WRF configuration 

  WRF configuration 

  p16 p17 p18 p19 P20 Ensemble Mean 

 
 

Weir 
6-1-1-85 

Weir 
6-1-1-80 

Weir 
6-1-1-85 

Weir 
6-1-1-80 

Weir 
6-1-1-85 

Weir 
6-1-1-80 

Weir 
6-1-1-85 

Weir 
6-1-1-80 

Weir 
6-1-1-85 

Weir 
6-1-1-80 

Weir 
6-1-1-85 

Weir 
6-1-1-80 

NSE* -0.856 -3.103 -0.286 -1.187 0.279 0.011 -0.543 -1.036 -0.465 -0.724 0.252 0.152 

Mean abs error** 
(m3/s) 

14.1 5.2 10.9 4.5 8.6 3.6 12.8 4.8 11 4.0 7.5 2.9 

RMS Error***(m3/s) 19.5 9.6 16.2 7.0 12.1 4.8 17.8 6.8 17.3 6.2 12.4 4.4 

Volume Residual 
(×1000m3)**** 

75.2 -34.6 411.6 -130.7 -1746.5 -910.3 -1664.9 -659.3 -2798.5 -1257.4 -1255.8 -645.2 

Simulate
d Results 

Peak 
Discharg
e (m3/s) 

81.7 49 56.6 25.9 24.9 14.3 33.4 18.8 8.7 3.7 19.7 9.3 

Volume 
(×1000m3

) 
3278.9 1389.5 3619.7 1293.3 1456.8 513.8 1619.0 765.8 490.7 167.5 1992.2 779.4 

Date/Tim
e of peak 
discharge 

09Jan198
9 08:00 

09Jan198
9 08:00 

09Jan198
9 07:00 

09Jan198
9 06:00 

09Jan198
9 17:00 

09Jan198
9 16:00 

10Jan198
9 07:00 

10Jan198
9 06:00 

10Jan198
9 13:00 

10Jan198
9 06:00 

09Jan198
9 08:00 

09Jan198
9 07:00 

Observe
d Results 

Peak 
Discharg
e (m3/s) 

69.6 18.3 69.6 18.3 69.6 18.3 69.6 18.3 69.6 18.3 69.6 18.3 

Volume 
(×1000m3

) 
3202.2 1424.1 3202.2 1424.1 3202.2 1424.1 3202.2 1424.1 3202.2 1424.1 3202.2 1424.1 

Date/Tim
e of peak 
discharge 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

09Jan198
9 18:00 

* Nash-Sutcliffe efficiency (NSE):  The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude of the residual variance (“noise”) compared to the measured data variance 

(“information”) (Nash and Sutcliffe, 1970). NSE indicates how well the plot of observed versus simulated data fits the 1:1 line. NSE is computed as shown in equation 1: 
where Yiobs is the ith observation for the constituent being evaluated, Yisim is the ith simulated value for the constituent being evaluated, Ymean is the mean of observed data for the 
constituent being evaluated, and n is the total number of observations.  
NSE ranges between −∞ and 1.0 (1 inclusive), with NSE = 1 being the optimal value. Values between 0.0 and 1.0 are generally viewed as acceptable levels of performance, whereas 
values <0.0 indicates that the mean observed value is a better predictor than the simulated value, which indicates unacceptable performance.  
Sevat and Dezetter (1991) found NSE to be the best objective function for reflecting the overall fit of a hydrograph. 

**Mean absolute error is a quantity used to measure how close forecasts or predictions are to the eventual outcomes. The mean absolute error is given by  
As the name suggests, the mean absolute error is an average of the absolute errors, where is the prediction and the true value. Note that alternative formulations may include 
relative frequencies as weight factors. 
 

*** Root mean square error is the square root of the mean/average of the square of all of the error. The use of RMSE is very common and it makes an excellent general purpose error metric for numerical 
predictions. 

Compared to the similar Mean Absolute Error, RMSE amplifies and severely punishes large errors.  

 
****Volume residual: the difference between the simulated volume of flow and the observed volume of runoff (based on exactly the same period for which data are available) as applied to 

the observed data.  Negative values indicate less volume of simulated runoff
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4. Germany 

4.1. Model objectives in BINGO 

The two main goals in BINGO are: a) improving existing hydrological models for the Wupper River Basin by 

including more detailed field data input, and b) enhancing the models by using ensemble predictions and 

circulation models. Under BINGO framework, Wupperverband is focusing on two pilot areas: the Dhünn 

catchment area (ca. 200 km²) and the Mirke catchment area (ca. 8 km²). The Dhünn River is the main 

tributary of the Wupper River. In 2010, Wupperverband commissioned a subcontractor (Hydrotec) to support 

the development of a detailed hydrological model for the Dhünn catchment area. Nine sub-basins of the 

Dhünn River Basin were modelled individually due to the availability of previously built up models and the 

need of performing separated calculations. The models are interdependent: outflow from upstream models 

is used as input for downstream models. The models are able to reproduce the whole water balance for both 

flood and water scarcity scenarios. NASIM software is used for water balance modelling due to its high level 

of detail regarding structures (capabilities, accuracy, flexibility, and deep level of detail), which makes it 

adequate to represent complex urban areas. The deep level of detail must go together with data availability, 

which is fortunately the case.  

In 2016, Wupperverband commissioned another subcontractor (Sydro Consult) to support the update of an 

existing TALSIM model for the Dhünn catchment. The strength of TALSIM is the possibility of simulating 

reservoirs operation according to different rules or scenarios. The resolution of the TALSIM model is lower 

in comparison to NASIM since the former runs operationally (i.e., online) for Wupperverband’s forecast and 

warning system (FEWS = flood early warning system). The Mirke model has been operated, updated, and 

improved permanently since 2008 for flood risk management by using radar data and defining thresholds 

for runoff generation. The Mirke basin is of particular importance since initiatives for flood risk management 

have been implemented in line with the EU water framework directive. These models and the two pilot areas 

are considered representative for modelling purposes as well as for historical and upcoming challenges 

regarding water management (flood protection and water supply). 

4.2. Model application 

4.2.1. Model description 

NASIM and TALSIM are sub-catchment based (lumped), physically-based, water balance models based on 

the water balance equation. They estimate effective precipitation considering vertical processes, 

transforming it into surface runoff as translation or horizontal process (see Figure 33).  

The vertical processes simulated by NASIM/TALSIM are: 

1. Interception 

2. Infiltration 

3. Exfiltration / percolation 

4. Evapotranspiration (ET)  

5. Capillary rise (in  floodplains)  

6. Snow: estimation by temperatures under 0°C (Snow-Compaction-Procedure) 
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Figure 33 Vertical and horizontal hydrological processes (source: TALSIM) 

The horizontal processes simulated by NASIM are 

1. Surface runoff 

2. Interflow 

3. Deep interflow 

4. Baseflow 

Runoff is calculated according to the following equation: 

𝐸𝑃 = 𝑃(𝑡) − 𝑃𝐸𝑇(𝑡) − 𝐼(𝑡) −
𝑑𝑂

𝑑𝑡
−

𝑑𝑆

𝑑𝑡
 eq. (1) 

Where: 

EP: Effective precipitation 

P: Precipitation 

PET: Potential evapotranspiration 

I: Infiltration 

O: Surface water storage 

S: Snow storage 

The main processes that describe the soil water storage are: infiltration, exfiltration, and evapotranspiration 

(ET). Each of them depends on soil moisture (non-linear function). 

For sealed areas, where no infiltration and subsurface storage occur, the terms 
𝑑𝑆

𝑑𝑡
 and 𝐼(𝑡) are not 

considered (see eq. 2): 

𝐸𝑃 = 𝑃(𝑡) − 𝑃𝐸𝑇(𝑡) −
𝑑𝑂

𝑑𝑡
  eq. (2) 

For unsealed areas, effective precipitation is estimated either by: i) constant runoff coefficient; ii) SCS-CN 

procedure (depends on land cover and soil type); or iii) soil moisture simulation. The soil moisture simulation 

method is applied in the developed models of the Wupperverband. 

The soil moisture simulation parameters are: 

 Land cover input parameters: root depth, sealing degree, leaf area index 



 D3.3 – Calibrated water resources models for past conditions  

61 
 

 Soil type input parameters: wilting point, field capacity, total void volume, saturated hydraulic 

conductivity, maximum infiltration capacity, maximum capillary rise rate, and classification per soil 

class (e.g., sand, silt, clay) 

The processes that influence the soil moisture simulation (see eq. 3) are:  

 Infiltration (Inf) 

 Percolation (Perc) 

 Actual ET (AET) 

 Interflow (Int) 

 Capillary rise (Cap) 

𝑑Ө(𝑡)

𝑑𝑡
= 𝐼𝑛𝑓(𝑡) − 𝑃𝑒𝑟𝑐(𝑡) − 𝐴𝐸𝑇(𝑡) − 𝐼𝑛𝑡(𝑡) + 𝐶𝑎𝑝(𝑡) eq. (3) 

Where Ө(𝑡) is soil moisture as a time dependent function. 

Potential evapotranspiration (PET) must be calculated prior to entering it into the model with Haude or 

Penman procedures, depending on data availability. In this case, PET was calculated using the Haude 

method. Table 6 shows the input and output time series. 

Table 6 Input and output time series 

Input time series Output time series 

Precipitation Runoff 

Air temperature (for snow layer 

calculation) 
Interflow 

Potential evapotranspiration Baseflow 

  

Evaporation (from the reservoir‘s 

surface) 

Actual evapotranspiration 

Effective precipitation 

  Soil moisture 

  Snow depth 

4.2.2. Model set-up 

Figure 34 shows the catchment area of the Dhünn River, with an area of ca. 203 km², and Figure 35 presents 

the Dhünn River Basin divided into nine sub-basins (NASIM model). Figure 36 to Figure 44 show the nine 

hydrological models with their respective sub-basins. Figure 45 and Figure 46 show the sub-basins of the 

Dhünn River Basin (TALSIM model) and the TALSIM model structure, respectively. Figure 47 shows the 

main rivers and streams of the Dhünn catchment area as well as the hydrometric stations used for the model.  

Figure 48 shows the catchment area of the Mirke Creek, with a total area of ca. 8 km² with the delineated 

sub-basins (NASIM model). 
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Figure 34 Dhünn River Basin and hydro-meteorological stations used for the Dhünn model 

 

 

 

Figure 35 Nine modelled sub-basins of the Dhünn River Basin within the NASIM Model 
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Figure 36 Upper Große Dhünn   Figure 37 Dhünn reservoir 

 

  

Figure 38 Eifgenbach    Figure 39 Scherbach 

 

 

Figure 40 Katterbach    Figure 41 Mutzbach 

  

Figure 42 Linnefe    Figure 43 Ophovener Mühlenbach 
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Figure 44 Lower Große Dhünn 

 

 

Figure 45 Sub-basins of Dhünn River Basin – TALSIM model (GDT  catchment area) 
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Figure 46 TALSIM model structure - Dhünn River Basin (GDT catchment area) 

 

Figure 47 Rivers and streams and hydrometric stations of the Dhünn catchment area (source: 
Hydrotec, 2011) 
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Figure 48 Mirke catchment area (NASIM model) 

 

4.2.3. Hydro-meteorological data 

Figure 34 shows the location of the hydro-meteorological stations used for the models. All stations are 

operated by the Wupperverband except Manfort hydrometric station (operated by LANUV9). The format used 

for input time series into the model is uvf (Universal Variable Format).  

Table 7 presents a summary of the precipitation stations. Temporal resolution is not equidistant: the 

meteorological stations register only changes in precipitation.  

                                                           
9 Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen 
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Table 8 presents a summary of the hydrometric stations used for model calibration with the respective 

period of observed discharge values. Temporal resolution is not equidistant: the hydrometric stations register 

only changes in water level. Table 9 shows typical flow rates of each hydrometric station. 

 

Table 7 Precipitation stations used for the Dhünn model 

Station name Station code From To Temporal resolution 

Bever-Talsperre SBEV 06.12.1967 31.10.2015 Minutely 

Burscheid SBUR 01.01.2002 31.10.2015 Minutely 

Klärwerk Leverkusen SLEV 01.11.1973 31.10.2015 Minutely 

Klärwerk Dabringhausen SDAB 01.11.2002 31.10.2015 Minutely 

Klärwerk Odenthal SODT 01.11.1973 31.10.2015 Minutely 

Klärwerk Wermelskirchen SWER 01.11.1991 31.10.2015 Minutely 

Lindscheid SLIN 01.11.1973 31.10.2015 Minutely 

Neumühle SNEM 01.11.1973 31.10.2015 Minutely 

Unterpilghausen SPIL 01.11.2001 31.10.2015 Minutely 

Vorsperre Große Dhünn SVO$ 02.11.1987 31.10.2015 Minutely 

*Westhofen SWES 01.11.1973 02.05.2010 Minutely 

*Westhofen precipitation station has been out of operation since 2010. Time series of Westhofen 

precipitation station were generated synthetically from 02.05.2010 to 31.10.2015 with Neumühle station 

(closest neighbour precipitation station) by using an incremental correlation factor of 1,03 (MAP10 of 

Westhofen is higher). 

Table 8 Hydrometric stations used for the Dhünn model 

Station name Station code From To Temporal resolution 

Dünnwald SDUE 01.10.1994 29.08.2000 Minutely 

Finkenholl SFIN 01.11.2002 01.03.2011 Minutely 

Hummelsheim SHUM 01.11.1988 01.11.2015 Minutely 

Linnefe SLIF 03.11.2003 08.11.2004 Minutely 

Loosenau SLOS 01.11.1988 01.11.2015 Minutely 

Manfort SMAN 01.11.1988 19.01.2015  Minutely 

Markusmühle SMAR 20.10.2002 01.11.2015 Minutely 

Neumühle SNEM 11.12.1964 01.11.2015 Minutely 

Paffrath SPAF 01.08.1995 04.11.2002 Minutely 

Scherbach SSHE 21.09.2000 19.09.2011 Minutely 

Schlebusch SSLB 01.11.2006 01.11.2015 Minutely 

Unterpilghausen SPIL 01.11.1988 01.11.2015 Minutely 

 

                                                           
10 Mean Annual Precipitation 
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Table 9 Typical flow rates of the hydrometric station 

Station name 
Station 
code 

MQ11 
[m³/s] 

MNQ12 
[m³/s] 

MHQ13 
[m³/s] 

River / stream 

Dünnwald SDUE 0,073 0,032 0,408 Mutzbach 

Finkenholl SFIN 0,265 0,064 3,644 Eifgenbach 

Hummelsheim SHUM 1,679 0,551 21,000 Dhünn 

Linnefe SLIF n/a n/a n/a Linnefe 

Loosenau SLOS 0,682 0,078 8,410 Dhünn 

Manfort SMAN 2,253 0,426 13,47 Dhünn 

Markusmühle SMAR 0,497 0,106 8,337 Eifgenbach 

Neumühle SNEM 0,513 0,037 8,960 Große Dhünn 

Paffrath SPAF 0,027 0,050 0,629 Katterbach 

Scherfbach SSHE 0,500 0,181 3,736 Scherfbach 

Schlebusch SSLB 2,017 0,517 20,800 Dhünn 

Unterpilghausen SPIL 0,280 0,023 4,770 Kleine Dhünn 

 

Potential evapotranspiration (PET) was estimated with Haude. The necessary data are temperature at 14:00 

and air humidity. Table 10 presents a summary of the meteorological stations used for each model. Past 

data (i.e., before 2000) from Buchenhofen climatological station comes from the German Weather Service 

(DWD14). 

Table 10 Climatological time series used for the Dhünn model 

Parameter Station name Station code From To Temporal resolution 

Air temperature Buchenhofen  SBUC 01.11.1951 01.11.2015 Daily 

Air temperature Leverkusen SLEV 01.01.1970 31.10.2015 Daily 

PET (Haude) Buchenhofen  SBUC 01.01.1959 01.11.2015 Daily 

PET (Haude) Leverkusen SLEV 01.01.1970 01.11.2015 Daily 

4.2.4. Calibration and validation strategies 

Calibration of the nine models was performed manually, event-based by comparing observed and simulated 

discharge, with a time step for all simulations of 15 min. The precipitation time series for each sub-catchment 

of each model was obtained using the Thiessen polygon method. The same precipitation assignment 

procedures were applied for both calibration and validation processes. Calibrated parameters are presented 

in Table 11. 

 

 

 

 

 

                                                           
11 Mean runoff (Mittlerer Abfluss) 
12 Mean low runoff (Mittlerer Niedrigwasserabfluss) 
13 Mean maximum runoff (Mittlerer Hochwasserabfluss) 
14 Deutscher Wetterdienst 
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Table 11 Calibrated parameters for the nine models of the Dhünn River Basin 

Parameter Unit Range 

    From To 

Max. interception mm 2 - for urban areas 
8 - for coniferous 

forest 

Retention constant  

(surface runoff) 
h 7 10 

Retention constant  

(interflow) 
h 25 30 

Retention constant  

(baseflow) 
h 700 1000 

Max. infiltration mm/h 100 600 

Vertical hydraulic  

conductivity 
mm/h 0,08 0,13 

Table 12 shows the calibration points and Table 13 presents the calibration period of each model as well as 

the areas of each sub-basin. The hydrological year in Germany starts on 1st November. Sub-basin 

delineation was carried out according to the drainage area of each hydrometric station (i.e., each calibration 

point). 

 

Table 12 Calibration points of the nine models 

Model / Sub-basin Hydrometric station used for calibration / validation 

Upper Große Dhünn Neumühle (SNEM) 

Dhünn reservoir Unterpilghausen (SPIL), Loosenau (SLOS), and GDT storage volume 

Eifgenbach Finkenholl (SFIN) and Markusmühle (SMAR) 

Linnefe Linnefe (SLIF) 

Scherbach Scherfbach (SSHE) 

Mutzbach Dünnwald (SDUE) 

Katterbach Paffrath (SPAF) 

Ophovener Mühlenbach n/a 

Lower Große Dhünn Hummelsheim (SHUM), Manfort (SMAN), and Schlebusch (SSLB) 

Since some hydrometric stations are no longer in operation (see Table 8), the models Linnefe, Scherfbach, 

Mutzbach, Eifgenbach, and Katterbach could not be validated for recent years (i.e., 2009 to 2015). The 

Linnefe model could not be validated for any time period since the whole available time series of Linnefe 

hydrometric station was used entirely for calibration. The Ophovener Mühlenbach model could not be neither 

calibrated nor validated due to lack of data (there are no hydrometric stations in this sub-basin).  
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Table 13 Calibration and validation periods 

Model / Sub-basin 
Area 

[km²] 

Calibration 

begin 

Calibration 

end 

Validation 

begin 

Validation 

end 

Upper Große Dhünn 
23,3 

06.11.2001 01.11.2009 01.11.1973 06.11.2001 

     01.11.2009 01.11.2015 

Dhünn reservoir 38,25 25.05.2006 05.04.2009 
06.11.2002 

05.04.2009 

15.03.2006 

01.11.2015 

Eifgenbach 
32,91 

08.03.2006 05.04.2009 06.11.2002 15.03.2006 

     01.11.2009 01.11.2015 

Linnefe 17,59 12.12.2003 30.09.2004 n/a n/a 

Scherfbach 5,25 10.12.2006 19.03.2009 20.03.2001 07.06.2006 

Mutzbach 19,89 01.11.1992 31.10.1993 28.06.1996 10.10.1999 

Katterbach 5,46 01.11.1997 31.10.1999 28.08.1996 26.07.2000 

Ophovener Mühlenbach 5,04 n/a n/a n/a n/a 

Lower Große Dhünn 66,07 29.03.2006 08.04.2009 
18.03.2001 

08.04.2009 

02.03.2005 

19.01.2015 
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4.2.5. Results 

4.2.5.1. Upper Große Dhünn 

The simulation results for the Upper Dhünn from 1973 to 2015 are presented in Figure 49. Figure 50 shows 

some simulated events. 

 

Figure 49 Upper Große Dhünn - observed and simulated discharge at Neumühle hydrometric station 
(blue: observed; red: simulated 
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Figure 50 Upper Große Dhünn - event simulations (blue: observed; red: simulated) 

4.2.5.2. Dhünn reservoir 

The Dhünn reservoir model presents a good agreement at the stations Unterpilghausen (Figure 51) and 

Loosenau (see Figure 52). Figure 53 presents observed and simulated discharge at the GDT, including the 

guiding function for storage volume (OL)15, for the calibration and validation periods. The simulation 

considers the operational rules of the GDT, which are summarized as follows: 

 Drinking water supply: 1205 l/ s as constant release 

 Minimum discharge downstream: 1 m³/s at Manfort hydrometric station 

 Reservoir filling: retention if volume is smaller than the guiding function for storage volume 

 Flood protection: retention if discharge at Manfort hydrometric station is greater than 30 m³/s 

                                                           
15 In German: Orientierungslinie 
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Figure 51 Dhünn reservoir – observed and simulated discharge at Unterpilghausen hydrometric 
station (blue: observed; red: simulated) 

 

Figure 52 Dhünn reservoir – observed and simulated discharge at Loosenau hydrometric station 
(blue: observed; red: simulated) 
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Figure 53 Observed and simulated volume at the GDT, including the guiding function for storage 
volume (OL) (blue: observed; red: simulated) 

4.2.5.3. Eifgenbach 

Figure 54 and Figure 55 show observed and simulated discharge of single events at Markusmühle and 

Finkenholl hydrometric stations. The Eifgenbach model shows a good agreement between observed and 

simulated discharge (see Figure 56 and Figure 57). There is a better model fit at the Markusmühle station 

(most downstream station) than at Finkenholl station. 

 

Figure 54 Eifgenbach – event simulation Markusmühle (blue: observed; red: simulated) 
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Figure 55 Eifgenbach – event simulation Finkenholl (blue: observed; red: simulated) 

 

 

Figure 56 Eifgenbach - observed and simulated discharge at Finkenholl hydrometric station (blue: 
observed; red: simulated) 
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Figure 57 Eifgenbach - observed and simulated discharge at Markusmühle hydrometric station (blue: 
observed; red: simulated) 

4.2.5.4. Linnefe 

The Linnefe model shows a good agreement between observed and simulated discharge (see Figure 58). 

As mentioned earlier, this model could not be validated for any time period since the whole available time 

series of Linnefe hydrometric station was used entirely for calibration. This station is no longer in operation. 



 D3.3 – Calibrated water resources models for past conditions  

77 
 

 

Figure 58 Linnefe - observed and simulated discharge at Linnefe hydrometric station (blue: 
observed; red: simulated) 

4.2.5.5. Scherfbach 

This model presented water balance implausibility: observed discharge is higher than the accumulated 

precipitation for the hydrological years 2003 to 2009 (see Figure 59). The rainfall-runoff relation seems to be 

plausible only for the hydrological years 2001 and 2002. In the case of the Scherfbach model, simulated 

discharge seems to be more plausible than observed discharge. Nevertheless, observed discharge was 

used to calibrate the wave rise and its course as well as for model validation. The yearly water balance 

implausibility could be due to an inappropriate rating curve, so observed discharge at this station is not 

reliable. Figure 60 and Figure 61 show observed and simulated discharge of some events at the Scherfbach 

station, where the shape of observed and simulated hydrographs seems to coincide.  

 

Figure 59 Scherfbach - observed and simulated discharge at Scherfbach hydrometric station (blue: 
observed; red: simulated; grey: accumulated precipitation) (source: Hydrotec, 2011) 
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Figure 60 Scherfbach - observed and simulated discharge at Scherfbach hydrometric station (blue: 
observed; red: simulated) 

 

Figure 61 Scherfbach - observed and simulated discharge at Scherfbach hydrometric station (blue: 
observed; red: simulated) 

4.2.5.6. Mutzbach 

The Mutzbach model had been previously calibrated (see Table 13). Figure 62 shows observed and 

simulated discharge (hydrographs), and Figure 63 presents accumulated observed and simulated discharge 

(i.e., accumulated volume), at the Dünnwald hydrometric station. Cumulative discharge for the hydrological 

years 1997 to 1999 (i.e., validation period, see Figure 63) presents a better fit than for the calibration period.  
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Figure 62 Mutzbach - observed and simulated discharge at Dünnwald hydrometric station (blue: 
observed; red: simulated) 

 

Figure 63 Mutzbach – accumulated observed and simulated discharge at Dünnwald hydrometric 
station (blue: observed; red: simulated) 
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4.2.5.7. Katterbach 

Figure 64 shows observed and simulated discharge for the hydrological year 1999. This model only presents 

satisfactory results for some events within the validation period (see, e.g. Figure 65). For other events, there 

is a discrepancy between observed and simulated discharge, not only in terms of peak discharge magnitude 

but also in terms of baseflow (see Figure 66). 

 

 

Figure 64 Katterbach – observed and simulated discharge at Paffrath hydrometric station (blue: 
observed; red: simulated) 

 

Figure 65 Katterbach – good model fit of observed and simulated discharge at Paffrath hydrometric 
station (blue: observed; red: simulated) 
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Figure 66 Katterbach – bad model fit observed and simulated discharge at Paffrath hydrometric 
station (blue: observed; red: simulated) 

4.2.5.8. Lower Große Dhünn 

Boundary conditions of this model include inflow from the Dhünn reservoir model. Figure 67 shows observed 

and simulated discharge at Hummelsheim for a single event. Figure 68 presents observed and simulated 

discharge at Manfort hydrometric station, for the calibration period. The model presents also a good 

agreement at the Schlebusch hydrometric station (see Figure 69). 

