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Integration of non-target screening, statistical analyses and bioassays 

BTO Managementsamenvatting 

Combineer data uit non-target screening en bioassays via nieuwe 

statistische tools voor meer inzicht in waterkwaliteitsveranderingen  

Auteur(s) Dr. Andrea Brunner, Dr. Thomas ter Laak 

Er zijn verschillende statistische tools en workflows ontwikkeld waardoor het nu mogelijk is conclusies te 

trekken over de effecten van waterbehandeling(stappen) op basis van de grote hoeveelheden data die worden 

gegenereerd met non-target screening (hoge resolutie massaspectrometrie gecombineerd met 

vloeistofchromatografie) en bioassays. Deze statistische of data science tools en methoden zijn getest in twee 

casestudies: een pilot-scale data set uit de drinkwaterbehandeling met gedoseerde organische-

microverontreinigingen (DPWE robuustheid zuiveringen) en een real-scale data set uit de innovatieve 

afvalwaterzuivering (H2020 AquaNES). Non-target-resultaten zijn met bioassay metingen geïntegreerd om een 

uitgebreider beeld van de chemische waterkwaliteit te krijgen. Daardoor wordt informatie gegenereerd, die bij 

alleen target screening ontbreekt: verschillen tussen monsters en behandelingstappen worden op een efficiënte 

manier aangetoond. De visualisatie helpt hierbij om een duidelijk beeld van complexe data te geven en 

vereenvoudigt de prioritering. 

 

Data science methoden ondersteunen de prioritering in non-target screening analyses  

 

Belang: data effectief inzetten voor beoordeling van 

de waterkwaliteit, o.a. tijdens waterbehandeling 

Dankzij ontwikkelingen in op hoge-resolutie-

massaspectrometrie (HRMS) gebaseerde 

screeningsmethoden zijn bij de detectie van 

chemische stoffen in water nu niet alleen specifieke 

stoffen op te sporen (doelstofanalyse), maar is het 

ook mogelijk breder te screenen (non-target 

screening). Non-target screening is een 

veelbelovend hulpmiddel geworden bij de evaluatie 

van veranderingen in de chemische waterkwaliteit 

tijdens waterbehandeling, maar omdat bij deze 

methode erg veel data worden gegenereerd, wordt 

structurele identificatie van alle gevonden ‘pieken’ 

vrijwel onmogelijk. Transformatieproducten 

ontbreken bovendien vaak in de beschikbare 

databanken, maar kunnen wel worden voorspeld 

aan de hand van bekende transformatieregels. Als 

alternatief kunnen data science methoden worden 

gebruikt om verschillen bloot te leggen tussen 
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waterbehandelingsstappen. Daarom is het 

belangrijk te onderzoeken hoe en hoe zinvol 

verschillende niveaus van met non-target screening 

gegenereerde data kunnen worden ingezet om 

bijvoorbeeld de effectiviteit van waterbehandeling 

te evalueren. Bij non-target screening worden drie 

verschillende niveaus van gegenereerde informatie 

onderscheiden: van "onbekende pieken" tot 

"suspects" (pieken die voorkomen op een bekende 

“verdachtenlijst”) en "trendprofielen" (datapatronen 

die voortkomen uit de combinatie van de 

voorgaande niveaus). Daarnaast komt ook 

informatie uit bioassays op basis van effecten. 

Aanpak: data science tools verkennen en toepassen 

in workflows; inzet in twee case-studies 

Verschillende niveaus data uit eerdere projecten 

zijn in dit onderzoek aan statistische hulpmiddelen 

onderworpen. De suspect screening werd verbeterd 

en versneld door het online ophalen van chemische 

kenmerken en uitgebreide suspect lists, inclusief 

semi-automatisch gegenereerde suspect lists van 

transformatieproducten. Piekverschuivingen als 

gevolg van een enkele behandelingsstap werden 

gevisualiseerd in Volcano-plots. Piekveranderingen 

over meerdere behandelingsstappen en tussen 

verschillende behandelingstreinen werden 

beoordeeld met behulp van multivariate statistische 

analyses, zoals principal component analysis en 

hiërarchische clustering. Door de trendprofielen in 

heat maps te visualiseren op basis van de 

clusteringuitkomst en de bioassay readouts ermee 

te integreren, kon efficiënt worden geprioriteerd 

welke pieken moeten worden geïdentificeerd.  

De ontwikkelde nieuwe data science tools en 

workflows zijn toegepast in twee casestudies om de 

waterkwaliteit en veranderingen in de 

waterkwaliteit tijdens de waterbehandeling te 

monitoren: H2020-project AquaNES (real-scale 

innovatieve zuiveringsinstallaties voor 

afvalwaterzuivering) en DPWE Robuustheid 

Zuiveringen (pilot scale-installaties met gedoseerde 

organische-microverontreinigingen bij PWN en 

Dunea). Op LC-HRMS-gebaseerde non-target 

screening en bioassays werden op deze monsters 

toegepast. Door data uit de chemische non-target 

screening te integreren met de biologische effect 

data, is ook de toxiciteit in de prioritering 

meegenomen en kon een uitgebreider beeld van de 

chemische waterkwaliteit worden verkregen.  

Resultaten: ontwikkelde workflows als 

monitoringtools van de chemische waterkwaliteit 

Het onderzoek heeft diverse tools en workflows 

opgeleverd, die in de casestudies succesvol zijn 

toegepast: 

 Semi-automatisch aanmaken van 

transformatieproductensuspect lijsten 

 Statistische tool set voor interpretatie van data 

uit non-target screening  

 Set non-target trend profielen geassocieerd 

met drinkwaterbehandelingsstappen  

 Nieuwe workflows voor non-target screening 

en bioassay data interpretatie in R scripts 

 Lijsten van gedetecteerde suspects, inclusief 

transformatieproducten, voor latere structurele 

opheldering 

Non-target-resultaten zijn met bioassay metingen 

geïntegreerd om een uitgebreider beeld te krijgen 

van de chemische waterkwaliteit. Dit levert 

informatie op die ontbreekt bij alleen maar target 

screening: verschillen tussen monsters en 

behandelingstappen worden op een efficiënte 

manier aangetoond. De visualisatie helpt hierbij om 

een duidelijk beeld van complexe data te geven en 

vereenvoudigt de prioritering. 

Implementatie: laat data science tools helpen de 

waterkwaliteit te evalueren  

Non-target screening en bioassays in combinatie 

met de nieuwe tools en workflows hebben een 

uitgebreide beoordeling van de waterkwaliteit 

tijdens de waterbehandeling mogelijk gemaakt. De 

toepassing van de ontwikkelde statistische of data 

science tools illustreert dat ze potentieel hebben 

voor het beoordelen van de waterkwaliteit en 

waterbehandeling en laat ook zien dat ze daar 

technologisch klaar voor zijn. In dit onderzoek lag 

een sterke focus op inzet bij het beoordelen van de 

ontwikkeling van de waterkwaliteit bij 

waterbehandeling, maar de tools zijn ook in te 

zetten voor andere ontwikkelingen in de 

waterkwaliteit, bijvoorbeeld seizoensgerelateerde.  

Rapport 

Dit onderzoek is beschreven in het rapport 

Integration of non-target screening, statistical 

analyses and bioassays to globally assess chemical 

water quality (BTO 2019.002).
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1 Introduction 

1.1 Three levels of information from non-target screening data 

Advancements in high-resolution mass spectrometry (HRMS)-based screening methods have 

enabled a shift from target to non-target analyses to detect chemicals in water samples. Non-

target screening has therefore become a promising tool to evaluate the changes of chemical 

water quality during water treatment (Nürenberg et al., 2015). However, the wealth of data 

resulting from non-target screenings renders structural identification virtually impossible 

(Hollender et al., 2017). The aim of the exploratory research project presented here was to 

evaluate the use of information generated by non-target data to study water treatment, without 

identification of all HRMS peaks. It focused on three different levels of non-target data for 

water quality assessment, i.e. the “unknown feature” level, the “suspect” level, and the “trend 

profile” level.  

A feature represents a given compound and consists of a unique combination of an accurate 

mass and a retention time. Without identifying the feature, information on its response –

measured in instrument counts or response relative to an internal standard, presence in a 

homologous series, mass defect, isotopic pattern and predicted hydrophobicity presented as 

log octanol water partition coefficient (Kow) can be automatically extracted (Heberger, 2007; 

Zhang et al., 2009; Carlson et al., 2012; Sleno, 2012; Jobst et al., 2013; Nagao et al., 2014; 

Bade et al., 2015; Aalizadeh et al., 2016; Parry and Young, 2016; Sjerps et al., 2016; Loos and 

Singer, 2017). The unknown feature level refers to all this intrinsic information. The suspect 

level refers to potential candidates that match a feature through automated suspect screening 

against an in-house curated suspect list consisting of environmentally relevant compounds 

and predicted transformation products. Finally, the trend profile level combines the two, and 

reveals patterns in the data through statistical methods, with the goal to cluster both features 

and the effects of water treatments on water quality (Muller et al., 2011; Schollee, 2015; 

Schollée et al., 2016). Distinction is made between persistence, elimination and formation 

during treatments. The trend profile level can then be connected to responses of bioassays. 

1.2 Evaluate and develop data science tools for non-target screening data 

interpretation 

Here, we present the data science tools we explored to make use of all three levels of non-

target data and effect-based bioassay information for water quality assessment. On the feature 

level, we utilized both feature intensity and isotopic pattern recognition. Suspect screening 

was improved and accelerated by the online retrieval of chemical characteristics, and extended 

suspect lists including semi-automatically generated lists of transformation products. Changes 

in features induced by a single treatment step were assessed based on the fold change 

between the treatment effluent and influent, and visualized in Volcano plots. Changes in 

features across multiple treatment steps and between different treatment trains were assessed 

using multivariate statistical analyses, such as principal component analysis and hierarchical 

clustering. By visualizing the trend profiles in heat maps based on the clustering outcome and 

integrating the bioassay read-outs, features could efficiently be prioritized for their later 

(structural) identification. Together, these novel tools allowed for comprehensive water quality 

assessment during water treatment. 

The programming language R in R Studio was used for data analysis and visualization. An ever 

increasing wealth of R packages exist that facilitate and accelerate statistical analyses of non-
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target HRMS data, multivariate analyses, and data visualization. In line with the demand for 

reproducible research, scripts were written with R Markdown. R Markdown allows for html 

output which can easily be read. The workflows can thus readily be reused and adapted for 

the next dataset at hand. Scripts written as part of the project are available upon request. 

