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Abstract: De facto (or indirect) wastewater reuse is the practice of extracting from surface water
bodies which are impacted by treated wastewater (TWW) for anthropogenic use. The extent to
which surface water bodies in the Netherlands are impacted by TWW is poorly understood, and the
distribution of de facto reuse even more so. This study addresses these knowledge gaps, with a
focus on reuse for agricultural irrigation. This is achieved via a novel application of the Water
Framework Directive (WFD) Explorer water quality model, allowing for the distribution of different
flow components—namely TWW and flow from transboundary rivers—to be discerned for the
national surface water network. When paired with data on surface water extractions for irrigation,
this identifies notable areas of de facto reuse. Results show that during dry conditions, TWW is a
significant flow component in many surface water bodies, particularly in smaller streams located
close to WWTPs. De facto reuse is indicated as widespread, with several key areas identified in
which extractions are from impacted surface water bodies. This study represents a first attempt
to directly link TWW emissions to agricultural irrigation, highlighting a mechanism by which
wastewater-associated contaminants can propagate through the hydrological system.
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1. Introduction

Wastewater, following treatment processes, is generally discharged into surface water bodies,
whereupon it is transported and diluted. In areas with high population densities, this leads to a large
percentage of water courses being impacted by treated wastewater (TWW) [1,2]. Indeed, a recent
study by the EU Commission indicates that TWW is of a near ubiquitous presence in the surface water
bodies of EU nations [3]. In many regions, TWW discharge helps to maintain environmental flow
capacities in surface water bodies [4] and to recharge shallow aquifers [5]. It is, however, likely that
in areas where surface water bodies are highly impacted with wastewater, water quality concerns
are an issue. Contaminants found in TWW include pathogenic microorganisms (concentrations in
the range of 10−1–105 [cfu l−1), nutrients (nitrates and phosphates, 100–102 [mg l−1]), heavy metals
(10−1–102 [µg l−1]) and endocrine disruptors (10−2–102 [µg l−1]) [6]. The presence of these in surface
water bodies may lead to problems meeting WFD chemical water quality targets, negative impacts on
ecology [7] and reduced societal functions [2]. Furthermore, if surface water bodies are infiltrating,
the transfer of contaminants to groundwater may occur. This is highly dependent on subsurface
characteristics and hydrological conditions [8,9], but is indicated by studies which find a range of
TWW-related pharmaceuticals and personal care products in groundwater samples [10].
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De facto (or indirect) wastewater reuse is the practice of extracting from a surface water body which
is heavily influenced by discharge from a wastewater stream (see Appendix A) for anthropogenic use [3].
In this form, TWW can constitute a freshwater resource for agriculture (irrigation), industry (cooling
purposes) and public services (drinking water) [11]. The extent of its usefulness is, however, limited
by its quality and the regulations associated with reuse [12]. The EU recognise water as a resource
which should be managed as a key element of the circular economy [13]. Indeed, literature points to
the direct reuse of TWW becoming a more common trend in the future, both internationally [14] and
in the EU [13], if appropriate regulations can be devised [15] and the societal “yuck” factor can be
overcome [12]. These reports, however, generally neglect to include the occurrence of de facto reuse
as a component of water reuse initiatives. This is reflected in the lack of regulations relating to the
practice when compared to direct reuse [16]. Given more knowledge on the topic, strategies could
be better developed which would better integrate de facto reuse into freshwater management plans,
complimenting existing water reuse schemes.

In the Netherlands, it is likely that wastewater is an important flow component in surface water
bodies owing to high population densities and an extensive network of wastewater treatment plants
(WWTPs) [17]. Moreover, the range of land and water usages located in proximity to WWTPs suggests
that de facto reuse is prevalent nationally. Existing studies have shown that TWW exerts a significant
impact on many surface water bodies in terms of water quality [2,18], but have failed to address the
contribution of wastewater to the discharge of surface water bodies. Without this knowledge, it is
impossible to draw links between wastewater discharges and societal water uses, hence neglecting the
assessment of the occurrence of de facto water reuse. Characterising this problem has been (to date)
confounded by difficulties in measuring and tracing the presence of TWW in a dynamic hydrological
system [19]. A range of approaches seek to address this; from comparing discharge datasets for rivers
and WWTPs [3] to interrogating population and hydrological datasets using GIS methods [1]. This
study opts for a new approach to this problem: repurposing a national scale water quality model and
labelling TWW as a tracer in and of itself. This methodology gives a more continuous representation
of the impaction of surface water bodies than previous efforts. As such, the distribution of TWW
within the surface water network of the Netherlands can be characterised (without the need for direct
measurements) and subsequently related to agricultural extractions, hence bridging the knowledge
gap between TWW emissions and societal water uses.