 

Figure 67 Lower Große Dhünn – observed and simulated discharge at Hummelsheim hydrometric 
station (blue: observed; red: simulated) 
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Figure 68 Lower Große Dhünn – observed and simulated discharge at Manfort hydrometric station 
(blue: observed; red: simulated) 

 

Figure 69 Lower Große Dhünn – observed and simulated discharge at Schlebusch hydrometric 
station (blue: observed; red: simulated) 
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4.2.5.9. TALSIM model for the Dhünn catchment 

The model set-up is finished, calibrated, and validated. Figure 70 shows an example of a winter event in 

2006. The model is being currently transferred by SYDRO to Wupperverband. Further simulations will be 

presented in the next report. 

 

Figure 70 Winter event of TALSIM model - Dhünn catchment (blue: observed; red: simulated) 

 

4.2.5.10. NASIM model for the Mirke catchment 

The Mirke model was already calibrated and validated. It has been operational since 2008 and constantly 

improved. Figure 71 presents a calibrated event at different gauges within the catchment. 

 

Figure 71 Calibrated event at different gauges – Mirke model (black: observed; red: simulated) 
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4.3. Model evaluation and discussion 

The goodness-of-fit (GOF) or model fit of observed and computed discharge was obtained by comparing 

hydrographs and accumulated discharge. For each model, performance was evaluated with Nash-Sutcliffe 

Efficiency, correlation coefficient16 (or Pearson correlation coefficient, r), coefficient of determination (R²), 

and volume-error for the calibration and validation periods. 

Equations 4 to 7 present Nash-Sutcliffe Efficiency, correlation coefficient (Pearson coefficient, r), coefficient 

of determination R², and Relative Volume Error (RVE), respectively: 

E = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

  eq. (4) 

 

r =
∑ (𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1 √∑ (𝑃𝑖−𝑃̅)2𝑛

𝑖=1

  eq. (5) 

 

𝑟2 = (
∑ (𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1 √∑ (𝑃𝑖−𝑃̅)2𝑛

𝑖=1

)

2

 eq. (6) 

 

𝑅𝑉𝐸 = (
∑ (𝑃𝑖−𝑂𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

) ∗ 100%  eq. (7) 

Where O are observed and P are predicted (simulated) values, and r² equals R².  

 

The range of values of Nash-Sutcliffe Efficiency is 1.0 (for a perfect fit) and -∞, with values lower than zero 

indicating that the mean value of the observed time series would have been a better predictor than the 

model. The correlation coefficient ranges from 0.0 (no correlation between observed and simulated values) 

and 1.0 (perfect fit) (Krause et al. 2005). The same applies to the coefficient of determination R². 

Relative Volume Error (RVE) can vary between -∞ and ∞, with 0.0% as perfect fit (Janssen and Heuberger 

1995, cited in Gumindoga 2010). Values ranging between -10% and -5% or +5% and +10% indicate 

reasonable performance; on the other hand, values between -5% and +5% indicate well model performance 

(Gumindoga 2010). 

Table 14 to Table 24 present the goodness-of-fit for the nine models of the Dhünn catchment area. It is 

considered that the nine hydrological models of the Dhünn catchment area present an overall good 

agreement between observed and simulated discharge. For instance, all models present a good agreement 

for the hydrological year 2009 (01.11.2008 – 01.11.2009). Extreme events are also considered to be well 

represented by the models, e.g., Figure 50 shows the registered flood event of November 2010. 

Some hydrological years show good agreement between all statistical parameters used for GOF analysis 

(see, e.g., hydrological year 2003 of Table 14 and hydrological year 2004 of Table 16). Other hydrological 

years present a good RVE while showing poorer values of Nash-Sutcliffe Efficiency and coefficient of 

determination R² (see, e.g., hydrological year 2012 of Table 24 and hydrological year 1998 of Table 20). On 

                                                           
16 The Pearson correlation coefficient is the square of the coefficient of determination, R², that is, r² = R². 
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the other hand, hydrological year 2015 of Table 15 illustrates a poor value of RVE while showing better model 

fit in terms of Nash-Sutcliffe Efficiency and correlation coefficient r.  

There are also some cases where correlation coefficient r and RVE show a good and reasonable agreement, 

respectively, while Nash-Sutcliffe Efficiency is poor (see, e.g., hydrological year 2011 of Table 22). 

Hydrological year 2003 of Table 16 presents good correlation coefficient r but poor Nash-Sutcliffe Efficiency 

and RVE values. Other cases show the same values of r (namely, R²) while presenting very different values 

of RVE (see Table 24, hydrological year 2011: poor RVE value and hydrological year 2012: good RVE value). 

Pearson coefficient (also known as linear correlation) expresses the linear dependency between observed 

and simulated discharge. All r calculated values are greater than zero, indicating positive linear correlation. 

Nash-Sutcliffe Efficiency expresses the difference between observed and simulated discharge as squared 

values, overestimating the difference which is the main method’s disadvantages (Krause et al., 2005). RVE 

is considered to be more meaningful for reservoir management while the other statistical parameters might 

be more appropriate for high peak discharge occurrence. Since statistical parameters used for GOF analysis 

have different drawbacks, it is advisable to estimate several in order to describe model performance more 

accurately.    

NASIM is a conceptual model, highly sensitive to variations in rainfall (input variable). Therefore, current 

efforts to improve the determination of spatial variability of precipitation with radar data and satellite-based 

products are being implemented in the frame of BINGO in order to enhance flood forecasting quality.  

In addition, determination of soil moisture and evapotranspiration (state variables) and their effects on water 

balance and runoff generation processes are being investigated and supported by the installation of soil 

moisture sensors and lysimeters. Until now, both soil moisture and actual evapotranspiration are estimated 

by the models. Figure 72 shows potential and actual evapotranspiration (PET and AET) for the hydrological 

year 2007, and Figure 73 and Figure 74 present soil moisture, effective precipitation, and observed and 

simulated discharge at element 8193_1 of the Upper Große Dhünn model (sub-catchment of Neumühle 

hydrometric station17) from January to July 2007. 

The model also shows high sensitivity to antecedent soil moisture conditions: after a short period with no 

rain, soil begins to dry out (see Figure 73). Then, a high precipitation event takes place in May 2007, causing 

less significant discharge in comparison to January and February 2007 (see Figure 74). In June 2007, a 

lower rainfall amount (in comparison to May 2007) leads to higher discharge on account of antecedent soil 

moisture (see Figure 74).  

Infiltration processes and surface runoff generation depend on antecedent soil moisture; thus, it is necessary 

to acquire deeper knowledge in soil wetness development over time in order to better calibrate the models. 

Discrepancies between observed and simulated discharge presented by the models are considered to be 

caused, among others, by little information on soil moisture, which will be overcome on BINGO framework. 

                                                           
17 Outflow from element 8193_1 corresponds to observed discharge at Neumühle hydrometric station. 
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Figure 72 PET and AET at element 8193_1 (Upper Große Dhünn model) – hydrological year 2007 

 

 

Figure 73 Soil moisture and effective precipitation at element 8193_1 (Upper Große Dhünn model) 
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Figure 74 Soil moisture and observed and simulated discharge at element 8193_1 (Upper Große 
Dhünn model) 
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Table 14 Upper Große Dhünn - goodness-of-fit 

  
Model 1: Upper Große Dhünn 

Calibration point: Neumühle hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of 
determination  

(R²) 

Obs. 
acccum. 

yearly  
volume [m³] 

Sim. 
acccum. 

yearly 
volume [m³] 

RVE 
[%] 

1974 0,56 0,75 0,57 370321,31 299432,41 -19,14 

1975 0,77 0,89 0,79 231673,89 290039,34 25,19 

1976 0,79 0,92 0,84 232142,25 241329,59 3,96 

1977 0,55 0,76 0,58 276815,19 306783,22 10,83 

1978 0,70 0,87 0,75 231492,95 327882,97 41,64 

1979 0,59 0,77 0,59 283996,84 269086,13 -5,25 

1980 0,82 0,92 0,86 372555,47 418805,34 12,41 

1981 0,68 0,83 0,70 457294,56 429200,94 -6,14 

1982 undeterm. undeterm. undeterm. 251250,63 342598,44 36,36 

1983 0,72 0,86 0,73 321964,59 373046,22 15,87 

1984 0,17 0,92 0,84 299884,50 425797,31 41,99 

1985 0,19 0,78 0,61 256485,66 354160,28 38,08 

1986 -3,66 0,62 0,38 204358,61 345804,38 69,21 

1987 0,71 0,90 0,81 347832,81 482065,91 38,59 

1988 0,40 0,86 0,74 284107,13 381158,50 34,16 

1989 0,66 0,82 0,68 215048,22 259180,11 20,52 

1990 0,77 0,90 0,80 217019,64 244768,58 12,79 

1991 0,75 0,89 0,79 224756,63 218521,14 -2,77 

1992 0,87 0,93 0,87 318799,03 319074,41 0,09 

1993 0,81 0,93 0,87 283218,78 399831,72 41,17 

1994 0,81 0,90 0,82 362715,47 349633,28 -3,61 

1995 0,82 0,92 0,84 348783,13 434984,06 24,71 

1996 0,57 0,88 0,77 232136,81 182907,00 -21,21 

1997 0,50 0,75 0,56 202225,19 240683,11 19,02 

1998 0,86 0,95 0,90 410588,53 403386,25 -1,75 

1999 0,85 0,93 0,87 309281,63 337601,31 9,16 

2000 0,71 0,89 0,79 365664,38 381134,53 4,23 

2001 0,82 0,92 0,85 367083,63 388792,38 5,91 

2002 0,62 0,82 0,67 374432,72 415068,09 10,85 

2003 0,83 0,92 0,84 284632,03 311327,16 9,38 

2004 0,86 0,93 0,87 375029,53 338747,50 -9,67 

2005 0,91 0,95 0,91 337770,75 348856,13 3,28 

2006 0,82 0,91 0,83 339624,44 304236,19 -10,42 

2007 0,75 0,90 0,81 433498,97 432339,41 -0,27 

2008 0,78 0,91 0,84 343596,66 400620,63 16,60 

2009 0,82 0,91 0,82 277961,53 280301,78 0,84 

2010 0,36 0,65 0,43 319552,31 231217,38 -27,64 

2011 0,04 0,76 0,58 289135,16 359669,53 24,39 

2012 0,57 0,87 0,75 323024,44 355693,28 10,11 

2013 0,19 0,79 0,62 258598,42 310690,81 20,14 

2014 -0,02 0,74 0,55 251656,67 307312,69 22,12 

2015 0,67 0,85 0,72 213339,86 298487,88 39,91 
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Table 15 Dhünn reservoir - goodness-of-fit 

  
Model 2: Dhünn reservoir 

Calibration point: Unterpilghausen hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs. 
acccum.  

yearly  
volume [m³] 

Sim. 
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2003 0,83 0,91 0,83 117455,93 108400,31 -7,71 

2004 0,82 0,91 0,83 125802,64 107210,49 -14,78 

2005 0,85 0,95 0,89 129890,76 118033,37 -9,13 

2006 0,71 0,87 0,76 122300,03 100723,11 -17,64 

2007 0,73 0,86 0,73 167317,34 149958,05 -10,38 

2008 0,87 0,93 0,87 142763,03 139146,86 -2,53 

2009 0,81 0,91 0,83 110485,34 94700,65 -14,29 

2010 0,63 0,84 0,71 124321,45 82862,02 -33,35 

2011 0,31 0,66 0,43 167902,84 127946,90 -23,80 

2012 0,67 0,86 0,74 155357,36 115466,27 -25,68 

2013 0,50 0,79 0,63 137495,52 108228,76 -21,29 

2014 0,35 0,73 0,54 129238,16 90334,31 -30,10 

2015 0,56 0,81 0,66 140643,55 90790,23 -35,45 

 

Table 16 Eifgenbach - goodness-of-fit 

  
Model 3: Eifgenbach 

Calibration point: Markusmühle hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2003 -0,47 0,91 0,82 198221,55 275023,75 38,75 

2004 0,75 0,88 0,78 283984,88 261193,11 -8,03 

2005 0,81 0,91 0,82 338489,09 290986,44 -14,03 

2006 0,73 0,86 0,74 234692,64 249873,30 6,47 

2007 0,79 0,89 0,80 355761,13 348148,41 -2,14 

2008 0,85 0,94 0,88 318622,06 320139,19 0,48 

2009 0,84 0,93 0,86 278145,03 233632,67 -16,00 

2010 0,39 0,72 0,52 302213,50 199590,25 -33,96 

2011 0,61 0,78 0,61 320055,69 303102,56 -5,30 

2012 undeterm. undeterm. undeterm. 230574,55 263834,09 14,42 

2013 0,62 0,88 0,77 214823,03 261875,61 21,90 

2014 0,38 0,66 0,44 249722,80 217982,73 -12,71 

2015 0,68 0,84 0,71 244289,05 210083,20 -14,00 
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Table 17 Eifgenbach - goodness-of-fit 

  
Model 3: Eifgenbach 

Calibration point: Finkenholl hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2003 undeterm. undeterm. undeterm. 136318,50 136883,41 0,41 

2004 0,74 0,88 0,78 146910,78 136641,42 -6,99 

2005 0,86 0,93 0,86 150882,78 139976,06 -7,23 

2006 0,62 0,79 0,63 126639,41 125866,98 -0,61 

2007 0,72 0,85 0,73 192589,69 177184,36 -8,00 

2008 0,82 0,93 0,87 166856,53 179560,00 7,61 

2009 0,84 0,92 0,84 130665,84 127310,16 -2,57 

2010 0,25 0,63 0,40 97750,71 75038,98 -23,23 

 

Table 18 Linnefe - goodness-of-fit 

  
Model 4: Linnefe 

Calibration point: Linnefe hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2004 undeterm. undeterm. undeterm. 42218,98 29945,94 -29,07 

 

Table 19 Scherfbach - goodness-of-fit 

 Model 5: Scherfbach 

Calibration point: Scherfbach hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2001 0,25 0,69 0,48 157392,48 142357,22 -9,55 

2002 0,69 0,89 0,78 166789,39 161892,63 -2,94 

 

Table 20 Mutzbach - goodness-of-fit 

 Model 6: Mutzbach 

Calibration point: Dünnwald hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

1996 -1,71 0,35 0,12 25044,05 38741,77 54,69 

1997 0,52 0,75 0,56 24493,88 35988,24 46,93 

1998 0,16 0,50 0,25 41308,95 42692,05 3,35 

1999 undeterm. undeterm. undeterm. 67416,98 66015,82 -2,08 
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Table 21 Katterbach - goodness-of-fit 

  
Model 7: Katterbach 

Calibration point: Paffrath hydrometric station 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

1997 -1,60 0,16 0,03 21597,91 14214,57 -34,19 

1998 0,23 0,53 0,28 20237,06 18234,99 -9,89 

1999 0,44 0,68 0,46 23822,60 20532,52 -13,81 

2000 -1,02 0,41 0,17 23000,06 19704,56 -14,33 

 

Table 22 Lower Große Dhünn - goodness-of-fit 

  
Model 9: Lower Große Dhünn 

Calibration point: Hummelsheim 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2001 0,70 0,84 0,71 881660,06 946265,94 7,33 

2002 0,60 0,87 0,76 1240515,30 1547301,80 24,73 

2003 0,80 0,95 0,90 912519,31 1199986,40 31,50 

2004 0,67 0,87 0,75 585426,94 747643,44 27,71 

2005 0,62 0,81 0,66 1128323,90 1129897,90 0,14 

2006 0,66 0,86 0,75 1174866,30 934133,50 -20,49 

2007 0,29 0,68 0,46 2171166,50 1244623,60 -42,67 

2008 0,67 0,82 0,68 1382027,00 1325601,50 -4,08 

2009 0,65 0,89 0,79 819010,63 988854,38 20,74 

2010 0,70 0,85 0,71 691429,00 700458,31 1,31 

2011 -0,01 0,78 0,61 1033586,80 1174271,60 13,61 

2012 0,14 0,78 0,61 1034316,30 841631,63 -18,63 

2013 -0,37 0,83 0,69 707470,63 864861,56 22,25 

2014 0,65 0,81 0,66 578688,75 623512,88 7,75 
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Table 23 Lower Große Dhünn - goodness-of-fit 

  
Model 9: Lower Große Dhünn 

Calibration point: Manfort 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2001 0,68 0,87 0,76 1438145,10 1134187,75 -21,14 

2002 0,74 0,88 0,78 1804021,90 1724359,00 -4,42 

2003 0,90 0,95 0,90 1369247,00 1358492,40 -0,79 

2004 0,62 0,81 0,66 1008519,31 877851,00 -12,96 

2005 0,62 0,86 0,73 1326200,90 1294756,40 -2,37 

2006 0,78 0,89 0,79 1147012,00 1069845,00 -6,73 

2007 0,51 0,83 0,68 1403875,40 1380349,50 -1,68 

2008 0,49 0,77 0,59 1450408,40 1490613,40 2,77 

2009 0,55 0,87 0,76 1145763,10 1139766,80 -0,52 

2010 0,60 0,84 0,71 1075924,75 845421,00 -21,42 

2011 -0,46 0,71 0,51 1258460,60 1370347,50 8,89 

2012 0,11 0,80 0,64 1184030,40 973260,81 -17,80 

2013 0,38 0,84 0,71 1089217,50 995150,44 -8,64 

2014 0,55 0,83 0,68 938515,69 724303,13 -22,82 

 

 

Table 24 Lower Große Dhünn - goodness-of-fit 

  
Model 9: Lower Große Dhünn 

Calibration point: Schlebusch 

Hydrol.  
year 

Nash-
Sutcliffe 

Efficiency 

Correlation  
coefficient  

(r) 

Coefficient of  
determination  

(R²) 

Obs.  
acccum.  

yearly  
volume [m³] 

Sim.  
acccum.  

yearly  
volume [m³] 

RVE 
[%] 

2007 0,42 0,82 0,66 1474280,60 1335154,40 -9,44 

2008 0,59 0,83 0,68 1448857,90 1433589,30 -1,05 

2009 0,57 0,89 0,79 1065826,00 1088140,10 2,09 

2010 0,60 0,82 0,68 950311,31 795792,38 -16,26 

2011 -0,18 0,78 0,61 1042585,40 1299565,10 24,65 

2012 -0,34 0,78 0,61 912307,75 930875,44 2,04 

2013 0,01 0,84 0,70 896761,75 954452,63 6,43 

2014 0,71 0,86 0,73 747443,50 690717,75 -7,59 

2015 0,70 0,85 0,73 837859,19 727770,94 -13,14 
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5. The Netherlands 

5.1. Model objectives in BINGO 

The Veluwe area is a large ice-pushed moraine in the central part of the Netherlands. The elevated sandy 

area contains a strategic groundwater body that is important for Dutch drinking water production. The area 

is primarily a nature area with forest, heathland and drift-sands. The moraine complexes (cross section of 

5- 50 km; height of 30-100 m) have a groundwater system that responds relatively slowly to hydrological 

interventions and weather. Large scale drainage systems or surface water bodies are absent in the central 

part of the Veluwe. Drainage occurs primarily at the borders of the Veluwe through brooks and streams and 

through upward seepage in agricultural areas surrounding the Veluwe. The Veluwe can be considered as 

one large hydrogeological system that is continuously searching for a hydrological equilibrium (see also 

Deliverable 3.1 for more site specific information). 

Under a warming climate the water quality of large rivers in the Netherlands might degrade (Delpla et al. 

2009), especially during dry periods with low river discharge (van Vliet and Zwolsman, 2008; Zwolsman and 

van Bokhoven 2007). Moreover, climate projections predict that precipitation shifts from summer to winter 

and that potential evapotranspiration in summer increases, meaning that dry spells will occur more frequently 

and intensively (KNMI 2014). Providing the water requirements of nature, agriculture and drinking water in 

the Netherlands is therefore under pressure. Dutch authorities are particularly concerned about the sandy 

southern and eastern regions of the Netherlands because sandy soils of these regions have a poor water 

holding capacity, which renders them more vulnerable to dry spells. Large groundwater bodies, such as the 

Veluwe, could therefore form an important source of water during dry periods. To ensure sufficient and high 

quality water at acceptable costs, it is likely that the dependency on groundwater of the Veluwe will increase. 

This implies, for instance, that drinking water companies intensify or relocate current groundwater 

extractions, or install new water production sites. For sustainable management of groundwater resources, 

groundwater extractions should be balanced with the amount of precipitation that percolates to the saturated 

zone, the groundwater recharge. A major part of precipitation water reaching the Veluwe does not lead to 

groundwater recharge as it turns into evaporation from the soil surface and transpiration by plants, i.e. into 

evapotranspiration. From the perspective of groundwater recharge, this water loss can be influenced by 

nature management. In general, more green leaf area leads to a larger water loss by transpiration and 

interception, and to a decrease in groundwater recharge. Interventions, however, also affect surrounding 

areas via the groundwater system.  

Regionally, different and often contrasting interests prevail. More numerous or intensive groundwater 

extraction may lead to lower discharge in streams and canals, to drawdown of the groundwater head, and 

affect adjacent nature areas. Nature areas situated on infiltration areas (e.g. elevated sandy soils) supply 

topographically lower land (wet ecosystems or agricultural fields) with seepage water, hence changes in 

recharge may lead to water logging or drought and affect agricultural productivity and nature targets. Such 

conflicting interests call for an integrated approach, where all interests are tuned to each other. 

Both land use and climate control the water balance of the Veluwe area. Because the Veluwe area responds 

slowly to hydrological changes, we will evaluate the effects of land use and climate change on water 

resources of the Veluwe area and related functions in a historical perspective within the BINGO project. The 

model objectives of this research are to quantify the effect of climate and land use changes for i) historical 

conditions (from the 17th century), ii) the recent past (1980-2015), iii) the near future (2015-2025) and iv) the 
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far future (2050 to 2100). For these different time periods we will focus on long term effects as well as effects 

of dry spells (series of dry years) on groundwater levels.   

5.2. Model application 

5.2.1. Model description 

We will use the groundwater model AZURE to simulate groundwater levels and discharges of discharge of 

groundwater to surface water, drainage and overlandflow of the Veluwe. The AZURE model (de Lange & 

Borren 2014) is based on MODFLOW (Harbaugh et al. 2000) for the simulation of groundwater flow and 

MetaSWAP (van Walsum and Groenendijk 2008; Walsum et al. 2010) to simulate evapotranspiration and 

groundwater recharge (Figure 68). The model has been developed and calibrated prior to the BINGO project. 

Basic features and characteristics are explained here. For more detail descriptions we would like to refer to 

de Lange and Borren (2014). 

We will use crop factors multiplied by the Makkink reference crop evapotranspiration (Makkink 1957), to 

simulate potential interception evaporation, potential transpiration and potential soil evaporation. Actual 

interception evaporation is simulated according to the Rutter et al. (1971) model, actual transpiration is 

simulated using a water stress reduction function of Feddes et al. (1974) which accounts for the closure of 

leaf stomata during water stressed periods, and actual soil evaporation is simulated using Boesten and 

Stroosnijder (1986). For a detailed description of MetaSWAP coupled to MODFLOW we refer to Walsum et 

al. (2010).  

 

Figure 75 Model structure of MetaSWAP coupled to MODFLOW 
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5.2.2. Data 

AZURE model consists of 9 hydrogeological layers that have a horizontal (Kh) and vertical conductivity (Kv). 

The national Dutch hydrogeological database REGIS 2.1 has been used to determine the initial 

conductivities before calibration (paragraph 5.2.3). Major soil textures are sandy gravel, sand and clay. 

Because the Veluwe is an ice pushed ridge, the geological setting is quite complex and difficult to determine 

from coring’s. In parts of the Veluwe, the layering is tilted to an approximate angle of 30 to 60 degrees due 

to the pushing forces of the ice sheet (see Figure 76). These complex features are accounted for by using 

different horizontal anisotropy factors (the ratio’s between Kh and Kv) in row (x) and column (y) direction. 

Regions with the largest deformations received a low anisotropy value (i.e. a relatively low Kh) in the direction 

perpendicular to an ice pushed ridge.  

The model boundaries of AZURE are defined as constant head boundaries. The extent of the model is 

chosen in such a way that a constant head boundary coincides with large rivers (‘IJssel’ and ‘Rijn’) or lake 

‘IJsselmeer’. Large lakes, as the ‘IJsselmeer’, are simulated as constant head boundaries as well. For 

terrestrial parts, the upper boundary is controlled by recharge estimated by MetaSWAP. AZURE has a 

minimum spatial resolution of 25 m x 25 m. For the BINGO project we will run the model at 250 m x 250 m 

since we are interested in large scale patterns and to save memory and computing time. The AZURE-model 

uses daily meteorological data. 

The Veluwe will be studied from the 18th century (1750 AD) onwards and forms an example of an area where 

large-scale changes in land cover and drainage of surrounding areas have occurred during the past 

centuries (Koster 1978). The historical changes in land cover will be translated to changes in groundwater 

recharge. The translation of land cover to groundwater recharge will be based on historical observations of 

precipitation and temperature, available since 1706 (Labrijn 1945) and translated by the Royal Dutch 

Meteorological Institute (HISKLIM project) to meteorological station De Bilt (centre of the Netherlands). 