1.3 Two case studies to show the readiness level of the developed workflows 

This report presents the developed novel data science tools and workflows by means of two 

studies in which we successfully applied them to monitor water quality and changes in water 

quality during water treatment. In these studies, we extended the scope of our research from 

previously described lab scale experiments with spiked-in compounds (Brunner et al., 2019b) 

to pilot scale installations at two drinking water utilities and real/full scale treatment plants 

for waste water treatment. Therefore, we selected relevant water samples generated in the 

DPWE project Research on robustness of treatment (trains) and the EU’s Horizon 2020 project 

Demonstrating Synergies in Combined Natural and Engineered processes for water treatment 

systems (AquaNES), respectively. LC-HRMS based non-target screening and bioassays were 

performed on these samples. By integrating the chemical non-target screening data with the 

biological effect-based results potential toxicity during prioritization was accounted for. 

Together, the developed data science workflows allowed for comprehensive water quality 

assessment. 

1.4 Applicability and implementation for the water sector 

Ultimately, we anticipate the application of data science-based tools for data interpretation of 

non-target screening and effect-based bioassay data as described here, also outside the 

academic community in monitoring tools or as treatment efficiency indicators. The European 

Drinking Water Directive encourages the development of risk based monitoring programs 

(Commision, 2015; European Commission, 2015). Customized monitoring allows irrelevant 

parameters to be abandoned and alternative parameters and tools to be considered. However, 

the user and regulator acceptance depends on successful demonstration and evaluation of 

novel tools (Guillén et al., 2012). The application of the data science tools we developed within 

the two demonstration studies illustrated their potential for water quality and water treatment 

assessment, as well as their technology readiness level. They enabled evaluation of treatment 

efficiency of innovative treatment schemes. Overall, the presented work is a valuable step 

towards the implementation of such tools in water quality assessment. 
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2 Integration of non-target screening 

and effect-based monitoring to 

assess water quality changes in 

drinking water treatment 

2.1 Introduction 

2.1.1 Non-target screening for comprehensive monitoring 

With the production and use of chemicals exponentially on the rise, the occurrence of organic 

micro-pollutants in drinking water sources, and if not removed during drinking water 

treatment in drinking water, is increasing. To ensure drinking water quality, drinking water 

utilities are evaluating novel water treatment steps aimed at their removal. However, these 

steps can lead to transformation product (TP) formation and these products can pose 

environmental and health risks similar to their parent compounds. Consequently, water quality 

assessment targeting a defined number of regulated priority substances alone does not suffice. 

Instead, comprehensive non-target screening (NTS) methods are required to detect a multitude 

of chemicals simultaneously. Such methods can support the water sector in realistically 

assessing the human and environmental health risks of (emerging) contaminants. 

NTS analyses based on high-resolution mass spectrometry combined with liquid 

chromatography enable the monitoring of organic micro-pollutants in water in the ng / L range. 

However, the structural identification of unknown compounds from NTS data remains 

challenging, and relies on improved databases and novel data analysis approaches. The 

presence of a compound in a database is often the decisive factor in the identification of a 

detected feature from NTS data, as a database entry turns an “unknown unknown” into a 

“known unknown” (McEachran et al., 2017; Schymanski and Williams, 2017). This enables an 

accurate mass (MS1) based suspect screening, and consecutively a fragmentation (MS2) based 

similarity search against a spectral library or in silico predicted spectra of the compound. 

However, TPs are only beginning to be listed in chemical databases. For instance, the category 

“transformation product” was added to the STOFF-IDENT database recently, allowing retrieval 

of TPs based on the name of parent compound to retrieve its transformation products. with 

the added advantage that CAS numbers are provided for some TPs which can be used to 

retrieve MS ready SMILES in the US EPA’s Chemistry Dashboard (McEachran et al., 2018). If 

transformation products are lacking in the available databases they can be predicted on the 

basis of "metabolic logic" (Schollee, 2015), i.e. the mass shifts indicative of transformation 

processes are used to link parent compounds and TPs, and well-known (bio) transformation 

rules (Fenner et al., 2008; Lee et al., 2017).  

2.1.2 Data science methods help focus on what really matters 

Alternatively, data science methods can be used to interpret NTS data. Thereby, water quality 

and in particular water quality changes across water treatment steps, seasons and locations 

can be assessed without identification of the detected features (Schollée et al., 2016; Schollee 

et al., 2018). For instance, these strategies can reveal shifts in polarity and mass of compounds, 

as well as newly formed compounds, i.e. transformation products as a result of a specific 

process. Thereby, they expose differences between the treatment steps of the drinking water 
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treatment, including aspects that remain elusive when only target compounds are monitored. 

Furthermore, the NTS in combination with hazard based prioritization can facilitate defining 

risk based monitoring strategies as demanded by the European Drinking Water Directive 

(Commision, 2015), and ultimately safeguarding of drinking water quality (van Wezel et al., 

under review). 

2.1.3 Pilot installations of drinking water treatment trains at Dunea and PWN 

Here, we describe the application of novel data science tools for the water quality assessment 

of drinking water treatment trains at three pilot installations. Thereby, we extended the scope 

of our research from previously described lab scale experiments (Brunner et al., 2019b) to 

pilot scale installations at two drinking water utilities. These installations included the 

advanced oxidation processes ozonation and UV treatment in combination with hydrogen 

peroxide (H2O2), ultrafiltration (UF) in combination with reverse osmosis (RO), and sequential 

UV / H2O2 treatment and granular active coal filtration. A selection of organic micro-pollutants 

relevant for the drinking water sector was spiked in these installations. LC-HRMS based non-

target screening and bioassays were performed on samples from all three installations. The 

NTS data was screened for predicted and known transformation products of the spike-in 

compounds in in-house generated suspect lists. Patterns and trends in the NTS data were 

evaluated using the multivariate analysis methods principal component analysis and 

hierarchical clustering. This allowed for efficient visualization of complex data. By integrating 

the chemical non-target screening data with the biological effect-based results potential 

toxicity was accounted for during prioritization. Together, the developed data science 

workflows allowed to monitor water quality and changes in water quality during water 

treatment. 

2.2 Material and methods 

2.2.1 Selection of organic micro-pollutants for spike-in 

Priority compounds were selected based on their presence in Association of River Water Works 

(RIWA) databases, research reports, the Water Framework Directive (WFD) guideline, and 

substances proposed by the water utilities. In addition, selection was based on exceedance of 

the drinking water standard or target value (0.01 μ g / L for genotoxic compounds, 0.1 μ g / L 

for other biologically active compounds and 1.00 μ g / L for other anthropogenic compounds 

without known specific biological activity) in several years between 2011 and 2015 more than 

twice a year, or frequent detection in concentrations above 50% of the standard or target value. 

Selected compounds were further filtered for toxicity, removal in drinking water treatment, 

chemical properties, reference compounds and practical issues such as detectability and 

availability. 

Spike-in concentrations of the selected compounds were based on the detection limit of the 

target method, the flow rate of the installation, dosing time and the maximum removal 

efficiency. For most compounds spiked concentrations allowed at least a factor of 100  

between the spiked concentration and the limit of quantification. Exceptions were barbital 

(factor 10), fenobarbital (factor 20), HFPO-DA (Gen-X, factor 50). Compounds used in the pilot 

installations and their respective spike-in concentrations are shown in Table 1. Based on their 

solubility, compounds were divided into a soluble (1) and poorly soluble(2) group and stock 

solutions were made accordingly. Due to the late delivery of the substance HFPO-DA, a 

separate stock solution (3) was made, to which the volatile compounds (*) were added on the 

day of dosage. 
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TABLE 1. OVERVIEW OF SPIKE-IN COMPOUNDS, FINAL CONCENTRATION 

Compound Final 

concentration 

(µg/L) 

Limit of 

Quantification 

(LOQ) (µg/L) 

Stock 

Acesulfame-K 10 0,10 1 

AMPA 2 0,02 1 

Aniline 1 0,01 1 

Barbital 10 1,0 1 

1H-Benzotriazole 1 0,01 1 

Carbamazepine 1 0,01 2 

Carbendazim 1 0,01 2 

Diatrizoic acid 3 0,03 1 

Diclofenac 1 0,01 2 

Dimethenamid 1 0,01 1 

1,3-dimethylbenzene 5 0,05 3* 

1,4-dimethylbenzene 5  3* 

Dimethomorph 1 0,01 2 

EDTA 5 0,05 1 

Phenobarbital 10 0,50 1 

Furosemide 3 0,03 2 

Gabapentin 1 0,01 1 

HFPO-DA (Gen-X) 10 0,20 3 

Glyphosate 5 0,05 1 

HMMM 3 0,03 1 

Hydrochlorothiazide 5 0,05 1 

Melamine 5 0,05 1 

Metformin 5 0,05 1 

4-Methyl-1H-benzotriazole
*

 1 0,01 1 

5-Methyl-1H-benzotriazole
*

 1 0,01 1 

Propranolol 1 0,01 1 

Pyrazole 10 0,50 1 

Sucralose 10 1,0 1 

Terbuthylazine 1 0,01 2 

Tetraglyme 3 0,03 1 

TFA 5 0,05 1 

Tiamulin 1 0,01 1 

TPPO 1 0,01 2 

Tramadol 1 0,01  

Urotropin 5 0,05  

    

  0,20  

* Mixture of 35% 4-methyl-1H-benzotriazool and 65% 5-methyl-1H-benzotriazole. 

 

Stock solutions 1 and 2 were prepared in 20 L stainless steel tanks filled with ~10 L of 

demineralized water. The weighed compounds were added sequentially, after which 

demineralized water was added to ~15 L. Stock solutions were kept at 35 °C under constant 

stirring for 6 days, however, complete dissolving couldn’t be achieved. Stock solution 3 was 

prepared in a 20 L stainless steel tank filled with ~15 L of demineralized water. After addition 

of HFPO-DA (GenX), the solution was left at room temperature overnight with constant stirring. 

Subsequently, all stock solutions were filtered through a 0.20 μm filter and demineralized 

water was added to 20 L by weight in jerry cans. Stock solutions were stored at 3 ± 2° C until 
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the day of dosage. Then, the volatile compounds 1,3-dimethylbenzene and 1,4-

dimethylbenzene were added to stock solution 3. Chemicals were purchased from Sigma, 

Acros, TCI, Merck, TRC and Duchefa Farma. 