Via “following the water”, this study aims to determine whether TWW makes up a significant
flow component for surface water bodies in the Netherlands and provide a first estimate of the extent
to which de facto wastewater reuse is occurring in agricultural irrigation. This contributes to initiating
discussions regarding appropriate regulations for de facto reuse and how the practice can be integrated
within the circular economy to increase the responsible reuse of water sources.

2. Materials and Methods

2.1. General Approach

This research aims to trace TWW through the hydrological system of the Netherlands, with
an emphasis on de facto reuse in agricultural systems; this therefore follows its release at WWTPs,
transport and distribution among surface water bodies, and eventual extraction and application on
agricultural fields (Figure 1). In this way, TWW propagates from a point source to a linear network to
a planar distribution, becoming increasingly pervasive within the hydrological system. A national
scale water quality model is used to simulate the partitioning of flow components within surface water
bodies and the transport of TWW through the surface water network. Subsequently, a spatial analysis
step is applied to relate the distribution of TWW in the surface water system to agricultural extractions
for irrigation, hence identifying areas in which de facto reuse is occurring.
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Figure 1. Methodological setup: following the (waste)water from emission to application.

2.2. WFD-Explorer

The Water Framework Directive (WFD)-Explorer is a national scale implementation of the
surface water quality model D-WAQ, created to aid decision makers in meeting Water Framework
Directive-related targets [20]. The model is based on a simple version of the advection-diffusion equation
to simulate reactive transport processes in open water systems. Average fluxes of WFD-identified
contaminants through surface water bodies under steady-state flow conditions are simulated at
timesteps of one quarter for the entire Netherlands. The model discretises the surface water network
as surface water units (SWUs); these are nodes between which the model can simulate the dynamic
transfer of water and substances (Appendix B). Contaminant sources are resolved as either point or
diffuse inputs to the model domain, with WWTPs and transboundary rivers (TRs) resolved as point
sources of discharge and contaminant fluxes.

In this implementation of the WFD-Explorer, around 27,000 nodes are incorporated, accounting
for all major surface water bodies in the Netherlands. The output of steady-state simulations conducted
for two specific periods is used: the first quarter of 2007 and the second quarter of 2011. These periods
are chosen as they represent relatively wet and dry conditions based on their respective precipitation
deficits and surpluses [21]. Three hundred and sixty-three WWTPs are included as point source inputs,
and the influence of TRs on discharge and water quality are simulated as 65 point source inputs located
on the German and Belgian borders.

2.2.1. Metamodel, Transfer Matrices

The WFD-Explorer is used to simulate how a constant flux of 1000 [g/s] of a nominal conservative
and non-conservative (decay rate k = 0.05 [d−1]) tracer from each individual point source will
eventually become distributed as fluxes through SWUs. When this procedure is repeated for each
WWTP and TR considered, two transfer matrices (one for WWTPs, one for TRs) can be constructed,
detailing how emissions from each individual point source will influence fluxes through every
SWU, under prescribed hydrodynamic conditions. Table 1 gives a simplified representation of
one such transfer matrix, but for the implementation detailed in this study, transfer matrices with
dimensions [27435 SWUs x 360 WWTPs] and [27435 SWUs x 65 TRs] are used, representing a full
national schematisation. The sum of fluxes through each individual SWU yields a total flux per
timestep given all point source inputs. This procedure is applied to transfer matrices for both wet (first
quarter of 2007) and dry (second quarter of 2011) conditions.
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Table 1. Simplified transfer matrix considering 3 WWTPs and 3 SWUs, indicating how a flux from each
WWTP becomes distributed in the surface water network.