Insufficient historical data are available to derive the Makkink reference crop evapotranspiration. Therefore, 

air temperature will be translated to Makkink reference crop evapotranspiration, using a relationship between 

these two quantities based on modern observations at De Bilt.  

For the recent past (1980 to 2015) and near future (2015 to 2025) we will use the simulated climate data 

generated by WP2. For the far future (2050, 2100) we will use climate scenarios of the Royal Dutch 

Meteorological Institute (KNMI 2014).  

The output of AZURE will be ascii rasters of long term average groundwater recharge and lowest, average 

and highest groundwater head. For dry years en the consecutive 3 years we will produce quarter of a year 

average groundwater head and compare sequences of years to assess the response time of the system to 

dry years.   
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Figure 76 Different regions (1 to 8) with tilted geological layers 

5.2.3. Calibration and validation strategies 

The AZURE model was calibrated in 4 different stages on data of groundwater observation wells and on 

outflow data from 1995 to 2005 of different polder areas. First, the model was calibrated in a stationary run, 

optimizing Kh and Kv. Second, the model was calibrated in a stationary run optimizing anisotropy factors. 

Third, a non-stationary simulation was performed to optimize Kh, Kv and the unconfined storativity for 

elevated regions. Forth, a non-stationary run was used to optimize Kh, Kv, the unconfined storativity, the 

riverbed conductance and the drainage conductance. Basically, the latter two calibration steps focused on 

two different regions: elevated sandy soils and the polder area.  

The representer-technique (Valstar 2007; Valstar et al. 2004) was used during stationary calibration. The 

representer approach is especially advantageous in groundwater problems where the total number of 

measurements is often small. The representer approach uses mathematical function to describe variability 

of model parameters in respect to individual measurements. It determines how far away a parameters is still 

adjusted and how large the adjustment can be. 

For non-stationary runs the PEST module in IMOD (Vermeulen et al. 2016) was used for calibration. The 

module uses the Levenberg-Marquardt algorithm to minimize the model error by adjusting the model 

parameters. The further the model errors are from there minimum, the larger the adjustment of model 

parameters is   

After each calibration step, experts (modelers and field experts) assessed whether the model results and 

parameter estimations fall within realistic limits and decided if parameter limits should be adjusted before 

continuing to the next calibration step.   
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5.2.4. Results 

Groundwater levels of the calibrated AZURE model are on average 20 cm lower than observed. Deviations 

are larger for elevated areas, and lower at the ridges of the ice-pushed moraine (see Figure 77). The 

simulated dynamic range (the variation between the minimum and maximum groundwater heads) is on 

average 8 cm larger than the observed dynamic range. For the greater part, the residuals after calibration 

show a normal distribution. However, there are also clustered deviations, especially for elevated areas where 

simulated groundwater heads are too low.  

Calibration based on observed in- and outflow of polder areas did not lead to much improvement of the 

model. These fluxes seem to be insensitive for parameter adjustments that were made during calibration.  
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Figure 77 Model area of the Veluwe research site, the difference between modelled and measured 
median (p50) of the 1995 – 2005 timeseries of groundwater heads and the average simulated 
groundwater head in meters above mean sea level (m+msl) 

 

In figure 78 the calculated average discharge of groundwater to surface water, drainage and overlandflow is 

shown. On the higher part of the Veluwe there is no discharge. The groundwater levels are far below surface 

level that the don’t reach the surface water. More on the edges of the Veluwe, where groundwater levels are 

closer to surface, discharge starts to take place 
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Figure 78: Combined average discharge from groundwater to surface water, drainage and overlandflow 

 

5.3. Model evaluation and discussion 

The AZURE model is a physically based model that is able to simulate groundwater heads and 

evapotranspiration for large regions. The state of the art coupled simulation of evapotranspiration and 

groundwater flow is well suited for climate and land use change analyses. Considering the complex 

hydrogeological system, we are satisfied with the model performance. With the exception of observation 

wells in elevated areas, most observation wells show a good agreement with the observed groundwater 

head.   

In general, the AZURE model is drier than observed in elevated areas, which implies that it has difficulties 

in capturing observed steep gradients in hydraulic head at the fringe of the Veluwe. In general, the Veluwe 



 D3.3 – Calibrated water resources models for past conditions  

101 
 

system is a very complex hydrogeological structure. Due to not enough knowledge about these structures, 

this is simplified in de model. So probably some conceptual parts of the model do not describe the processes 

very well, or important geological structures are merely absent in the model. Tuning parameters to much 

with these simplified concepts does not necessarily lead to a better model, on the contrary. A model that is 

optimized on observations without considering realistic parameter values may lead to good results based on 

wrong reasons (Guisan & Zimmermann 2000) obviously, such a model is unsuitable for simulating effects 

of climate change. Therefore, the judgement of the experts about realistic parameter limits and field experts 

knowing the details of existing geological structures was a key feature during the calibration process. 

5.4. Bibliography 

Boesten, J.J.T.I., Stroosnijder, L. (1986) Simple model for daily evaporation from fallow tilled soil under 

spring conditions in a temperate climate. Netherlands Journal of Agricultural Science, 34: 75-90. 

de Lange, W., Borren, W. (2014) Grondwatermodel AZURE versie 1.0. Actueel instrumentarium voor de 

Zuiderzee Regio., Deltares. 

Delpla, I., Jung, A.V., Baures, E., Clement, M., Thomas, O. (2009) Impacts of climate change on surface 

water quality in relation to drinking water production. Environment International, 35(8): 1225-1233. 

Feddes, R.A., Bresler, E., Neuman, S.P. (1974) Field test of a modified numerical model for water uptake 

by root systems. Water Resources Research, 10(6): 1199-1206. 

Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecol. Model., 135: 

147-186. 

Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G. (2000) MODFLOW 2000, The U.S. geological 

survey modular ground water model user guide to modularization concepts and the ground water 

flow process, US Geological Survey, Reston, Virginia. 

KNMI (2014) KNMI'14 climate scenarios for the Netherlands; A guide for professionals in climate adaption, 

KNMI, De Bilt, The Netherlands. 

Koster, E.A. (1978) De stuifzanden van de Veluwe: een fysisch-geografische studie. Ph.D Thesis, 

Universiteit van Amsterdam, 195 pp. 

Labrijn, A. (1945) Het klimaat van Nederland gedurende de laatste twee en een halve eeuw. (49): 102. 

Makkink, G.G. (1957) Testing the Penman formula by means of lysimeters. J. Inst. Wat. Engrs., 11: 277-

288. 

Rutter, A.J., Kershaw, K.A., Robins, P.C., Morton, A.J. (1971) A predictive model of rainfall interception in 

forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agricultural 

Meteorology, 9: 367-384. 

Valstar, J.R. (2007) IJken met de representermethode. Stromingen, 13(2): 37-52. 

Valstar, J.R., McLaughlin, D.B., te Stroet, C.B.M., van Geer, F.C. (2004) A representer-based inverse 

method for groundwater flow and transport applications. Water Resources Research, 40(5): 

W05116, doi:10.1029/2003WR002922. 

van Vliet, M.T.H., Zwolsman, J.J.G. (2008) Impact of summer droughts on the water quality of the Meuse 

river. Journal of Hydrology, 353(1–2): 1-17. 

http://dx.doi.org/10.1029/2003WR002922


D3.3 – Calibrated water resources models for past conditions  
 

102 
 
 

van Walsum, P.E.V., Groenendijk, P. (2008) Quasi Steady-State Simulation of the Unsaturated Zone in 

Groundwater Modeling of Lowland Regions. Vadose Zone Journal, 7(2): 769-781. 

Vermeulen, P.T.M., Burgering, L.M.T., Roelofsen, F.J., Minnema, B. (2016) iMOD user manual. Version: 

3.4, June 2016. Deltares, The Netherlands. 

Walsum, P.E., Veldhuizen, A.A., Groenendijk, P. (2010) SIMGRO 7.1.0 Theory and model implementation, 

Alterra-report 913.1. 

Zwolsman, J.J.G., van Bokhoven, A.J. (2007) Impact of summer droughts on water quality of the Rhine River 

- A preview of climate change? , 56: 45-55. 

 

 

  



 D3.3 – Calibrated water resources models for past conditions  

103 
 

6. Norway 

6.1. Model objectives in BINGO 

The water resources modelling at the Bergen research sites create a platform for analyzing the impact of 

future changes in extreme weather on the drinking-water resources and stormwater systems. Thus, the 

overall goals of the BINGO project in relation to the Bergen research site are the development of 

methods/tools for forecasting the available water resources for drinking water supply, and assessment of 

the impact of climate change and increased frequency of weather extremes on CSO discharge. The specific 

objectives of the modelling works of BINGO at the Bergen research site in Norway are two. These are, 

analyzing the risk o f  drought and assessing the availability of future water resource for drinking water 

supply, and assessing climate change induced impacts on the stormwater and the recipients. The respective 

activities being undertaken are hydrological simulation of the inflows into the reservoirs that provide the city’s 

drinking water supply, and modelling of the hydrology and stormwater drainage system of the Damsgård 

area. As described in the Description of Action (DOA), Bergen County has an operational Sewer and 

Stormwater model (i.e. as separate sewer or combined sewer system) covering most of Bergen City, 

including parts of the Damsgård area. Research efforts in the BINGO project has also delved into separating 

the stormwater and sewer system models, in line with the Bergen County’s desire to separate the two 

systems as a means to overcome the present threat the extensive flash floods from the hillsides posed to 

the residential areas in Damsgård. 

Jordalsvannet, Svartediket, Sædalen and Espeland are the main lakes that provide Bergen’s drinking water 

supply. The area contributing the drinking water resource has a size of 31.9 km2 and the elevation above 

mean sea lever ranges between 76 m to 983 m. The inflows into the reservoirs are low – in the winter, 

moderate – between April and September, and high in autumn (i.e. October to the end of December). The 

Damsgård area, the site of stormwater system modelling, has a size of around 8.3 km² and the elevation 

ranges from sea level to 468 m above mean sea level. According to http://www.nevina.no, the mean specific 

runoff of the catchments contributing to the drinking-water reservoirs and of the Damsgård area are 115 

l/s/km2 and 70 l/s/km2, respectively. For detailed description of the research sites, please refer to D3,1. 

The models selected are the HBV-model (Hydrologiska Byråns Vattenavdelning; Bergström (1976)) – for 

modelling the drinking water resources of Bergen City, and the SWMM (Storm Water Management Model; 

Rossman (2015)) – for modelling the stormwater system of the Damsgård area. 

The HBV-model is a hydrological model widely applied in the Northern European countries. It performs well 

in capturing the hydrological process in cold climate regions and renders the benefit that it can adequately 

reproduce observations without being too complex. A regional HBV-model for the Bergen region developed 

and set up during the pre-study phase of the BINGO project is in use. Through description of the model, its 

calibration and validation, and discussion of the results are documented as part of a thesis work by Kristvik 

& Riisnes (2015). 

SWMM has been selected to model the stormwater system of the Damsgård area mainly because it is an 

open source software and the availability of its source code, which gives the flexibility to improve the runoff 

routine of the model. Furthermore, since the Bergen County plans to improve the water quality of the 

Puddefjord, the model setup can later be used for water quality simulation as simulation of quantity and 

quality problems associated with runoff from urban areas can be made using SWMM. This was found 

necessary because the system in some part of the study area is not included in the existing Mike Urban-

based model. There are no flow records in the section of the system left out of the model and efforts made 

http://www.nevina.no/
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to transfer model parameters revealed the need for vigorous calibration of the existing model. The results 

are documented in a bachelor thesis project of Scheibler (2016). 

6.1.1. Model application 

6.1.1.1. Model description 

HBV-model 

The HBV-model was first developed in the 1970’s and is a widely applied tool for hydrological runoff 

simulations in Nordic countries (Bergström, 1992). The HBV model is a conceptually-based, deterministic 

rainfall-runoff model. Over the years, it has been developed and improved – moving from a lumped model 

to a distributed model (Bergström, 1998). The HBV-model set up for the Bergen research site is a semi-

distributed version and the schematics of the model structure are presented in Figure 79. It is semi-

distributed in the sense that it takes into account the hypsographic distribution of the catchment by splitting 

the area into ten elevation zones. The model uses temperature, precipitation and evapotranspiration as 

input. Firstly, this input enters the snow routine, which includes the estimation of dry snow storage, wet snow 

storage, snow melt, and snow refreezing. Based on this, it calculates the water that is further transferred to 

the soil moisture routine. In the soil moisture routine, the amount of water that stays in the unsaturated zone, 

how much is evaporated and transpired, and the amount of water that continues to the response routine is 

estimated. The response routine is divided into quick runoff (upper zone) and slow runoff (lower zone). The 

calculated responses in the response routine comprise the simulated runoff from the catchment.  

 

Figure 79 Schematic description of the HBV model structure where P is precipitation, T is 
temperature, EPOT is potential evapotranspiration, and R is generated runoff 

Each routine has its own set of model specific parameters and the regional HBV-model that exist for Bergen 

comprise of values for these parameters. The regional model is divided into of five sub-models representing 

the five catchments surrounding the city’s drinking water reservoirs. The analyses presented in this report 

are performed for the one of these catchments, Svartediket, which was chosen due its location close to the 

city center and relevant weather stations.  

Stormwater model 

The Environmental Protection Agency’s (EPA) SWMM is a dynamic rainfall-runoff simulation model used for 

simulating quantity and quality of flows mainly from urban areas (Rossman 2015). Since its development by 

the EPA in 1971, SWMM has gone through several major upgrades, and is widely used for planning, 

designing and analyzing urban stormwater and drainage systems. Some of SWMM’s typical applications 
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include, sizing of detention facilities, flood plain mapping of natural channel systems, designing control 

strategies for minimizing combined sewer overflows, evaluating the impact of inflow and infiltration on 

sanitary sewer overflows, and generating non-point source pollutant loadings for waste load allocation 

studies. As illustrated in Figure 80 SWMM represents the water/material cycle between major environmental 

compartments through a series of flows. It can simulate all aspects of urban hydrologic and water quality 

cycles (e.g. rainfall, snowmelt, surface runoff, etc.). 

There are several scientific publications, which applied SWMM for different purposes. Rai (2016) assessed 

application of SWMM for simulation of floods in river systems in the Brahmani river delta (India). They 

calibrated their model using a Monte Carlo based optimization procedure and sampling the parameter space 

using Latin-hypercube sampling method and concluded that the performance of SWMM for modelling river 

systems is very good. Li et al. (2015) successfully used the SWMM model to investigate the merits of 

implementing low impact development facilities (i.e. gravel infiltration retention system and depressive green 

field) in Guangzhou, China. Likewise, Rosa (2015) simulated the runoff and nutrient export from a low impact 

development watershed in USA and examined sensitivity of some of the model parameters.  

 

 

Figure 80 Schematic illustrations of the processes modeled by SEMM. (Source: Rossman 2015) 

The runoff routine of SWMM generates runoff from precipitation and can be employed for event-based or 

continuous simulation. It comprises a hydraulics component that mainly transports the runoff generated from 

a collection of sub-catchments to the desired outlet through a series of conduits and storage elements. In 

this project, SWMM 5.1 (version 5) is being used. This SWMM version is a complete re-write of the previous 

release and a C++ version of the source codes is available. The two main inputs model SWMM requires are 

physiographic information of the study area and detailed information of the stormwater system.  
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6.1.1.2. Data 

HBV-model 

The HBV-model is run with a daily temporal resolution and uses data for precipitation, temperature, and 

evapotranspiration as input to simulate runoff. In addition, some catchment specific characteristics must be 

defined. Information on the model input and data sources used in the work presented in this report are found 

in Table 25 and Table 26.  

 

Table 25 Input data to the HBV-model for Svartediket 

 Variable Format  Spatial 

resolution 

Temporal 

resolution 

Time span Source 

(1) Precipitation(obs) .xlsx Station  Daily 1980-2014 50540 Florida Weather 

station (available at 

www.eklima.no) (2) Temperature(obs) .xlsx Station Daily  1980-2014 

(4) Precipitation(sim) .csv Station  Daily  1980-2014 Downscaled data bias 

corrected to 50540 

Florida Weather Station 

(https://freva.met.fu-

berling.de) 

(5)  Temperature(sim) .csv Station  Daily  1980-2014 

(3) 
Potential 

evapotranspiration 
.xlsx Station  Daily 1980-2014 

Derived from temperature 

data (2) and (4) by the 

Thornthwaite method2 

 

Table 26 Catchment specific parameters for Svartediket generated by NVE’s (The Nowegian Water 
Resources and Energy Directory) catchment generator NEVINA (NVE, 2016) 

Parameter Value 

Hypsographic distribution:  

(Hmin, H10, H20, H30, H40, H50, H60, H70, H80, H90, H100) 

 

(60, 147, 260, 338, 406, 459, 495, 532, 570) m.a.s.l. 

Catchment area 12.3 Km2 

Lake percentage 4.1 % 

Specific runoff  105 l/Km2 
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Stormwater model 

The stormwater system comprised 103 manholes (nodes) and 2068 m long circular conduits of varying sizes. 

Figure 81 illustrates the system and its elements. In system is a combined sewer system that collects 

sewerage from 35 sub-catchments of 26.1 ha size. Detail information of the system and all the features was 

obtained from the Norwegian Water and Wastewater systems’ database (Gemini), and the existing model. 

 

 

Figure 81 Sub-catchments and the stormwater network 

Flow records are scarce in the project area. Installation of one or more flow meter in the stormwater pipe 

systems is underway in the BINGO project. The data available for calibrating the stormwater model were 

collected during flow measurement campaigns conducted in the period between 2001 and 2008. The data 

series have short length with a record at a given campaign station covering between 35 to 173 days. Thus, 

records from two of these stations (SSBMV and SSKROHN) were used. The former was used for evaluating 

the stormwater model calibration, even though the records quantify the combined flow. As can be seen in 

Table 27, the later station provided data series of the sewerage flow collected at a separate sewer system. 

The records from this station were used to calculate the per capita sewerage production at a 5 minutes 

interval observation time step. The mean per capita sewage production calculated on the dry days equaled 

107.5 l (range from 82 to 162 l/p.d), which is within the range Ødegaard (2014) provided for Norway. As 

shown in Figure 82, the peak sewerage flow hours inferred from the records coincide with the hourly sub-

daily variation. Using these two data series, a stormwater flow data series was generated at SSBMV station.  

 

Outlet 

Rain 
gauge 
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Figure 82 Boxplots of the sub-daily variability of the sewer flow over dry days. The red line and the 
blue dotes respectively designate the mean value for the Damsgård area and the mean value for 
Norway (Ødegaard, 2014) 

Digital elevation model of 10 m resolution was obtained from Kartverk’s website. Tabular summary of the 

data types, observation time steps and sources are given in Table 27. 

 

Table 27 Type, source and description of data used for the stormwater model 

Station Code 
Temporal 

Resolution 

Period 
System/Data 

Type 

Data 

Source 
From To 

T
im

e
 s

e
ri
e

s
 

SSBMV 5 min. 29.04.2004 25.08.2004 Combined 

Bergen 

County 

SSLILLED 5 min. 26.05.2004 25.08.2004 Combined 

SSFROYA 5 min. 26.08.2004 09.12.2004 Sewer 

SS61RG Real time 02.05.2004 24.08.2004 Precipitation 

SS73RG Real time 02.05.2004 24.08.2004 Precipitation 

G
e

o
s
p

a
ti
a

l 
d

a
ta

 

Stormwater system  

Sub-catchment physiographic information 

Land use and land cover 

Kartverket 

kartverket.no 
Digital elevation model (10m) 
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6.1.1.3. Calibration and validation strategies 

HBV-model 

The regional HBV-model for Bergen was already calibrated and validated in previous studies. Detailed 

descriptions are found in Kristvik & Riisnes (2015). In this report, the model is validated for the time period 

1980-2014. Validation is performed by comparing the simulated inflow (i.e. adopting parameterization of the 

regional HBV-model) to a reference inflow (i.e. obtained by areal scaling from an adjacent and gauged 

catchment (Kristvik & Riisnes, 2015)). 

Stormwater model 

Stormwater data has not been available for calibrating the stormwater model. As highlighted in the previous 

subsection, attempt has been made to generate a stormwater flow series at SSBMV station by deducting 

the mean per capita sewage production from the combined flows. In addition to the data uncertainty, there 

is no evidence whether there are intakes/inlets into which the runoff generated from the mountainous part 

of the catchment lying along the western edge goes in. This was noted during attempts to auto-calibrate the 

model and measure the performance of the model with the commonly used efficiency metric (e.g. the sum 

of squares error). It was noted that the estimated flows at the catchment outlet were much higher than flows 

observed in the system. Efforts made to force the estimated flows to match the observed ones led to 

unrealistic distribution of water in the water balance components of the system. 

Hence, the model was calibrated in such a way that the simulated hydrograph somehow follows the response 

pattern of the observed flows. Considerable consideration was given to the runoff coefficient SWMM reported 

at the end of the computations. The aim has been to bring the runoff coefficients of the largely undeveloped 

forest covered mountainous sub-catchment up to 0.2 and that of the predominantly urbanized sub-

catchments above or equal to 0.6. 

In order to evaluate the performance of the model using data other than the one used for calibration an 

internal station was selected. The 5 minute interval flow series at the SSLILLED station has a slightly shorter 

length with a discontinuity of 23.2 % over the period shown in Table 27. The gauging station is located in the 

southern tip of the catchment contributing to the SSBMV (Figure 83). Its catch area equals 12.7 ha and 

consists a pipe network of 407.4 m length joined one another through 20 manholes. 
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Figure 83 Location of the flow stations proposed for calibration and validation of the model 

6.1.1.4. Results 

HBV-model 

Table 28 shows the Nash Sutcliffe criterion (NSE) between simulated inflow and the reference inflow. For 

the validation, the NSE for daily runoff is lower than the calibrated results (0.776 vs. 0.801), but improves 

when looking to monthly values (0.882). The simulated monthly runoff for the period 1980-2014 is presented 

in Figure 76. Because low flows are of interest, the logarithmic NSE of monthly runoff was also calculated, 

yielding a value of 0.888. This implies that the model performs well with regards to the objectives related to 

water supply in Bergen, as monthly variations and low flows are of particular interest. Furthermore, the daily 
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runoff simulated for the winter 2009/2010 is presented in Figure 77. This illustrates the model’s ability to 

reproduce the dry periods that may cause problems to the water supply. 

 

Table 28  Comparison of NSE from model calibration (Kristvik & Riisnes, 2015) and model validation 

 NSE 

Calibration (daily 1980-2009) 

(Kristvik & Riisnes, 2015) 

0.801 

Validation (daily 1980-2014) 0.776 

Validation (monthly 1980-2014) 0.882 

 

 

Figure 84 Monthly runoff simulated for Svartediket in the timeperiod 1980-2014 
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. 

 

Figure 85 Simulated daily runoff winter 2009-2010 

Stormwater model 

One of the main results is the runoff coefficent SWMM computed for each calibration from the model 

calibration. This was set as an objective during the model calibration. The values for each sub-catchment 

are provided in Table 29.  

 

Table 29 Runoff coefficients (C) obtained for each sub-catchment after model calibration 

Catc. ID C Catc. ID C Catc. ID C Catc. ID C 

2 0.66 11 0.16 20 0.21 29 0.11 

3 0.67 12 0.12 21 0.62 30 0.62 

4 0.75 13 0.16 22 0.20 31 0.64 

5 0.18 14 0.79 23 0.19 32 0.63 

6 0.15 15 0.74 24 0.09 33 0.07 

7 0.11 16 0.70 25 0.20 34 0.15 

8 0.19 17 0.74 26 0.19 35 0.15 

9 0.14 18 0.65 27 0.71 36 0.14 

10 0.14 19 0.64 28 0.63   

 

Figure 86 shows the simulated and observed flows at the SSBMV and SSLILLED stations. The former is 

used for calibration and the later for verifying performance of the model. 
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Figure 86 Simulated and observed flows at SSBMV (upper) and SSLILLED (lower) stations 

6.1.2. Model evaluation and discussion 

HBV-model 

Validation of the HBV-model for the Bergen region has revealed that model performance, measured by the 

Nash-Sutcliffe criterion, is adequate. The model performance is good both for daily and monthly runoff 

simulations and it is concluded that the model is well suited for further investigations of water supply in 

Bergen. Thus, the specific model set-up outlined herein will be kept in future simulations of inflow using input 

data produced in WP2 of the BINGO project.  

Stormwater model 

Although the model has not been calibrated optimally due to the aforementioned challenges, the model has 

yielded minimal (< 1%) continuity errors for both the surface runoff and the conduit routing. The model 

parameterization has yielded runoff coefficients higher than 0.6 for the sub-catchments located in the more 

urbanized part of the city, which goes along the Norwegian guidelines for stormwater management (NVE 

2015). Visual evaluation of the goodness of fit between the simulated and observed flow series revealed that 

the parameterization has helped to capture the hydrologic processes well. The model has responded to 

storm events rightly. The hydrographs at SSBMV and SSLILLED stations show that the volumetric error is 

enormous. At SSBMV, the station used for calibration, the model overestimated the observations. One 

possible reason, as highlighted early on in this report, could be that the runoff generated from the entire 

catchment might not enter the combined system unlike how it is set up in the present model. On the contrary, 

comparison of the simulated and observed hydrographs at SSLILLED shows that the model underestimates 
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the runoff recorded at the gauging station. In both cases, however, the simulated peak flows are higher than 

the observed ones. 