2.2.2 Set-up pilot installations 

The Dutch water utility Dunea produces drinking water from surface water. Their pilot 

installation included the advanced oxidation processes ozonation and UV treatment in 

combination with hydrogen peroxide (H2O2). Experiments were performed at Dunea on October 

5th and 7th, 2017. Organic micro-pollutants were dosed in the pilot installation of the O3 / 

H2O2 - UV / H2O2 process that is fed with filtrate from the rapid sand filters in Bergambacht, 

The Netherlands. The schematics of the pilot installation and process conditions are shown in 

Figure 1and Table 2, respectively. 

 

FIGURE 1 SCHEMATICS OF PILOT INSTALLATION AT DUNEA 

TABLE 2. PROCESS CONDITIONS PILOT INSTALLATION DUNEA 

Parameters Value Unit 

Feed rate 5 m
3

/h 

H2O2 6 mg/L 

O3 45 g O3/Nm
3

 

UV-dose 600 – 700 mJ/cm
2

 

 

The Dutch water utility PWN also produces drinking water from surface water. PWN tested two 

pilot installations; experiments with the first installation combining ultrafiltration (UF) with 

reverse osmosis (RO) were performed at a feed rate of 9.7 m
3

/h from September 18
th

 to 22
nd

 

2017 (Figure 2). Experiments with the second installation of sequential UV / H2O2 treatment 

and granular active coal filtration were performed September 19
th

 and October 3
rd

 to 5
th 

(Figure 

3 and Table 3). 

 

FIGURE 2. SCHEMATICS OF PILOT INSTALLATION UF-RO AT PWN 
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FIGURE 3. SCHEMATICS OF PILOT INSTALLATION UV/H2O2 – GAC AT PWN 

TABLE 3. PROCESS CONDITIONS PILOT INSTALLATION UV/H2O2 – GAC PWN 

Parameters Value Unit 

Feed rate 18,3 m
3

/h 

H2O2 14,5 mg/L 

UV-dose 500 - 600 mJ/cm
2

 

Empty bed contact time (EBCT, GAC) 25 - 30 min 

 

2.2.3 Non-target screening 

2.2.3.1 Selected samples and sample preparation 

The list of samples, description and sample codes can be found in Table 4. 

TABLE 4. OVERVIEW OF NON-TARGET SCREENING SAMPLES 

Sample codes Dunea/PWN Sample description Sample codes KWR 

DUN-INF-GD-1 Influent no spike LMC-41312-OW-B 

DUN-INF-DOS-1 Influent spike-in  LMC-41313-OW-B 

DUN-EFFL-OZ-1 Effluent O3/H2O2 LMC-41314-OW-B 

DUN-EFFL-UV-1 Effluent UV/H2O2 LMC-41315-OW-B 

PWN-UV-INF-GD-2 Influent no spike LMC-39883-OW-B 

PWN-RO-INF-DOS-1 Influent spike-in LMC-39888-OW-B 

PWN-RO-EFFL-1 Effluent UF-RO LMC-39890-OW-B 

PWN-UV-INF-GD-3 Influent no spike LMC-41336-OW-B 

PWN-UV-INF-DOS-2 Influent spike-in LMC-41338-OW-B 

PWN-UV-EFFL-2 Effluent UV/H2O2 LMC-41342-OW-B 

PWN-UV-INF-GAC-2 Influent GAC  LMC-41340-OW-B 

PWN-UV-EFFL-GAC-2 Effluent GAC  LMC-41344-OW-B 

 

50 ml measuring flasks were pre-rinsed with acetone, PE and the sample, prior to addition of 

internal standards to a final concentration of 0.98 μg / L atrazine-d5, 0.85 μg / L bentazone-

d6, and 1 μg / L fenuron, chloroxuron and diuron. Next, samples were filtered with a 0.2 μ

m regenerated cellulose filter, and 100 μL injected into the LC-HRMS. 

2.2.3.2 Non-target analyses based on LC - HRMS 

A Tribrid Orbitrap Fusion mass spectrometer (ThermoFisher Scientific, Bremen, Germany) with 

a heated electrospray ionisation source was connected to a Vanquish HPLC system 

(ThermoFisher Scientific). An XBridge BEH C18 XP column (150 mm × 2.1 mm I.D., particle size 

2.5 μm, Waters, Etten-Leur, The Netherlands) was used in combination with a 2.0 mm × 2.1 

mm I.D. Phenomenex SecurityGuard Ultra column (Phenomenex, Torrance, USA), at a 

temperature of 25 ° C. The LC gradient started with 5% acetonitrile, 95% water and 0.05% 

formic acid (v / v / v), increased to 100% acetonitrile, 0.05% formic acid in 25 min, and then 

remained constant for 4 min. The flow rate was 0.25 mL / min. Mass calibration was performed 

with ESI positive and negative ion calibration solution (Pierce). The evaporator and capillary 

temperature was set at 300 ° C. Sheath, auxiliary and sweep gas were set to arbitrary units of 

40, 10 and 5. The source voltage was 3.0 kV in positive mode, and -2.5 kV in negative mode. 
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The RF lens was set to 50%. Full scan high resolution mass spectra were recorded from m / z 

80-1300 with a resolution of 120,000 FWHM. Quadrupole isolation was used for acquisition 

with a 5 ppm mass window. Data dependent acquisition was performed with High Collision 

Dissociation (HCD) energy of 35% and FT resolution of 15,000 FWHM. Each sample was 

measured in triplicate. 

2.2.3.3 Data processing, analysis and interpretation 

The non-target data were processed with Compound Discoverer 3.0 (Beta version, Thermo 

Fisher) for peak picking, componentization, and suspect screening. An overview of the 

Compound Discoverer workflow and parameters can be found in SI. The output of this is a 

feature list, i.e. a table with accurate mass / retention time pairs (features) and their intensity. 

The feature intensity is reported as peak area. Depending on the statistical analysis, the "Area" 

(response of each technical triplicate is reported individually) or the "Group Area" (median 

response of the triplicate) output was used. Only features that were 5 times the intensity of 

the blank were clustered in the treatment train specific heat maps. 

For the spike-in compounds that are included in the chemical database of the US EPA called 

Chemistry Dashboard (McEachran et al., 2017), a suspect screening was carried out with an 

in-house curated suspect list that also included potential transformation products (TP) of the 

spike-in compounds. The suspect list consisted of both known and predicted TPs. Known TPs 

were retrieved from the water-relevant database STOFF-IDENT and from data from the 

Bayerisches Landesamt für Umwelt, kindly supplied by Dr. Manfred Sengl. TP prediction was 

based on "metabolic logic" (Schollee, 2015), biotransformation rules from the EAWAG BDD 

database (Fenner et al., 2008) and the ozonation prediction tool from Lee et al. (Lee et al., 

2017). The suspect list was generated in R based on the packages RMassScreening and rcdk. 

R script and curated suspect list are available upon request. 

TABLE 5. TP REACTIONS IN RMASSSCREENING 

Transformation reaction Formula change 

hydroxylation +O 

demethylation -CH2 

deethylation -C2H4 

dehydrogenation -H2 

hydrogenation +H2 

dehydration -H2O 

chlorine reduction -Cl/+H 

acetylation +C2H2O 

deacetylation -C2H2O 

glucuronidation +C6H8O6 

deglucuronidation -C8H8O6 

sulfonation +SO3 

desulfonation -SO3 

 

The Compound Discoverer output was imported into R Studio for further data analysis and 

visualisation (R Core Team, 2017). Data preprocessing in R included the application of a 

retention time cut-off of 2 min, and for the separate analyses of the three different treatment 

trains the removal of background features. Principal Component Analysis (PCA) provided an 

overview of the differences between the samples and treatment groups (Masia et al., 2014). 
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After normalization of the data through division of feature areas across samples by the 

maximum area of the respective feature, both samples and features were clustered together 

based on Euclidean distances using the complete method (Everitt, 1974; Schollée et al., 2016). 

In a second hierarchical clustering (HC) with Pearson correlations as distance matrices and the 

Ward's minimum variance method (Ward, 1963), treatment induced trends in the features were 

revealed, i.e. clusters of features that decrease in intensity, increase or remain the same. The 

first two could represent parent substances and transformation products. To investigate this 

further, a theoretical number of clusters X per treatment train was calculated where 

𝑋 = 3(𝑛−1)
 

n … number of samples (group) 

Based on the hierarchical clustering with Pearson correlations as distance matrices, X can be 

used to cut the dendrogram generated by the clustering, resulting in a table of features per 

cluster. Clustering results were visualized in heat maps using the pheatmap package in R. R 

scripts are available upon request.  

2.2.4 Bioassays 

Effect-based measurements were performed with the Ames tests for mutagenicity listed in 

Table 6 as described previously (Heringa et al., 2011), and the CALUX tests for anti-androgenic 

activity, estrogenic activity, polycyclic aromatic hydrocarbons (PAHs) and oxidative stress 

response listed in Table 7 according to the supplier's protocols (Murk et al., 1996b; Sonneveld 

et al., 2005a; Pieterse et al., 2013a). Bioassay responses were categorized as active and 

inactive based on whether they exceeded the limit of quantification without further 

differentiation on the intensity of the response, and the binary output integrated with the non-

target screening data through visualization in the HC heat maps. 

TABLE 6. AMES TESTS. STRAINS, S9 CONDITIONS AND POSITIVE CONTROLS. 

Strain + S9 condition Positive controls 

TA98 no metabolism 20 µg/mL 4-NQO, 500 µg/mL 4-NOPD  

TA98 + S9 metabolism 5 µg/mL 2-AA 

TA100 no metabolism 12.5 µg/mL NF 

TA100 + S9 metabolism 20 µg/mL 2-AA 

TABLE 7. CALUX TESTS APPLIED, AND ASSOCIATED MECHANISMS. 

CALUX Mechanism 

anti-AR anti-androgenic activity 

ER estrogenic activity 

PAHs PAHs activity 

nrf2 oxidative stress response 

 

2.3 Results and discussion 

2.3.1 26 parent compounds and 130 potential TPs thereof detected 

Non-target screening analyses based on high-resolution mass spectrometry combined with 

liquid chromatography of the water samples enabled the monitoring of organic micro-

pollutants. A total of 2821 and 1180 features were detected across all samples using positive 

and negative ionization, respectively (Table 8). Application of a retention time cut-off of 2 
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minutes and removal of features that were also present in the background, resulted in 927 

and 310 features in positive and negative ionization mode. By means of suspect screening 

based on accurate mass and retention time, the non-target data was searched for accurate 

masses of spike-in compounds, i.e. parent compounds. The 26 parent compounds (20 pos, 6 

neg) that were detected are listed in Table 9. To increase the level of confidence of 

identification (Schymanski et al., 2014), MS2 fragmentation spectra of the parent compound 

matches were searched against mzCloud. Compounds with mzCloud scores >90  showed good 

spectral matching between experimental and theoretical spectra, and were categorized as level 

2/3 identification. Next, the non-target data was screened against the in-house generated 

suspect list of known and predicted TPs of the spike-in parent compounds. Thereby, 130 

suspects (81 pos, 49 neg) could tentatively be identified based on their accurate mass. The 

list of TP matches can be found in suspectsMatched.xlsx. 