SWU
Point Sources ∑

flux through
SWU [g/s]Flux from WWTP1

[g/s]
Flux from WWTP2

[g/s]
Flux from WWTP3

[g/s]

SWU1 100 200 500 800
SWU2 200 0 300 500
SWU3 700 800 200 1700∑

flux 1000 1000 1000

Previous implementations of the WFD-Explorer have shown how transfer matrices constructed
using nominal tracer values can be used to model the transport of other contaminants through
SWUs [2,18]. This study employs a similar procedure but takes a novel approach by labelling all
discharge from point sources (WWTPs, TRs) as fully conservative tracers. This allows TWW and
discharge from TRs to be traced through the surface water network, eventually yielding the distribution
of TWW through every modelled SWU. To accomplish this, the distribution of tracer fluxes through
SWUs are first redefined as fractions, and then scaled with recorded discharge values for WWTPs
and TRs (Table 2 shows this procedure for WWTPs). In the case of emissions from Dutch WWTPs,
the transfer matrix is scaled by recorded TWW discharge data from the CBS-Micro database. For TRs,
two methodologies are applied: the first scales the transfer matrix with observed discharge values for
TRs over the period considered, hence returning proportion impaction for each SWU by TR discharge;
the second uses equivalent derived TWW discharge values extrapolated from Carbamazepine (CBZ)
concentrations (see Section 2.3). Following scaling, the sum of discharges from each SWU originating
from each TWW can be calculated. This yields an approximation of the average discharge over the
given time period for each SWU originating as either TWW or TR discharge.

Table 2. Simplified scaling procedure (applied to the first two WWTPs detailed in Table 1) in order to
estimate percentage of TWW impaction of SWUs (Iww).

SWU

WWTP1
(WWQ = 2 [m3s−1])

WWTP2
(WWQ = 0.5 [m3s−1])

∑
WWQs

through
SWU

(QWW)
[m3s−1]

Total Q
SWU

(QTOTAL)
[m3s−1]

Percentage
TWW

Impaction
(IWW) [%]

Scaling
Fraction

[-]

WWQ
Equivalent

[m3s−1]

Scaling
Fraction

[-]

WWQ
Equivalent

[m3s−1]

SWU1 0.1 0.2 0.1 0.05 0.25 0.5 50
SWU2 0.2 0.4 0 0 0.4 40 1
SWU3 0.7 1.4 0.4 0.2 1.6 1.6 100

From this methodology, two model schematisations can be derived, with the difference between
the two lying in the treatment of TR inputs described above. The first, henceforth referred to as the
three-component model, uses the transfer matrix generated for WWTPs and TRs to work out the
proportion impaction (I) of SWUs by TWW and discharge from TRs. Using these two calculated
values, a third parameter can also be derived which is representative of internal non-anthropogenic
flow (runoff), i.e., representing the combined contributions of direct precipitation to surface water
bodies, surface runoff, shallow subsurface runoff and deep groundwater seepage. This may be
summarised as follows, with subscripts WW,nl, TR and RU representing discharges from Dutch
WWTPs, transboundary rivers and runoff respectively:

Three-component model:

IWW,nl =
QWW,nl

QTOTAL
, ITR =

QTR

QTOTAL
, IRU = 1− IWW − ITR (1)
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The second model schematization, henceforth referred to as the combined model, treats TRs as
point sources of TWW, thereby attempting to represent the inputs of extranational WWTPs on SWUs
within the Netherlands. The combined discharges from TWW therefore give a total impaction value
for each SWU; this is a useful metric, as it relates total wastewater impaction to de facto reuse via
agricultural extractions for irrigation. This scheme is summarised as such, with subscripts WW,tr and
WW,TOTAL denoting the extranational and total TWW discharges respectively:

Combined model:

IWW,TOTAL =
QWW,nl + QWW,tr

QTOTAL
(2)

2.2.2. Travel Time

Using the transfer matrix described in Table 1 for a nominal conservative and non-conservative
tracer, it is also possible to calculate the travel times between each point source and respective receiving
SWU. The following equation, first implemented and further described by Coppens et al. [2], may be
used to derive travel time T between point source i and receiving SWU j, with F values representing
fluxes of a conservative (c) and non-conservative (nc) tracer and K representing (linear) decay rate of
the non-conservative tracer:

Ti, j = −
ln

(
Fnc i, j
Fc i, j

)
Knc

(3)

This equation is applied to give a respective travel time between each point source and SWU,
hence generating a distribution for each individual SWU. This distribution can subsequently be used to
generate an average travel time per SWU; this is a useful metric, as it is indicative of the amount of time
TWW associated compounds have had to undergo degradation during reactive transport. A caveat
here is the inability to predict total travel times for TWW which originates outside of the Netherlands
due to the spatial constraints of the model; results can therefore only include average travel times
between point sources of effluent as treated in the model framework (Dutch WWTPs, TRs at the point
at which they enter the Netherlands).

2.3. Deriving Wastewater Impaction Using Carbamazepine Concentrations

To inform model inputs and evaluate results, observations of wastewater impaction values
for surface water bodies are required. Directly measuring this metric is, however, impossible, and
therefore it must be extrapolated from measurable concentrations of TWW-related contaminants.
CBZ is chosen as a widely used tracer of TWW contamination [22]. Its utility stems from the fact
that it is highly conservative, originates primarily from domestic wastewater and has no natural
background concentration in surface water systems [23]. Observed CBZ concentrations and surface
water discharges are used to extrapolate TWW discharge equivalent values using the following linear
dilution model:

QWW = QTOTAL,obs
CCBZ,obs

CCBZ,e f f luent
, IWW =

CCBZ,obs

CCBZ,e f f luent
(4)

where QTOTAL,obs, CCBZ,obs and CCBZ,effluent represent observed discharge values, the observed
concentration of CBZ and concentration in pure TWW effluent respectively. CCBZ,effluent is set at
a constant value of 0.62 [µg l−1]; this was chosen after reviewing a range of literature and determining
that this value represents a middle estimate from all studies, alongside considering the highest number
of samples from Dutch WWTPs [24].

This methodology is used to quantify the average TWW discharge originating from extranational
WWTPs and transported into the Netherlands by TRs. This study uses data on discharges and
contaminant concentrations from monitoring programmes located close to the modelled node for each
major TR considered to construct derived TWW discharge equivalent values for each transboundary
input. Measurements come from the RIWA and Hydronet databases in the Netherlands and the
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NLWKN and ELWAS databases in Germany. Measurement points are chosen as close as possible
to the Dutch border. Carbamazepine (CBZ) concentration measurements for all significant TRs are
considered, with “significant” rivers hereby defined as having a discharge greater than 1 [m3s−1] during
the wet period (first quarter of 2007). This procedure generates the results detailed in Appendix C,
which are used as model inputs for the combined model described in Section 2.2.1.

The second use of the model detailed in Equation 4 is to provide a quasi-validation of model
results. Assessing the error generated in this framework is difficult due the inability to directly measure
the presence of TWW. Nonetheless, to evaluate the calculations and partially assess uncertainty, a
dataset of 21 CBZ concentration measurements provided by Hydronet [25] and 10 measurements by
RIWA, spanning the “dry” model simulation period (2011 Q2) are utilised. These values are converted
to representative impaction values (IWW) and directly compared with the modelled value at the node
closest to the measurement point, located using a “Nearest Neighbour” function implemented from
the Python spatial analysis library Shapely.

2.4. Spatial Analysis

To gain an insight into how surface water impaction by TWW is likely to become spatially
distributed during the process of irrigation, a spatial analysis step is applied. This aims to attribute
irrigation extractions to their respective sources and the agricultural area they service respectively.
Thus, the distribution of TWW in the surface water network is related to a planar agricultural surface,
thereby showing how it can be propagated through the hydrological system. This process also allows
for the identification of areas of high de facto reuse.

This is achieved by using openly available datasets detailing the locations of irrigated areas serviced
by surface water from the Netherlands Hydrological Instrument [26] and registered agricultural crop
plot extents [27]; these are raster and polygon datasets respectively (Appendix D). First, surface water
irrigation locations are attached to model outputs of TWW impaction using a nearest neighbour join
function implemented from the Python library Shapely; this assigns the impaction value generated for
the closest (minimum distance between any point along the surface water network and the centre of
the pixel) SWU polygon to each pixel of the irrigation raster. Next, the value for wastewater impaction
attached to each pixel is assigned to underlying crop field extent polygons using an intersection
function implemented from the Python library Geopandas.

