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ABSTRACT

River impoundment constitutes one of the most important anthropogenic impacts
on the World’s rivers. An increasing number of studies have tried to quantify the
effects of river impoundment on riverine ecosystems over the past two decades, often
focusing on the effects of individual large reservoirs. This study is one of the first to
use a large-scale, multi-year diatom dataset from a routine biomonitoring network to
analyse sample sites downstream of a large number of water supply reservoirs (n=77)
and to compare them with paired unregulated control sites. We analysed benthic
diatom assemblage structure and a set of derived indices, including ecological guilds,
in tandem with multiple spatio-temporal variables to disclose patterns of ecological
responses to reservoirs beyond the site-specific scale. Diatom assemblage structure
at sites downstream of water supply reservoirs was significantly different to control
sites, with the effect being most evident at the regional scale. We found that regional
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INTRODUCTION

The construction of dams and creation of reservoirs, also known as river impoundment, is
among the most fundamental anthropogenic changes to rivers internationally (Malmgvist
& Rundle, 2002; Zarfl et al., 2015). Around 59,000 large dams (higher than 15 m

or impounding more than three million cubic metres) exist today (ICOLD, 2018),
interrupting free-flowing rivers globally (Stanford ¢» Ward, 2001; Nilsson et al., 2005).
There is an extensive literature on the first-, second- and third-order effects of river
impoundment (sensu Petts, 1984), including changes to sediment transport and channel
morphology (e.g., Sear, 1995; Yang et al., 2011), water quality (e.g., Ahearn, Sheibley ¢
Dahlgren, 2005; Casado et al., 2013), and flow regime (e.g., Higgs ¢» Petts, 1988; Fitzhugh ¢
Vogel, 2011). Research quantifying the effects of river impoundment on biotic communities
have predominantly concentrated on macroinvertebrate (e.g., Jackson, Gibbins ¢ Soulsby,
2007; Schneider et al., 2018) and fish communities (e.g., Cooper et al., 2016; Oliveira
etal, 2018).

There is a vast and wide-ranging literature on the use of diatoms to characterise
environmental conditions, predominantly within the fields of palacoecology of marine,
coastal and lake ecosystems, including detailed research on acid precipitation and
lake acidification (Flower ¢» Battarbee, 1983; Battarbee et al., 1988; Renberg, 1990),
lake salinity (Fritz et al., 1991; Gasse, Juggins & Khelifa, 1995), total nitrogen and
phosphorus (Bennion, Juggins ¢~ Anderson, 1996), coastal environmental change (Lewis et
al., 2013) and ecotoxicology (Pandey et al., 2017). Diatoms have also been used extensively
in the assessment of environmental conditions of riverine and lentic ecosystems (Stevernson,
Pan & Van Dam, 2010; Bennion et al., 2014). Research in shallow streams usually involves
benthic diatom assemblages, whereas planktic diatoms are predominantly studied
in research centred on larger rivers. Studies assessing downstream effects of river
impoundment using diatom datasets are relatively scarce (Growns & Growns, 2001).
Planktic diatom assemblages have often been studied within reservoirs (Tolotti, Boscaini ¢
Salmaso, 20105 Fornarelli & Antenucci, 2011), with some reporting changes downstream of
dams on regulated rivers (e.g., Tornés et al., 2014). Studies of benthic habitats, including
epilithic, epiphytic and epipelic diatom assemblages (growing on rocks, aquatic plants and
sediments, respectively) within impounded rivers are more common, including research on
assemblage structure (e.g., Blinn, Truitt ¢ Pickart, 1989; Growns, 1999; Gallo et al., 2015)
and biomass (Uehlinger, Kawecka ¢» Robinson, 2003; Nichols et al., 2006) downstream of
hydropower (Peterson, 1986; W et al., 2009) and water supply structures (Boix et al., 2010).
Comparisons of pre- and post-impoundment diatom assemblages are rare in the scientific
literature due to a general absence of pre-impoundment monitoring data (but see Cibils
Martina, Principe & Gari, 2013; Algarte et al., 2016). As a result, most studies have used
non-regulated control sites (upstream or on unregulated tributaries) that are assumed to
represent reference conditions at downstream sites.

Most research on the effects of river impoundment on benthic diatom assemblages has
been undertaken at local scales, focusing on single or several reservoirs and involving short
time periods, with few studies deploying large-scale or long-term datasets (e.g., Growrs
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& Growns, 20015 Marzin et al., 2012; Dahm et al., 2013). Although diatoms are often
used to investigate water quality and nutrient pressures, including total phosphorus

in rivers (e.g., Kelly & Whitton, 1995; Szczepocka, Kruk ¢ Rakowska, 2015), diatoms are
known to be sensitive to other pressures including river discharge (e.g., Snell et al., 2014). A
number of river impoundment studies using diatom datasets have established direct links
between diatom assemblage responses and river flow regime modification (e.g., Growns,
1999; Wu et al., 2010). Most water supply reservoirs release managed discharges (termed
‘compensation flows’ in a UK context— Gustard, 1989; Acreman ¢ Dunbar, 2004) that
bear little resemblance to the natural flow regime, and that typically reduce high and
median flows and increase low flows (Higgs ¢ Petts, 1988; McManamay, Orth & Dolloff,
2012; Stewardson et al., 2017). The effect of these flow changes downstream of water supply
reservoirs on diatom assemblages remains poorly understood, and transferable flow—
ecology relationships are difficult to formulate at larger spatial scales (Poff ¢ Zimmerman,
2010; Webb et al., 2013).