TABLE 8. OVERVIEW OF FEATURE NUMBERS, DETECTED PARENT COMPOUNDS AND TRANSFORMATION 

PRODUCTS  

 

Positive ionization mode Negative ionization mode 

Number features Compound Discoverer 2821 1180 

Retention time cut-off >2min 1002 366 

Without background compounds 927 310 

Parent compound matches  20 6 

Transformation product suspect matches 81 49 

Unmatched features 826 255 

 

TABLE 9. LIST OF PARENT COMPOUNDS DETECTED 

Parent compound 
Molecular 

weight 

RT 

[min] 
mzCloud Score Parent compound screening MS2 

ionization 

mode 

Hexamethylenetetramine 140.10591 2.114 91.8 Single match yes + 

Melamine* 126.06512 2.118 79.2 Single match yes + 

Metformin 129.10115 2.19 84.8 Single match yes + 

Barbital 184.0845 2.287 
*mzCloud Best 

Sim. Match:71 
Single match yes + 

Melamine* 126.06513 2.292 No result Single match yes + 

Phenylamine 93.05769 2.335 No result Single match no + 

Carbendazim 191.06903 6.318 97.5 Single match yes + 

Gabapentin 171.12554 6.365 91.7 Single match yes + 

Tetraglyme 222.14633 7.799 97.1 Single match yes + 

Benzotriazole 119.04804 7.974 88.3 Single match yes + 

Tramadol 263.18801 9.36 99 Single match yes + 

4-Methylbenzotriazole 133.06365 10.009 77.7 Multiple matches yes + 

4-Methylbenzotriazole 133.06365 10.124 73.1 Multiple matches yes + 

Propranolol 259.15676 11.831 96.9 Single match yes + 

Carbamazepine 236.09449 13.289 99.8 Single match yes + 

Tiamulin 493.32176 13.784 97 Single match yes + 

Triphenylphosphine 

oxide 
278.0855 15.389 94.3 Single match yes + 

Dimethomorph 387.12312 16.212 90.4 Single match yes + 
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Parent compound 
Molecular 

weight 

RT 

[min] 
mzCloud Score Parent compound screening MS2 

ionization 

mode 

Dimethomorph 387.12306 16.597 95.7 Single match yes + 

Terbuthylazine 229.10905 16.906 92.3 Single match yes + 

Acesulfame 162.99389 3.312 95.1 Single match yes - 

Hydrochlorothiazide 296.96442 7.181 86.8 Single match yes - 

Barbital 184.08468 8.023 No result Single match yes - 

Sucralose 396.01462 8.158 No result Single match yes - 

Phenobarbital 232.08474 11.386 No result Single match yes - 

Furosemide 330.00768 13.411 91.9 Single match yes - 

*In the case of melamine, RP LC does not allow for good peak shape: melamine is split in two 

peaks of the same accurate mass, but two different retention times, potentially due to 

tautomerism (Klotz and Askounis, 1947). 

Despite tailored suspect lists, over 1000 features remained unmatched in the non-target data. 

These features included compounds that had not been spiked-in, but were present in the 

source water, and TPs thereof, as well as TPs of the parent compounds that had not been 

included in the suspect list used for screening. Figure 4 illustrates the contribution of features 

representing parent compounds, TP matches and unknown compounds, to the overall feature 

intensities across samples. Suspect screening matches, both parent compound and TP 

matches together, account for roughly 85% of the signal intensity. However, regarding the 

feature numbers, the unknown features account for 90% of the total feature number. This 

confirms, that a prioritization strategy based on tailored suspect lists can effectively reduce 

feature numbers. Nevertheless, as the feature intensity does not necessarily reflect the 

concentration of a compound in a sample (Sjerps et al., 2016), it can still be relevant to 

consider low intensity features when comprehensively assessing water quality. 

 

FIGURE 4 SUMMED INTENSITIES OF FEATURES REPRESENTING PARENT COMPOUNDS, TP MATCHES, AND 

UNKNOWN COMPOUNDS (LEFT). ZOOM-IN ON LOWER INTENSITIES (RIGHT). 

 

2.3.2 PCA and HC to compare drinking water treatment trains 

To utilize all the information from non-target data for water quality assessment during the 

different treatment steps, also without identification of unknown features, data science 

methods were applied to the data set. 
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First, data complexity was reduced through Principal Component Analysis (PCA). This allowed 

visualization of which samples were similar in terms of feature intensities (Figure 5). The first 

dimension (Dim1) explained 31% (pos) and 25% (neg) of the variation in the data and seemed 

to represent the total feature intensity, with an increase in intensity going from left to right. 

Blank and UF-RO samples showing lowest intensities, clustered together on the left, PWN 

samples at the x-axis, and Dunea samples that had the highest overall response on the right. 

The PCA thereby showed that UF-RO removed most compounds. The second dimension (Dim2), 

which explained 12% (pos) and 14% (neg) of the variation clearly separated Dunea samples 

(red tint) from PWN samples (blue-green tint), both in positive and in negative ionization mode. 

The source water affected the clustering more than the spike-in compounds, which can be 

explained by the fact that the unknown features account for 90% of the total feature number 

observed described above (see 2.3.1). 

 

 

FIGURE 5 PCA PLOT OF FEATURES DETECTED IN POSITIVE (UPPER PANEL) AND NEGATIVE (LOWER PANEL) 

IONIZATION MODE. SQUARED COSINE OF THE OBSERVATION (COS2) SHOWS THE IMPORTANCE OF A 

COMPONENT FOR A GIVEN OBSERVATION. 
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To evaluate whether changes in feature intensities could be related to treatment steps, HC was 

performed based on Euclidean distances and the complete method and visualized in the heat 

map shown in Figure 6. Here, samples are clustered horizontally and features vertically. 

Similarly to the PCA, this visualization reveals which samples are more alike. In the heat map 

visualization, normalized feature areas are represented in color ranging from blue to red (the 

most intense feature). Additional feature information is displayed in the columns on the left. 

From left to right the following is indicated: suspect matches in pink, parent compound 

matches in turquoise, retention time (early in light grey to late in dark grey) and presence in 

the background in purple. From this visualization it becomes clear that features that represent 

parent compounds cluster together. Because the parent compounds are also included in the 

suspect list, these are shown in both columns. 
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FIGURE 6 HIERARCHICAL CLUSTERING OF FEATURE AND SAMPLES IN POSITIVE (UPPER PANEL) AND 

NEGATIVE (LOWER PANEL) IONIZATION MODE. EUCLIDEAN DISTANCE, COMPLETE METHOD, MAX 

NORMALIZED 

2.3.3 Treatment train specific analyses per pilot installation 

To assess water quality changes due to a specific drinking water treatment train in more detail, 

the non-target data of the 3 different pilot installations, i.e. (1) sequential O3 / H2O2 - UV / H2O2 

of rapid sand filtrate at Dunea, (2) UF-RO and (3) sequential UV / H2O2 GAC filtration from 

surface water at PWN, were analysed individually. In these analyses, background subtraction 

was performed again; Only features that exceeded 5 times the intensity of the blank in a given 

sample were considered in all subsequent analyses, with exception of the HC where features 

needed to exceed 5 times the blank intensity in at least one of the samples of the treatment 

train. The resulting numbers of features detected in the samples, summed feature intensities 

and parent compound and TP matches are listed in Table 10 for positive ionization mode and 

Table 11 for negative ionization mode. Lists of detected parent compounds and suspect 

screening matches can be found in the respective .xlsx files. 
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TABLE 10. FEATURE NUMBERS, INTENSITIES, PARENT COMPOUND AND TP MATCHES PER TREATMENT 

TRAIN. POSITIVE IONIZATION MODE DATA. SUMMED FEATURE INTENSITIES ARE ADDED GROUP AREAS. 

Dunea Influent no 

spike 

Influent spike-in 

Effluent 

O3/H2O2 

Effluent 

UV/H2O2 

Blank 

 

Feature number 548 561 553 554 

  

Summed feature 

intensities  

3.38E+07 3.56E+07 3.59E+07 3.59E+07 

2.08E+0

5 

 

Parent compound 

matches 

16 20 15 15 

  

Suspect matches 43 48 43 40 

  

       

PWN UF-RO Influent no 

spike 

Influent spike-in 

UF-RO 

Effluent UF-

RO 

Blank 

  

Feature number 533 538 73 

   

Summed feature 

intensities 

2.68E+07 2.57E+07 5.55E+05 1.63E+05 

  

Parent compound 

matches 

14 20 11 

   

Suspect matches 39 48 13 

   

       

PWN UV/H2O2 - 

GAC 

Influent no 

spike 

Influent spike-in 

UV/H2O2 

Effluent 

O3/H2O2 

Influent 

GAC 

Effluent 

GAC 

Blank 

Feature number 532 554 546 557 522 

 

Summed feature 

intensities  

2.50E+07 2.62E+07 2.71E+07 2.92E+07 

2.74E+0

7 

2.18E

+05 

Parent compound 

matches 

16 19 15 17 6 

 

Suspect matches 41 50 41 44 29 

 

TABLE 11. FEATURE NUMBERS, INTENSITIES, PARENT COMPOUND AND TP MATCHES PER TREATMENT 

TRAIN. NEGATIVE IONIZATION MODE DATA. SUMMED FEATURE INTENSITIES ARE ADDED GROUP AREAS. 