The main short coming of the present model set up is the limitation in verifying the information obtained from 

various data sources; for example, what percentage of the runoff generated from the catchments are 

collected and transferred through the combined system. On the other hand, the results obtained from the 

present modelling work, in which a simple calibration technique was implemented, suggests that the model 

performance can be enhanced by implementing auto-calibration algorithms.  

In order to improve performance of the model, the following tasks are online. 

i. Field inspections and verifications whether the sub-catchments are connected to the combined 

sewer system as designated in the model; 

ii. Auto-calibration of the model to reduce the discordance between the simulated and observed flow 

series using the Shuffled Complex Evolution algorithm; and 

iii. Validation of the model using an internal gauging station. 
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7. Portugal 

The Portuguese contribution to the BINGO objectives of testing different systems’ vulnerabilities to climate 

change is fourfold: 

1. Test climate change impacts in estuary bordering lands where expected sea level rise associated 

with more frequent storm surges and salt water intrusion are the driving forces; 

2. Determine how potential reduction in groundwater recharge combined with salt water intrusion can 

reduce the availability of water to agricultural uses in coastal lowland areas; 

3. Estimate how vulnerable communities will become to increase floods frequency and magnitude in 

urban areas; 

4. Assess how the potential changes in surface water flow regimes will jeopardize the current and 

future planned water uses. 

 

Figure 87 locates geographically these issues and its associated systems. In order to get a better legibility 

of the aquifer systems’ position, their configuration is to be found in D3.1. 

 

 

Figure 87 Different systems modeled in the Tagus basin  
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The developments already achieved in the modelling component of the scientific approach to these 

questions will be developed throughout the following sub-sections. 

7.1. Tagus estuary 

7.1.1. Model objectives in BINGO 

The upper Tagus estuary is bordered by rich agricultural lands. Climate change can affect these lands in 

two different ways. First, extreme storm events combined with high tides can lead to the overflowing of dikes 

and the inundation of these fertile lands. This phenomenon represents a potential threat to both people and 

infrastructures. The sea level rise associated to climate change will exacerbate these risks by increasing the 

frequency and the extent of the inundations. Secondly, salt water intrusion in the upper estuary occasionally 

reaches the major water intake that provides fresh water for irrigation of these lands. Both sea level rise and 

a decline in river flow can promote salt water intrusion, thereby reducing water availability and agricultural 

productivity. Hence, the goals of the Tagus estuarine models developed within BINGO are twofold: 1) to 

simulate extreme storm events and the resulting inundation of agricultural land; and 2) to simulate salt water 

intrusion in the upper estuary. 

With a surface area of about 320 km2, the Tagus estuary is one of Europe’s largest estuaries. A detailed 

description of this estuary and its margins is presented in a previous report (Deliverable 3.1, Alphen et al., 

2016) and will be omitted here for brevity. In order to properly represent all the relevant physical processes, 

the model domain includes the whole estuary, from the river to the ocean. However, our focus is in the upper 

estuary (Figure 88). 

 

    

Figure 88 Tagus estuary: general perspective (left) and detail (right) of the study area in the upper 
estuary (source: background image from ESRI basemap) 
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The dynamics of the Tagus estuary were simulated with the community model SCHISM (Zhang et al. 2016a). 

SCHISM simulates shallow water flows in river to ocean domains, in two and three dimensions, including 

salt and heat transport and the propagation of wind waves (Roland et al. 2012). The use of unstructured 

grids makes it particularly adapted to the problem at hand, since it allows a detailed representation of small-

scale features that exist in the Tagus estuary (e.g., dikes, narrow channels). SCHISM runs in parallel mode 

using MPI, which provides the computation efficiency required in BINGO. LNEC participates in the 

development of this modeling system (e.g., Rodrigues et al. 2009, 2011; Pinto et al. 2012; Azevedo et al. 

2014), and has a long experience in applying SCHISM and its predecessor SELFE (Zhang & Baptista 2008) 

to simulate estuarine and coastal circulation and water quality. Finally, SCHISM is used in LNEC’s Tagus 

forecast systems (Fortunato et al. in press). These reasons have dictated the adoption of SCHISM to 

simulate the Tagus estuary dynamics. 

7.1.2. Model application 

7.1.2.1. Model description 

Simulations are performed with the modeling system SCHISM (Zhang et al. 2016a; 

http://ccrm.vims.edu/schism/), version 5.3.1. This system evolved from SELFE (Zhang & Baptista 2008) and 

has been developed in several institutions, led by the Virginia Institute of Marine Sciences. SCHISM (Semi-

implicit Cross-scale Hydroscience Integrated System Model) is a community modeling system based on 

unstructured grids, which aims at the cross-scale simulation of surface water processes from the river to the 

ocean. SCHISM uses semi-implicit finite elements and finite volume methods, combined with Eulerian-

Lagrangian methods, to solve the shallow water equations. SCHISM is also fully parallelized. The version of 

SCHISM used herein includes a module for surface waves (Roland et al. 2012). 

 

Figure 89 Structure of the SCHISM modeling system (source: CCRM-VIMS) 
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SCHISM and its predecessor SELFE have been extensively used to simulate the processes relevant to the 

present application: 

 Applications to extreme events and coastal inundation: e.g., Bertin et al. (2012, 2014), Fortunato 

et al. (2013, 2016, submitted), Breilh et al. (2014), Zhang et al. (2016b, c). Comparisons with other 

models are presented in Chen et al. (2013) and Kerr et al. (2013). 

 Applications to 3D estuarine circulation: e.g. Rodrigues et al. (2009, 2013, 2015), David et al. 

(2015), Ye et al. (2016). Detailed assessments of the ability of SELFE to model stratified tidal flows 

are described in Karna et al. (2015) and Karna & Baptista (2016). 

The grid was generated with the softwares xmgredit (Turner & Baptista 1993) and nicegrid (Fortunato et al. 

2011), based on grids from previous applications (e.g., Guerreiro et al. 2015; Fortunato et al. in press). The 

domain is over 110 km long and has a surface area of 1442 km². It extends from the ocean, 27 km away 

from the estuary mouth, to the river, and includes the agricultural flood-prone areas in the northeastern part 

of the estuary (Figure 90 a). The primary generation criterion was the detailed representation of the 

geometry. The channels have a finer resolution, to allow the proper propagation of the tide. Nodes and 

element sides were placed along the crests of the dykes, to optimize the representation of the elevation of 

these sub-grid-scale features (Bilskie et al. 2015). The resulting grid has 140 000 nodes and a typical 

resolution of 15-25 m Figure 90 c). 

For simulations in which the inundation of dry areas is not expected, a smaller grid was generated by 

eliminating the elements in all the areas that are protected by dikes. Reducing the number of nodes 

decreases the computational costs, in particular for the simulation of salinity intrusion during droughts. This 

reduced grid has 83 000 nodes. 

 

 

 

 
Figure 90 Model grid and bathymetry: a) global view; b) detail of the inundation-prone areas of the 
upper estuary; c) distribution of the elements’ equivalent diameter. Adapted from Fortunato et al. 
(submitted) 

 

 

For the 3D simulations, the vertical grid was setup based on preliminary simulations in which three hybrid 

vertical grids were tested: 20 SZ levels grid (15 S levels and 5 Z levels), 39 SZ levels grid (30 S levels and 

9 Z levels) and 54 SZ levels grid (45 S levels and 9 Z levels). Taking into account both preliminary data-
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model comparisons and the computational times, the vertical domain is discretized in a hybrid grid with 39 

SZ levels: 30 S levels between 0 and 100 m deep, and 9 Z levels between 100 m and the maximum depth. 

Further results regarding the vertical grids tested are presented in section 7.1.2.4. 

SCHISM is forced by surface water elevations at the ocean boundary and river flow at the river boundaries. 

For the simulation of the storm events, wind and atmospheric pressure are imposed at the surface. Depth-

averaged velocities are also imposed at the ocean boundary for a better representation of the incoming 

energy. In addition, the wave module is switched on, and waves are also imposed at the ocean boundary. 

For the salinity intrusion simulations, the model is run in 3D baroclinic mode. In this case, salinity and 

temperature are imposed at the open boundaries. The heat exchange with the atmosphere is also computed 

using the model of Zheng et al. (1998) and the model is forced by wind, atmospheric pressure, air 

temperature, humidity, downwelling shortwave radiation and downwelling longwave radiation at the surface. 

Boundary conditions are imposed mostly from large-scale models (Figure 91). Surface water elevations and 

(when required) depth-averaged velocities at the ocean boundary are imposed from an application of 

SCHISM to the NE Atlantic Ocean (Fortunato et al., 2016). Surface water waves are determined from an 

application of the wave model WaveWatch III (Toolman 2009) to the North Atlantic, with a nested grid on the 

Portuguese coast (Fortunato et al. in press). Large-scale winds and atmospheric pressure fields, required 

to force these regional models, are obtained from the ERA-Interim reanalysis (Berrisford et al. 2011). Local-

scale atmospheric forcings, used to force the estuarine model, are obtained by from the NCEP-NCAR 

Reanalysis (provided by the NOAA/OAR/ESRL PSD, http://www.esrl.noaa.gov/) or by the BINGO database 

developed in WP2. 

 

 

Figure 91 Forcing of SCHISM with results from regional scale models (adapted from Fortunato et 
al. (in press) 
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7.1.2.2. Data 

Bathymetry and topography 

The generation of a digital terrain model was a very sensitive task, in particular because the extreme water 

levels in an estuary and the extent of an inundation largely depend on both the topography and the 

bathymetry. The lack of a comprehensive, detailed and updated dataset led to the use of multiple sources 

of data. These sources are briefly described below. The digital terrain model interpolated onto the finite 

element grid described above (Figure 88) is shown in Figure 92. 

The only comprehensive bathymetry of the estuary dates from 1964/67. This dataset was used as a baseline 

bathymetry and updated wherever possible. We realize that the baseline bathymetry that we use, from 

1964/67, is old and can be outdated. Therefore, this bathymetry constitutes a potential source of model 

errors. However, we don't believe this is a major problem for the following reasons: 

 1. In large areas of the estuary, in particular in the navigation channels, the baseline bathymetry has been 

replaced by recent measurements. The areas where we still use the 1960's data are mostly intertidal flats, 

that are not subject to dredging. 

 2. Sedimentation rates have been estimated through both chart comparisons and isotopic analyses of 

vertical cores (see Guerreiro et al., 2015 for a review). Results indicate sedimentation rates of about 0.3 

mm/year in the intertidal areas, and between 0.7 and 2.2 cm/year close to the margins. So, the sedimentation 

of the intertidal areas in the past 50 years should be of the order of 15  cm. This value is of the same order 

of magnitude of the accuracy of the bathymetric measurements themselves. 

 3. The 1960's data constitute, to the best of our knowledge, the only existing data set in many areas. In the 

past several decades, there have been probably over a hundred scientific papers, Ph.D. theses and 

engineering studies applying hydrodynamic models to the Tagus estuary. All of them used the same baseline 

bathymetry, for lack of an alternative. 

 4. For the past two decades, we have applied many hydrodynamic models of the Tagus estuary (e.g., 

Fortunato et al., 1997, 1999, 2017a,b, Guerreiro et al., 2015, Rodrigues and Fortunato, 2017), and validated 

them with tide gauge data from 1972 (again, the only existing dataset covering the whole estuary). Over the 

years we have used increasingly sophisticated models, improved the grid resolution and forced the model 

with more accurate boundary conditions. Simultaneously, we have updated the bathymetry wherever 

possible, in particular in the main channels and some bays. Since the models are systematically validated 

with data from 1972, updating the bathymetry could actually increase the model errors, by increasing the 

discrepancy between bathymetry used in the model and the one that corresponded to the tide gauge data. 

Still, the inverse has always occurred, with each model application displaying smaller errors than its 

predecessor. We conclude that the changes in bathymetry do not constitute a significant source of errors, or 

at least they have not proved to be a dominant source of errors until now. 

 

In summary, the use of old bathymetric data in some areas of the estuary is inevitable and not a major source 

of concern. 

 

In most of the navigated areas (channels and docks) and in the tidal inlet, recent bathymetries were made 

available by the Lisbon Harbor authority. Topographic data along the margins of the estuary and LIDAR data 

along the coastal margins, both from 2011, were provided by the Agência Portuguesa do Ambiente and the 

Direção Geral do Território, respectively. Upstream of Vila Franca, only cross-channel survey data were 

available. Since the distance between transects (2.5 km) prevents the direct interpolation of the bathymetry, 

the mean cross-sectional area was evaluated and a linear regression was determined along the axis of the 

estuary. This regression was then used to interpolate the depths along the riverine part of the domain. 

Similarly, cross-sectional data are available with a spacing of 200 to 1500 m along the upper Sorraia River. 
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Given the narrow width of this part of the river it was represented with a rectangular cross-section and the 

bathymetry was interpolated using available cross-sections. The depth along the Risco River was estimated 

based of the few data points available. 

 

Figure 92 Model bathymetry and station names: global view (top) and detail of the inundation-prone 
areas of the upper estuary (bottom). The stations correspond to the major water intake of the Lezíria 
(Conchoso) and the tidal stations used for valid 

  

 

The topography of the margins was mostly based on a 2008 dataset provided by the Direção-Geral do 

Território and obtained by aerial photogrammetry. Although this dataset was provided on a 2 m resolution 

grid, there are some doubts on the accuracy of the dikes’ crest heights. The height of the crest of the dikes 

protecting the Lezíria (island bounded by the Tagus estuary and river, the Sorraia and the Risco rivers) was 

provided by the Associação dos Beneficiários da Lezíria Grande de Vila Franca de Xira and verified in a few 

places by a dedicated topographic survey. The dikes covered by this dataset extend from the margins of the 

Sorraia River to the Tagus River. These data were measured after the partial reconstruction of the dikes that 
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followed their overtopping and damage during the 2010 Xynthia storm, one of the events used for model 

validation. The dikes represented in the model are therefore higher than the ones that existed during the 

Xynthia storm. 

 

 

 

Figure 93 Determination of cross-sectional-averaged depth along the estuary axis upstream of Vila 
Franca 

Water levels 

Water levels measured at 13 tidal gauges installed along the estuary in 1972 were used to validate the model 

(Figure 92). These time series were harmonically analyzed to extract the amplitudes and phases of the tidal 

constituents (Fortunato et al. 1999). Time series for model validation are obtained by harmonically 

synthetizing the tidal elevations using the same 23 constituents included in the model. 

Water levels measured at the Cascais tidal gauge (Figure 92) in 1983, 1988 and 2010 were also used to 

validate the 2D and 3D applications. 

River flow 

The Tagus river flow was established based on the data available at SNIRH (http://snirh.pt), namely at the 

Ómnias and Almourol stations. For lack of data, the river flow in the Sorraia River is taken as 5% of the river 

flow in the Tagus River, based on the ratios between annual averages in the two rivers. 

Inundation during the 2010 Xynthia storm 

The Xynthia (2010) storm was used to assess the ability of the model to reproduce extreme events. The 

data available for this validation consisted in water levels measured at the Cascais tide gauge, and the 

inundation limits in downtown Seixal. The former were obtained by interviewing witnesses and analyzing 

photographs taken at the time of the event (Freire et al. 2016). 

Salinity and water temperature 

Salinity and water temperature were validated with data from previous field campaigns in the Tagus estuary, 

namely INTAGUS (Neves 2010) and “Estudo Ambiental do Estuário do Tejo” (Silva et al. 1986) data. 

INTAGUS data included salinity and water temperature observations obtained on February 1988. Vertical 

profiles of salinity and water temperature were collected along three longitudinal profiles (BC: Barra-

Corredor, CN: Cala do Norte, CS: Cala de Samora) during high-tide and low-tide. Monthly observations of 

http://snirh.pt/
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salinity acquired in 1983 (“Estudo Ambiental do Estuário do Tejo” data) were also used to validate the model. 

These data were collected along six sampling stations covering the downstream and upstream areas of the 

estuary (Figure 94). 

 

 

Figure 94 Location of the sampling stations regarding salinity and water temperature data. The red 
lines represent the INTAGUS campaigns longitudinal profiles (BC: Barra-Corredor, CN: Cala do 
Norte, CS: Cala de Samora) and the dots represent the 1983 suvey stations 

7.1.2.3. Calibration and validation strategies 

The model applications presented herein evolved from LNEC’s experience of two decades in modeling 

circulation in the Tagus estuary (e.g., Fortunato et al. 1997; Rodrigues et al. 2013). Based on that 

experience, parameters determined in previous applications were taken as a starting point for both the 2D 

depth-averaged model and the 3D baroclinic model. 

2D depth-averaged model 

For the 2D model, the only calibration parameter is the friction coefficient and minor tuning from previous 

applications focused only in the upper estuary and the riverine part of the domain. Friction was 

parameterized using a Manning coefficient (Figure 95). This coefficient was selected based on a previous 

application (Guerreiro et al. 2015), the nature of the estuary bottom and the land cover. In particular, the 

Manning coefficient was taken as 0.015 m1/3/s in the upper Tagus estuary and in the Sorraia and Risco 

rivers, which have muddy bottoms. In contrast, values of up to 0.027 m1/3/s were used in the Tagus River, 

where the bottom sediments are mostly sandy. In the dry areas, the Manning coefficient was determined 

based on the land cover from Chen et al. (2015).  
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Figure 95 Manning friction coefficient (m1/3.s-1) used in the 2D model 

The 2D model was validated in two steps. First, the model’s ability to simulate tidal propagation was 

validated. A one-year simulation was performed, forced by tides from the regional model of Fortunato et al. 

(2016) at the ocean boundaries and by river flows of 517 m3/s and 20 m3/s at the Tagus and Sorraia 

boundaries, respectively. While the present bathymetry was used, the mean sea level was set to its 1972 

value (2.15 m relative to Chart Datum – Fortunato et al. 1999), i.e., 11 cm below its present value. Root 

mean square errors were computed at 13 stations and compared with those obtained in previous 

applications. Both biased and unbiased root mean square errors were computed. The latter were computed 

by removing the mean sea level from both observed and modeled time series. While the biased errors should 

in theory better reflect reality, there are often doubts on the correct vertical positioning of the reference level. 

Hence, biased errors may partially reflect positioning errors. Root mean square errors at high tide were also 

evaluated, since the major concern is the ability of the model to reproduce high water levels. In a second 

step, a recent extreme event (the 2010 Xynthia storm) was simulated. The model was validated by 

comparison of measured and modeled water levels at a coastal tide gauge (Cascais) and by comparing the 

modeled and measured inundation extent in the mid-estuary (Seixal). 

3D baroclinic model 

In the 3D baroclinic model the bottom stress was parameterized using a drag coefficient. Two approaches 

were evaluated to establish the drag coefficient: i) drag coefficient based on the previous applications of 

SELFE 3D in the Tagus estuary (Costa et al. 2012; Rodrigues et al. 2013, 2016); ii) and drag coefficient 

determined from the Manning coefficient adopted for the 2D depth-averaged model application (previous 

sub-section). To evaluate the influence of the drag coefficient in the model results, preliminary simulations 

were performed for a period of 20 days. These simulations were forced by tides from the regional model of 

Fortunato et al. (2016) at the ocean boundaries and by river flows of 517 m3/s and 20 m3/s at the Tagus and 

Sorraia boundaries, respectively. The time step was set to 30 s and the Generic Length Scale KKL 

turbulence closure scheme, with the Kantha and Clayson's stability function, was used. Data and model 

results were both harmonically analyzed and synthesized for eleven tidal constituents (Z0, MSF, O1, K1, 

N2, M2, S2, M4, MS4, M6, 2MS6). Root mean square errors were computed at 13 stations and compared 
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with those obtained in previous applications. The comparison of the model results with the 1972 water levels 

data showed that the second approach led to the smallest root mean square errors. The friction coefficient 

in the 3D baroclinic model was thus parameterized using the second approach. 

The 3D model was then validated for salinity and water temperature by comparison with: i) 1988 data, which 

include both longitudinal and vertical profiles (Figure 94); and ii) 1983 data, which cover a broader area of 

the estuary. The 1988 simulation was performed for 30 days, between January 15, 1988 and February 15, 

1988. Regarding the 1983 data two simulations of about 30 days were performed for two distinct seasons: 

January 1, 1983-January 31, 1983 and July 1, 1983-July 31, 1983. Simulated water levels were also 

compared with observations from the Cascais tidal gauge. 

To simulate the advection of salinity and temperature two numerical schemes, upwind and TVD-

Total Variation Diminishing (both available in SCHISM), were evaluated. The influence of these numerical 

schemes was analyzed for the 1988 simulation and, in particular, for the salinity results, since those are of 

major relevance for the modelling objectives in BINGO. 

The 1988 simulation was also forced with two different atmospheric datasets, NCEP-NCAR Reanalysis 

(~250km/6h resolution) and BINGO WP2 historical data (12km/3h resolution). For the simulated period local 

atmospheric observations were not available. The comparison between the two datasets aimed at evaluating 

their influence on the salinity and water temperature results. The 1983 simulations were forced only with 

BINGO WP2 historical data (12km/3h resolution). 

In all validation simulations the oceanic boundary was forced with 23 tidal constituents from the regional 

model of Fortunato et al. (2016). River flow at the Tagus river boundary was established with daily mean 

data measured at the Ómnias station from the SNIRH database. At the Sorraia River, the river flow was 

estimated as explained above. Initial conditions of salinity were set to decrease from 36 in the coastal area 

to 0 in the river boundaries. Salinity was set constant at all boundaries (36 at the oceanic boundary and 0 at 

the riverine boundaries). Initial conditions for temperature were set constant. For the 1988 simulation, water 

temperature at the boundaries was set constant: 15 ºC at the oceanic boundary, based on daily data 

measured at the Cascais tidal gauge, and 13 ºC at the riverine boundaries, estimated from monthly data 

measured at the SNIRH stations. For the 1983 simulations, since no data were available for the periods 

simulated, water temperature was forced with climatological time varying series. The water temperature was 

estimated with the Atlantic – Iberian Biscay Irish – Ocean Physics Reanalysis (http://marine.copernicus.eu/) 

and with SNIRH data at, respectively, the oceanic boundary and the riverine boundaries.  

7.1.2.4. Results 

2D depth-averaged model 

For the 1972 simulation, root mean square errors were computed at the 13 stations shown in Figure 92.  

Figure 96 shows both the biased and the unbiased error, computed for the whole time series and only at 

high tide.  
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Figure 96 2D Tagus model validation for the 1972 data. In the evaluation of unbiased errors, the mean 
sea level was removed from both observed and modeled time series. HT stands for high tide 

 

The model’s ability to reproduce extreme events was verified by simulating the Xynthia (2010) storm with an 

older version of the model (Fortunato et al. submitted). The RMS error at Cascais during the event was 

7.5 cm. The inundation in downtown Seixal was correctly reproduced within the limits of grid resolution 

(Figure 97). 

 

Figure 97 Validation of the modeled inundation of the Seixal downtown area during Xynthia. The red 
circles represent the inundation limits determined in the field and the blue shape is an interpretation 
of the inundated area based on those limits a 
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3D baroclinic model 

Similarly to the 2D model simulation, for the 1972 3D simulation, root mean square errors were computed 

at the 13 stations shown in Figure 92. Table 30 presents a comparison between the errors obtained for the 

present application and the previous 3D baroclinic application of SELFE in the Tagus estuary by Costa et 

al. (2012). For the 1983 and 1988 simulations the water levels errors at the Cascais tidal gauge are of the 

same order of magnitude as those obtained with the 1972 data. 

 

Table 30 3D Tagus estuary baroclinic model: Root mean square errors (RMSE) of the water levels for 
the 1972 data for the present application (SCHISM 3D) and the previous application by Costa et al. 
(2012) (SELFE 3D) 

 
RMSE (cm) 
SCHISM3D 

RMSE (cm) 
SELFE 3D 

Cascais 3.6 1.8 

P. de Arcos 4.6 5.8 

Trafaria 10.7 9.6 

Lisboa 7.6 10.8 

Pedrouços 5.4 5.9 

Cacilhas 3.9 6.4 

Seixal 5.7 9.4 

Montijo 8.8 12.2 

Cabo Ruivo 9.7 13.5 

Alcochete 7.3 12.3 

P. Sta. Iria 8.6 17.3 

Ponta da Erva 8.8 20.2 

V. F. de Xira 15.1 21.5 

 

Figure 98 to Figure 103 present the comparison between the observations and the simulations regarding 

the 1988 field campaigns. Results include both vertical profiles (Figure 98 to Figure 101), which show the 

model’s ability to represent the stratification during high river flow periods, and the mean salinity at each 

station, which provides information about the horizontal gradient along the estuary (Figure 102 and 95). The 

results presented in these figures were simulated with the 39 SZ levels vertical grid. However, since the 

vertical grid is of major relevance in the 3D simulations. The figures below show an example of how the 

setup of the vertical grid influences the salinity distribution. 
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Figure 98 3D Tagus estuary baroclinic model: observed and simulated vertical profiles of salinity 
measured during high-tide (February 11-13, 1988). Model results are presented for both NCEP-NCAR 
Reanalysis (NCEP) and BINGO WP2 (WP2) atmospheric forcings, and upwind and TVD numerical 
schemes 

Error measures between the observations and the model results were also computed for the mean salinity 

and mean water temperature considering the data from all stations. Salinity root mean square errors are 2.0 

for both simulations with NCEP atmospheric data and 2.1 for the simulation with BINGO WP2 atmospheric 

data. Regarding the water temperature, root mean square errors are 0.3 ºC and 0.6 ºC for the simulations 

with NCEP and BINGO WP2 data, respectively. 