In this paper, we compare benthic diatom assemblages at monitoring sites downstream
of multiple water supply reservoirs subject to fixed-flow releases with assemblages at
paired unregulated control sites. We hypothesised that diatom assemblages at downstream
sites would differ from those at control sites, and aimed to identify consistent patterns in
downstream diatom responses beyond the scale of individual reservoirs. In addition, we
hypothesised that ecological guilds based on growth forms would respond differently to
river impoundment, which may help elucidate the role of abiotic factors in shaping diatom
assemblages. To investigate this, we used a large-scale national-scale biomonitoring dataset
(covering 2013-2016) associated with 77 reservoirs in England. The study addressed
the following research questions: (1) Do consistent differences exist between diatom
assemblages at sampling sites downstream of water supply reservoirs and unregulated
control sites at the regional and national scale? (2) Can diatom assemblage structure and
ecological guilds be used to identify environmental gradients (e.g., flow, water quality)
associated with sites downstream of impoundments and unregulated control sites?

METHODS
Study area

We used data from the WRPN monitoring network, which is short for Water Resource
Permitting and Planning Network. The network was established by the Environment
Agency of England (EA), the statutory environmental regulatory agency in England, UK,
at a subset of compensation release reservoirs, predominantly located in upland areas
of England, to provide monitoring data to develop the understanding of the ecological
impacts of downstream flow alteration. The most important feature of WRPN is the pairing
of biomonitoring sites downstream of water supply reservoirs (referred to as ‘downstream
sites’ hereafter) and control sites. Only monitoring sites with sufficiently good water quality
were selected by the EA in order to minimise possible confounding effects of background
water quality issues on biomonitoring results (i.e., no major pesticide, acidification or
pollution incidents at or near the sites prior to or during the study period). As no pre-
impoundment biomonitoring took place historically, no before—after comparison could be
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Figure 1 Location of the WRPN reservoir clusters. The dash-lined circles indicate the six regions. IN-
SET: close-up of the Derwent reservoir in Northumberland with one control site (blue dot) and three
downstream sites (red triangles). The dashed circles indicate the sample sites that were selected from this
cluster.

Full-size Gal DOI: 10.7717/peerj.8092/fig-1

established. Hence, control sites located either on river reaches upstream of the reservoirs
or on adjacent unregulated tributaries were selected to reflect the conditions that would
occur at the downstream sites without the presence of the reservoir (see also Krajenbrink et
al., 2019). We selected 34 clusters comprising individual or serial impoundments from the
total WRPN network (Fig. 1). In instances where a cluster comprised multiple downstream
and control sites, one downstream and one control site closest to the impoundment were
selected, resulting in a total of 68 sample sites (34 downstream—control site pairs) associated
with 77 reservoirs (one to six reservoirs per cluster). In total, 25 control sites were located
upstream of the reservoirs and nine sites were located on nearby tributaries.

Diatom sampling

All sites were sampled biannually during spring (predominantly April-May, with a few
samples collected in March) and autumn (September—November) between 2013 and 2016.
This period had average to above-average annual rainfall, with no prolonged dry periods
(Met Office, 2019). A maximum of eight epilithic diatom samples were collected per site.
For sites that were introduced or replaced in 2015 after a network revision (n = 18; mainly
control sites), samples were only available for 2015 and 2016 (maximum of four samples).
Diatom sampling followed EA protocols (WFD-UKTAG, 2014) which conform to European
standards for routine diatom sampling and preparation in rivers and lakes (CEN, 2014b). At
each site, a minimum of five cobbles or small boulders were selected. Diatoms were removed
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from the cobbles using a small brush, preserved in the field using Lugol’s iodine solution,
and returned to the laboratory for processing and identification. In the laboratory, diatom
frustules were cleaned using a combination of acids and were prepared on slides. Samples
were identified using a compound light microscope at 1,000 x magnification by counting
at least 300 valves of benthic diatom taxa, comprising at least 200 valves of non-dominant
taxa. This process was compliant with European standards on the identification of benthic
diatoms from rivers and lakes (CEN, 2014a). For a randomly selected number of samples,
slide preparation and diatom identifications were independently verified in an external
audit procedure following EA quality assurance protocols. Diatom valves were identified
to species level where possible, with taxa that formed <2% of the sample typically being
resolved to genus level.

A total of 477 samples were available for analysis (244 samples from downstream sites,
233 control site samples). Taxa with outdated nomenclature were merged with currently
valid taxonomic entries to ensure a consistent taxonomy across all samples. In addition,
a number of rare or planktic genera were resolved to genus level, and genus entries that
overlapped with species entries within the same genus were removed. The final diatom
dataset comprised 379 taxa including 18 genus entries.

DATA ANALYSIS

Diatom assemblages at sites downstream of impoundments and at control sites were
analysed at different spatial scales. At the national scale, all 34 downstream—control site
pairs (504 samples) were analysed in combination. At the regional scale, the 34 pairs
were divided into six regions (see Fig. 1), each region comprising five to seven pairs,
following the principles of Krajenbrink et al. (2019). Prior to analysis, all diatom samples
were transformed into relative counts. The final diatom dataset included 23 planktic taxa
(following the checklist in Rimet ¢~ Bouchez, 2012b), which were excluded from the analysis
steps unless explicitly mentioned, in order to focus on benthic taxa.

Assemblage structure

Differences in benthic diatom assemblage structure were tested against three spatial
(SiteType, Region and DCpair or ‘Downstream—Control site pair’) and two temporal
variables (Season and Year). A three-step approach similar to Krajenbrink et al. (2019) was
used, but is summarised here for clarity: (1) The influence of SiteType (downstream or
control site) on diatom assemblages was examined by analysing spring and autumn samples
separately; (2) The effect of impoundment on seasonal patterns within diatom assemblage
structure was examined by dividing samples into ‘Downstream’ and ‘Control’ site groups
and testing both groups in association with Season (spring or autumn); (3) The influence
of other spatio-temporal variables Region, Year and DCpair was tested by analysing both
seasons and site types individually, thus dividing samples into four groups.