Dunea O3/H2O2 – 

UV/H2O2 

Influent no 

spike 

Influent spike-in 

Effluent 

O3/H2O2 

Effluent 

UV/H2O2 

Blank 

 

Feature number 138 147 149 142 

 

 

Summed feature 

intensities  

1.51E+07 1.89E+07 1.90E+07 1.50E+07 7.88E+0

5 

 

Parent compound 

matches 

2 6 5 5 

 

 

Suspect matches 8 13 13 13 

 

 

       

PWN UF-RO Influent no 

spike 

Influent spike-in 

UF-RO 

Effluent UF-

RO 

Blank 

  

Feature number 134 150 34 

 

  

Summed feature 

intensities 

1.22E+07 1.30E+07 2.52E+06 8.32E+05   

Parent compound 

matches 

2 6 4 

 

  

Suspect matches 7 12 5 
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PWN UV/H2O2 - 

GAC 

Influent no 

spike 

Influent spike-in 

UV/H2O2 

Effluent 

UV/H2O2 

Influent 

GAC 

Effluent 

GAC 

Blank 

Feature number 146 155 155 153 141 

 

Summed feature 

intensities  

1.02E+07 1.35E+07 1.21E+07 1.17E+07 1.08E+0

7 

7.34E

+05 

Parent compound 

matches 

2 5 4 4 1 

 

Suspect matches 7 12 12 11 7 

 

 

Next, HC based on Pearson correlations between the features using the Ward.D2 method was 

performed separately on the three datasets to reveal trend profiles of features related to 

treatment steps, i.e. clusters of features that decrease and increase in intensity. These clusters 

could represent parent compounds and their transformation products and facilitate 

prioritization for identification. 

2.3.4 Sequential advanced oxidation processes at the DUNEA pilot installation 

The sequential O3/H2O2 - UV/H2O2 pilot installation at Dunea provided three samples for 

clustering analyses, the spike-in influent (DUN-infl), the effluent from the O3/H2O2 treatment 

(DUN-effl-O3-H2O2) and the effluent from the UV-H2O2 treatment (DUN-effl-UV-H2O2). 

Consequently, a maximum of 9 clusters could describe the generated trend profiles: 

𝑀𝑎𝑥. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝐷𝑢𝑛𝑒𝑎 = 3(3−1) = 9 

The resulting heat map with 9 defined clusters for data recorded in positive ionization mode 

is shown in Figure 7. As expected, the parent compounds clustered together, predominantly 

in cluster 1. This cluster contained parent compounds and other compounds that were 

removed or transformed by the ozone treatment. Interestingly, this cluster also exhibited 

many suspect matches, i.e. potential TPs. This could mean that the parent compounds were 

already transformed in the influent or present in the source water. Cluster 1 thus contained 

compounds that were removed or transformed by ozone, in contrast to clusters 7, 3, 2 and to 

a lesser extent 6 which included substances that appeared to be generated by ozone treatment. 

(Note: cluster numbers are merely an aid for communication and do not have any significance.) 

Cluster 2 included the spike-in compound melamine. 
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FIGURE 7 HIERARCHICAL CLUSTERING OF DUNEA FEATURES DETECTED IN POSITIVE IONIZATION MODE 

BASED ON PEARSON CORRELATION USING THE WARD.D2 METHOD AND MAX NORMALIZED FEATURE 

INTENSITIES. 

Figure 8 shows the trend profiles of the parent compounds detected in the positive ionization 

data. It is apparent that melamine showed an increase in signal intensity through ozone 

treatment in contrast to all other spike-in compounds showing a decrease.  
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FIGURE 8. TREND PROFILES OF SPIKE-IN PARENT COMPOUNDS IN ABSOLUTE VALUES (UPPER PANEL) AND 

RELATIVE TO THE SPIKE-IN SAMPLES (LOWER PANEL). POSITIVE IONIZATION DATA. 

Compounds in clusters 3, 7 and 8 were removed or transformed by UV/H2O2 in the second 

treatment step. Cluster 8 grouped compounds that were present in the influent already, and 

persistent against ozonation, but removed or transformed with UV treatment, while 

compounds in cluster 3 and 7 were generated by ozonation. Cluster 4 contained compounds 

that were formed by UV/H2O2 treatment. Cluster 2 and 6 contained compounds that were 

generated by ozone treatment and persistent against UV/H2O2 treatment. Clusters 5 and 9 

included compounds that decreased by ozone treatment, but increased again after UV/H2O2 

treatment. Furthermore, the addition of the bioassay responses to the non-target screening 

data showed that anti-AR CALUX response seemed to correlate with the feature intensity 

profiles of cluster 1, and PAH CALUX and Ames test responses with clusters 5 and 9. PAHs 

activity and mutagenicity were no longer observed after the O3/H2O2 treatment step, but 

reappear after UV/H2O2 treatment. Oxidative stress was observed across samples from all 

treatment steps. This could be due to organic micro-pollutants, but also residual oxidants 

from the UV/H2O2 and or O3/H2O2 treatment.  However, the binary bioassay read-out used here 

might lead to an oversimplified picture. 

In the negative ionization data, parent compounds clustered together similarly to the positive 

ionization data, illustrated in Figure 9. They were found mainly in cluster 3 which contained 
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parent compounds and other compounds that were removed through the ozone treatment. 

Cluster 1 contained compounds that were not affected significantly by ozone treatment, but 

removed or transformed by UV/H2O2. Clusters 2, 8 and 9 included ozonation transformation 

products, those in clusters 8 and 9 were removed by UV, while those in cluster 2 were 

persistent. Clusters 5 and 7 contained UV transformation products. 

 

FIGURE 9 HIERARCHICAL CLUSTERING OF DUNEA FEATURES DETECTED IN NEGATIVE IONIZATION MODE 

BASED ON PEARSON CORRELATION USING THE WARD.D2 METHOD AND MAX NORMALIZED FEATURE 

INTENSITIES. 

Ultimately, the HC heat maps of the sequential O3/H2O2 - UV/H2O2 pilot installation at Dunea 

could be used for the prioritization of features for identification. For instance, first 

identification efforts could focus on clusters 2, 4 and 6 and 5 and 9 (pos), and 2, 4 and 6, and 

5 and 7 (neg), and thereby on compounds that were present after the last treatment step. As 

the intensities in the heat maps were normalized, they do not represent the intensity of a 

feature in the sample. For better prioritization feature intensities could also be considered. 

2.3.5 Combination of UF and RO removes most compounds 

For the PWN pilot installation data, two separate HC analyses were performed, namely for the 

PWN-UFRO and PWN-UV-H2O2-GAC treatment trains. PWN-UFRO included the two sample 
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groups PWN-infl-UF and PWN-effl-UFRO, which are the influent and effluent of the UF-RO pilot 

installation. This leads to a maximum number of clusters of 3: 

𝑀𝑎𝑥. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑃𝑊𝑁 − 𝑈𝐹𝑅𝑂 = 3(2−1) = 3 
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FIGURE 10 HIERARCHICAL CLUSTERING OF PWN-UFRO FEATURES DETECTED IN POSITIVE (UPPER PANEL) 

AND NEGATIVE (LOWER PANEL) IONIZATION MODE BASED ON PEARSON CORRELATION USING THE 

WARD.D2 METHOD AND MAX NORMALIZED FEATURE INTENSITIES. 

Figure 10 shows the HC derived heat maps. As expected, the parent compounds clustered 

together, in clusters 1 and 2. These clusters contained parent compounds and other 

compounds that were removed or transformed by the UF-RO treatment. In line with the 

observation in the Dunea pilot installation, these clusters also included many features matched 

to suspects from the TP list. This could mean that the parent compounds were already present 

in the source water, or transformed in the influent. In contrast to clusters 1 and 2, cluster 3 

contained compounds that seemed to be formed by UF-RO treatment. However, these 

compounds did not result in an active response in any of the bioassays tested. A further 

identification of the formed compounds might thus not be critical, presuming that the selected 

bioassays cover the most relevant toxicological endpoints.  

2.3.6 PWN-UV-GAC 

The second PWN pilot installation combined UV/H2O2 and GAC. The HC contained the sample 

groups PWN-infl-UV-H2O2, PWN-effl-UV-H2O2, PWN-infl-GAC, and PWN-effl-GAC, i.e. influent 

and effluent from the UV- H2O2 treatment, and influent and effluent from the GAC treatment 

step. This lead to a maximum number of clusters of 27: 

𝑀𝑎𝑥. 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑃𝑊𝑁 − 𝑈𝑉 − 𝐻2𝑂2 − 𝐺𝐴𝐶 = 3(4−1) = 27 
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FIGURE 11 HIERARCHICAL CLUSTERING OF PWN-UV-GAC FEATURES DETECTED IN POSITIVE (UPPER PANEL) 

AND NEGATIVE (LOWER PANEL) IONIZATION MODE BASED ON PEARSON CORRELATION USING THE 

WARD.D2 METHOD AND MAX NORMALIZED FEATURE INTENSITIES. 6 CLUSTERS. 

However, the 27 clusters (see SI HC PWN-UV-GAC5.2) could be grouped into 6 larger clusters 

for a clearer view, shown in Figure 11. Regarding the positive ionization mode, cluster 1 

contained parent compounds and other compounds that decreased due to the treatment, 

cluster 6 UV/H2O2 transformation products, and clusters 2 and 4 transformation products 

that originated in the storage vessel before the GAC and during the GAC. Cluster 3 contained 

compounds that were persistent in the UV / H2O2 treatment, but removed by GAC. Cluster 5 

contained substances that increased continuously during the treatment steps, but were 

removed by GAC. Similar clusters could be distinguished in the negative ionization data, with 

parent compounds detected in cluster 3. Interestingly, the features that were removed most, 

i.e. cluster 1 (pos) and cluster 3 (neg) exhibited later retention times than the other features, 

including those of the respective clusters, indicating that the polarity of a compound affects 

the UV removal rates. 

PAH activity was persistent through UV treatment, but seemed to be removed by the storage 

step prior to GAC filtration. NRf2 activity was induced by UV treatment and removed by GAC. 

Mutagenicity was observed across all samples and treatment steps. 