3. Results

3.1. National Scale Analyses

3.1.1. Three-Component Model

The three-component model schematisation clearly succeeds in representing the transport and
dilution of different water sources; the flow of water from international sources through large river
systems is visible in both periods and TWW discharge in small streams is diluted downstream of
WWTPs by runoff (Figure 2).

Differentiation between wet and dry conditions is marked. In dry conditions, SWUs are impacted
to a greater extent by Dutch WWTPs, especially in smaller surface water bodies in central eastern
(Overijssel, #1) and western (Zuid Holland, #2) regions where impaction often approaches 100%.
International rivers are clearly a vital component of surface water flow in dry periods, especially
around the Meuse-Rhine corridor (#3) where most flow comes from transboundary sources. Perhaps
surprisingly, the model also indicates that in dry periods, a large proportion of flow in northern
(Friesland, #4) and central (Utrecht, #5) SWUs originates from transboundary sources. This spreading
likely results from the model simulating the opening of water inlets during low flow periods, a decision
often enacted to allow entry of water from large water courses into the low-lying polder systems
during drought conditions [28]. In this case water from Lake IJssel (#6), which is replenished by river
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water, is let into the polders of Friesland, while water in Utrecht comes from the large rivers and from
canals connected to these rivers. This reflects the extensive water management capabilities present in
the Netherlands.Sustainability 2019, 11, x FOR PEER REVIEW  7  of  21 
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In wet conditions, discharge through the majority of SWUs stems from runoff, with discharge from
international rivers being less pervasive in the surface water network, albeit still dominant along the
central Meuse-Rhine corridor. This reflects the greater influence of precipitation during this period and
the reversal of flow networks to encourage draining of surface water bodies to the sea, also resolved in
the model framework. The impact of TWW from Dutch WWTPs in wet conditions is visible in some
areas, notably for the Zandleij in the Brabant area (#7), but is in general negligible for the majority
of SWUs.

3.1.2. Combined Model

When international rivers are included as point sources of TWW effluent, a general representation
of TWW impaction is obtained (Figure 3). These results show a compelling difference in terms of TWW
impaction in wet and dry periods, with TWW making up a much higher percentage of flow in the
majority of SWUs during the dry period. As expected, the model again clearly produces dilution
effects along the course of surface water bodies (especially visible in streams in eastern areas).

During dry conditions, TWW is shown to be a pervasive component of surface water flow. Central
eastern (Overijssel, #1) and western (Zuid Holland, #2) areas are highly impacted, with discharge
through many SWUs being composed of 80–100% TWW. Results also clearly show the influence of
TWW originating from transboundary sources, with inputs from the Rhine and Meuse contributing to
the impaction of many surface water bodies in the central Netherlands (#3). Indeed, around 20% of the
flow component of large surface water bodies in the Rhine-Meuse corridor is shown to be made up of
TWW in dry conditions. This effect is also evident in the central southern area (Noord-Brabant, #8),
which is influenced by TWW transported by the Dommel. TWW transported by the Rhine and IJssel
also has a clear influence on impaction in Friesland (#4) and Utrecht (#5) areas.

In wet conditions, conversely, results suggest that TWW is largely unimportant in maintaining
flow for the majority of SWUs. Indeed, the only areas in which TWW makes up a significant flow
component is in a few smaller watercourses in the Zuid Holland (#2) and Limburg (#9) areas, as well
as in the Zandleij (#7). Some wastewater impaction is also still indicated for the Dommel (#8).