Figure 105 presents the comparison between the salinity observations in January 1983 and July 1983 and 

the model results. These sets of data were also used to validate the 3D baroclinic model since they have a 

broader coverage of the estuarine area, in particular in the upstream estuary. Salinity root mean square 

errors are 1.5 in January 1983 and 2.9 in July 1983. The increase of the error in July 1983 is a mainly due 
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to the model results at station #3.9, where the salinity is significantly underestimated. It should be noted that 

there is some uncertainty relative to the time of the samplings, which may contribute to the difference 

observed. In the station further upstream (station #1.0) the differences between the salinity observations and 

the model results are smaller than 1.   
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Figure 99 3D Tagus estuary baroclinic model: observed and simulated vertical profiles of salinity 
measured during low-tide (February 11-13, 1988). Model results are presented for both NCEP-NCAR 
Reanalysis (NCEP) and BINGO WP2 (WP2) atmospheric forcings, and for upwind and TVD numerical 
schemes 
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Figure 100 3D Tagus estuary baroclinic model: observed and simulated vertical profiles of water 
temperature measured during high-tide (February 11-13, 1988). Model results are presented for both 
NCEP-NCAR Reanalysis (NCEP) and BINGO WP2 (WP2) atmospheric 
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Figure 101 3D Tagus estuary baroclinic model: observed and simulated vertical profiles of water 
temperature measured during low-tide (February 11-13, 1988). Model results are presented for both 
NCEP-NCAR Reanalysis (NCEP) and BINGO WP2 (WP2) atmospheric forcings 
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Figure 102 3D Tagus estuary baroclinic model: observed and simulated mean salinity along the 
longitudinal profiles during high-tide and low-tide (February 11-13, 1988). Model results are 
presented for both NCEP-NCAR Reanalysis (NCEP) and BINGO WP2 (WP2) 
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Figure 103 3D Tagus estuary baroclinic model: observed and simulated mean water temperature 
along the longitudinal profiles during high-tide and low-tide (February 11-13, 1988). Model results 
are presented for both NCEP-NCAR Reanalysis (NCEP) and BINGO WP2 (WP2) atmospheric forcings 

 

 

 

 

 

 

 

 

 

 

 

 



D3.3 – Calibrated water resources models for past conditions  
 

134 
 
 

15 S + 5 Z levels 30 S + 9 Z levels 54 S + 9 Z levels 

   

   

   

 

Figure 104 Influence of the vertical grid on the model results: vertical profiles of salinity and data-
model comparison of the mean salinity along the Cala do Norte longitudinal profile during low-tide 

 

a)   b) 

Figure 105 3D Tagus estuary baroclinic model: surface (suf) and bottom (bot) observed and 
simulated salinity in January 1983 (a) and July 1983 (b). Stations #8.0, #5.0, #4.0, #3.9, #2.0 and #1.0 
location is presented in Figure 94 

7.1.3. Model evaluation and discussion 

The elevation errors obtained in the 2D 1972 simulation are smaller those obtained in recent applications 

with the same dataset (Guerreiro et al. 2015; Fortunato et al. in press), showing that the model is accurate 

relative to other applications for the same estuary. In the upper estuary, unbiased high tide root mean square 

errors are smaller than 10 cm. Since the tidal range at the coast varies between 0.55 and 3.86 m (Guerreiro 

et al. 2015), the error represents about 4% of the tidal range, which can be considered excellent. Also, it is 

unlikely that the accuracy of the topography is better than 10 cm. Hence, the accuracy of the model is not a 

limiting factor in the evaluation of the inundation extent. 
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The results for the Xynthia storm indicate that the model adequately reproduces extreme events. In the 

coastal area, the errors are only slightly larger than those obtained for tides alone. In the mid-estuary, the 

model proved able to reproduce marginal inundation. We expect that the accuracy will further improve when 

this test is run with the new version of the model, similarly to the 1972 test. 

Early in the project, extensive sensitivity tests were performed for both physical and numerical parameters. 

These tests, described in detail in Fortunato et al. (submitted), were carried out with an older version of the 

model SCHISM and thus are not reproduced herein. Still, they provide further confidence in the model by 

showing that the extreme water levels are not very sensitive to further grid resolution and wave-related 

parameters (wave breaking coefficient and wave friction coefficient). The sensitivity of the model the river 

flow is restricted to the riverine part of the system (in the Vila Franca area and further upstream). 

Regarding the 3D baroclinic model, results also show that the model represents adequately the tidal 

propagation. At most stations, particularly the ones located upstream, the errors obtained are lower than the 

ones from previous applications. The improvements obtained may result from the higher horizontal grid 

resolution, namely upstream, and the updates in the bathymetry (Fortunato et al., submitted), both 

contributing for a better propagation of the tide, and from the model itself.  

Salinity and water temperature results show that the 3D model represents adequately the main patterns 

observed, namely the horizontal gradients and the stratification of the water column. Salinity horizontal 

gradients, in particular, which are of utmost relevance for the modelling objectives in BINGO, are in good 

agreement with the data. The model, however, tends to overestimate the vertical mixing of salt, in 

comparison with the observations that present a more pronounced stratification. A reduced stratification had 

already been observed in the previous applications (Costa et al. 2012), but significant improvements were 

achieved in the present application. A satisfactory agreement was also observed for temperature, with 

significant improvements compared to the application by Costa et al. (2012), in particular regarding the 

thermal stratification. Evaluation simulations showed that the setup of the vertical grid and the numerical 

method used to solve the advection of the tracers were particularly relevant in the simulation of the vertical 

patterns. The increase of the vertical grid resolution, from 20 SZ to 39 SZ levels, contributed to reduce the 

simulated mixing in the water column (Figure 104). The use of the TVD numerical scheme, which is less 

diffusive than the upwind, significantly improved the simulated stratification along the estuary, in particular 

during low-tide (Figure 98, Figure 99, Figure 102). However, the TVD method is more computationally 

demanding the upwind method, with the simulations lasting twice the time comparatively to the use of the 

upwind method. This computational cost prevents the use of the TVD method for very long simulations or 

for the simulation of a large number of scenarios. Thus, since i) both methods represent adequately the 

horizontal gradients and the mean salinity along the estuary, and ii) the most important events to evaluate 

the upstream propagation of the salt water will occur during low river flows, for future simulations the upwind 

method will be used for computational efficiency and the TVD will only be used when required. Regarding 

the influence of the atmospheric forcing on the 3D simulations, both forcings (NCEP Reanalysis and BINGO 

WP2) lead to similar results regarding the salinity distribution. The water temperature, however, tends to be 

underestimated when simulated with the BINGO WP2 dataset. 

Overall, both the 2D depth-averaged and the 3D baroclinic models implemented for the Tagus estuary are 

suitable for the modelling objectives in BINGO and, therefore, for the simulation of the future and extreme 

events scenarios. 
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7.2. Groundwater 

7.2.1. Model objectives in BINGO 

Tagus river basin aquifer systems are intensively used for water supply and agriculture. Besides, a 

vulnerable zone is in law, thus conditioning agriculture and groundwater abstraction. The area under 

simulation encompasses the following aquifers: “Aluviões do Tejo”, “Margem Direita”, “Margem Esquerda” 

and “Ota - Alenquer” represented in Figure 106. Two numerical models are applied: BALSEQ_MOD and 

FEFLOW. While the first one has been previously applied, the second one is being developed for the first 

time in the framework of BINGO project. 

“Aluviões do Tejo”, “Margem Direita”, and “Margem Esquerda” aquifer systems contact each other and are 

assumed to be in connection with the Tagus river network, Tagus estuary and the ocean, which means that 

under climate change not only quantity but also quality issues might arise in these aquifers. The model to 

be used must then be able to simulate groundwater flow under confined/unconfined situations, recharge 

variations, and use/pollution changes and saltwater intrusion due to sea-level rise. Having this in mind, 

FEFLOW was the model chosen due to the fact that it is a widely used groundwater model able to simulate 

piezometric evolution and groundwater flow in saturated/unsaturated conditions, the influence of multilayer 

wells, interactions with surface water bodies, saltwater intrusion and contaminant transport. 

In order to compute groundwater availability and the recharge boundary condition in the FEFLOW model, 

the BALSEQ_MOD model is used. Besides applying this model to the above mentioned aquifers, this model 

is also applied to the “Ota-Alenquer” aquifer system. 

 

Figure 106 Selected Tagus aquifer systems and their relation with the estuary and selected surface 
water basins 
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7.2.2. Model application 

7.2.2.1. Model description 

The BALSEQ_MOD is a daily sequential water balance numerical model developed at LNEC (Oliveira 2004) 

that requires as input data: daily precipitation, monthly reference evapotranspiration, relative humidity and 

wind speed, root depths (time dependent), extent of land occupation, crop coefficients, development stage 

periods of plants, soil wilting point, soil field capacity, soil porosity, soil hydraulic conductivity, soil top horizon 

material and soil initial water content. 

Recharge is estimated as the deep soil infiltration and is given by Deep infiltration = Precipitation – Surface 

runoff – Actual evapotranspiration – Soil water variation. The whole steps of the program run are shown in 

Figure 107. Surface runoff is computed using daily precipitation, material of the soil top horizon and soil 

water content. Actual evapotranspiration is computed by a soil water balance using top soil infiltration (given 

by precipitation – surface runoff), soil water content, reference evapotranspiration, relative humidity, wind 

speed and a combination of parameters that allow the computation of crop coefficients and the development 

stage of plants. Finally deep infiltration is computed based on the soil hydraulic conductivity, porosity, and 

soil water content. 
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Figure 107 Execution steps of the BALSEQ_MOD model for the soil daily sequential water balance 

 

FEFLOW is a finite elements model developed by DHI, which allows the modelling of variably saturated flow, 

unconfined flow, contaminant transport, density/viscosity-affected flow, multilayer wells, flexible meshing and 

situations of activation/deactivation of areas inside the modelling area.  

Source: adapted from 

Oliveira (2009) 
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FEFLOW is described in FEFLOW 7.0 Introductory Manual (DHI 2015a), FEFLOW 7.0 User Guide 

(DHI 2015b), Hesch (2009) and http://nitrat.dk/xpdf/clausnitzer_ introduction_to_feflow.pdf, 

http://www.scisoftware.com/products/feflow_details/ feflow_details.html. A schematics of workflow in 

FEFLOW is presented in Figure 108. 

 
Figure 108 Schematics of workflow in FEFLOW 

Source: http://novametrixgm.com/pdfs/brochures/FEFLOW_Conference_HydroGeoBuilder_final.pdf 

7.2.2.2. Data 

For groundwater recharge assessment eleven rain gauge stations with daily data, belonging to the National 

Information System of Water Resources (SNIRH – http://snirh.pt/) and five meteorological stations with 

monthly data were used to run the BALSEQ_MOD model. General data for these stations is shown in Table 

31. The distribution of these stations can be seen in Figure 109. The observed data from these stations was 

used to generate modelled data for the evaluation period from 1979-03-01 to 2015-07-31 and to generate 

decadal predictions for the period 2015-01-01 to 2024-12-31 at each station. This data comes from the 

Tagus River Basin Management Plan of 2011 (Lobo Ferreira et al. 2011). 

http://nitrat.dk/xpdf/clausnitzer_%20introduction_to_feflow.pdf
http://www.scisoftware.com/products/feflow_details/%20feflow_details.html
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Table 31 Rain gauge and meteorological stations used to assess groundwater recharge 

Station Name Aquifers 
time period 

(begin) 
time period 

(end) 
completeness Variables 

time 
frequency 

Latitude 
(º) 

Longitude 
(º) 

Altitude 
(m) 

Anemometer 
height above 
ground (m) 

Vila Nogueira de 
Azeitão (22C/02ug) 

ME 01-10-1980 30-09-2009 97.33% Precipitation Daily 38.516 -9.013 126 - 

Moinhola (22F/03c) ME 01-10-1980 30-09-2009 96.03% Precipitation Daily 38.584 -8.616 41 - 

Canha (21F/01ug) ME 01-10-1980 30-09-2009 93.78% Precipitation Daily 38.77 -8.627 52 - 

Marianos (18G/03uc) ME 01-10-1980 30-09-2009 94.06% Precipitation Daily 39.181 -8.476 48 - 

Bemposta (17I/02ug) ME 01-10-1980 30-09-2009 94.01% Precipitation Daily 39.349 -8.141 96 - 

Tojeiras de Cima 
(18H/04ug) 

ME 01-10-1980 30-09-2009 92.59% Precipitation Daily 39.279 -8.236 153 - 

Barragem de 
Montargil (19H/02c) 

ME 01-10-1980 30-09-2009 92.72% Precipitation Daily 39.051 -8.173 95 - 

Barragem de Magos 
(20E/01c) 

AT 01-10-1979 30-09-2009 95.47% Precipitation Daily 38.99 -8.694 43 - 

Santarém (ESA) 
(18E/01c) 

MD 01-10-1979 30-09-2009 77.59% Precipitation Daily 39.252 -8.702 61 - 

Pernes (17F/01ug) MD 01-10-1979 30-09-2009 99.64% Precipitation Daily 39.391 -8.663 81 - 

Ota (19D/02) OA 01-10-1980 30-09-2002 100.0 % Precipitation Daily 39.111 -8.989 39 - 

Santarém (18E/01) MD/ME 10-1959 09-1988 100.0 % Meteorological Monthly 39.252 -8.702 61 6 

Alvega (17I/01) ME 10-1959 09-1988 100.0 % Meteorological Monthly 39.467 -8.05 51 4 

Lisboa/Tapada da 
Ajuda (21B/07) 

ME 10-1959 09-1988 100.0 % Meteorological Monthly 38.7 -9.183 37 6 

Salvaterra de Magos 
(19E/02) 

ME/AT 10-1959 09-1988 100.0 % Meteorological Monthly 39.033 -8.733 5 4 

Dois Portos (19B/02) OA 10-1959 09-1988 100.0 % Meteorological Monthly 39.033 -9.183 110 4 

Notes: 
Aquifers: AT – Aluviões do Tejo, ME – Margem Esquerda, MD – Margem Direita, OA – Ota - Alenquer. 
Meteorological variables comprise: Average maximum (Tmax, ºC) and minimum (Tmin, ºC) temperature, Average relative humidity (RHmed, %), 
Wind speed (km/h), Insolation (hour/month), Penman-Monteith computed reference evapotranspiration (ETo, mm/month) 
 

 

Figure 109 Rain gauge and meteorological stations used for groundwater recharge assessment 
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Required parameters to run BALSEQ_MOD were derived from the soil map (Figure 110, data used in Lobo 

Ferreira et al. 2011) and the Corine land cover map 2006 (Figure 111, Caetano et al. 2009). 

 

Figure 110 Soil map used to characterise soil dependent parameters in BALSEQ_MOD 

 

  

Figure 111 Corine Land Cover map used to characterise land cover dependent parameters in 
BALSEQ_MOD 
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BALSEQ_MOD outputs daily values of the water balance processes that it models. These can be 

recomputed for any desired time period.  

FEFLOW uses the following input data: 

- Digital elevation model and depths of the geological layers, in shapefile. Depths of geological layers 

are assumed constant throughout the simulation time. The MDT is updated to 2011. The source of 

these data is the Tagus River Basin Management Plan of 2011, geological maps of Portugal (from 

Instituto Geológico e Mineiro), and borehole data existing in Agência Portuguesa do Ambiente 

(APA) archives that were loaded by LNEC to well’s databases since several years. See Figure 104 

for the geometry of the model. 

- Porosities, Permeabilities, Specific Storage, in shapefile. Assumed constant throughout the 

simulation time. The source of these data is the Tagus River Basin Management Plan of 2011 

(Lobo Ferreira et al. 2011) and bibliography (e.g. http://www.aqtesolv.com/aquifer-

tests/aquifer_properties.htm).  

- Recharge values, in shapefile. The annual values resulting from the application of the 

BALSEQ_MOD model previously described is one of the boundary conditions of FEFLOW. 

- Piezometry (for calibration), in shapefile. Annual to monthly data, depending of the performance 

history of the monitoring network. The data come from the Tagus River Basin Management Plan of 

2011, SNIRH, wells licensed by CCDR-LVT and from monitoring under the study for the location of 

the new Lisbon’s airport (Lobo Ferreira et al. 2008). 

- River network, used to define head boundaries. 

As output FEFLOW provides data on: 

- Piezometric levels, at chosen years during and at the end of the simulation period. 

- Chloride concentrations, at chosen years during and at the end of the simulation period.  
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Figure 112 Geometry of the Tagus modelled aquifer systems 

 

7.2.2.3. Calibration and validation strategies 

The BALSEQ_MOD model is not calibrated. It uses the best estimates of the required parameters and its 

results are used as they are. There are no control data, for instance soil moisture determinations that could 

be used to confront the obtained results. The only way available to validate its results is precisely by 

calibrating the flow model. During this process it may be required to change the recharge values in order to 

obtain better results. If this happens, if wished, it is possible to come back to the BALSEQ_MOD model and 

correct its input parameters. 

FEFLOW calibration is, at this stage of development, being done manually, by comparing the results with 

the piezometry monitoring data. Later on PEST (under the FEPEST tool) shall be used. Part of the network 

of observation points being used for calibration is presented in Figure 113 and some preliminary results in 

Figure 114. 
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Figure 113 Set of observation points used in the calibration of the FEFLOW model 

 

 

Figure 114 Behavior of heads in the observation points (steady state) 
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The temporal data used for FEFLOW depends on piezometry time series. These are available from 1980 to 

2010. As the model is being used at a regional scale, data is agglutinated in the period 1980 to 2000 for 

calibration and then from 2001 to 2010 for validation.  

Still a great amount of work is to me made concerning aquifer exploitation for these periods. 

At the moment it is expected that the model will be considered calibrated when the absolute deviation of the 

modelled piezometry is not more than 10 % beyond the range of observed values. For instance if the 

piezometry values oscillate between 30 m height and 40 m height, a modelled piezometry between 29 m 

height and 41 m height would be acceptable (the range is 40 – 30 = 10 m, and 10 % of this is 1 m). Besides, 

it may be acceptable that up to 20 % of the calibration wells are outside of this range. 

Besides these calibration rules, another rule for the acceptance of the results of the FEFLOW run is that the 

error balance is 1% of the whole water budget or lower. 

7.2.2.4. Results 

Results of the application of BALSEQ_MOD to the four aquifer systems, using measured meteorological 

data and parameters derived from soil and land cover (year 2006) maps as described in previous section 

can be seen in Figure 115. 

As mentioned in the beginning of the groundwater section (7.2.1) the FEFLOW model did not have any 

antecedents, so the model is still in the development / calibration process, and no results are available. 

Uncalibrated results for the piezometric heads of the top aquifer are presented in Figure 116 for layer 1 of 

the model (the most superficial layer). 

 

Figure 115 Average groundwater recharge computed using real meteorological data (periods 
ranging between 01-10-1979 and 30-09-2009, depending on the aquifer system – see Table 31) 

 



D3.3 – Calibrated water resources models for past conditions  
 

146 
 
 

 

 

Figure 116 Hydraulic heads for Layer 1 of the FEFLOW model for Tagus aquifers 

 

7.2.3. Model evaluation and discussion 

BALSEQ_MOD model has been applied using existing meteorological data for the soil conditions and 

assuming the land cover as in 2006 was kept constant for the whole period of run. Efforts continue to develop 

and calibrate the FEFLOW model. For now it is not still possible to draw conclusions concerning groundwater 

modelling. 

7.3. Floods (Trancão basin) 

7.3.1. Model objectives in BINGO 

The Trancão basin is located at the northern limits of Lisbon, covering an area of 292 km2. The Trancão 

River and its tributaries are prone to rapid floods due to intense rainfalls, strong slopes of the river basin 

headwaters and the existence of heavily urbanized areas. As referred in a previous report (Deliverable 3.1, 

Alphen et al., 2016), past flood events have led to extensive inundations which caused human casualties 

and severe social and economic impacts in most of the basin, particularly in Póvoa river and Loures 

lowlands. The importance of the flood risks in the Trancão river basin was recognized in the context of the 

EU Floods Directive (Directive 2007/60/EC) and the flood risk management plan was developed. Despite 

these efforts, floods in the Trancão river basin need to be estimated considering land-use changes in a 

context of climate change to support appropriate flood management measures. 

The rainfall–runoff model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System) 

developed by the US Army Corps of Engineers was chosen for flood hydrographs estimations on Trancão 

river basin. The HEC-HMS is a validated tool for simulating the runoff response to a precipitation event and 

is suitable for general geographical conditions. It is widely used in research and application practice due to 



 D3.3 – Calibrated water resources models for past conditions  

147 
 

its free availability. It was used in the Tagus River Basin Management Plan (PGBHT 2012) for flood 

simulations. 

7.3.2. Model application 

7.3.2.1. Model description 

The Hydrologic Modeling System (HEC-HMS) was designed to simulate the rainfall-runoff processes in a 

wide variety of basin types considering the soil and land use characteristics. Various atmospheric and land 

surface components of the hydrologic cycle are included in HEC-HMS, namely, precipitation, 

evapotranspiration, snowmelt, solar radiation, canopy interception, surface depression storage, infiltration, 

surface runoff, and baseflow. The HEC-HMS model also include hydraulic components such as: source 

inflows, channel routing, channel losses, diversion structures, and reservoirs. The referred components 

allow to simulate the processes of runoff such as loss, direct runoff, channel routing and baseflow, based on 

the selection of different models available in HEC-HMS (HEC 2000).  

HEC-HMS model setup consists of four main components: the basin model, the meteorological model, 

control specifications, and input data (time series, paired data, and gridded data).The basin model 

represents the hydrologic elements (subbasins, reaches, reservoirs, etc.) and their connectivity. In the basin 

model it is also defined the method for the evaluation of infiltration losses, the method to transform 

precipitation into runoff hydrographs, and the routing model of the hydrographs through the river reaches. 

The meteorological model defines the spatially and time distribution of precipitation over the river basin. 

7.3.2.2. Data 

Digital elevation model 

A Digital elevation model (DEM) with a horizontal resolution of 25 m × 25 m was generated from data 

provided by The Portuguese Environment Agency (APA – Agência Portuguesa do Ambiente) with ArcGis 

software. The DEM (Figure 117) was used to delineate Trancão river basin and sub-basins and to obtain its 

physical characteristics through ArcGis tools. 
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Figure 117 Digital elevation model of Trancão river basin 

 

Soil, Geology and Land-use 

The Tagus River Basin Management Plan (PGBHT 2012) database served as basis of soil and geology 

maps for the Trancão river basin. The maps of land cover and uses in Trancão basin were obtained from 

the database CORINE Land Cover (CLC) for the available dates: 1990, 2000, 2006 and 2012.  

Precipitation 

Recorded daily precipitation values were extracted from SNIRH database (http://snirh.pt), provided by The 

Portuguese Environment Agency (APA). Hyetographs of selected rainfall events were also made available 

by APA for S. Julião do Tojal meteorological station, located in Trancão basin. 

Discharges 

Maximum flood discharges observed on the three hydrometric stations (Ponte Canas, Ponte Pinhal and 

Ponte Resinga) located in Trancão river basin were extracted from SNIRH database. Available flood 

hydrographs were also provided by The Portuguese Environment Agency (APA). The data available in the 

mentioned hydrometric stations are scarce, comprising only the period from 1977 to 1991. Ponte Canas and 

Ponte Resinga stations were extinct in 1991 and 1990, respectively. 

7.3.2.3. Calibration and validation strategies 

The HEC-HMS model was applied to Trancão river basin. The defined basin model, namely its subbasins 

and hydrologic connectivity, is presented in Figure 118. The Trancão basin was divided into several 

subbasins to increase the modelling performance and to use HEC-HMS as semi- distributed model. 

http://snirh.pt/
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Figure 118 HEC-HMS basin model for the Trancão basin 

The selection between available models that represents the components of the runoff process was made 

based on previous experience and current practice in Portugal. The SCS curve number method was selected 

for the simulation of infiltration losses. For the transformation of excess precipitation into runoff the SCS unit 

hydrograph method was selected which requires the lag time input values. The routing model was the 

Muskingum-Cunge method, which requires the definition of the river cross-section geometry, river slope and 

Manning’s roughness coefficient. The above mentioned methods require the input of the values of the 

parameters to obtain simulated runoff hydrographs. These values were estimated based on stream and 

basin characteristics, although some of the parameters cannot be precisely estimated (for instance, the SCS 

curve number).  