2.4 Conclusions and outlook 

Non-target screening provides information on water quality and changes thereof due to water 

treatment, exceeding the information gained by the current monitoring of target compounds 

alone. The data science methods used here, PCA and hierarchical clustering, demonstrated 

differences between samples and treatment steps in an efficient and unbiased manner. The 

visualization through heat maps helped to create a clear picture of highly complex data, in 
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particular when HC of non-target screening features was related to bioassay readouts. Based 

on the combined heat maps, features could then be prioritized for identification. Here, the 

matched suspects could be a good starting point. Moreover, the comparative assessment of 

treatments with bioassay readouts can indicate a risk to environmental or human health, 

and/or water treatment problems. In the absence of an active bioassay readout, further 

identification of unknowns can be renounced, thereby circumventing the challenges in 

identifying unknown unknowns. 
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3 Integration of chemical screening 

and effect-based bioanalysis to 

globally asses chemical water 

quality for water reuse 

3.1 Introduction 

3.1.1 Water quality assessment 

Water quality assessment requires assessment of potential contamination of sources of the 

water, assessment of treatment efficiency for this (potential) contamination, and assessment 

of treated water, also in relation to the intended end use. Depending on the end use, water 

quality must comply with the predefined quality standards for treated wastewater, reuse for 

irrigation or other purposes and drinking water production demanded by legislation and listed 

in the European Wastewater Directive, the European Drinking Water Directive, the Groundwater 

Directive, etc. (European Commission, 1991, 1998, 2000, 2003b, a, 2006b, a; Gawlik and 

Bidoglio, 2006; European Commission, 2008, 2010, 2015). However, more parameters than 

those required by legislation might be relevant for a comprehensive water quality - and ensuing, 

risk assessment. Finally, the time needed to determine the regulated parameters can prevent 

timely action. To address these shortcomings, innovative, sensitive and fast detection methods 

have been developed over the past decades to improve monitoring for water quality 

assessment.  

3.1.2 Innovative, fast and integrated approaches 

These methods need to be fast as residence times of water in the treatment steps can be short, 

and up-to-date information is required for timely halt or adaption of treatment. They also need 

to be sensitive as water quality criteria can be set at low concentrations. Furthermore, the 

chemical water quality is determined by a plethora of chemicals. Monitoring of individual 

chemicals does not comprehensively reflect water quality. Therefore, integrative approaches 

need to enable a more complete water quality assessment.  

Effect-based biological and non-target screening based chemical water quality assessment are 

two complementary methods that together can provide a better and more problem oriented 

monitoring, in line with the Hazard Analysis and Critical Control Points (HACCP) principle 

(Dewettinck et al., 2001), the Revision of Annex II of the Drinking water Directive (European 

Commission, 2015) and upcoming revisions of the regulation on wastewater and reuse. 

3.1.3 Effect- based water quality assessment using CALUX bioassays 

The Chemical Activated LUciferase eXpression (CALUX) bioassays enable the monitoring of 

certain biological effects of complex mixtures of chemicals in a water sample. These assays 

comprise cells that incorporate the firefly luciferase gene coupled to Responsive Elements (REs) 

as a reporter gene for the presence of compounds activating these REs (Murk et al., 1996a; 

Sonneveld et al., 2005b; Van der Linden et al., 2008; Pieterse et al., 2013b; Van der Burg et 

al., 2013; Van der Linden et al., 2014). Cells that are exposed to compounds of interest not 

only express proteins that are under normal circumstances associated to RE, but also 
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luciferase. By addition of the appropriate substrate for luciferase, light is emitted. The amount 

of light is proportional to the amount of ligand-specific receptor binding. 

Through a suite of bioassays, specific to generic effect endpoints can be assessed, and an 

array of chemicals and outputs can be linked to biological effects (Oulton et al., 2010). 

However, the selection of (various) bioassays is crucial to cover relevant endpoints. Moreover, 

effect based trigger values of such bioassays, i.e. thresholds that differentiate between 

acceptable and poor water quality with respect to the organic micro-pollutants are often 

lacking (Brack et al., 2016; Di Paolo et al., 2016; Wieczerzak et al., 2016).  

3.1.4 Comprehensive chemical water quality assessment using LC-HRMS non-target 

screening 

The combined output of CALUX assays provides an integrated assessment of the chemical 

water quality. However, it does not reveal the individual chemicals responsible for induced or 

reduced assay responses. These can be due to multiple chemicals. To relate responses to 

(mixtures of) chemicals present in the samples, as well as to assess chemical water quality and 

its changes through treatment steps with a complementary method, non-target screening 

based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) can 

be performed to detect chemicals in water samples (Hollender et al., 2017). However, the wealth 

of data resulting from non-target screening renders structural identification of all compounds 

virtually impossible. Consequently, a prioritisation step needs to be performed to define which of 

the unknown compounds need to be identified first. This can happen on different levels: the 

abundance of an unknown feature in the sample, the matching of a feature with a suspect list 

entry, the trend profile of a feature’s intensity across treatment steps and/or its correlation with 

a bioassay response. A feature represents a given compound and consists of a unique 

combination of an accurate mass and a retention time. Without identifying the feature, 

information on its response –measured in instrument counts (Sjerps et al., 2016) or response 

relative to an internal standard (Parry and Young, 2016) can be automatically extracted. Through 

suspect screening against a suspect list potential candidates that match a feature based on their 

accurate mass can be found and ranked according to their occurrence or toxicity (Brunner et al., 

2019a). As in vivo toxicity data is limited, in vitro bioassay data can be used as a proxy, such as 

the ToxCast database that includes high throughput in vitro toxicity information of > 8000 

environmentally relevant compounds and >1500 bioassays (Schroeder et al., 2016). To more 

comprehensively assess changes in water quality, the trend profiles of feature intensities across 

treatment steps can be considered through application of data science methods that reveal 

patterns in the data. These profiles allow distinction between persistence, elimination and 

formation of a feature during treatments and prioritisation based thereupon (Schollée et al., 2016). 

Ultimately, trend profiles can be integrated with the bioassay read out profiles resulting in a fit 

for purpose method to monitor water quality in samples and across treatment steps. 

3.1.5 Effect-based and non-target screening at Berlin Schoenerlinde 

Here, we performed non-target screening analyses on the extracted and not extracted water 

samples from Berlin Schoenerlinde (AquaNES site 12) from April and July 2018 in technical 

triplicates, using an Orbitrap Fusion mass spectrometer (Thermo Scientific). Detected features 

were matched against the Water Framework Directive priority list and the SusDat database of 

the European Network of reference laboratories, research centres and related organisations 

for monitoring of emerging environmental substances (NORMAN) consisting of more than 

40000 chemicals relevant for environmental monitoring. A novel data analysis workflow was 

applied to efficiently interpret the wealth of data generated that combined the points 

mentioned above, including integration of the biological and chemical monitoring data and 

relate/compare results to applied bioassays on the same samples. The primary sedimentation 
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effluent was excluded from the data analysis as the amount of features detected exceeded the 

processing power of the available IT infrastructure.  

Overall, the application of these tools within the demonstration site Schoenerlinde illustrated 

the potential for application in water treatment and its technology readiness level. Additionally 

it enabled to evaluate treatment efficiency of the innovative treatment schemes. It is thereby 

a step towards the application of such tools in water quality assessment in a regulatory setting. 

3.2 Material and Methods 

3.2.1 Sampling points Berlin Schoenerlinde 

An overview of the Berlin Schoenerlinde innovative waste water treatment plant including 

sampling points is depicted in Figure 12. Samples from 7 sampling points were used for the 

bioassay and NTS analyses with the following sample names: Primary sedimentation effluent, 

ozonation influent (secondary effluent, S1 in Figure 12), ozonation effluent (S2), constructed 

wetlands (S3), sand BAC filter (S6), sand anthracite filter (S7) and post GAC (S8). Sampling 

points S4 and S5 were not included in this study. As can be seen from the overview schematics, 

the first three sampling points are consecutive, constructed wetland treatment, sand BAC and 

sand anthracite filtration are performed in parallel, and GAC filtration follows sand anthracite 

filtration. 

 

FIGURE 12. SCHEMATICS OF TREATMENT SITE BERLIN SCHOENERLINDE.  

3.2.2 Chemicals 

Acetonitrile (ACN, HPLC grade) was purchased from Avantor Performance Materials B.V. 

(Deventer, NL), formic acid (FA) from Fluka Analytical (Sigma-Aldrich, Steinheim, D), the 

internal standards atrazine-d5 and bentazon-d6 from CDN isotopes (Pointe-Claire, Canada) 

and LGC Standards (Wesen, Germany), respectively. The ultrapure water used as a blank 

reference was produced with an Elga Purelab Chorus ultrapure water system through 

purification of demineralized water in (High Wycombe, UK). 
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3.2.3 Sample processing 

Sample processing and CALUX bioassays were performed by BioDetectionSystems (BDS, , 

Amsterdam, The Netherlands. Water samples were extracted by Solid Phase Extraction (SPE) 

according to BDS protocol p-bds-096. In short, SPE columns (OASIS HLB SPE cartridges, 500 

mg, 6 cc, Waters 186000115) were loaded with approximately 500 mL of water and eluted 

with 10 ml of methanol followed by 10 ml of acetonitrile. Eluates were pooled and evaporated 

under a gentle stream of nitrogen. The final extracts were re-dissolved in 150 µl of DMSO after 

which serial dilution in DMSO were prepared. 

3.2.4 CALUX bioassays 

Effect-based measurements were performed with the CALUX tests for cytotoxicity, androgenic 

(AR) and anti-androgenic (anti-AR) activity, estrogenic activity (ERa), glucocorticoid receptor-

mediated signalling (GR), anti-progesterone receptor-mediated signalling (anti-PR), PPARα-

mediated signalling(PPARa2), PPARγ-mediated signalling (PPARg2), PXR, activation of the Nrf2 

pathway / oxidative stress response (Nrf2) and p53-dependent pathway activation / 

genotoxicity response (+/- S9) (P53) listed in Table 12 according to the supplier's protocols 

(Murk et al., 1996b; Sonneveld et al., 2005a; Pieterse et al., 2013a).  

For CALUX activity determination, CALUX cells were seeded in 96 wells plates in assay medium. 

Following exposure of the CALUX cells to serial dilutions of the sample extracts in triplicate, 

luciferase production was induced through addition of the substrate luciferin and quantified 

by luminescence measurements. Per 96-well plate, calibration curves for each bioassay were 

analysed with the respective reference compounds.  

Analysis results of the test samples were interpolated in the calibration curve for quantitative 

determination of (ant)agonistic potential of the test samples. Only not cytotoxic dilutions 

(relative induction in the cytotox CALUX bioassay > 80%) were used for the final evaluation of 

CALUX results. Final results were expressed as µg, ng or pg reference compound equivalents 

per L of processed water.  

The bioassays were performed according to standard BDS protocols p-bds-083 (Culturing 

U2OS CALUX cells), p-bds-04 (Analysis of Ah-receptor mediated luciferase activity in DRCALUX 

cells), p-bds-066 (Analysis of luciferase activity in the PAH CALUX bioassay), p-bds-085 

(Analysing samples with U2-OS CALUX bioassays using sigmoidal dose response curves (with 

0.1% or 1% DMSO)), p-bds-070 (Harvesting the cells and measurement), and p-bds-084 

(Calculating U2OS CALUX results using sigmoidal dose response curves). 