Model evaluation indicates that predictive accuracy varies, especially when considering higher
predicted wastewater impactions (>40%), with two data points in particular showing large relative
under- and over-predictions (Figure 4). This may be a result of increasing uncertainty in the model
framework which occurs due to degradation processes being much more dynamic in real systems at
relatively higher concentrations. A general trend toward overprediction is also shown in relation to the
Hydronet data, which consists mostly of measurements taken in smaller streams. Overall, however,
a fair level of agreement is shown, indicating that the model is useful for predicting the occurrence of
TWW in surface water bodies. Moreover, when compared with the distribution of maximum CBZ
concentrations in surface water bodies explored in a report by STOWA (2015), model outputs show
good agreement (Appendix E). This finds elevated CBZ concentrations (above 0.5 [µg l−1]) in the
same areas this study identifies as being highly impacted by TWW, notably in 5 samples taken from
small streams in the east (Overijssel) and 3 samples taken from polder systems in the west (Zuid
Holland area).
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3.1.3. Travel Times

Average travel times between sources of effluent and receiving SWUs range from 0–200 days in
both wet and dry conditions (Figure 5). In general, travel times are higher at the northern and western
boundaries of the country, and lowest along the Rhine-Meuse corridor (#3) and central eastern areas.
A clear distinction is again evident between wet and dry conditions, with travel times being higher in
all areas during dry conditions. This is the result of the same water management strategy described
earlier, whereby water is retained terrestrially during dry periods and flushed to the sea during wet
periods to alleviate flood risk.

Results in terms of TWW impaction become more informative when combined with estimates of
travel time as this provides for some insight into the decay processes which occur during transport.
Highly conservative contaminants such as chloride, some pharmaceuticals and artificial sweeteners
are unlikely to decay on time scales of 0–200 days [29], but for pathogens, travel times in the range of
20–100 days can lead to >90% reductions in concentrations under open flow systems [30]. In general,
it should be noted that for dry conditions in the areas of significant impaction outlined above (Zuid
Holland, #2; Overijssel, #1), travel times are still relatively low (<50 days) and thus the model suggests
that contaminants related to TWW are unlikely to have decayed by the time they reach these SWUs.
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3.2. Distribution of De Facto Reuse

The results indicate that de facto reuse is indeed occurring within the Netherlands, but with a large
amount of spatial variation in the extent to which this occurs (Figure 6). Along the Rhine and Meuse,
especially in central areas (#3), it is clear that de facto reuse is occurring, with irrigation extractions
generally containing 0-40% TWW. In central western areas of the Netherlands (Zuid Holland, #2),
a large amount of de facto reuse is also indicated, with extractions coming from surface water bodies,
of which 40–80% are impacted by TWW. Another key area which was not obvious during earlier
modelling stages is a patch of high de facto reuse (40–60% TWW) in the agricultural area of Noord
Holland (#10), in which one WWTP seems to produce a large effect in terms of impaction. Smaller
areas in which water used for irrigation seems is highly impacted (80–100%) by TWW do exist but
are scattered and only seem to occur for individual fields; these results should be approached with
caution, as the framework may yield inaccurate results at the field scale.
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It is difficult to compare these results with others, as they represent the first of their kind in terms
of linking TWW emissions to agricultural irrigation. It is, however, worth noting that a recent study on
the contamination of groundwater by pharmaceuticals (see Appendix E, Figure A5) detected CBZ in
groundwater samples in the same area of concern hereby identified in the western Netherlands (Zuid
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Holland, #2). This may therefore indicate some link between de facto wastewater reuse for agriculture
and contamination of the subsurface by pharmaceuticals.

4. Discussion

4.1. Model Successes, Limitations, Uncertainties

The framework used in this paper helps provide an insight into the distribution of TWW within
surface water bodies in the Netherlands, and the flow components (Dutch WWTPs, TRs) which
influence this. This assessment was performed on a national scale, differentiating it from other studies
which have been employed at the catchment [3] or reach [17] scales. The study also provides a first
step towards linking WWTP emissions to de facto reuse within the Netherlands. Indeed, this is one of
very few studies to explore this problem [1,3,31], and to date, the only one that follows initial TWW
emissions to the planar surface of agricultural fields. This is an important step in that it outlines a
pathway by which TWW associated contaminants may spread through the surface water network and
even to the subsurface.