Differences in multivariate assemblage structure between levels of individual variables
were tested with a non-parametric Permutational Multivariate Analysis of Variance
(PERMANOVA; see Anderson, 2001) using the adonis function from the R package
vegan (Oksanen et al., 2017), which partitions the total statistical variation (sums of
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squares) for the different sources of variation. Using this approach enabled the amount of
total statistical variation explained by the spatio-temporal variables and the unexplained
variation to be determined (see also Krajenbrink et al., 2019). The partitioned statistical
variation, expressed as partial R-squared values or R?-values by the adonis function, will
be presented throughout the text and alongside the standard pseudo-F and p-value output
in the relevant tables. The significance of the PERMANOVA partitions were tested using
999 permutations. Multivariate patterns in assemblage structure were visualised using
Non-metric Multidimensional Scaling (NMDS) ordination, using the metaMDS function
in vegan. Both PERMANOVA and NMDS were applied using Bray—Curtis dissimilarity
matrices (see also Krajenbrink et al., 2019).

Diatom indices, guilds and indicator taxa

A number of univariate indices based on diatom assemblage composition were derived.
We determined the total taxonomic richness of benthic diatoms (Ntaxa) for each sample.
Taxonomic richness was investigated in more detail by segregating all benthic taxa into
three diatom ecological guilds based on growth morphologies and their ability to tolerate
nutrient limitation and physical disturbance, i.e., low-profile, high-profile, and motile
guilds (Passy, 2007; Rimet & Bouchez, 2012b). The low-profile guild comprises diatom taxa
of short stature that are predominantly attached to substrate. Diatom taxa belonging to
the high-profile guild are larger or tend to form long colonies or stalks. The motile guild
comprises comparatively fast-moving species. It is hypothesised that the specific guilds
would respond differently to flow velocity conditions and changes therein, with low-profile
taxa expected to occur more frequently in high-flow conditions (high disturbance) and
high-profile taxa favouring tranquil flow (low disturbance) conditions (Passy, 2007). For
every sample, the absolute number as well as the percentage of taxa belonging to each
guild (relative richness —%taxa_low; %taxa_high; %taxa_motile) were calculated. The
diatom checklist provided by Rimet & Bouchez (2012b) was used to assign each taxon to
a guild. Indicator taxa for each region and season were derived for both site types using
the multipatt function from the R package indicspecies (De Caceres & Jansen, 2016) to
determine the diatom taxa that were characteristic of downstream and control sites.

In addition to the richness and guild indices, Trophic Diatom Index (TDI) scores were
derived. The TDI methodology was initially developed to investigate the trophic status
of rivers (Kelly &> Whitton, 1995) and has been used to assess phytobenthic ecosystems in
UK waterbodies for the WED (Kelly et al., 2008; WFD-UKTAG, 2014). TDI scores (version
TDI4) were calculated by the EA following guidelines in WFD-UKTAG (2014). Finally, the
relative abundance of planktic diatoms per sample (%planktic) was calculated, expressed
as percentages of the total number of benthic and planktic diatoms cells per sample.
Differences between diatom indices at downstream and control sites were tested by means
of a non-parametric one-way Analysis of Variance (Kruskal-Wallis), for which spring and
autumn samples were analysed separately (see also Krajenbrink et al., 2019).

Water quality variables
Measurements of water quality were extracted from the water quality monitoring network
maintained by the EA (one measurement per sample season). Six variables were extracted
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Table 1 Results from PERMANOVA testing the significance of SiteType on assemblage structure for
separate spring and autumn samples (Step 1).

Region Season pseudo-F R? P

National scale Spring 8.33 0.03 0.001
Autumn 5.00 0.02 0.001

North England Spring 1.62 0.05 0.101
Autumn 1.88 0.06 0.041

Yorkshire Dales Spring 1.92 0.05 0.021°
Autumn 1.62 0.04 0.098

South Pennines Spring 4.50 0.10 0.001
Autumn 4.46 0.11 0.002"

NE Peak District Spring 8.98 0.16 0.001
Autumn 8.02 0.14 0.001

SW Peak District Spring 3.24 0.09 0.002"
Autumn 1.32 0.04 0.186

Midlands Spring 4.06 0.11 0.002"
Autumn 2.58 0.07 0.010

Notes.
N Significant p-values are in bold font.
P <0.001.
“p<0.01.
*p < 0.05.

for detailed analysis: conductivity (uScm™!); un-ionised ammonia (NH;—mgL™!); total
oxidised nitrogen (TON—mgL~!); orthophosphate (OP—mgL~1); dissolved oxygen (O,
—mgL~!); and pH (-). Given that water quality monitoring was undertaken independently
from the diatom sampling, not every diatom sample could be paired with a water quality
sample (80—88% coverage, depending on water quality variable, with a maximum offset
of 60 days). Differences in water quality values between different site types (downstream
or control sites) were tested using Kruskal-Wallis, analysing spring and autumn samples
separately. In addition, correlations between water quality variables and diatom indices
were calculated. Values for conductivity, NH3, TON and OP were log-transformed prior
to analysis for plotting purposes.