TABLE 12. CALUX TESTS CONDITIONS AND CELL CULTURE INFORMATION. 

Assay (anti)ERα, (anti)AR, (anti)GR, 

(anti)PR, PPARα, PPARδ, 

PPARγ, PXR 

Cytotox, Nrf2, P53 (+/-S9) PAH, DR 

Cell type U2OS U2OS H4IIE 

Species  Human Human Rat 

Confluence 10000 cells per well 10000 cells per well >95% confluence 

Medium used DMEM/F12 DMEM/F12 αMEM 

Additions to assay 

medium 

-Stripped FCS 

-Non essential 

amino acids 

-Stripped FCS 

-Non essential 

amino acids 

-FCS 

 

%DMSO 0.1% 1% 0.8% 
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Exposure time 24 hrs 24 hrs 4 hrs (PAH), 24 hrs 

(DR) 

FCS…Fetal Calf Serum 

 

Based on effect –based trigger (EBT) values, the action rules listed in Table 13 were defined 

for the bioassay readouts. This color coding was also used for the integration of bioassay and 

non-target screening data (see below). 

TABLE 13. ACTION RULES FOR BIOASSAY READ-OUTS 

 

If below EBT or 

LOQ of bioassay 

no further action required 

 
If 1-times <EBT< 

3-times 

quality check data, continue to monitor every three months, until 1 year and 

the EBT < 1 

 
If 3-times <EBT< 

10-times 

data check, immediate re-sampling and analysis to confirm EBT. It is also 

required to quantify specific target compounds which are known to cause the 

effects observed in the respective bioassay. Continue to monitor every three 

months, until 1 year and the EBT< 1 

 
If 10-times 

<EBT< 100-times 

all of the above plus enhance source identification program. Also monitoring 

in the distribution system closer to the point of exposure to confirm 

attenuation of CEC is occurring and to confirm the magnitude of assumed 

safety factors associated with removal efficiency, dilution and post-treatment. 

 If EBT>100-times 

all of the above plus immediately confer with the local environmental 

authority’s to determine the required response action. Confirm plant corrective 

actions through additional monitoring that indicates the CEC levels are below 

at least an EBT of 100. 

 

3.2.5 LC-HRMS experiments 

LC-HRMS/MS experiments were performed using a Vanquish HPLC system (ThermoFisher 

Scientific) coupled to a Tribrid Orbitrap Fusion mass spectrometer (ThermoFisher Scientific, 

Bremen, Germany) with an electrospray ionization source. Chromatographic separation was 

performed using an XBridge BEH C18 XP column (150 mm × 2.1 mm I.D., particle size 2.5 µm) 

(Waters, Etten-Leur, The Netherlands) preceded by a 2.0 mm × 2.1 mm I.D. Phenomenex 

SecurityGuard Ultra column (Phenomenex, Torrance, USA) maintained at a temperature of 

25 °C. The LC gradient went from 5% acetonitrile, 95% water and 0.05% formic acid (v/v/v) to 

100% acetonitrile with 0.05% formic acid in 25 min, after which it was held constant for 4 min 

at a flow rate of 0.25 mL/min.  

Prior to LC-HRMS analysis, the SPE extracted water samples (6667x concentrated compared to 

the non-extracted original water samples) were diluted 100x, resulting in 66.7x concentrated 

samples. The internal standards bentazone-d6, atrazine-d5 and benzotriazole-d4 were added 

to the water samples to a final concentration of 1ug/L. Subsequently, samples were filtered 

using Phenex™-RC 15mm Syringe Filters 0.2u (Phenomenex, Torrance, USA). 100 µL of each 

filtered sample was analysed in triplicate. Mass calibration was performed using Pierce ESI 

calibration solution. The vaporizer and capillary temperature were set to 300 °C, sheath, 
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auxiliary and sweep gas to arbitrary units of 40, 10 and 5, respectively. The source voltage 

was 3.0 kV in the positive mode. The RF lens was set to 50 %. Full scan high accuracy mass 

spectra were acquired in the range of 50-1000 m/z with 120,000 FWHM resolution. Quadruple 

isolation was used for acquisition. Data dependent MS/MS acquisition was performed for the 

eight most intense ions detected in the full scan, using a High Collision Dissociation (HCD) 

energy at 35% and 15,000 FWHM resolution. 

3.2.6 Data analysis 

LC-HRMS raw data files were processed using Compound Discoverer 3.0 (Thermo Scientific, San 

Jose, USA) for peak picking and suspect screening. Suspect screening was performed using the 

SusDat database of the European Network of reference laboratories, research centres and related 

organisations for monitoring of emerging environmental substances (NORMAN, 

https://www.norman-network.com/?q=node/236) consists of more than 40000 chemicals 

relevant for environmental monitoring, as well as the Water Framework Directive (WFD) list of 

priority substances (http://ec.europa.eu/environment/water/water-

dangersub/pri_substances.htm). Searches were performed with 5 ppm mass tolerance. The 

processed data was exported and imported into R Studio as a .csv file for further data analysis 

and visualisation (R Core Team, 2017). To group and characterize samples and features, the two 

multivariate analysis techniques principal component analysis (PCA) and hierarchical clustering 

(HC) were applied. PCA was performed using the R package FactoMineR, and results visualized in 

graph of individuals plots using the R package factoextra. Prior to HC, data was normalized 

through division of feature intensities across samples by the maximum intensity of the respective 

feature. Both samples and features were clustered based on Euclidean distances (Everitt, 1974) 

and visualized in a heat map using the pheatmap package in R. To show differences in features 

induced by treatment steps, features were clustered based on their Pearson correlation using the 

Ward.D2 method (Ward, 1963). In addition, changes in features between two corresponding 

before and after treatment samples were illustrated in so called Volcano plots displaying the 

change in intensity as the log 2 fold change (log2FC) and its significance, i.e. the negative log 10-

transformed p-values of features (Cui and Churchill, 2003).  

3.3 Results and discussion 

3.3.1 Ozonation results in decrease of feature numbers and intensities 

First, overall feature numbers and intensities, as well as suspect matches against the NORMAN 

SusDat and the WFD priority lists were determined, the results of which are shown in Table 14 

and Figure 13. As expected and consistent with the CALUX assay results (data not shown), the 

ozonation influent samples showed most features in both sample types and post-GAC filter 

samples the least, respectively. Apart from the GAC filter step, there was no clear reduction in 

feature numbers observed through technological an natural treatment steps. Note that the post-

ozonation steps constructed wetlands, sand BAC filter and sand anthracite filter are performed in 

parallel. Post-GAC treatment succeeds the sand anthracite filter treatment. Summed feature 

intensities, however, did show significant decrease after ozonation of roughly two thirds in April 

and one third in July, respectively. As feature numbers do not reflect the abundance of a given 

feature in the sample this could either mean that the features persist at lower concentrations in 

the samples, or that the features initially present are transformed into new features. 

https://www.norman-network.com/?q=node/236
http://ec.europa.eu/environment/water/water-dangersub/pri_substances.htm
http://ec.europa.eu/environment/water/water-dangersub/pri_substances.htm
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TABLE 14. NUMBERS OF DETECTED FEATURES, SUSDAT SUSPECT AND WFD PRIORITY SUBSTANCE 

MATCHES ACROSS ALL SAMPLES. TREATMENT STEPS 1,2,3 ARE SEQUENTIAL. 3A,B AND C ARE PERFORMED 

IN PARALLEL. STEP 4C SUCCEEDS 3C. GREEN – LOW NUMBER, RED – HIGH NUMBER. 

  Ozonation 

influent 

Ozonation 

effluent 

Constructed 

Wetlands 

Sand BAC 

Filter 

Sand 

Anthracite 

Filter 

PostGac 

Filter 

Treatment 

step 
1 2 3a 3b 3c 4c 

All Features             

April 26235 23389 24187 22370 25567 8561 

July 26394 26228 25567 25648 25691 17598 

SusDat suspect matches            

April 13151 11748 12221 11073 12748 4146 

July 13203 13087 12764 12755 12859 8820 

WFD suspect matches            

April 41 41 41 38 41 11 

July 41 42 41 41 41 26 

 

 

FIGURE 13. SUMMED FEATURE INTENSITIES PER SAMPLE GROUP. BLK = BLANK. 

3.3.2 PCA groups samples according to seasonal changes and water treatment steps 

Next, principal component analysis (PCA) was applied for a qualitative overview and to group and 

characterize samples and features. Through reduction of the data complexity PCA can reveal 

relationships between samples when the principal components are depicted in a so called scores 

plot (Schollée et al., 2016). Two thirds of the variance in the data could be explained by the first 

two principal components as shown in the Screeplot in 5.3. Therefore, only the first two 

components were considered in the following. Figure 14 shows the distribution of the Berlin 

Schoenerlinde water samples according to the first two components, referred to as dimension 1 

and 2. The technical triplicates cluster together indicating good measurement reproducibilty. 

Dimension 1 is separating the ozonation influent from the other samples. It could thus reflect 

overall signal intensities. Feature numbers increse along this dimension, with the blank samples 

on the far left and ozonation influent samples on the far right. Dimension 2 could be representing 

the seasonal influence, i.e. the variability between April and July samples. In addition, it could be 
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explaining variability introduced by transformation processes with the parent compounds present 

in the ozonation influent (negative Dimension 2) and transformation products in the ozonation 

effluent and other treated samples ( positive Dimension 2, decreasing).  
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FIGURE 14 PCA GRAPH OF INDIVIDUALS OF WATER SAMPLES FROM SITE 12, APRIL AND JULY. SAMPLES ARE 

COLOURED ACCORDING TO THEIR SQUARED COSINE OF THE OBSERVATION (COS2, A), DATE (B), AND 

SAMPLING POINT (C). BLK = BLANK 
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3.3.3 Volcano plots visualize differences between treatment steps 

To investigate changes due to treatment steps, features were consequently plotted according to 

their changes between two samples and the significance thereof in so called Volcano plots (Cui 

and Churchill, 2003). Such a Volcano plot is shown in Figure 15 for the changes in features due 

to ozonation (left panel) and constructed wetland treatment (right panel) samples of the April 

sampling round. All features above the red line that indicates significance (p-value < 0.05) are 

significantly different between the treatment steps. The features on the left side of the y-axis 

represent compounds that are removed through the respective treatment technology. On the 

contrary, the features on the right side of the y-axis are introduced during these treatment steps 

and are either formed from parent compounds present in the influent or in the case of the 

constructed wetlands, through e.g. photo-degradation, biodegradation or hydrolysis within the 

wetland. As the features are coloured according to their retention time which can serve as a 

measure for polarity of a compound, the Volcano plot can reveal differences in the chemical space 

before and after treatment. Visual inspection suggests that the influent sample of the constructed 

wetlands is more hydrophobic than the wetlands effluent. This is in line with the current 

understanding that more polar substances are less readily removed in water treatment steps, 

while the more hydrophobic compounds may sorb to particles and sediment present in the 

wetland. 