The evaluation of model results is far from ideal in that it is only possible for the combined model
and the data used is only partial in terms of both space (low coverage) and time (only dry period).
It does, however, indicate that the framework is indeed accurate at predicting areas of high TWW
impaction. Comparison with a number of existing datasets and studies also indicates a good level of
agreement, with maximum impaction values in the same ranges [1–3,31,32]. Moreover, all assumptions
included in this framework have been carefully considered and grounded as much as possible in
best practice or examples given in leading literature on the topic. It would certainly be preferable to
validate model results using targeted field samples and therefore in future, a larger dataset of CBZ
measurements would be useful to further assess model performance in other areas of the Netherlands.
The expansion of current monitoring programmes with more extensive sampling of CBZ concentrations
and increased integration of water quality databases will undoubtedly improve future research on
this topic. Uncertainty is also introduced by conflicting literature on average values and ranges of
CBZ concentrations in pure TWW effluent [32–34]. This may be further constrained in future studies
via a multiple tracer approach [35,36], or a more complex model relating CBZ to TWW discharges
which include the likely effects of decay after discharge from WWTPs. These steps would help to
better constrain uncertainty in approximating impaction values for TR inputs and further improve
model performance.

A key limitation to this study resides in the fact that it does not explicitly account for different
irrigation practices. This is important, as the dominant form in the lower parts of the Netherlands
is sub-surface irrigation using polder networks to supply water directly to the root zone [37,38]. A
better representation of de facto reuse in agriculture would therefore identify inlets to polder networks
from surface water bodies and attach this value to the entire polder area. Data on these inlet points,
however, is only partially available through regional water boards; therefore, the steps taken in this
study represent a best estimate based upon openly-available national scale datasets. It is likely that the
inclusion of this effect would produce larger areas of impact, hence suggesting that estimates of the
extent of de facto reuse hereby predicted are conservative.

4.2. Practical Implications

The key result of the study is indicating the extent of de facto reuse of TWW in Dutch agriculture,
negating discussions over whether TWW should be reused in the Netherlands [11] by indicating that
this practice is already occurring. The next logical step in this discussion is whether this is necessarily
problematic. It may be that the reuse of water in areas along the Rhine-Meuse corridor and in Noord
Holland is in breach of guidance by the JRC [16] on water quality requirements for irrigation, but
without closer monitoring, this is not possible to discern. This necessitates future research on the quality
of surface water used for irrigation. A national-scale review of irrigation water quality akin to studies
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by STOWA [32] and KWR [10] tracing common TWW-related contaminants (CBZ, chloride-bromide
ratios among others) would be highly valuable to better inform farmers and water managers on de
facto reuse. Targeted measurements of these contaminants in soil water samples and groundwater
would directly characterise the impacts of de facto reuse on agricultural areas through tracing the
movement of wastewater through the entire hydrological system. This study could be of use in guiding
key areas for these monitoring programmes to be located; areas in which high TWW concentrations
are predicted (Zuid Holland, Overijssel) should be prioritised in this effort.

Crucially, this issue should be discussed by Dutch water managers, with regulations being created
regarding de facto reuse and the quality of irrigation water. This may include the designation of
water bodies as extraction-free zones, and the establishment of minimum distances from WWTPs for
extractions to occur. An important dimension of this discussion is the agreement of what represents an
acceptable risk; in many areas globally (notably including Spain, Italy and Greece), TWW is widely
reused in agriculture [3]; therefore, it may be deemed that current levels of reuse within the Netherlands
are acceptable within this context. Moreover, risk is dependent on irrigation practices and crop types,
with drip and sub-surface irrigation systems reducing the chances of the contamination of produce [39].
The adoption of these irrigation practices and further treatment at WWTPs could represent mitigation
strategies if the level of risk is deemed unacceptable.

A key finding of this study is the effects of surface water discharge on impaction and reuse
dynamics, which has important implications given the increased occurrence of drought conditions
in the Netherlands observed in recent years and predicted for the future [40]. This paper suggests
that during drought conditions, TWW is a pervasive component of surface water flow; supporting
studies which show surface water quality issues to be more prevalent in dry periods [41,42]. De facto
reuse is also shown to be more prevalent during drought owing to increased relative impaction paired
with a higher demand for irrigation. TWW is therefore likely to have increased negative impacts in
terms of surface and subsurface water contamination, but conversely will represent an increasingly
important freshwater resource when other sources are restricted [43]. This lends further weight to
arguments for increasing treatment at WWTPs into the future to increase access to sustainable water
resources in surface water channels. The current freshwater plan of the Netherlands [28] fails to assess
de facto reuse which this study indicates is already occurring and therefore should incorporate this
into future reworkings.