RESULTS

Assemblage structure

We found that benthic diatom assemblage structure at downstream sites was significantly
different from control sites during both spring and autumn (Step 1 of analysis) at the
national scale. Variable SiteType explained 2—3% of the statistical variation (see Table 1
for PERMANOVA R? values). The clusters of downstream and control site samples in
the NMDS plots largely overlapped, although the density and distribution of both point
clusters was different (autumn samples in Fig. 2—see Fig. S1 for spring samples). A similar
pattern was observed at the regional scale, with diatom assemblage structure at downstream
sites being significantly different to control sites in most regions (Table 1). Higher R? values
for SiteType were recorded at the regional scale than at the national scale (4-16%), with the
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Figure 2 NMDS ordination results including all autumn samples on national (A) and region scale (B—
H), labelled according to SiteType (Step 1). (A) National scale; (B) North England; (C) Yorkshire Dales;

(D) South Pennines; (E) North East peak District; (F) South West Peak District; (G) Midlands. Blue dots
= control sites, red triangles = downstream sites.

Full-size Gl DOI: 10.7717/peer;j.8092/fig-2
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Table 2 Results from PERMANOVA testing the significance of Season on assemblage structure for
separate control (C) and downstream site (D) samples (Step 2).

Region Site type pseudo-F R? P

National scale C 6.57 0.03 0.001 "
D 12.39 0.05 0.001

North England C 1.24 0.04 0.254
D 3.18 0.09 0.002"

Yorkshire Dales C 1.84 0.05 0.048
D 4.99 0.10 0.001

South Pennines C 3.45 0.08 0.002"
D 3.57 0.09 0.001

NE Peak District C 4.14 0.08 0.001
D 4.32 0.08 0.001

SW Peak District C 2.57 0.07 0.013
D 3.17 0.08 0.001

Midlands C 9.08 0.20 0.001
D 6.40 0.17 0.001

Notes.
Significant p-values are in bold font.
p <0.001.
p<0.0L
*p <0.05.

highest values observed in the North East Peak District region, and clusters of downstream
and control site samples in the NMDS plots were separate for most regions (autumn
samples in Fig. 2; see Fig. S1 for spring samples).

In step 2, we observed significant differences in diatom assemblage structure between
spring and autumn samples at the national scale. Variable Season explained a slightly greater
proportion of the total statistical variation (R?) for downstream (5%) than for control sites
(3%) (Table 2). The effect of Season was also significant at the regional scale for all regions
except for control sites in North England (Table 2). The highest R? values were typically
observed at downstream sites (8—17%), although the highest value was recorded for control
sites in the Midlands region (20%).

Significant differences in assemblage structure were observed between the various
regions (Step 3), with R? values for Region being typically lower for downstream site
samples (17-22%) than for control sites (25-30%). For both site types, R? values were
higher for autumn samples than for spring samples (Tables S1-52). Samples from the
individual regions formed largely separate clusters in the ordination plots (Fig. 3). The
variable Year was not significant at either the national or regional scale. We also found
that variable DCpair was significant, with high R? values at the national scale (54—68%).
R? values were higher at control sites and higher for autumn samples at both downstream
and control sites. DCpair was also statistically significant at the regional scale, explaining
a large proportion of the statistical variation, although this was lower than at the national
scale. Marked variations in R? values were observed between regions. For control sites, the
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Figure 3 National-scale NMDS ordination results involving sample subsets based on SiteType and
Season, labelled according to Region (Step 3). (A) Control sites—spring; (B) Downstream sites—spring;
(C) Control sites—autumn; (D) Downstream sites —autumn.

Full-size 4 DOT: 10.7717/peer;j.8092/fig-3

R? was generally higher for autumn samples, with a more variable pattern at downstream

sites.

Taxonomic richness and ecological guilds
We observed significant differences in diatom taxonomic richness (Ntaxa) between

downstream sites and control sites at the national scale (Table 3), with on average
significantly higher values at downstream sites (27—33 taxa) than at control sites (22—24
taxa). In addition, Ntaxa was typically higher during autumn than spring, especially at
downstream sites. At the regional scale, we found that Ntaxa was significantly diffferent at
downstream sites compared to control sites during both spring and autumn for all regions

except Midlands, with values on average higher at downstream than at control sites (autumn
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samples in Fig. 4; spring samples in Fig. 52). In addition, Ntaxa at downstream sites was
higher during autumn in most instances, while no clear seasonal pattern was detected at
control sites. When ecological guilds were considered, it was found that taxonomic richness
for all three guilds was typically higher at downstream sites, but most notably for the motile
guild (Table S3).

The proportion of high-profile taxa (%taxa_high) was greater than the other two
ecological guilds, on average just below 50%, at the national scale as well as for most
regions (autumn samples in Fig. 5; spring samples in Fig. 53). Values for %taxa_low and
%taxa_motile were typically around 30% (Table 4). Values of %taxa_high and %taxa_low
were typically lower at downstream sites than at control sites at both national and regional
scales, but differences were limited. Lower downstream values were significant at the
national scale and in two to three regions for %taxa_high and one to two regions for
%taxa_low (Kruskal-Wallis). In contrast, values for %taxa_motile were generally higher
at downstream sites than control sites (autumn samples in Fig. 5; spring samples in Fig.
S3; Table 4), with the differences between site types being clearer than for the high- and
low-profile guilds. Higher downstream values were significant at the national scale and
in three regions during spring and four regions during autumn. Results for the Midlands
region differed from the other regions, with %taxa_high and %taxa_low being slightly
higher at downstream sites (significant only for %taxa_low in autumn), while values for
%taxa_motile were typically higher at control sites; significantly so for autumn samples
(Table 4). Values for %taxa_high were typically higher during spring than autumn at both
site types, while %taxa_low and %taxa_motile were higher during autumn, both at the
national scale and in most regions and site types.