Calibration of HEC-HMS model was performed using historical flood events with observed hyetographs and 

hydrographs. Due to the reduced period of discharges measurements available in the Trancão river basin, 

only a few events were used in the calibration of the model, namely, floods of December 1978, January 1985 

and February 1985. For the model validation the flood event of December 1981 was considered. 

The calibration process was made in two steps. After systematic search of the best fit lag time values, an 

automatic trial and error method available in HEC-HMS was applied to calibrate the SCS number values, 

that have been initially been set based on Corine Land Cover map (1990) and soils characteristics. To 

minimize a specific objective function, the peak weighted root mean square error was used. 

7.3.2.4. Results 

The HEC-HMS model was validated using the flood event of December 1981, which is one of the largest 

recorded floods in Trancão river basin with available hydrographs. In Figure 119, the observed and simulated 

hydrographs are presented for Ponte Pinhal and Ponte Canas hydrometric stations. The results show 

relatively good agreement between observed and simulated flood hydrographs. The HEC-HMS is able to 

simulate the peak discharge values and the general hydrograph configuration, although a slight delay in time 

is observed on the peak discharge occurrence. 
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Figure 119 Comparison between observed (red line) and simulated (blue line) discharges for the 
flood event of December 1981 in Trancão basin 

7.3.3. Model evaluation and discussion 

The HEC HMS hydrological model has been calibrated for the Trancão river basin using three flood events 

and validated with one flood event. Although the model is able to reproduce the flood event of December 

1981, the limited available hydrographs used in the model calibration is the principal source of uncertainty 

in the application of the HEC-HMS model to the Trancão river basin. Indeed, the considerable heterogeneity 

on the basin land use and the rapid geomorphic response to rainfall events, make it advisable that other 

precipitation events be included in the model calibration. This effort will be pursued in order to extend the 

database used in the calibration of the model. 

7.4. Water Resources (Zêzere and Sorraia Basins) 

7.4.1. Model objectives in BINGO  

The two Tagus sub-basins selected as case-studies for studying the climate change impacts on water 

resources are the Zêzere River basin on the right-hand side margin and the Sorraia River basin on the left-

hand side margin of the Tagus River as described in BINGO Deliverable 3.1 (Alphen et al., 2016). Both 

basins have high capacity reservoirs whose management operation changed the natural flow regimes 

through regulation and reduction in flows. In the Zêzere basin, the main water use is for power generation, 
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which is not consumptive, whereas in the Sorraia basin the two main reservoirs in the headwaters have a 

demand-driven irrigation water use which is highly consumptive. Cumulatively with the power generation 

objective the last reservoir in the Zêzere cascade (Castelo do Bode) has also the diversion of water to supply 

Lisbon’s metropolitan area, but the total annual amounts diverted are not significant when considering the 

Zêzere natural flow (as described in BINGO Deliverable 3.1). 

In both case-studies the objective of task 7.4 will be to detect vulnerabilities in the current water uses due to 

water scarcity induced by new rainfall regimes. In this framework the simulation of the inflows to the 

headwaters’ reservoirs is mandatory. Also significant will be to assess the potential Zêzere basin contribution 

to the Tagus main stream in drought climatic settings, when the water coming from the upstream country 

(Spain) will accordingly be reduce. Although the water convention between Portugal and Spain (the Albufeira 

Convention) specify water minimums for the main shared rivers (including the Tagus River) the yielding of 

the agreed amounts may be exempted when exceptional dry periods occur (Santafé-Martínez 2003). 

This constrain is important for the simulation of both water quantity minima in the water intake (at Valada) 

downstream the Zêzere confluence as well as its quality characteristics (section 7.4.5). 

As for the study of flow maxima extremes, that topic is tackled in a different spatial zone (the Trancão River 

sub-basin – see section 7.4.3). 

7.4.2. Model application 

7.4.2.1. Model description 

The flow simulation in each case-study basin is performed with the MIKE BASIN software that incorporates 

DHI’s Nedbør-Afrstrømnings-Model (NAM) as a lumped conceptual model. As NAM is a lumped model, 

assuming each sub-catchment as one unit, the parameters and variables considered represent therefore 

average values for the entire sub-catchments. 

Below is given a description of the model based on Agrawal and Desmukh (2016). 

The NAM model as a default considers 9 parameters in its automatic calibration, although it can be set for 

more model parameters, while accounting for the surface zone storage, root zone storage and ground water 

storage. During calibration the model parameters are adjusted in such a way as to get the best possible 

relationship between the simulated and the observed discharges. 

A minimum of 3 years data is required by the model to get the more reliable model results. The 9 default 

parameters of NAM are as follows: 

1. Maximum water content in surface Storage (U
max

): This parameter represents the cumulative 

water content of interception storage (i.e. on vegetation and depression storage), and storage in 

the upper layers of soil.  

2. Maximum water content in root zone storage (L
max

): This parameter represents the maximum 

moisture content in soil in the root zone, available for transpiration by vegetation.  

3. Overland flow runoff coefficient (CQOF): This parameter determines the division of excess 

rainfall between overland flow and infiltration.  

4. Time constant for routing interflow (CKIF): This parameter determines the amount of interflow 

which decreases with larger time constants.  
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5. Time constants for routing overland flow (CK
1
, CK

2
): These two parameters determine the 

shape of hydrograph peaks. The routing takes place through the two linear reservoirs which are 

serially connected with different time constants in hours. High sharp peaks are linked with shorter 

time durations and vice-versa.  

6. Root zone threshold value for overland flow (TOF): This parameter determines the relative value 

of the moisture content in root zone above which the overland flow is generated. The effect of this 

value can be mainly seen in rainy season where an increase in parameter value will delay the 

start of runoff.  

7. Root zone threshold value for interflow (TIF): This parameter determines the relative value of 

the moisture content in root zone above which interflow is generated.  

8. Time constant for routing base flow (CKBF): This parameter can be determined from the 

hydrograph recession in dry periods. In rare cases, the shape of the measured recession changes 

to a slower recession after some time. To simulate this, a second groundwater reservoir may be 

required.  

9. Root zone threshold value for groundwater recharge (TG): This parameter determines the 

relative value of moisture content in root zone above which ground water recharge is generated. 

By increasing the value of this parameter, recharge to the ground water storage reduces.  

 

Figure 120 Structure of NAM Model 
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The default ranges for these 9 parameters are given below:  

Table 32 Parameters Range Values of NAM Model 

Parameter  Lower bound  Upper bound  Units  

U
max 

 10  20  mm  

L
max 

 100  300  mm  

C
QOF 

 0.1  1.0  -  

C
KIF 

 200  1000  hours  

CK
1
, CK

2 
 10  50  hours  

T
OF 

 0  0.99  -  

T
IF 

 0  0.99  -  

C
KBF 

 1000  4000  hours  

T
G 

 0  0.99  -  

 

Basic Modeling Components 

The elements of NAM model representing the various phases of hydrological cycle are represented 

mathematically by the following functions: 

1. Evaporation: The evaporation E
a 

demands are initially met at the potential rate from the surface 

capacity. On the off chance that the moisture content U in the surface capacity is less than these 

requirements (U < Ep), the remaining part is thought to be pulled back by root movement from 

the lower zone capacity at an actual rate Ea. Ea is corresponding to the potential 

evapotranspiration and fluctuates directly with the relative soil dampness content as.  

 

 

 

2. Net rainfall and infiltration: Net rainfall P
N 

is not clearly defined by the MIKE NAM but implies the 

mathematical relation expressed below 

 P
N 

= max (0,  P - E
a
- QIF - (U

max
-U) )  

This leaves infiltration to the lower zone capacity defined as 

 I = P
n 

- QOF  

3. Overland flow: At the point when the surface storage spills, i.e. at the point when U >U
max

, the 

water surplus P
n 

becomes available to overland stream and also to infiltration. QOF indicates the 

part of Pn that gets allocated to overland flow. It is thought to be corresponding to Pn and to differ 

directly with the relative moisture content in the root zone, L/L
max

, of the lower zone storage. It 

only happens when the saturated fraction of the lower zone exceeds the threshold value.  
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4. Interflow: The interflow share, QIF, is thought to be relative to U and to shift directly with the relative 

dampness of the lower zone storage. It occurs only when a critical saturation fraction of the lower 

zone exceeds the threshold value. This interflow should be subjected to restraint for take place 

only when there is enough availability of water to the upper zone storage to keep this interflow.  

 

5. Interflow and overland flow routing: The interflow is directed through two straight reservoirs in 

arrangement with the same time consistent CK1,2. The overland stream routing is also based on 

the linear reservoir idea but with a consistent variable time. To hold a linear response for near 

surface flows and a kinematic response for above surface flows at higher discharges, the time 

constants will be modified as 

  

 

Where OF is the overland flow (mm/hour) and OF
min 

is the upper limit for linear routing (=0.4 mm/hour) and 

β=0.4. 

6. Groundwater recharge: The quantity of infiltrating water G recharging the groundwater capacity 

depends upon the soil moisture content in the root zone capacity. It is related to the infiltration 

entering the lower zone. It happens when the saturated fraction exceeds the threshold value.  

 

7. Groundwater storage and base flow: the groundwater capacity allows the infiltrated water to 

become base flow in two ways. The simple one is that it uses a linear reservoir concept such that 

base flow is 

 

      The second one makes use of the concept of a shallow reservoir typical of depression catchments with little 

topographic variations and have possibility for water logging. In this case base flow is directly related to 

water table depth above the maximum drawdown of groundwater zone and is given by 

 

Where,  

    = water in groundwater storage above zero reference (negative values are possible)  
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     = depth of water table below zero datum  

= depth of water table attaining a maximum value  

8. Capillary flux: Water can transfer upwards from the ground water to the lower zone storage by 

capillary action. The capillary flux, C, is related to the square root of the shortage in the lower 

zone and inversely related to the drawdown in the groundwater reservoir. 

 

If C has units of mm/day then the parameter α is given by 

  α = 1.50+ 0.45
  

Where 
 
is the depth of the groundwater table at which the capillary flux is 1 mm/day when L=0.

 

Soil Moisture Accounting 4-parameter model 

As depicted in Figure 120 the NAM model has a soil-moisture-accounting based algorithm with a detailed 

description of the soil water content profile and the interflow process. This account for 9 parameters in the 

calibration process that, once optimized, can lead to aggregated magnitudes of field capacity that do not 

fully reproduce the lithology and geology of the soils in the entire basin, especially for large basin areas. 

In order to generate upper and lower bounds for the MIKE BASIN’s set-up file that are site-specific from 

each case-study while reproducing the overall geological framework, a second and simpler soil-moisture-

accounting model was used to bind these parameters bounds. The model is based on a simple 4-paramater 

Thornthwaite-Mather algorithm modified to be applicable to heterogeneous areas like volcanic geological 

environments (Rodrigues, 1994). 

The parameters coming out from this preprocessing model whose magnitudes were bounds for input as their 

equivalents in the NAM model were L
max

, C
QOF

, and C
KBF

. These variables can be locked during the NAM 

auto calibration process leaving the algorithm to perform over the remaining 6 variables. 

7.4.2.2. Data 

The Portuguese National Water Resources Information System - SNIRH 

NAM model requires various input data which includes the parameters to define the catchment, model 

parameters, initial conditions, hydro-meteorological data and stream flow data. The basic meteorological 

data requirements are precipitation, potential evapotranspiration and temperature. Using these, the model 

produces the output in the form of catchment runoff, subsurface flow contributions to the channel, and 

information about other elements of the land phase of the hydrological cycle, such as soil moisture content 

and groundwater recharge. All the input and output for the model is in time series format. 

All the raw data used in the sub-sequential studies was retrieved from the Portuguese National Water 

Resources Information System – SNIRH (http://snirh.pt). 

http://snirh.pt/


D3.3 – Calibrated water resources models for past conditions  
 

156 
 
 

As the Portuguese water data collecting agency suffered periodic structural changes and budgetary 

constraints during the time period subject to the calibration and validation of the models (1976 to 2016), 

particularly in the early 90’s and from 2008 onwards, impacts in both data availability and reliability were 

observed in the data processing activity. Special care was thus directed to data validation with both 

homogeneity tests and reconstructing methodologies, both statistical (e.g. correlation and spatial 

interpolation) and hydraulic (for the rating curves from flow gages). 

All the rainfall and atmometer evaporation data were weighted for each sub-basin in order to match the input 

requirements to the flow model. 

The flow data analysis detected frequent extrapolations of rating curves, with huge implications in maxima 

determination. This fact was further complicated by the long periods of validity of the rating curves without 

updates from field surveys, a fact particularly sensitive in moving bed sections. 

In view of this situation it was found necessary to resort to flow data indirectly determined from dams’ 

exploitation. 

In the Zêzere case study (with its sampling points depicted in Figure 121) the flow data ended up coming 

from the hydropower company EDP. Although there are still some validation issues (the flow through the 

turbines is derived indirectly from power production; the spillway discharges determinations are biased; there 

is lack of sensibility for low flow values), these data proved more reliable than the flow gauge data and 

displayed less gaps in the time-series. Flow gauge data were nevertheless used to calibrate the inflows from 

the tributary of the Zêzere close to its mouth, the Nabão River (Figure 121). 

In the Sorraia case study (with its sampling points depicted in Figure 122) the inference of the natural inflow 

from upstream was even more problematic since it had to be reconstructed not only from the small-head 

power production  characteristic from these smaller dams  but also from the several consumptive uses, 

such as irrigation, agro-industry and municipal consumptions, also characteristic from these agricultural-

based operation management dams. In these cases the lack of sensibility in the low flows data is even 

greater, which becomes more problematic in face of the endemic dryness of the southern Tagus margin 

lands. 

Despite all these setbacks it was possible to reconstruct flow data for both case-studies enabling the 

calibration process described below. 
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Figure 121 Zêzere river basin with major sub-basins for flow simulation 

  

 

Figure 122 Sorraia river basin with major sub-basins for flow simulation 
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7.4.2.3. Calibration and validation strategies  

Soil Moisture Accounting 4-parameter model 

As mentioned earlier a simpler 4-parameter soil-moisture-accounting model was used to make a first 

screening on the bounds of three NAM soil and groundwater recession parameters in order to use them 

subsequently in the NAM model. 

The full modelling period from the hydrologic year 1976/77 to 2008/09 was separated in 3 periods of 11 

years each. The objective was to use different calibrations for the predominantly wet period of 1987/88-

1997/98 and for the predominantly dry period of 1998/99-2008/09 and then select the best combination that 

would give fair recession curves in dry years while preserving peak adjustments. The first 11-year period 

(1976/77-1986-87) was used as an additional weighting loop although its base hydrometeorological 

information is, in general terms, less reliable. 

Three sub basins in the Zêzere system and two sub-basins in the Sorraia system were subject to the 

screening process. 

Zêzere System 

The Zêzere river basin is characterized by steep slopes, forested areas prone to frequent wild fires and top 

soils with little water holding capacity. The drainage basin’s configuration denotes in its development from 

the headwater to the mouth (Figure 121) an elongated shape, allowing for spiky flow peaks in winter and 

much reduced low flows in summer. Downstream of Cabril dam the river bends almost 90º assuming a N-S 

path. The Nabão sub-basin displays much of the general characteristics of the Zêzere main basin while 

being less steep and with less mountain highs. 

The sub-basins whose monthly flows were modeled in this system were (Figure 121): 

─ Nabão at Zêzere confluence; 

─ Zêzere at Cabril dam; 

─ Zêzere at Castelo do Bode dam. 

The result of the calibration is displayed for each sub-basin and for each 11-yr period inFigure 123 to Figure 

125Figure 123. 
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Figure 123 Calibration results for the Nabão sub-basin 
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Figure 124 Calibration results for the Zêzere at Cabril sub-basin 
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Figure 125 Calibration results for the Zêzere at Castelo do Bode sub-basin 

 

The calibrated values of the correspondent L
max

 were very low, in tune with the lithological information. The 

correspondent CQOF values were higher than 50 %, meaning that the higher percentage of net rainfall goes 

to the river as overland flow, again in accordance with expected behavior. As for the correspondent CKBF 

parameter the recessions found are just mildly abrupt. 

Sorraia System 

The Sorraia headwaters are hilly shaped and not steep with bare soils. 
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As can be seen in Figure 122Figure 120, two sub-basins converge to the artificial lake created by the 

Maranhão Dam (in the Raia River), while the Sor is dammed in Montargil. Is from the joining of these two 

rivers that the Sorraia is born. 

Due to the uniformity of climate, soils and vegetation cover only the sub-basin draining to Montargil was 

subject to modeling and calibration. 

Figure 126 depicts the final calibration for the basin flows. 

  

Figure 126 Calibration results for the Zêzere at Castelo do Bode sub-basin 

 

The calibration results were very similar to the Zêzere sub-basins in what relates to the soil water holding 

capacity (very thin top soils) but the percentage of water reaching the river as overland flow is equivalent to 

the percentage of water infiltrated in the soil. The recessions are milder although the data suggests long 

zero value flows. The poor quality of the flow data for this particular area turn the calibration exercise in a 

difficult problem. 
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MIKE BASIN NAM model 

Rainfall and evaporation 

The rainfall regime of the Nabão river basin was characterized based on the identification of the influential 

meteorological stations in the area of the basin. Recorded monthly rainfall data of eight rain-gauge stations 

(Ansião, Cernache do Bonjardim, Ferreira do Zezere, Rego da Murta, Caxarias, Tomar, Pedrógão and 

Sardoal) for the period of 35 years, i.e. from October 1976 to April 2010, was used for the modeling. The 

real precipitation of the area was computed from point precipitation by using Thiessen Polygon Method. 

Rainfall values were extracted from SNIRH database (http://snirh.pt), provided by The Portuguese 

Environment Agency (APA).  

The evaporation data from Cernache do Bonjardim climatological station for the same time period was 

selected. 

Runoff 

Monthly discharges observed, for the time period between 1976 and 2010, on the hydrometric station of 

Tomar, located practically on the mouth of the Nabão River was also extracted from SNIRH database, to 

calibrate the model. 

Digital elevation model 

A Digital elevation model (DEM) of Nabão river basin  with a horizontal resolution of 25 m × 25 m was 

generated from data provided by The Portuguese Environment Agency (APA – Agência Portuguesa do 

Ambiente) with ArcGis software (Figure 127). 

 

Figure 127 Digital elevation model of Nabão river basin 

An auto-calibration of the model was done to estimate the final NAM parameters, comparing observed and 

simulated monthly runoff. This auto-calibration is based optimizing two objective functions: (a) minimizing 

the water balance error (% WBL) to achieve agreement between the average simulated and observed runoff; 

http://snirh.pt/
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and (b) minimizing the overall Root Mean Square Error (RMSE) for the entire flow spectrum to achieve 

overall agreement of the shape of the hydrographs.  

The MIKEBASIN model was set-up with all input information and calibrated for the period of 34 years from 

1976 to 2010 to obtain the set of best fit model parameters which could simulate runoff with high degree of 

agreement with observed runoff. The set of model parameters were obtained during the model calibration 

and were found within their specified range as shown in Figure 128. 

 

Figure 128 Model parameter values of model calibration and their range 

 

7.4.2.4. Results 

Monthly discharges were predicted for the period of 1th September 2007 to 29th February 2008 to validate 

the MIKE Basin using the model parameters estimated during the calibration period. 

A comparison between observed and simulated monthly runoff for the validation period is illustrated in Figure 

129. This graph indicates a good match between the observed and simulated runoff. In fact, from the analysis 

of Figure 129, it is observed that the shapes of the observed and simulated peak and low flows are matching 

well for almost all the chosen time period. It can also be seen that the time of beginning and termination of 

observed and simulated runoff events are matching with moderate accuracy.  

The comparison between observed and simulated accumulated monthly runoff volume (as shown in Figure 

130) might seem far from optimal but this was the consequence of restraining the three parameter values to 

the magnitudes assumed by hydrogeological common knowledge that were corroborated by the 4-parameter 

model. By having the three main soil-moisture-accounting parameters locked during the calibration it was 

not possible for the auto calibration algorithm to diminish the calculated flow to attenuate the departure from 

the observed flows. The unlocked versions of the calibration assumed 300 mm for the soil capacity which 

does not hold. 
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Figure 129 Observed and simulated monthly runoff during model calibration 

 

 

Figure 130 Observed and simulated accumulated runoff 

 

7.4.3. Model evaluation and discussion 

Both the 4-parameter Soil-Moisture-Accounting and the MIKE BASIN NAM rainfall runoff models performed 

well in describing the flow regimes from rainfall and evapotranspiration. While the former, simpler model, 

had a more robust performance in mimicking the flow regime, the latter has more potentialities in simulating 

hydrological response of the basin to rainfall for time steps lower than the month. 

The NAM model performed well, in such criteria as timing (of flow initiation and peak occurrence), rate and 

shape of peak, and low flows magnitude. Some deviation still occurs between accumulated monthly 

observed and simulated runoff volumes that need to be sort out. 
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8. Spain 

8.1. Model objectives in BINGO 

Badalona (Spain), which is included in the metropolitan area of Barcelona with an extension of 21.2 km² 

between a coastal mountain range (‘Serralada de la Marina’) and the Mediterranean Sea, is one of the 

BINGO Research sites. In this research site, a full risk assessment related to flooding problems and 

Combined Overflow (CSOs) impacts will be carried out for current scenarios. Moreover, the efficacy of a set 

of adaptation strategies to face with climate change will be evaluated for future scenarios 

In D3.1 a detailed description about site characterization and the main objectives of the case studies can be 

found. 

The 1D sewer model developed in 2012 for the Drainage Management Plan (DMP) of Badalona had become 

obsoleted and unable to adequately describe flooding in the urban area due to last civil works and 

infrastructures executed during the last years. Moreover recent advances in software and hardware 

developments indicate a clear possibility to use new tools and methodology to describe the hydraulic 

behavior of the urban drainage systems more adequately (Russo et al. 2015). 

Due that one of the main objective of Badalona research site within the BINGO project is the flood risk 

assessment with special regards for pedestrian and vehicular circulation, the old 1D sewer model has been 

updated to a detailed 1D/2D model considering a 1D approach for the updated underground sewer network 

flow and a 2D approach for overland flow. This type of model allows us to take into account surface flows 

coming from upstream catchments and the interaction between the two drainage layers: streets, sidewalks 

(major system) and the sewer network (minor system). It is important to remark the hydraulic characterization 

of inlet systems among the sewer network that permit to reproduce realistic interaction between major 

(streets, sidewalks, parks, squares, etc.) and minor systems (sewer network) (concept of dual drainage). 

The full availability of valuable information for the Badalona research site like detailed data about sewer 

elements (mainly from the DMP and Badalona city council), rainfall series data provided by 3 rain gauges, 

water depth series provided by 14 water level sensors encouraged the setup and calibration of a detailed 

coupled 1D/2D model in the framework of BINGO project. 

1D sewer flow was simulated by full 1D Saint Venant equations, while surface flow concerning overland flow 

on streets, sidewalks and other impervious and pervious areas was simulated by full 2D Saint Venant 

equations. Flow exchanges occur between manholes and inlets accurately characterized using experimental 

formulas achieved by Technical University of Catalonia. The software used for the creation of the model was 

the version 7.5 of InfoWorks ICM by Innovyze. 

The 1D/2D hydrological and hydraulic model will be the core of further models: the sediment transport 

module and the sea water quality model. The 1D/2D and the sea water quality model will be used for hazard 

and risk assessment in the following BINGO deliverables, whereas the sediment transport model will be 

used only for the analysis of the efficiency of a change in land use of upstream catchment as adaptation 

strategy to reduce sediment inflow in sewer network (different intervention measures for the forest/rural 

areas). The three different models are presented in the following 2 sections, the first section presents the 

1D/2D drainage model and the sediment transport model (that is presented as a sub model of the 1D/2D 

model) and the second section presents the sea water quality model. 
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8.2. Model application – 1D/2D Drainage model 

8.2.1. Model description 

The 1D/2D model covers an extension of 21.7 km² covering the whole municipality, which has more than 

215,000 inhabitants (third most-populated municipality in Catalonia with an average of 10,000 inhabit. /km²), 

involving 368 km of sewers and a 2D unstructured mesh with almost 80,000 cells was created on the basis 

of a detailed digital terrain model (DTM). 

The model was calibrated and validated using a set of recent rainfall and water depth time series coming 

from a distributed sensors network of well-recorded flooding events that occurred between 2014 and 2016 

and post event collected data (videos, photos, etc.). 

8.2.1.1.1. Sediment transport model description 

Sediments can affect the performance of sewer networks. Sediment deposits reduce the pipe flow capacity   

increasing the risk of flooding and CSOs. Sediments also carry contaminants that can affect the impact of 

CSOs on the receiving water bodies. Finally, sediments deposits in the drainage network are removed 

(usually couple of times a year) increasing sewer maintenance costs. The aim of the sediment transport 

model is to simulate the movement of sediment in the combined sewer network of Badalona. 

Two different models have been set-up and calibrated under the BINGO framework: 

• InfoWorks ICM model. A sediment transport module is added to the 1D/2D (drainage 

network/surface runoff) model (presented in previous sections). The added model simulates sediment 

generation from the urban surfaces and sediment transport inside the sewer. The sediment transport model 

runs simultaneously with the 1D/2D model. 