A final consideration is the identification in this study of “wastewater dominated” streams [4];
characterised as such when 80–100% of flow is constituted by TWW in dry conditions. Several such
streams are indicated throughout the Netherlands, especially in Eastern areas (Overijssel). It is intuitive
that these are highly impacted with very short average travel times, suggesting a range of problems
in terms of water quality. This study fortunately indicates that extractions from these streams for
agricultural irrigation are limited, but other considerations are still applicable; literature on this topic
identifies wastewater-dominated streams as ecologically unique since variation in flow is much lower
annually [44]. Indeed, in drought periods, the streams may be important in supporting key species
in channels which would otherwise be dry [4]. These areas should therefore be carefully monitored,
with water use restricted to preserve ecological functioning and prevent the spread of TWW-related
contaminants. Other impacts from these streams should also be considered, including whether they
may contribute to the transfer of contaminants to pristine groundwater [9].

5. Conclusions

This paper has successfully applied a model framework to simulate the spread of wastewater
through the surface water network of the Netherlands, generating data on impaction characteristics for
large surface water bodies. It has also succeeded in relating – for the first time – the distribution of
wastewater and other flow components within the surface water network to agricultural extractions,
creating a picture of de facto wastewater reuse on a national scale.
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Key results include the finding that wastewater is present in many surface water bodies, with the
areas of highest wastewater impaction identified in Zuid Holland and Overijssel. Levels of impaction
are shown to be higher in dry conditions, suggesting that reuse will increase with more common
incidences of drought predicted in a changing climate. Extremely high percentages of wastewater
(90–100%) are indicated in several small streams close to WWTPs, which may be characterised as
“wastewater dominated”. Crucially, this paper allows for a first assessment of de facto reuse in the
Netherlands, indicating that the practice is widespread, with notable areas of reuse occurring in the
central Netherlands (along the Rhine) and Zuid Holland.

Several key conclusions may be drawn from this study: firstly, that wastewater is a pervasive
component of the surface hydrology of the Netherlands during dry/low flow periods, with 100% of flow
originating from wastewater discharge in some surface water bodies; and secondly, that wastewater is
indeed being widely reused through de facto practices. Acknowledging the occurrence of de facto
reuse will allow for surface water resources to be better managed, with extractions and treatment
taking place at better informed locations. This supports the creation and enforcement of guidelines for
indirect wastewater reuse within the Netherlands, and the establishment of monitoring programmes
for irrigation water quality.
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Appendix C

Table A1. Calculated equivalent wastewater discharge values for transboundary inputs at the point at
which each river crosses the border.

River

2007 Q1 (Wet) 2011 Q2 (Dry)

Average
Concentration

CBZ
(CCBM,obs)

[µg l−1]

Average Q
(QTOTAL,obs)

[m3 s−1]

Equivalent
Derived
WWQ
(QWW)

[m3 s−1]

Average
Concentration

CBZ
(CCBM,obs)

[µg l−1]

Average Q
(QTOTAL,obs)

[m3 s−1]

Equivalent
Derived
WWQ
(QWW)

[m3 s−1]

Rhine (Lobith) 0.02 3140 101.29 0.17 1180 323.55
Meuse (Eijsden) 0.018 637 18.49 0.07 78.8 8.9

Vecht 0.06 43.8 4.24 0.07 5.85 0.66
Dommel 0.069 3.28 0.37 0.275 1.44 0.64

Niers 0.17 13.7 3.76 0.31 5.9 2.95
Roer 0.09 29.6 4.3 0.22 10.7 3.8

Tongelreep 0.02 1.64 0.05 0.1 0.71 0.11
Dinkel 0.08 2.28 0.29 0.24 1.14 0.44
Berkel 0.04 5.38 0.35 0.32 2.23 1.15

Bocholter 0.1 6.77 1.09 0.23 2.24 0.83
Ijssel 0.08 3.06 0.39 0.39 0.75 0.47
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