%taxa_high displayed strong negative correlations with %taxa_motile and TDI for
both seasons and a moderate correlation with Ntaxa in autumn, while %taxa_motile was
positively correlated with Ntaxa and TDI (Table S4). Values for %taxa_low did not display
any clear correlation with any other diatom indices.

Indicator taxa

From the 356 benthic diatom taxa in the dataset, 75 taxa were identified as indicators of
site type (downstream or control) in one or more regions or seasons. The full indicator
taxa list, as well as the site type for which they are indicators in the individual region and
season, can be found in Appendix SB. More indicator taxa were identified for downstream
sites (55) than for control sites (25), with the largest number of indicator taxa recorded
at downstream sites in the South Pennines and North East Peak District during autumn.
Important indicator taxa at downstream sites, found for multiple regions and seasons,
included Diatoma problematica, Encyonema minutum, Melosira varians, Nitzschia dissipata
and Nitzschia fonticola. At control sites, important indicator taxa included Eunotia exigua
and Pinnularia subcapitata. Almost all taxa were indicators for just one site type, with just
five taxa found as indicators for both control and downstream sites in different regions. Four
taxa (Navicula cryptocephala, Nitzschia linearis, Nitzschia sociabilis and Surirella brebissonii)
were indicators of control sites in the Midlands region, but indicators of downstream
sites in some other regions. At downstream sites, more indicator taxa were recorded
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Table 3 Mean values (& sd) of taxonomic richness (Ntaxa), TDI and relative abundance of planktic diatoms (%planktic) for control (C) and downstream (D) sites,
as well as results from Kruskal-Wallis (x> and p) testing the significance of variable SiteType on these variables for separate spring and autumn samples.

Region Season Ntaxa TDI %planktic
C D x p C D X p C D X p

National scale Spring 22+ 8 27 £7 29.6 0.001 " 35+ 18 38+ 16 4.1 0.042° 4+8 5+6 7.6 0.006 "
Autumn 24+9 33+ 38 51.3 0.001 34423 42+19 10.9 0.001 3+6 8+12 33.8 0.001

North England Spring 20£5 27+6 10.2 0.001 " 2147 2247 0.6 0.448 2+3 8+ 10 2.9 0.090
Autumn 1947 308 114 0.001 24+15  31+13 27 0.098 5+4 12+12 23 0.127

Yorkshire Dales Spring 2147 26 £ 4 5.0 0.026 294+ 18 30+ 10 1.1 0.293 6+ 10 445 0.0 0.862
Autumn 21+38 33+6 15.2 0.001 " 29+ 16 34+ 14 1.5 0.217 5+ 11 4+4 2.1 0.148

South Pennines Spring 18+ 8 26 £9 10.2 0.001"" 29+ 12 39+13 5.8 0.016" 6+11 6+8 0.7 0.414
Autumn 23+10 37+9 14.5 0.001 "~ 23+ 14 42 £ 17 9.2 0.002" 4+£10 8+13 5.8 0.016

NE Peak District Spring 2247 265 5.3 0.022" 28 £ 10 36 £11 4.2 0.041° 2+4 4+3 7.3 0.007"
Autumn 21+7 33+8 20.7 0.001 16 +9 35+ 10 24.2 0.001 1£2 10£12 18.2 0.001 "

SW Peak District Spring 21+6 28+6 9.6 0.002" 38+ 14 40+ 12 0.4 0.543 3+6 5+6 3.7 0.055
Autumn 2347 33+10 8.6 0.003" 44419 44 4+ 18 0.0 0.895 2+3 11419 9.1 0.003"

Midlands Spring 30+ 6 32+9 0.7 0.409 63+ 12 63+ 10 0.0 0.950 6+ 10 3+4 0.1 0.733
Autumn 35+6 31+8 2.3 0.129 73£5 72+ 10 0.0 0.824 1+£2 2+4 0.7 0.406

Notes.
» Significant p-values are in bold font.
p<0.001.
“p<0.01.
*p <0.05.
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Figure 4 Regional-scale values for taxa richness (A-F), TDI (G-L) and %planktic (M—R) calculated on
autumn samples, per site type (C = control, D = downstream sites). Non-significant Kruskal-Wallis re-
sults are indicated with ‘NS’.

Full-size Gal DOI: 10.7717/peerj.8092/fig-4

during autumn than spring for all regions except Midlands, while no clear pattern was
observed for control sites. Indicator taxa were typically ordered by diatom genus. Species
within the genera Eunotia, Frustulia and Pinnularia were typical indicators of control sites.
Genera of indicator species at downstream sites included Cocconeis, Diatoma, Navicula,
Nitzschia and Planothidium. The genus Gomphonema comprised both indicators of control
sites and downstream sites. No clear relationship was observed between indicator taxa
and ecological guilds. Taxa in the low-profile and to a lesser extent motile guild were
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Figure 5 Regional-scale values for percentages of high-profile (A-F), low-profile (G-L) and motile
taxa (M-R) calculated on autumn samples, per site type (C = control, D = downstream sites). Non-

significant Kruskal-Wallis results are indicated with ‘NS’.
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predominantly indicators of downstream sites, while the high-profile guild comprised both
indicators of downstream and control sites.

TDI and planktic diatoms

Trophic Diatom Index (TDI) values were typically higher at downstream sites than at
control sites, both at the national scale and in most regions (autumn samples in Fig. 4;
see Fig. S2 for spring samples). The difference was statistically significant at the national
scale and in the South Pennines and North East Peak District regions (Table 3). Values
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Table4 Mean values (+ sd) of the percentages of ecological guilds for control (C) and downstream (D) sites, as well as results from Kruskal-Wallis (x> and p) testing
the significance of variable SiteType on those percentages for separate spring and autumn samples.