• HEC-HMS model. An HEC-HMS model was set-up to quantify the amount of eroded sediments 

from the rural area of ‘Serralada de la Marina’ that enter into the sewer system. This area is located in the 

upstream part of the catchment of Riera Canyadò (see Figure 138). The upstream part is mainly rural area, 

it covers approximately 60% of the Riera Canyadò catchment and is considered as an important source of 

inorganic sediments. The downstream remaining part is dense urban area. 

InfoWorks ICM sediment model  

InfoWorks ICM allows the simulation of sediment erosion, deposition and transport of suspended sediment 

through the sewer system (only non-cohesive sediments were considered being the major part). 

InfoWorks ICM calculates the sediment input from the urban surface to the combined sewer network using 

2 models: 

- Dry weather build up module. This module computes the dry weather accumulation of sediment 

both on the urban surface and on the manholes. The buildup equation is based on the hypothesis 

that, on a clean surface the rate of pollutant accumulation is linear but as surface mass increases 

the accumulation rate decays exponentially. 

- Wet weather wash-off module. This module computes the time varying sediment discharge to the 

system networks depending on both the rainfall intensity and the accumulated sediment. 

Once the sediment discharge is simulated, sediment transport in the drainage network is simulated using 

the Velikanov model (Ackers White and KUL model are also available in Infoworks ICM, but they were not 
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tested). The Velikanov model computes temporal and spatial variation of sediment deposition, erosion and 

suspended sediment concentration based on the flow velocity obtained from the hydraulic model.  

The equation that describes the transport of suspended sediment is based on conservation of mass. It 

assumes that concentration of any suspended sediment is fully mixed across the section of the conduit and 

transported along the conduit with the local mean velocity of the flow. No dispersion is considered. Erosion 

and deposition of sediment depend on the settling velocity and the turbulence level that is related to the flow 

velocity in the pipe. 

The Velikanov model was chosen because it is simple and with a limited number of parameters. Velikanov’s 

energy equation allows the calculation of the capacity to transport materials in suspension for a flow with 

known hydraulic characteristics. The concentration of the transportable materials is in a range limited by two 

boundaries corresponding to the maximum and minimum concentration that can be transported: 

 

 
ηmin, ηmax efficiency coefficients 
pm density of water (Kg/m3) 
p=1 
ps relative density of sediment to water (Kg/m3) 
U mean flow velocity through pipe section (m/s) 
W sediment settling velocity (m/s) 
J pipe slope (m/m) 

The equation shows that: 

- If the suspended solid concentration C is smaller than the minimum sediment concentration (Cmin), 

erosion occurs. 

- If the suspended solid concentration C is larger than the maximum sediment concentration (Cmax), 

deposition occurs. 

- If the suspended solid concentration C is between Cmin and Cmax there is no erosion/deposition 

(precisely, the rate of erosion equals the rate of deposition). 

HEC-HMS sediment model 

A HEC-HMS model was impemented in order to achieve a better estimation of the sediment tranpsort from  

rural areas that can be used as input to the InfoWorks ICM. This model was used to predict the generation 

of sediment in a rural subcatchemnt in the upstream part of Badalona drainage network. The results obtained 

in this section are not used as inputs to the InfoWorks ICM sediment model.  

The software used for the creation of the model was the version 4.1 of HEC-HMS of the USACE army, which 

was designed to simulate the complete hydrologic processes of dendritic watershed systems. 

Area 2.0 Km2 

Slope 0.1% 
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Figure 131. Extent of the HEC-HMS basin model for Canyet sub-basin, a rural basin in the upstream 
part of the sewer network of Banalona. 

The procedure adopted in HMS is the Modified Universal Soil Loss Equation (MUSLE) method. It is an 

estimate of sheet and rill soil movement down a uniform slope using rainfall energy as the erosive force 

acting on the soil and considering different soil characteristics (texture, structure, organic matter, and 

permeability). 

The MUSLE method computes the sediment yield from a previous land segment for a storm event based on 

the following equation: 

𝑆𝑒𝑑 = 11.8 · (𝑄𝑠𝑢𝑟𝑓 × 𝑞𝑝𝑒𝑎𝑘)0.56 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃 

Where: 

𝑄𝑠𝑢𝑟𝑓 Surface runoff volume (m3) event dependent 

𝑞𝑝𝑒𝑎𝑘  Peak runoff rate (m3/s) event dependent 

𝐾 Soil erodibility factor 0.6 

𝐿𝑆 Topographic factor 4.5 

𝐶 Cover and management factor 0.5 

𝑃 Support practice factor 0.01 

 

8.2.2. Data 

In order to ensure good and detailed results, it is not sufficient to have just a technologically advanced tool 

for the calculation concerning hydrological and hydraulic processes, several other aspects must be also 

carefully considered, such as the following: 

 Detailed topographic data able to reproduce complex urban morphologies. During a storm event in 

urban areas, generally, runoff produced in roofs and terraces is directly conveyed to the 

underground sewer networks, while runoff produced in streets and roadways circulates over the 

urban surfaces until it reaches the inlet structures of the drainage systems. Furthermore, 

stormwater runoff in is characterized by low flow depths (often less than 15-20 cm) and high flow 

velocities (up to 3-4 m/s due to the low roughness of the surfaces in urban areas. In this context, it 

is very important to have a DTM with high resolution. For this study, a specific 2 m² resolution DTM 

model has been used. This DTM was generated by a LIDAR (laser imaging detection and ranging) 

flight with a minimum density of 0.5 points/m² and a precision of 6 cm in terms of ground elevation 

provided by the Catalan Institute of Cartography. 
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Figure 132 Detailed terrain model of Badalona case study 

 

 Definition of the Rainfall-Runoff transformation model (losses and routing models) and definition of 

pervious zones (2D Infiltration zones). 

o Hydrological initial losses: in this case, the totality of the runoff generated on roofs was 

considered directly connected to the sewer network (so it was neglected in the rainfall-

runoff transformation of the 2D domain). Typically, roof drainage is designed to handle 1-

5 minutes rainfall intensities with return periods larger than 10 (Real Decreto 314/2006). 

This means that during higher return period intensities roof drainage can fail. This is 

believed to have a small influence on the current flood analysis since only short duration 

intensities (<5min) can actually overtop the roof drainage. Nevertheless, roof drainage 

failure can create damages to buildings (Ruiz et al., 2018). 

o Surface roughness coefficients: two different coefficients have been taken into account 

depending on the type of surface considered: streets and roads (0.016 s·m-1/3) and rural 

areas (0.025 s·m-1/3). 

o Hydrological losses (in pervious areas): Horton method has been implemented whose 

parameters have been calibrated in similar experiences (initial infiltration = 20 mm/h, 

residual infiltration = 7.2 mm/h, decay constant = 0.043 h-1 and recovery 

constant = 0.108 h-1). 

o Routing parameters: cells characteristics and representation of the area excluded by 2D 

domain, which are building and other infrastructures (roads and train railways) that 

suppose an interruption of the surface flow and most of time have their own and 

independent drainage structures. 
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Figure 133 Defined 2D Infiltration zones in Badalona’s 1D/2D coupled model 

 

 Characterization of the surface drainage structures through ICM ‘Gully 2D’ nodes, which were 

hydraulically characterized on the basis of experimental data carried out in the UPC hydraulic 

laboratory. 

 The hydraulic characterization of manholes and drain inlets between surface and underground 

systems allows the improved estimation of surface and pipe flows during a storm. This interaction 

between both systems (major and minor) is known as dual drainage. To achieve this objective the 

location and typology of all the inlets in the case study was determined. Indeed, the hydraulic 

performance of each inlet present in Badalona (more than 25,000 of more than 190 different types 

that were classified in groups represented by eight inlet types previously studied by Gómez & Russo 

2011) was analyzed using experimental expressions proposed by Russo et al. (2013). 

  

Figure 134 On the left Interaction of surface flow (Schmitt et al. 2004)5. On the right, 
head/discharge curve for a node with Gully 2D flood type to model the flow exchanges between the 
sewer system and the 2D meshed area 

 

 Rainfall and flow-depths records for the adjustments of the model parameters in the calibration 

phase and for the results validation. 
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The existence of 3 rain gauges (spatial rainfall distribution was applied considering data coming 

from those three rain gauges) and 14 useful water level sensors (from AQUATEC) in the 

municipality administrative land (Figure 135) allows detailed calibration and validation processes. 

Rainfall and water level time series were processed in order to obtain, respectively, five and one 

minutes time series.  

 Sensor sewer network have been updated with new CSOs monitoring systems installed in Maria 

Auxiliadora and Riera Canyadó subcatchments outlet structures. In each point were installed: 

o 1 radar level sensor and a temperature sensor upstream of the weir infrastructure.  

o Another temperature sensor and a turbidity sensor downstream of the weir infrastructure. 

When a CSO occurs both temperature sensors will indicate the same temperature so it is possible 

to detect the duration of the overflow and the frequency of this type of events along a period. 

Turbidity sensor was selected in order to provide information about water quality of the discharges 

reaching Badalona bathing waters. The schemes of the installation can be observed in the Figure 

136. 
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Figure 135 Location of the rain gauges and water level sensors in Badalona 
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Figure 136 Installation scheme for the new installed sensors in Riera Canyadó and Maria Auxilidora 
outlet structures 

 

Some photos of the new sensors are presented in the following figure. 
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Figure 137 Radar level sensor in Maria Auxiliadora subcatchment (right) and temperature level 
sensor in Riera Canyadó subcatchment (left) 

8.2.2.1.1. Data for sediment transport 

Data for the InfoWorks ICM sediment tranport model 

Two different subcatchments in Badalona have been selected for monitoring purposes (Figure 138 left) and 

for in-sewer sediment characterization: 

- Riera Canyadò. This subcatchment covers an extension of 5.4 km2 and it is the catchment area of the 

stream Riera Canyadò that was channelized. The upstream part consists of rural area (60%), which is an 

important source of inorganic sediments into the network (according previous studies). The remaining 

dowstream part (40%) consist of dense urban area. Sediment  traps were constructed upstream the urban 

area in order to limit the sediment input into the drainage network. 

- Maria Auxiliadora: This subcatchment consists of dense urban area. It mainly produces wastewater with 

organic sediments. 

Two different sets of data were collected at both sub-catchments: 

- Sediment characterization: particle size distribution, density and content of organic matter.  These 

data are relevant for model conceptualization and calibration and to improve our knowledge about 

the origins of the sediments present in the network.  

- Turbidity and suspended solids concentrations measurements. These data are relevant for model 

calibration. The sensors of are located together with the temperature and water level sensors used 

to detect CSOs and described in the previous data sections. The observed concentrations of 

suspended solids will be shown together with the calibration results. 

2 different sediment characterization campaigns were performed (the first one in January 2017 the second 

one the 24th of April 2018). The first campaign was performed in wet weather, whereas the second one after 

approximately 7 days of dry weather. Each campaign was performed during few hours by collecting sediment 
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samples at six different points in the Badalona network (see Figure 138 and Figure 140). An approximately 

1dm3 sample of deposited material was collected from the bottom of the sewer pipes using a shovel. The 

sediment samples were analyzed by the geotechnical laboratory of the Technical University of Catalonia. 

  

Figure 138. First field campaign. Location of the 6 points where sediment samples were collected. 

 

Figure 139. Second field campaign. Location of the 6 points where sediment samples were collected. 

 

Figure 140 and Figure 141 shows the results of the first campaign. The results show a d50 (the diameter of 

the particle that 50% of the sample's mass is smaller) of approximately 1-2 mm; an organic matter content 

of 1.2-9.8 % and a specific density of 2.65-2.94 kg/dm3. These results suggest that the sediments deposited 

in the sewer network are mostly non-cohesive due to the low organic matter content and are made of coarse 

sand to fine gravel. Organic matter content is higher at Maria Auxiliadora (3.6-9.8%) compared to Riera 

Canyadò (1.2-1.4%). This is because the catchment of Maria Auxiliadora is almost entirely urbanized, 

whereas the Riera Canaydo one is partly rural. This low organic matter content allows the use of sediment 

transport models for non-cohesive sediments. Specific density is also slightly higher at Maria Auxiliadora. 
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Figure 140: First campaign results. Particle size distribution. 

 

Figure 141: First campaign results. Content of organic matter and specific density. 

Data for the HEC-HMS sediment tranport model 

The data of this section come from previous studies and only the most relevant data are reported in the 

following. Three geomorphological sectors were identified:  

- The Marina mountain range (south-east sector of Catalan coastal range) up to 466 meters. It is 

composed by granitic rocks. 

- Between 50 and 100 meters there are detritic materials from tertiary age. 

- In a lower height and until the coast there are detritic materials from quaternary age, like alluvial 

sediments of the bottom of natural streams. These sediments are composed by sand and gravel 

and are the ones that finally enter to the sewer network. 

The particle size distribution that was used in the HEC-HMS model is shown in the following figure: 
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Figure 142. Particle size distribution used in HEC-HMS model. Data analyzed in the laboratory of 
the engineering departement of the Polytechnic University of Catalonia (UPC). 

From Figure 142 it can be deduced that these sediments are made of coarse sand and fine gravel. These 

sediments accumulate into the sediment trap that is located upstream of the sewer network of Badalona 

(downstream the rural catchment modelled with HEC-HMS); when the sediment trap is full these sediments 

enter into the drainage network. 

 

8.2.3. Calibration and validation strategies 

Before calibration and validation processes were performed, several modifications of the Badalona 1D model 

have been undertaken due to the significant new infrastructures such as pipes and the stormwater tank built 

in the period 2012-2016. 

Calibration is the procedure for ensuring an acceptable level of confidence in a model’s ability to accurately 

represent the real system. It refers to the whole process of ensuring that a model behaves as similar to the 

real system as possible. For urban surface runoff models, it is recommended that at least three events are 

used (DHI 2002). In this case, 4 events were used for parameter estimation (calibration) and 1 event was 

used for model validation. 

According to the results of a study developed by the Sheffield University (Shepherd et al. 2011) concerning 

the routing parameters in a 2D domain using InfoWorks CS, the extent of the flooded area is relatively 

insensitive to mesh density and surface roughness, while the modeling of building has however been shown 

to have a significant effect on flood depths. 

From previous experiences, Manning roughness plays an important role in the flow velocity of the surface 

runoff, and its adjustments allows to reduce peaks time error. Discharge coefficients were also analyzed, 

but no significant change is detected for perimeters of the flooded areas. 

Once sensitivity analysis was terminated, calibration and validation processes were carried out considering 

the following information of 5 rainfall events. The rainfall intensities have been associated to the 

corresponding return period T. 
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Table 33 Events selected for calibration and validation of the model 

Date event 
P (mm) 

Cumulative 
rainfall 

I
20Min

 (mm/h)  

maximum rainfall 
intensity in 20 minutes 

(return period) 

I
5Min 

(mm/h)  

maximum rainfall 
intensity in 5 minutes 

(return period) 

Event used 
for 

22 August 2014 25.5 42.6 (T=0.4) 74.4 (T=0.6) Calibration 

28 July 2014 46.5 56.4 (T=0.8) 91.2 (T=0.8) Calibration 

03 October 2015 34.1 81 (T=2.1) 122.4 (T=1.1) Calibration 

14 September 2016 21.7 64.5 (T=1.1) 142.8 (T=6.1) Calibration 

18 June 2016 24.6 60.3 (T=0.8) 105.6 (T=0.9) Validation  

8.2.3.1.1. Calibration and validation of the sediment transport model 

InfoWorks ICM sediment model calibration 

The calibrated parameters to simulate sediment transport in the sewer network were: 

- Buildup parameters. In this case, the buildup sediment mass parameter has been taken as a 

characteristic value of each subcatchment, considering 18 Kg/ha·day for rural catchments (like 

Riera Canyadó) and 35 Kg/ha·day for urban catchments (as Maria Auxiliadora). Considering fixed 

this parameter, the decay factor was calibrated. This parameter regulates the quantity of mass that 

is generated in every subcatchment for each time step. 

- Wash-off parameters. The most sensitive parameter in the wash-off formula is the exponential 

rainfall coefficient which was calibrated in order to represents the quantity of mass that flows into 

the sewer network. 

- Sediment transport parameters. Velikanov model only requires the calibration of two parameters 

ηmin, ηmax. These efficiency coefficients regulate the concentration of sediments eroded or deposited 

as a function of the flow velocity.  

The following table shows the three rain events with available suspended solid concentration data were used 

for the calibration. It is noted that the HEC-HMS model outputs were not used for the model 

calibration. 

Table 34. Events used for the calibration of the sediment transport model. 

Event 

Suspended sediment data 
Rain 

Gauge 
P (mm) 

Imax5 

(mm/h) 

Imax20 

(mm/h) 

T (Imax20) 

(years) 
Maria 

Auxiliadora 

Riera 

Canyadó 

24/03/2017 FAIL OK 

BA1 67.0 20.4 16.5 0.1 

BA2 67.4 87.6 39.6 0.4 

BA3 54.4 24.0 22.5 0.2 

30/05/2017 OK OK 

BA1 3.6 6.0 3.6 0.1 

BA2 3.6 6.0 3.9 0.1 

BA3 4.2 6.0 4.2 0.1 

14/09/2017 OK OK 

BA1 12.8 38.4 33.6 0.3 

BA2 13.0 57.6 37.8 0.4 

BA3 not available 
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HEC-HMS sediment model calibration 

For the calibration of the model two different precipitation events have been analyzed: 

Table 35. Calibration events for the HEC-HMS model 

Precipitation 
Event 

Maximum 5 minutes 
intensity (mm/h) 

Estimated 
volume of 

sediments (m3)* 

18/06/2016 106 1.2 

16-17/09/2016 100 0.8 

* Volume of sediment estimated from visual inspections of the sediment trap 

at the entrance of the sewer at Canyet sub-basin. 

It is important to remark that, no measurements of flow were available so the whole HMS model was only 

calibrated trying to match the calculated values with the sediment observed in the trap. Although the 

efficiency of the sediment trap is not known, it was assumed that all the sediment observed in the trap after 

the rain event was the same amount of eroded material in the basin. 

For the first event, the practice factor was adjusted to get a sediment load similar to the volume of sediment 

observed during the visual inspection (it is remarked than the sediment trap was clean before the event). 

 

8.2.4. Results 

The results concerning several sensors located in Badalona are shown and summarized in the following 

figures. These results show great correspondence between simulated and observed flow depths in the 

Badalona sewers network.  

 

Figure 143 Calibration results (for the four selected events) regarding a monitored manhole (BA21) 
in Torrent Vallmajor street. Non-continuous lines show measured flow depths, while continuous 
ones show simulated flow dephts 
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Figure 144. Calibration results (for the four selected events) regarding a monitored manhole (BA2) 
in Riera Canyadó street. Non-continuous lines show measured flow depths, while continuous ones 

show simulated flow dephts. 

 

Figure 145 Calibration results (for the four selected events) regarding a monitored manhole (BA4) in 
Martí Pujol Avenue. Non-continuous lines show measured flow depths, while continuous ones show 
simulated flow dephts 
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Figure 146 Calibration results (for the four selected events) regarding a monitored manhole (BA16) 
in Sant Ignasi de Loiola Avenue. Non-continuous lines show measured flow depths, while 
continuous ones show simulated flow dephts 

 

 

Figure 147 Calibration results (for the four selected events) regarding a monitored manhole (BA15) 
in Alcalde Xifré Square (oufall of the Estrella water tank). Non-continuous lines show measured flow 
depths, while continuous ones show simulated flow dephts 
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Figure 148 Calibration results (for the four selected events) regarding a monitored sluice (BA12) in 
the entrance to Estrella water tank in Sant Joan Avenue. Non-continuous lines show measured flow 
depths, while continuous ones show simulated flow dephts 

 

 

Figure 149 Calibration results (for the four selected events) regarding a monitored sluice (BA9) in 
the entrance to Estrella water tank in Torrent Batlloria Street. Non-continuous lines show measured 
flow depths, while continuous ones show simulated flow dephts 
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Figure 150 Calibration results (for the four selected events) regarding a monitored manhole (BA19) 
in Ponent Street. Non-continuous lines show measured flow depths, while continuous ones show 
simulated flow dephts 

 

 

Figure 151 Calibration results (for the four selected events) regarding a monitored manhole (BA20) 
in Mar Jònica Street. Non-continuous lines show measured flow depths, while continuous ones show 
simulated flow depths 

 

8.2.4.1.1. Results of the sediment transport model 

Results of the InfoWorks ICM sediment model  

Figure 152 shows the calibration results. The green lines show selected simulation results that were obtained 

by trial error calibration of the parameters, the red line is the selected best fit, the blue line is the simulated 
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flow (secondary axes). Overall, the simulated green line show that there is a large uncertainty in TSS 

concentrations, this is typical in sewer sediment transport modelling; the simulated concentrations show 

similar pattern to the simulated flow, this is because the TSS concentrations are a function of the flow velocity 

in the selected Velikanov model; further, the model overestimates observed concentrations; finally, despite 

the order of magnitude of the simulated concentrations might look reasonable, observed patterns are not 

well reproduced.  

There is a time-lag lack in representing the peak time in all the simulations. This peak timing cannot be 

reproduced by the sediment transport formulas because is related to the hydraulic behavior (where a peak 

time difference also exists).  

The total amount of sediment that is discharged from the catchment is not kwon, and this implies a significant 

uncertainty. Moreover, from the sampling campaign just few values are obtained and usually in a very short 

period of time (around one hour data), and these data are not enough to compare the obtained results from 

the model. 

24/03/2017. Maria Auxiliadora

 

 

30/05/2017. Maria Auxiliadora

  

30/05/2017. Riera Canaydò

 

14/09/2017. Maria Auxiliadora

 

14/09/2017. Riera Canaydò

 

Figure 152. Calibration results. Simulated vs observed Total Suspended Solid concentrations. The 
simulated flow is also shown. 
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Results of the HEC-HMS sediment model 

Figure 153 shows an example of sediment graph obtained through model calibration. The figure shows the 

time variation of sediment load at the location of the sediment traps during a rainfall event. The total 

sediment load was calibrated to match the observed volumes of sediment (see the data section). 

Figure 153. Calibration results of the HEC-HMS model 

 

8.3. Model evaluation and discussion of the 1D/2D drainage model 

The central step in the calibration processes is the iterative adjustment of model parameters in order to 

match model results with observations. The complexity of the processes depends on the number of 

calibration parameters being adjusted, and the character of the calibration parameter and the modeling 

concepts being applied determines its transparency. Calibration may be understood as an optimization 

process involving one or several simultaneous objective functions, which represent formalized measures of 

deviations between measurements and simulations. In manual calibration, these measures are used with 

visual observations in the evaluation of goodness-of-fit of simulations to observations. Common numerical 

performance measures were used in the calibration of the 1D/2D Badalona model. 

Calibration with statistical analysis generally calculates root mean squared error as a statistical measure of 

deviation between measured error as a statistical measure of deviation between measured and simulated 

time series: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑀𝑒𝑎𝑠𝑗 − 𝑆𝑖𝑚𝑗)

2𝑛
𝑗=1

𝑛
 

where, RMSE is the root mean squared error; 𝑀𝑒𝑎𝑠𝑗 is the measured (observed) flow depth at time j; 𝑆𝑖𝑚𝑗 

is the simulated flow depth at time j; n is the number of time steps in the calibration/validation period. 

Another statistical measure of deviation used in the statistical analysis is the coefficient of determination as 

follows: 

𝑅2 =
[∑ (𝑀𝑒𝑎𝑠𝑗 − 𝑀𝑒𝑎𝑠𝑗

̅̅ ̅̅ ̅̅ ̅̅ ) · (𝑆𝑖𝑚𝑗 − 𝑆𝑖𝑚𝑗
̅̅ ̅̅ ̅̅ )

2𝑛
𝑗=1 ]

2

∑ (𝑀𝑒𝑎𝑠𝑗 − 𝑀𝑒𝑎𝑠𝑗
̅̅ ̅̅ ̅̅ ̅̅ )

2
· ∑ (𝑆𝑖𝑚𝑗 − 𝑆𝑖𝑚𝑗

̅̅ ̅̅ ̅̅ )
2𝑛

𝑗=1
𝑛
𝑗=1
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where, R² is the coefficient of determination; 𝑀𝑒𝑎𝑠𝑗
̅̅ ̅̅ ̅̅ ̅̅  is the mean value of measured (observed) flow depths 

during the calibration/validation period; 𝑆𝑖𝑚𝑗
̅̅ ̅̅ ̅̅  is the mean value of the simulated flow depths during the 

calibration/validation period. 