Region Season %taxa_high %taxa_low %taxa_motile
C D X p C D X p C D x p

National scale Spring 454+ 18 42+ 12 4.0 0.045 27+ 8 2547 5.5 0.019 27 +17 33+12 12.2 0.001"
Autumn 43+ 19 38+ 12 6.4 0.012° 28+ 38 26+ 8 5.3 0.021° 29+ 18 36+ 12 14.4 0.001

North England Spring 59+ 11 50 £9 3.2 0.074 31+8 2947 0.9 0.351 11+6 22+ 8 14.7 0.001 "
Autumn 54+ 15 40+9 8.7 0.003’ 27 £ 12 28 +5 0.1 0.769 19+ 12 32+11 7.7 0.005 "

Yorkshire Dales Spring 454+ 11 49411 1.2 0.269 32+5 2346 15.5 0.001 234+13 28 £ 10 1.1 0.299
Autumn 43+ 16 40 £ 12 0.6 0.438 31+7 25+6 7.7 0.006 26 £ 18 35+ 12 4.9 0.027

South Pennines Spring 55+ 16 42 4+10 8.2 0.004" 24+ 8 24 +7 0.0 0.946 21415 34+10 10.2 0.001"
Autumn 49+ 14 367 8.7 0.003" 28+ 38 265 0.9 0.343 23+15 38+9 10.4 0.001"

NE Peak District Spring 53+ 11 4447 10.8 0.001 23+7 21+7 1.2 0.281 24410 35+ 8 15.7 0.001
Autumn 55+ 13 424+ 12 14.0 0.001 2247 22+6 0.0 0.930 22+11 369 16.1 0.001 "

SW Peak District Spring 37+ 18 40+ 12 0.8 0.361 28+ 38 24+6 2.0 0.152 35+ 19 36+ 13 0.0 0.927
Autumn 38 +£20 41+ 13 0.9 0.335 3248 24 +7 9.9 0.002" 30+ 18 35+ 16 0.7 0.389

Midlands Spring 21+ 10 25+9 1.3 0.254 29+38 30+7 0.3 0.601 50+9 45+7 2.1 0.149
Autumn 19438 22+ 8 3.2 0.072 29+5 36 £ 10 7.1 0.008" 52+10 424+ 12 7.7 0.006 "

Notes.
» Significant p-values are in bold font.
£ <0.001.
“p<0.01.
*p <0.05.
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were generally higher for autumn samples, although differences were small and the effect
was marginal at control sites. The difference between control and downstream sites was
stronger in autumn. Scores were markedly higher for the Midlands than for all other
regions. In addition to a positive correlation with %taxa_motile and a negative correlation
with %taxa_high (see also section above), a moderate correlation with Ntaxa was observed
during autumn (Table 54).

The proportion of planktic diatoms (%planktic) in samples was generally low (autumn
samples in Fig. 4; see Fig. S2 for spring samples), with the lowest values recorded at control
sites (Table 3). This difference was significant at the national scale, with %planktic at
control sites being higher in spring than in autumn. The opposite trend was recorded at
downstream sites, where autumn samples were generally characterised by higher values for
%planktic. A similar pattern was observed at the regional scale with average values typically
higher at downstream sites than control sites. The highest values were recorded for autumn
samples at downstream sites, except for the Midlands region. The difference was significant
for only one region during spring and three regions during autumn (Table 3). No clear
correlations were observed between %planktic and any other diatom indices (Table S4).

Water quality variables

Overall, no consistent difference was observed among water quality variables between
downstream sites and control sites. Values for conductivity, total oxidised nitrogen (TON)
and ammonia (NHj3) were typically higher at downstream sites in most regions, although
not statistically significant in most instances (Figs. 54—59; Table S5 ). Values for dissolved
oxygen (O;) were lower at downstream sites during autumn (significant in two out of six
regions), but no clear pattern was detected for spring samples. Values for conductivity,
TON, NH3 and orthophosphate (OP) were markedly higher in the Midlands region and
displayed a greater spread. No clear pattern was detected for pH values.

From the diatom response variables examined, TDI displayed the strongest positive
correlation with water quality variables (Table S6), most notably conductivity (Spearman’s
p=0.78—0.79) and TON (p = 0.62 —0.72). Moderate correlations with conductivity were
recorded for %taxa_high and %taxa_motile. In addition, these response variables displayed
moderate correlations with TON in spring. Other response variables did not display any
clear correlations with water quality variables.

DISCUSSION

Changes in assemblage structure

Our results clearly indicated that benthic diatom assemblages at biomonitoring sites
downstream of water supply reservoirs were significantly different from assemblages at
control sites and that these differences extended beyond the scale of individual reservoirs.
Our results are in keeping with findings in the wider literature, predominantly on individual
dams (Blinn, Truitt & Pickart, 1989; Uehlinger, Kawecka ¢ Robinson, 2003; Wu et al., 2009;
Cibils Martina, Principe ¢ Gari, 2013; Gallo et al., 2015; Algarte et al., 2016). Large-scale
studies on the subject are rare, but two regional-scale Australian studies involving eight
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water supply reservoirs found that diatom assemblages downstream of reservoirs differed
from assemblages inhabiting upstream sites (Growns, 1999; Growns ¢» Growns, 2001).

In most instances, the proportion of statistical variation (R?) explained by variable
SiteType in this study was small. Values were no higher than 3% at the national scale, with
R? values at the regional scale being less than 16%. We found that the spatial variables
Region and DCpair (i.e., the reservoir group a sample site belonged to) explained a greater
proportion of the total statistical variation than SiteType. This demonstrated that there were
substantial regional influences on diatom assemblages, potentially confounding general
effects of water supply reservoirs. The regional signal was typically strongest at control
sites, suggesting a homogenising effect of river impoundment on diatom assemblages
at downstream sites. Although diatoms are generally characterised by a cosmopolitan
distribution (Stevenson, Pan ¢ Van Dam, 2010), several large-scale riverine diatom studies
have highlighted that physiographical patterns in assemblage structure should be taken into
account (Potapova & Charles, 2002; Leira ¢» Sabater, 2005; Tison et al., 2005). Furthermore,
we assume that part of the statistical variation not explained by SiteType comprised
temporal effects. Although the Year variable was found to be largely insignificant, it is
likely that the multi-annual nature of the dataset introduced some temporal variation in
the analysis.

Changes in taxa richness, ecological guilds and species

We found significantly more benthic diatom taxa at monitoring sites downstream of water
supply reservoirs than at unregulated control sites at regional and national scales. Literature
on diatom taxa richness in association with impoundment is relatively scarce, but most
studies have reported a greater number of taxa at sites downstream of impoundments. A
regional study in South East Australia found that taxa richness appeared slightly higher
at regulated sites than at control sites, but the difference was not significant (Growss,
1999; Growns & Growns, 2001). A study on run-of-river dams in China demonstrated that
downstream species richness was significantly higher than predicted (Wu et al., 2010),
while a higher periphyton taxa richness (including diatoms) was recorded downstream of
a hydropower dam in the Soa River, Slovenia (Smolar-Zvanut ¢ Mikos, 2014). In addition,
a number of studies reported an increase of diatom or periphyton biomass downstream of
impoundments (Uehlinger, Kawecka ¢» Robinson, 2003; Chester ¢ Norris, 2006; Nichols et
al., 2006; Gallo et al., 2015).

The increase of taxa richness downstream of water supply reservoirs was recorded
for all three guilds, but the greatest increase was observed in the motile taxa guild,
resulting in a greater relative richness of these taxa at downstream sites. Very few studies
have used ecological guilds to quantify the effect of impoundment on benthic diatom
assemblages (e.g. Algarte et al., 2016). A study on the Achiras Stream (Argentina), using an
alternative morphological guild classification, reported that the benthic diatom assemblage
downstream of the reservoir comprised a higher percentage of late-succession species than
upstream, which was linked to a reduced seasonality and variability of flow (Cibils Martina,
Principe & Gari, 2013).
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Although we expected that indicator taxa would broadly correspond with the guild
classification, for example indicators at control sites being mainly from the low-profile
rather than the high-profile guild, our results do not support this. Most indicator species
within the low-profile guild were indicators of downstream sites, while the high-profile guild
comprised both indicators of downstream and control sites. The motile guild comprised
more indicators of downstream than control sites. A genus classification appeared to offer
a better prediction of site type (downstream or control site), since indicator species within
genera were typically confined to one site type. This suggests that diatom data at genus-level
classification may be sufficient for studying the effect of abiotic drivers, depending on the
research or management requirements, as proposed in several sources in the literature
(Growns, 1999; Wunsam, Cattaneo ¢ Bourassa, 2002; Rimet ¢~ Bouchez, 2012a).

Possible drivers of diatom assemblage changes

Trophic Diatom Index (TDI) scores were generally higher at downstream sites than at
control sites and were found to be markedly higher in the Midlands than any other
region, indicating more eutrophic conditions. In addition, we found that some water
quality variables, including conductivity, were slightly higher at downstream sites and that
values for TON, NH3, orthophosphate (OP) and conductivity were markedly higher

in the Midlands region. Within the UK, TDI has been used to assess phytobenthic
ecosystems (Kelly et al., 2008; WFD-UKTAG, 2014) following the implementation of

the Water Framework Directive (WFD), which requires member states to ensure heavily
modified waterbodies, including impoundments and regulated rivers downstream, achieve
“Good ecological potential” (GEP) (Acreman ¢ Ferguson, 2010). Diatoms are known to be
responsive to changes in nutrient conditions, particularly with respect to phosphorus (P)
and nitrogen (N), and this principle forms the basis for the TDI methodology (Kelly

& Whitton, 1995). We recorded strong correlations between TDI and water quality
variables including conductivity and TON, as well as moderate correlations between
some water quality variables and the proportion of motile diatoms. A number of studies
have demonstrated the association between benthic diatoms and water quality including
conductivity and nutrient enrichment (Passy et al., 2004; Leira ¢» Sabater, 2005; Bergey,
Desianti ¢ Cooper, 2017; Dalu et al., 2017). The motile guild primarily consists of eutrophic
and pollution-tolerant species and is typical of nutrient-rich habitats, and the relationship
between nutrient concentrations and diatom motility is well established in literature (e.g.
Passy, 2007; Lange et al., 2011; Stenger-Kovdcs et al., 2013; Jones et al., 2017).