Finally, peak error (PE) and time to peak error (TPE) are expressed as follow: 

𝑃𝐸 = |𝑚𝑎𝑥(𝑀𝑒𝑎𝑠𝑗) − 𝑚𝑎𝑥(𝑆𝑖𝑚𝑗)| 

𝑇𝑃𝐸 = |𝑡{𝑚𝑎𝑥(𝑀𝑒𝑎𝑠𝑗)} − 𝑡{𝑚𝑎𝑥(𝑆𝑖𝑚𝑗)}| 

Statistical analysis of the model was carried out calculating all these parameters previously described. A 

summary is presented in the following table.  
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Table 36 Statistical parameters related to calibration processes for the sewer facilities used in this 
study 

Code Location R2 RMSE 
Measured 

peak 
level (m) 

Simulated 
peak level 

(m) 
PE (m) 

TPE 
(minutes) 

Calibration event: 22/08/2014 

BA21 Torrent Vallmajor Street 0.94 0.04 0.58 0.33 0.25 2 

BA2 Riera Canyadó Street 0.94 0.04 0.35 0.13 0.22 7 

BA4 Martí Pujol Avenue 0.71 0.11 0.37 0.24 0.13 9 

BA16 
Sant Ignasi de Loiola 
Avenue 

0.84 0.18 0.99 0.55 0.44 15 

BA15 Andrés Xifré Square 0.61 0.20 1.42 0.52 0.90 10 

BA12 Sant Joan Avenue 0.76 0.12 1.07 0.94 0.13 11 

BA9 Torrent Batlloria Street 0.52 0.11 1.07 0.41 0.66 15 

BA19 Ponnent Street 0.88 0.04 0.34 0.35 0.88 9 

BA20 Mar Jònica Street 0.93 0.17 0.49 0.42 0.07 7 

Calibration event: 28/07/2014 

BA21 Torrent Vallmajor Street 0.73 0.08 0.73 0.51 0.22 25 

BA2 Riera Canyadó Street 0.54 0.05 0.38 0.10 0.28 60 

BA4 Martí Pujol Avenue 0.52 0.05 0.48 0.26 0.22 28 

BA16 
Sant Ignasi de Loiola 
Avenue 

0.86 0.03 3.19 1.13 2.07 10 

BA15 Andrés Xifré Square 0.69 0.20 1.70 1.04 0.66 16 

BA12 Sant Joan Avenue 0.78 0.17 2.27 1.93 0.34 11 

BA9 Torrent Batlloria Street 0.56 0 1.08 0.76 0.32 28 

BA19 Ponnent Street 0.93 0.1 1.38 0.76 0.62 8 

BA20 Mar Jònica Street 0.86 0.15 1.38 1.20 0.18 11 

Calibration event: 03/10/2015 

BA21 Torrent Vallmajor Street 0.98 0.10 0.96 0.77 0.19 4 

BA2 Riera Canyadó Street 0.96 0.09 0.52 0.16 0.36 1 

BA4 Martí Pujol Avenue 0.63 0.15 1.82 0.40 1.42 14 

BA16 
Sant Ignasi de Loiola 
Avenue 

0.76 0.85 3.12 1.29 1.83 53 

BA15 Andrés Xifré Square 0.78 0.28 1.33 1.32 0.01 25 

BA12 Sant Joan Avenue 0.86 0.30 2.44 3.23 0.79 14 

BA9 Torrent Batlloria Street 0.65 0.01 0.82 1.55 0.73 9 

BA19 Ponnent Street 0.96 0.21 1.54 0.85 0.69 6 

BA20 Mar Jònica Street 0.86 0.33 1.52 1.46 0.06 11 

Calibration event: 14/09/2016 

BA21 Torrent Vallmajor Street 0.86 0.11 0.91 0.75 0.17 8 

BA2 Riera Canyadó Street 0.86 0.05 0.53 0.11 0.42 9 

BA4 Martí Pujol Avenue 0.71 0.04 0.45 0.40 0.05 11 

BA16 
Sant Ignasi de Loiola 
Avenue 

0.73 0.15 1.61 1.24 0.37 10 

BA15 Andrés Xifré Square 0.76 0.13 1.73 1.28 0.45 9 

BA12 Sant Joan Avenue 0.80 0.14 1.98 2.07 0.09 4 

BA9 Torrent Batlloria Street 0.48 0 1.21 1.50 0.29 11 

BA19 Ponnent Street - - - - - - 

BA20 Mar Jònica Street 0.92 0.12 1.12 0.77 0.35 3 

Validation event: 18/06/2016 

BA21 Torrent Vallmajor Street 0.94 0.03 0.90 0.70 0.20 7 

BA2 Riera Canyadó Street 0.98 0.05 0.54 0.16 0.38 4 

BA4 Martí Pujol Avenue 0.67 0.04 0.51 0.43 0.08 10 

BA16 
Sant Ignasi de Loiola 
Avenue 

0.65 0.18 1.64 1.20 0.44 11 

BA15 Andrés Xifré Square 0.62 0.15 1.61 1.15 0.46 10 

BA12 Sant Joan Avenue 0.71 0.15 1.62 1.90 0.28 11 

BA9 Torrent Batlloria Street 0.64 0.01 1.22 1.15 0.07 13 

BA19 Ponnent Street - - - - - - 

BA20 Mar Jònica Street 0.97 0.15 1.19 0.73 0.46 5 
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In general, results show a good agreement between measured (observed) and simulated values. But some 

remarks can be done regarding the exposed values: 

 In almost all cases, the temporal evolution is quite similar in the measured and simulated series 

and allows adequate matching of intermediate peaks. 

 For less extreme events differences seems to decrease. 

 Big differences in calibration event 2 can be explained due to the lack of information of the data for 

rain gauge PBA3 (installed after this event). 

Surface flow gauges are not so common in urban drainage calibration and validation processes regarding 

overland flow. In this case, flooding parameters provided by the model were compared to observed data 

collected in the post-events videos and photos recorded during selected storms events. In this way, it is 

possible to compare overland flow depth to reference elevations of objects located on the surface. For 

example surcharged pipe flow condition (with an evident overflow producing the displacement of the gully 

covering the manhole), is well simulated by the model as shown in the following figure.    

 

Figure 154 Sewer network effects in the surfaces at Molí de la Torre Street for the 14 September 2016 
event 

 

Another example of the validation of the simulated surface flow can be observed in other historical event 

previous to the construction of the stormwater tank (April 28th, 2011). Flow depths provided by the model 

for this event were compared to a video recorded during this event. The model reflects the runoff recorded 

in the video images achieving water depths around 15 cm. 
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Figure 155 Calibration results for Pere Martell Street: flow depths provided by the model for the event 
of 28 April 2011 were compared to videos recorded during this event. Specifically, in the bottom of 
the figure, (inside the red square) it is possible to observe the runoff generated, which is arround 15 
cm. In the upper part of the figure an image of an amateur video shows the runoff during the event. 

8.3.1.1. Discussion of the sediment transport model 

The sediment transport model will be used to evaluate the impacts of different restoration measures of the 

forest areas. This section showed a first calibration of the sediment transport model that was made with 

sparse data. The significant TSS concentration uncertainties are in line with similar studies of sediments in 

sewers (Freni et al., 2018; Ebtehaj et al., 2013). A better calibration could be obtained if more data were 

available, i.e. the collected turbidity data (that are much easier to collect compared to TSS) could be used. 

This requires local calibration between turbidity and TSS concentrations. Further, improved estimation of 

sediment inputs to the drainage network could be considered, i.e. by using the HEC-HMS model presented. 

The model could also be used to evaluate the impacts of including sediment transport in flood and CSO 

modeling, however this will not be part of BINGO. 
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8.4.1. Model application. Sea water quality model 

8.4.1.1. Model description 

The sea water quality model aims at simulating the near shore (within few hundred meters from the shore 

line) E.Coli concentrations in the Badalona sea water after CSO events. Every summer several (generally 

less than 10) CSOs events occur and the municipality forbids bathing in the sea after the CSO spill due to 

insufficient sea water quality (R.D. 1341/2007 of the 11oct2007). During moderate rainfall events (usually 

larger than few mm) CSOs occur through the approximately 20 weirs located along the beaches of Badalona. 

Figure 156 shows an example of a sea water quality simulation after a CSO event. A through description of 

the Badalona urban and catchment hydrology was provided in D3.1.  

 

Figure 156. Sea water quality simulation after a CSO event in Badalona (Red=high; Blue=low E.Coli 
concentrations in sea water). 

The sea water quality model was developed using the software MOHID Studio from Bentley Systems. 

MOHID is a three-dimensional water modelling system, developed by MARETEC (Marine and Environmental 

Technology Research Center) at Instituto Superior Técnico (IST). In the Badalona Research site, the model 

simulates both the hydrodynamics of the sea in the coastal region and the contaminant transport resulting 

from CSOs. The model was originally developed within the COWAMA (Coastal Water Management) project 

(Suñer, 2007, 2008) that provided a computational model operating since 2007 for real time simulations of 

bathing water quality of the Barcelona beaches. The marine model part of COWAMA was modified in order 

to include the area of Badalona and observations in Badalona were collected in order to validate the model. 

In the following, an overview of the main simulated processes and the modifications of the sea water quality 

model of the BINGO project is provided, while further model details can be found in (Suñer, 2007, 2008; 

Project sw0602, 2008). 

Simulation of near shore water quality requires spatial discretization scales in the order of tens of meters 

whereas coastal hydrodynamic processes occur at scales of hundreds of kilometers. Therefore, 3 nested 

model domains are used to simulate hydrodynamic processes from the large regional scale to the local near 

shore scale of Badalona. Figure 157 shows the three nesting model levels. Level 1 covers an area of 

approximately 20,000 km2 with squared cells of approximately 1x1 km2. At this domain the hydrodynamic 

processes of astronomic tides and wind induced currents are simulated in 2D (barotropic) mode and the 

outputs are used as boundary conditions for the nested Level 2. Level 2 covers an area of approximately 

1000 km2 with rectangular cells of sides from 500 m to 200 m (finer cells close to the shore line). At this 

domain the hydrodynamic processes occurring at the continental shelf associated with wind action, wind 

generated waves and density driven circulations induced by fresh water river plumes are simulated in 3D 

mode and the outputs are used as boundary conditions of the nested Level 3. Level 3 covers an area of 

https://tecnico.ulisboa.pt/
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approximately 50 km2 with rectangular cells of sides from 200 m to 40 m (finer cells close to the shore line). 

At the Level 3 domain both hydrodynamics and contaminant transport from CSO events is simulated. The 

simulated processes include the effects of currents and waves; density, temperature and salinity variations; 

near shore currents generated by CSOs discharges; solar radiation effects on mortality of E.Coli; advection 

and diffusion of E.Coli from CSOs. Level 3 is simulated in 3D mode and provide time series of E.Coli 

concentrations to be compared with observations. The Level 3 computational mesh was extended to the 

Badalona model area (the original model was developed for Barcelona). 

 

Figure 157. The 3 nested model domains of the sea water qulaity model. Level 1, regional scale, 
O(200km); Level 2, sub-regional scale, O(50km); Level 3, city scale, O(10km). 

Figure 157 shows the location of the CSOs discharges in Badalona. CSOs are simulated in the marine model 

as both water discharge and concentration inputs. Water discharge time series at the CSO points are 

obtained from the urban 1D/2D drainage model of Badalona. The input concentrations used for CSO 

discharges are assumed to be fixed. A value of 1e6 CFU/100 ml (Colony Forming Units per 100 mL) was 

used and it was estimated based on field measurements shown in the following section. Output uncertainty 

bounds were also simulated by assuming lower (1e5 CFU/100 ml) and higher (1e7 CFU/100 ml) E.Coli inputs. 

The Escherichia Coli mortality/decay is simulated assuming a first order exponential decay with a T90, the 

time at which 90% of the bacterial population is no longer detectable, meaning a 1 log reduction of the 

number of pathogens.  

 

Figure 158. CSO discharge locations (violet circles) and ‘Pont del Petroli’, a pedestrian bridge used 
for the sea water sampling campaigns carried out as part of the BINGO project. 

Level 1 Level 2 Level 3

Badalona
Catalonia

0 1 2  km

Pont del Petroli
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8.4.1.2. Data 

Field data are essential in order to calibrate and validate the model. Water quality data of both sea water 

and CSO water were collected.  

The water quality of CSO water discharges was measured at the CSO structures of Riera Canyadò and 

Maria Auxiliadora during 2 different CSO events. Fehler! Verweisquelle konnte nicht gefunden werden. 

shows the location where the data were collected and a sketch of the sampling methodology. Several water 

samples were collected during the first hours of rain events, the first samples were used to estimate the first 

flush effect, and the rest of the samples were used to calculate the mean E.Coli concentration of the spill. 

 

Figure 159. Water quality sampling at CSO structures. 

Table 37 shows the E. Coli concentration results of the field campaigns. Mean E. Coli concentrations were 

in the range of 2.1·105 – 3.4·106 ufc/100 ml. It is difficult to analyze and interpret the data due to the limited 

number of measurements. More than an order of magnitude of different between the minimum and the 

maximum E. Coli concentrations was observed. Moreover, the largest rainfall event (24/03/2017) had the 

lowest concentrations, likely due to more dilution due to the larger stormwater runoff volume.  

Table 37. Water quality results of the field campaign. 

Date Maria Auxiliadora [ufc/100 ml] Riera Canyadó [ufc/100 ml] Rainfall  

24/03/2017 Not available 2.1·105 55-67 mm in 12 hours 

30/05/2017 7.4·105 3.4·106 3-4 mm in 3 hours 

10/04/2018 Not available 2.5·106 8-10 mm in 3 hours 

 

The sea water quality was measured by the municipality of Badalona. Sampling campaigns consisted in 

taking water samples in the sea after (sometimes also during) rainfall/CSO events. Water samples were 

taken at ‘Pont del Petroli’ (see Figure 160. Sea water quality sampling locations. The ‘Pont del Petroli’ cross 

section shows the three sampling locations.), a pedestrian bridge that allows taking measurements at 

different distances from the shore line. The samples were taken once a day (normally between 9AM and 

2PM) at 3 different points along the ‘Pont of Petroli’ (1-close to the shoreline, 2-in the middle of the pedestrian 

bridge and 3-at the most offshore point) for the few days following rainfall events until bacterial 

concentrations would recover to values complying with water quality standards. Figure 161 shows an 

example of the water quality parameters measured at the ‘Pont of Petroli’ by the municipality of Badalona. 
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Figure 160. Sea water quality sampling locations. The ‘Pont del Petroli’ cross section shows the three 
sampling locations.  

 

Figure 161. Example of the water quality indicators measured at ‘Pont of Petroli’ by the municipality 
of Badalona. 

8.4.1.3. Sensitivity analysis 

Before calibrating and validating the model, a sensitivity analysis was performed. Different sensitivity 

scenarios have been simulated in order to improve the discussion about the model results, to qualitatively 

assess the model sensitivity to the different parameters/inputs and to improve model calibration. The 

sensitivity analysis was performed on the original model parameters (it is reminded that this model is an 

updated version of the original model available for Barcelona). 

The sensitivity analysis showed that (a) wind speed and (b) E. Coli mortality rates are the most influential 

parameters for simulating the decay of sea water concentrations during the few days following a CSO event; 

moreover, (c) input E. Coli concentration (associated to the CSO discharge) is the most influential parameter 

to simulate the peak sea water concentrations during the CSO event. Classical sensitivity analysis (where 

parameters are ranked based on their influence on selected model outputs) was not performed because 

data are sparse and input parameters (i.e. wind speed, E. Coli mortality rates) can vary in space and time 

making the sensitivity analysis difficult to interpret.  

The different sensitivity scenarios were: 

- Baseline. It has 106 ufc/100 ml input E. Coli concentrations, the other model parameters are the 

same as the original model (Suñer, 2007, 2008).  

- Without wind. It assumes no wind, therefore wind induced currents in the sea are zero. 
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- High grid resolution. It has a fourth level nesting model with cell sizes of approximately 20 m. 

- Higher E. Coli mortality. It assumes a T90 with 2.5 times faster mortality. The factor 2.5 is an average 

ratio between mortality rates calculated with the two different mortality models of Canteras (1995) 

and Chapra (1997). Both of the models have the same inputs: solar radiation, sea water 

temperature and salinity. 

- No E. Coli mortality. It assumes that the mortality rate of E. Coli is zero. 

- Turbulence model. A different turbulence model was chosen in the model interface. 

- Wind from a station. Wind speed and wind direction are taken from a local station in the harbor of 

Barcelona. The baseline scenario took wind results from a model output at a cell of 10 km size 

covering the area of Badalona. 

 

Figure 162. Sensitivity scenario results. 

Figure 162 shows the results of the sensitivity analysis. All the scenarios show very similar peak 

concentrations (1.0·105-5.0·105 ufc/100 ml), this supports the fact that peak concentrations are mostly 

sensitive to input E.Coli concentrations. The following discussion analyses the decay of E. Coli 

concentrations during the few days following the CSO event.  

The ‘without wind’ scenario shows overall concentrations of an order of magnitude higher than the baseline. 

The ‘wind from a station’ scenario shows similar concentrations to the baseline scenario, despite for the 

second simulation day where concentrations are an order of magnitude lower. Wind is the main process 

generating near-shore sea water velocities in the order of 0.1-0.2 m/s during the selected events. Input wind 

speed taken from a station can overestimate hydrodynamic velocities (resulting in lower concentrations due 

to higher dispersion). Instead, the baseline scenario is based on grid cell inputs which is a likely better 

approximation of large scale wind patterns.  

The ‘High grid resolution’ scenario shows that the ‘baseline’ model grid is able to capture the major processes 

correctly, nevertheless the baseline model overestimate concentrations in the first hours after the CSO 

event. The larger grid of the baseline scenario produces artificial numerical diffusion that fails to reproduce 

steep concentration gradients that can occur during the first few hours following the CSO event. 

The ‘Turbulence model’ scenario shows slightly lower concentrations. This gives an idea of the output 

uncertainty generated by the choice of a different turbulence model. 

The ‘Higher E. Coli mortality’ scenario shows overall concentrations almost an order of magnitude lower 

than the baseline. The ‘No E. Coli mortality’ scenario shows overall concentrations almost an order of 

magnitude higher than the baseline. This shows that the mortality rates of E. Coli are a very influential 

parameter.  
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8.4.1.4. Calibration and validation 

The original marine model was developed for the area of Barcelona and it was modified in the framework of 

BINGO creating a new computational grid covering the model area of Badalona) in order to simulate the sea 

water quality of the beaches of the city. Therefore, model calibration and validation of the new model area 

of Badalona is necessary. There different periods with available sea water quality data after CSO events 

were simulated in order to calibrate and validate the model: 

- From 26/01/2018 to 30/01/2018 (calibration event). 

- From 13/09/2016 to 17/09/2016 (calibration event). 

- From 12/10/2016 to 18/10/2016 (validation event). 

The starting simulation time of the marine model was approximately 24 hours before the beginning of the 

CSOs (model warm-up/spin-up period) in order to make sure that the coastal hydrodynamics were properly 

simulated when the CSO event started. The calibrated model parameters were the wind drag coefficient and 

the E. Coli mortality rate T90. T90 is theoretically a function of sea water temperature, salinity and solar 

radiation; nevertheless, similar studies on sea water quality modelling in the Adriatic Sea assumed fixed 

values of T90=2.3 days (Scroccaro et al., 2010; De Marchis, 2013). In this study the calibration considered 

an hourly varying T90 with lowest night values of 4 days and highest day values of 1 day. The wind drag 

coefficient controls the wind generated coastal currents and the calibrated value was 0.0008. This value is 

within the observed values (from 0.5 to 1.5) presented by Large and Pond (1980). A higher drag produces 

higher shear stresses and therefore higher sea water velocities and as a consequence a higher advection 

and dispersion of the contaminant plume. 

The marine model inputs are: the time series of CSOs water discharge for every CSO structure in Badalona 

obtained from the 1D/2D urban drainage model by simulating rainfall events using observations from local 

pluviometers; rainfall time series from 3 different pluviometers in Badalona applied to the drainage model 

based on Thyssen polygons; the wind speed and direction taken from national scale circulation models 

(Puertos del Estado); air and water temperature and solar radiation based on local measurements. 

8.4.1.5. Results 

Figure 163 shows the comparison of the simulated E. Coli concentrations with the observed concentrations 

at three different locations along the pedestrian bridge ´Pont del Petroli´. The black continuous lines shows 

the simulation results obtained using an E. Coli input concentration of 106 cfu/100ml. The upper and lower 

uncertainty bounds were obtained with input concentrations of 107 and 105 cfu/100ml respectively.  

Overall, the model can reproduce both the order of magnitude and the patterns of the observed E. Coli 

concentrations. Most of the observed ‘peak’ concentrations fall between the simulated uncertainty bounds. 

The main model uncertainty here considered is due to the input E. Coli concentration from the CSO 

discharges. Field observations showed mean E. Coli concentrations at CSO structures of 2.1·105 – 3.4·106 

ufc/100 ml; previous projects (Suñer et al., 2008) used inputs of 1·107. The 1·107 ufc/100 ml is considered 

to be a worst case concentration as it is a typical concentration of combined sewer without being diluted with 

storm water runoff. 
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Figure 163. E. Coli simulation results during 3 different CSO events at three different measuring 
points along the pedestrian bridge ‘Pont del Petroli’. The 500 CFU/100 ml is the bathing water quality 
threshold. 

Salinity was also simulated and compared with the observations (Figure 164). Overall the model seems to 

reproduce the observed salinity, however it is difficult to properly judge the model performance due to lack 

of more frequent measurements, particularly during low concentration periods (during the CSO event and 

the following hours). Observed salinity seems to recover to typical sea water salinity (approximately 37-38 

‰, according to http://www.pontdelpetroli.org) already one day after the CSO events when bacterial 

concentrations are still beyond water quality thresholds. 
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Figure 164. Salinity simulation results during 3 different CSO events at three different measuring 
points along the pedestrian bridge ‘Pont del Petroli’.  

Finally, the depth variations of the main model outputs have been presented: E.Coli concentrations, salinity 

and sea water velocity (Figure 165). The model results are shown at the measuring point corresponding to 

200 m offshore on the pedestrian bridge ‘Point del Petroli’ (the water depth here is approximately 8 m) at 

two different time steps: at the beginning of the CSO event and after 6 hours. The results show that at the 

beginning of the CSO event there are significant variations of E. Coli concentrations, salinity and velocity in 

the first meter below sea water surface. These variations are smoothen out already 6 hour later. This means 

that at the early stages of CSO events, stratification due to different salinity and water temperature between 

sea water and CSO discharge is significant. These results can be useful for planning/discussing future field 

campaigns. 
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Figure 165. E.Coli, salinity and velocity simulations at 200 m offshore on the pedestrian bridge ‘Pont 
del Petroli’.  

8.4.2. Evaluation and discussion of the sea water quality model 

Overall the sea water quality model can reproduce observed concentrations with order of magnitude 

precision. Specifically the results of calibration and validation processes demonstrate the adequacy of the 

model for the hazard and risk assessment in the framework of WP3 and WP4. Significant spatial and 

temporal variation of the simulated indicators (E.Coli and salinity) was observed. Sea water salinity could 

also be simulated and it was shown to significantly fall after CSOs (CSO water has no salinity) and to recover 

typical sea water salinity already one day after the observed CSO events when bacterial concentrations 

were still beyond water quality thresholds.  
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9. Conclusions and outlook 

D3.3 is a comprehensive report, which describes the multiple model developments and applications for the 

six BINGO research sites for past conditions. The different model applications have been developed site-

specific in order to provide tools and solutions for local water management problems related to climate 

variability and climate change. Therefore, it is important to show that the models are able to realistically 

represent past conditions. As different model objectives and geographical locations require different 

modelling strategies and types of models, e.g. groundwater in the Netherlands, reservoirs in Norway, and 

canals in Spain, BINGO does not aim at model intercomparison experiments. However, as shown in D3.1, 

there are of course multiple links between sites. Generally, BINGO researcher and stakeholder work hand 

in hand as a team to solve problems all together. Thus, D3.3 also serves as an overview for site researchers 

and stakeholders. Based on different modelling strategies, D3.3 helps to develop new ideas and the transfer 

of algorithms among sites within the remaining 30 months of BINGO. 

D3.3 has shown that there often are obstacles for modelers, such as data availability and quality, model 

instabilities and failures, and data post-processing. However, D3.3 also shows that the model performance 

can generally be considered as satisfactory, given the wide variety of model developments and applications. 

For example, the Portuguese site features four different modelling domains with different objectives, which 

of course already provides a wide range of model performances, which are difficult to relate to each other. 

The next step in WP3 is dedicated to scenario modelling and also to diminish model performance problems 

that came to light during the model performance evaluation, e.g. in Norway or Cyprus. Future scenario 

calculations will consider climate and water/land use impacts for the next decade. Climate ensembles have 

already been created by WP2 in 12 km and hourly resolution, which will especially help to analyze long term 

trends and droughts. As for floods, spatial and temporal resolution will be too coarse to realistically represent 

these events. Here, WP2 will provide extremal episodes with high resolution, which can be nested in the 

long-term time series modelling. Furthermore, water/land-use changes can have drastic effects on water 

availability and thus cause water scarcity. These effects can overlay climate change induced water scarcity 

and thus, needs to be considered as well. Here, D.3.2 provides input for the hydrological models in terms of 

modified land use maps and water uses. By switching new water/land-use data on and off, it will be possible 

to quantify effects of climate and water/land-use changes. Finally, data from BINGO field campaigns will 

help to further fill data gaps and improve model process algorithms and performances. For example, this 

holds true for soil moisture processes at the German site, transpiration processes at the Dutch site, 

precipitation patterns at the Norwegian site, ephemeral runoff at the Cypriote cite, and canal flow at the 

Spanish site. 

The next Deliverable 3.4, which will be submitted by month 36, will focus on the application of decadal 

predictions (2015-2024), land and water use changes and extremal episodes. It will also include a detailed 

on the similarities and interactions among sites. 

 

 