A number of studies involving benthic diatom assemblages or algal communities have
related community changes to abiotic factors other than water quality. The relationship
between diatoms and river discharge has been demonstrated (Molloy, 1992; Passy, 2001; Neif
et al., 2017) and a number of studies on river regulation have related diatom assemblage
changes to flow alteration (Peterson, 1986; Growns, 1999; Cibils Martina, Principe & Gari,
2013). Taxa within the low-profile guild are likely to thrive in frequently disturbed
habitats, whereas high-profile taxa are typically prevalent in conditions with little physical
disturbance (Passy, 2007; Stenger-Kovdcs et al., 2013). However, the wider literature is not
unanimous on the relationship between the motile diatom guild and flow. Some studies
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have linked motile taxa to lower discharges (Passy, 2007; Dalu et al., 2017), while others
reported an association with higher discharge (Stenger-Kovdcs et al., 2013; Wu et al., 2019).
We found a general increase of motile taxa downstream of reservoirs, as well as a substantial
number of indicator taxa at downstream sites belonging to this guild, but more research
is needed to disclose the role of flow alteration on this guild of diatoms. In addition, a
higher relative abundance of planktic diatoms was recorded at downstream sites than

at control sites, with the difference being most pronounced for autumn samples. We
hypothesise that most planktic diatom taxa originated from the reservoir upstream, being
washed downstream with flushing or spilling flows (Kdhler, 1994). Relative abundance
at downstream sites was higher in autumn than in spring, which was likely related to
the increased production of phytoplankton in the reservoir over the summer period.
However, the presence of planktic cells at control sites indicated that at least some of the
downstream planktic diatoms may have had an autochthonous origin (Growns & Growns,
2001). More stable medium- to low-flow conditions following impoundment may have
facilitated the development of a riverine planktic diatom assemblage (Petts, 1984) and
resulted in the increases recorded at downstream sites, especially during the autumn. The
influence of temperature on diatom assemblages has also been reported (Bergey, Desianti
¢ Cooper, 2017), and thermal alteration by impoundment has been shown to induce
changes to assemblage composition within a short time-period (Blinn, Truitt ¢ Pickart,
1989). In addition, the relationship between diatom motility and fine sediment has been
demonstrated, although some studies indicated that there may be confounding effects of
other environmental pressures (Jones et al., 2014; Neif et al., 2017; Jones et al., 2017).

Our findings indicating increased TDI values, the proportion of motile diatoms, and
water quality variability downstream of reservoirs suggest the primary influence of water
quality gradients on benthic diatom assemblages, even in largely oligotrophic regions, and
the influence of river impoundment on downstream water quality. Nevertheless, it would
require a modelling approach, possibly combined with field or laboratory experiments
ideally including multiple abiotic factors, to determine whether the reported statistical
correlations imply direct cause—effect relationships or relate to other indirect processes

downstream of reservoirs.

Study implications

Various studies have emphasised the importance of widely applicable flow—ecology
relationships to underpin studies of riverine ecosystems (including regulated systems) at
larger spatial scales (Webb et al., 2013; Bruckerhoff, Leasure ¢ Magoulick, 2019). The current
study demonstrated consistent responses of benthic diatom assemblages to water supply
reservoirs in England, but also highlighted that the predictive power at the largest spatial
scales was comparatively low. Recent studies using riverine benthic diatom assemblages
have applied the concept of functional and morphological traits including ecological guilds
together with taxonomic assemblage composition (e.g. Dong et al., 2016; Jamoneau et al.,
2018; Sun et al., 2018). Our results on diatom ecological guilds in association with water
supply reservoirs indicate that morphological trait classifications can be a valuable tool in
river impoundment studies beyond the site-specific scale. Future studies should consider
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increasing the diversity of substrates from which benthic diatoms are sampled, as ecological
guild distribution have been shown to be habitat-specific (Passy, 2007). The high-profile
guild is known to favour rock substrates, which represented the main sampling habitat in
many riverine diatom studies and potentially explained the comparatively high proportion
of high-profile taxa recorded in the current study.

The large-scale effects of impoundment on riverine communities have often been studied
using macroinvertebrate community and fisheries data (e.g. Cooper et al., 2016; Krajenbrink
et al., 2019), with the effect of abiotic factors including hydrological and thermal alteration
on these ecosystem groups being well demonstrated (e.g. Armanini et al., 2014; White et al.,
2017). Given the reported sensitivity of benthic diatoms to water quality gradients, it may
prove challenging to fully quantify the effects of flow and temperature changes downstream
of reservoirs (Dalu et al., 2017). No large-scale hydrological and temperature datasets were
available in the current study. Further research using detailed data on the abiotic factors
flow and water temperature is required to be able to disentangle the specific effects of flow
and thermal alteration on benthic diatom assemblages from background water quality
drivers. In addition, data on sediment transport and turbidity may provide further insights
into the drivers of motile diatom taxa downstream of reservoirs.

CONCLUSIONS

This is one of the first studies to use a large-scale benthic diatom dataset from a routine
biomonitoring network covering multiple years to compare diatom assemblages at sites
downstream of water supply reservoirs with unregulated control sites. Diatom assemblage
structure at downstream sites was consistently different from assemblage structure at
paired control sites beyond the site-specific scale (research question 1). These generalisable
effects may help water resource managers and researchers decide whether mitigation
measures downstream of water supply reservoirs are necessary and whether these measures
can be applied at multiple reservoir locations with similar properties. The effect of other
spatio-temporal variables on diatom assemblage differences was evident, especially at larger
spatial scales, but we demonstrated that water supply reservoirs dampened the regional
influence patterns in downstream assemblages. This study is also one of the first to use
diatom ecological guilds in association with the effects of water supply reservoirs and
demonstrates their value in river impoundment studies. A generally higher number of
diatom taxa was observed at downstream sites, with the strongest increases found within
the motile guild. Finally, it was demonstrated that diatom assemblage data can be used
to identify environmental gradients associated with water supply reservoirs (research
question 2). Water quality variables were strongly correlated with diatom assemblages, but
the influence of other abiotic factors, for example flow and temperature, could not be ruled
out and should be investigated in future research to quantify their influence.
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