 

FIGURE 15 COMPARISON OF FEATURE INTENSITIES BETWEEN OZONATION EFFLUENT AND INFLUENT (LEFT 

PANEL) AND OZONATION EFFLUENT AND CONSTRUCTED WETLANDS (RIGHT) SAMPLES (APRIL SAMPLING 

ROUND). THE CHANGES BETWEEN FEATURE INTENSITIES (LOG2 FOLD CHANGE, X-AXIS) ARE PLOTTED 

AGAINST THE SIGNIFICANCE (P-VALUE) IN A VOLCANO PLOT. THE FIVE MOST INTENSE FEATURES OF THE 

RESPECTIVE BEFORE (BLUE) AND AFTER TREATMENT SAMPLES (RED) ARE LABELLED. THE FEATURES ARE 

COLOURED ACCORDING TO THEIR RETENTION TIME AS A MEASURE FOR POLARITY.  

The high number of features detected in the non-target screening data calls for prioritisation of 

relevant features of which the structure should subsequently be identified. Which features are 

categorized as relevant strongly depends upon context. In the scope of waste water reuse, focus 

could be on the features that are persistent across treatments as these pose a risk to the final 

water quality, as well as the features that are different in constructed wetlands treatment 

compared to other treatments.  

The Volcano plot shown in Figure 15 assists in prioritizing features based on their changes and 

intensities. The five peaks that show the greatest increase in intensity during ozonation and 
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constructed wetland passage, respectively, are coloured in red, those that show greatest removal 

are coloured blue. These Top5 features can serve as a starting point for identification.  

3.3.4 HC reveals clusters of feature trend profiles 

Alternatively, HC can facilitate prioritisation efforts. HC is a strategy that can cluster samples and 

features based on their similarity and thus reveal trend profiles of features, i.e. clusters of features 

that are persistent, formed or do not change across treatments. Here, we performed HC on the 

NTS data set based on Euclidean distances after data normalization, integrated the chemical NTS 

data with the effect-based data from the CALUX bioassays and visualized the clustering output in 

the heat map shown in Figure 16. 

In this heat map, the relative intensity of each feature (vertical) for each sample (horizontal) is 

shown ranging from blue (lowest intensity) to red (highest intensity). Based on these intensities 

the samples are clustered; as expected the technical triplicates cluster together, however, April 

and July samples do not in all cases, indicating seasonal changes in water quality. Ozonation 

influent is clearly separated from the treated samples. Based on this heatmap, feature clusters 

can be selected for identification, for instance those that show high intensities in the ozonation 

effluent but not influent potentially representing ozonation transformation products, or those that 

still show high intensities in the Post-GAC filter samples and are thus not removed by the multi-

step treatment. 
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FIGURE 16. CALUX BIOASSAY RESPONSE DATA INTEGRATED WITH NON-TARGET SCREENING DATA. 

HIERARCHICAL CLUSTERING OF NORMALIZED NON-TARGET SCREENING DATA BASED ON EUCLIDEAN 

DISTANCE. COLOR CODING OF BIOASSAY READOUTS: < EBT OR LOQ OF BIOASSAY IN DARK GREEN, < 3X 

EBT IN LIGHT GREEN, < 10X EBT IN YELLOW, < 100X EBT IN ORANGE, > 100X EBT IN RED. 

3.4 Conclusions and outlook 

Furthermore, through integration of the non-target screening data with the CALUX assay 

readouts, feature clusters that showed high intensities when a CALUX response is observed 

can be determined and prioritized for subsequent identification. Moreover, the toxicity of the 

suspects matched with the WFD list of priority substances indicated with the leftmost column, 

can be assessed in regards to the CALUX response. Alternatively, bioassay responses can be 
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used to reduce suspect lists to relevant chemicals. The SusDat suspect list comprises 40000 

compounds. The search space resulting from the size of this list can lead to many false positive 

hits. In earlier research, roughly 90% of tentative suspects based on accurate mass match alone 

could not be confirmed (van Leerdam et al., 2017). The use of tailored suspect lists comprising 

relevant suspects expected to be present can significantly increase identification success rate. 

As samples from all sampling points but the post-GAC filter exceeded EBT values for Nrf2 at 

least 10 fold, ongoing work is focussing on this CALUX assay. Suspect lists of compounds that 

lead to an active response in Nrf2 CALUX assays are used to screen for the compounds that 

are causing the active Nrf2 response in the respective samples. Thereby, the integration of 

chemical non-target screening data with effect-based bioanalysis can further enhance 

prioritisation and ultimately assessment of chemical water quality.  
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5 Supplementary Info 

5.1 Compound Discoverer Setings DPWE 

Search name: DPWE_v20180803_supectScreening 

Search description: Untargeted environmental research workflow without statistics: Find and 

identify unknown compounds. 

- Performs retention time alignment, unknown compound detection, and compound 

grouping across all samples. Predicts elemental compositions for all compounds, and hides 

chemical background (using Blank samples).  Identifies compounds using mzCloud (ddMS2), 

ChemSpider (exact mass or formula) and local database searches against Mass Lists (exact 

mass and RT) and mzVault spectral libraries.  Performs similarity search for all compounds 

with ddMS2 data using mzCloud. And applies mzLogic to rank order structures from 

ChemSpider and mass list search results. 

 

 

Search date: 03/08/2018 09:51:04 

Created with Discoverer version: 3.0.0.287 

 

[Input Files (0)] 

      -->Select Spectra (38) 

 

      [Select Spectra (38)] 

            -->Detect Compounds (24) 

 

            [Detect Compounds (24)] 

                  -->Group Compounds (25) 

                  -->Merge Features (14) 

 

                  [Group Compounds (25)] 

                        -->Search mzCloud (27) 

                        -->Assign Compound Annotations (40) 

                        -->Search ChemSpider (22) 

                        -->Predict Compositions (37) 

                        -->Search Mass Lists (39) 

                        -->Fill Gaps (46) 

                        -->Mark Background Compounds (43) 

 

                        [Search mzCloud (27)] 

 

                        [Assign Compound Annotations (40)] 

 

                        [Search ChemSpider (22)] 

 

                        [Predict Compositions (37)] 

 

                        [Search Mass Lists (39)] 

 

                        [Fill Gaps (46)] 

 

                        [Mark Background Compounds (43)] 

 

                        [Merge Features (14)] 

 

                        [Descriptive Statistics (44)] 

 

                        [Differential Analysis (45)] 

 

------------------------------------------------------------------ 

Processing node 0: Input Files 

------------------------------------------------------------------ 

Input Data: 
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- File Name(s) (Hidden): 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-06.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-07.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-08.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-12.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-13.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-14.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-15.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-16.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-17.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-19.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-20.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-21.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-22.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-23.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-24.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-26.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-27.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-28.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-29.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-30.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-31.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-33.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-34.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-35.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-37.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-38.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-39.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-40.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-41.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-42.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-44.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-45.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-46.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-47.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-48.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-49.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-51.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-52.raw 

 D:\Data\2018\DPWE_NTS_20180424\pos\DPWE20180424pos-53.raw 

 

------------------------------------------------------------------ 

Processing node 38: Select Spectra 

------------------------------------------------------------------ 

1. General Settings: 

- Precursor Selection:  Use MS(n - 1) Precursor 

- Use Isotope Pattern in Precursor Reevaluation:  True 

- Provide Profile Spectra:  Automatic 

- Store Chromatograms:  False 

 

2. Spectrum Properties Filter: 

- Lower RT Limit:  0 

- Upper RT Limit:  0 

- First Scan:  0 

- Last Scan:  0 

- Ignore Specified Scans:  (not specified) 

- Lowest Charge State:  0 

- Highest Charge State:  0 

- Min. Precursor Mass:  100 Da 

- Max. Precursor Mass:  5000 Da 

- Total Intensity Threshold:  0 

- Minimum Peak Count:  1 

 

3. Scan Event Filters: 

- Mass Analyzer:  (not specified) 

- MS Order:  Any 

- Activation Type:  (not specified) 
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- Min. Collision Energy:  0 

- Max. Collision Energy:  1000 

- Scan Type:  Any 

- Polarity Mode:  (not specified) 

 

4. Peak Filters: 

- S/N Threshold (FT-only):  1.5 

 

5. Replacements for Unrecognized Properties: 

- Unrecognized Charge Replacements:  1 

- Unrecognized Mass Analyzer Replacements:  ITMS 

- Unrecognized MS Order Replacements:  MS2 

- Unrecognized Activation Type Replacements:  CID 

- Unrecognized Polarity Replacements:  + 

- Unrecognized MS Resolution@200 Replacements:  60000 

- Unrecognized MSn Resolution@200 Replacements:  30000 

 

------------------------------------------------------------------ 

Processing node 24: Detect Compounds 

------------------------------------------------------------------ 

1. General Settings: 

- Mass Tolerance [ppm]:  5 ppm 

- Intensity Tolerance [%]:  30 

- S/N Threshold:  3 

- Min. Peak Intensity:  100000 

- Ions: 

 [2M+ACN+H]+1 

 [2M+ACN+Na]+1 

 [2M+FA-H]-1 

 [2M+H]+1 

 [2M+K]+1 

 [2M+Na]+1 

 [2M+NH4]+1 

 [2M-H]-1 

 [2M-H+HAc]-1 

 [M+2H]+2 

 [M+3H]+3 

 [M+ACN+2H]+2 

 [M+ACN+H]+1 

 [M+ACN+Na]+1 

 [M+Cl]-1 

 [M+DMSO+H]+1 

 [M+FA-H]-1 

 [M+H]+1 

 [M+H+K]+2 

 [M+H+MeOH]+1 

 [M+H+Na]+2 

 [M+H+NH4]+2 

 [M+H-H2O]+1 

 [M+H-NH3]+1 

 [M+K]+1 

 [M+Na]+1 

 [M+NH4]+1 

 [M-2H]-2 

 [M-2H+K]-1 

 [M-H]-1 

 [M-H+HAc]-1 

 [M-H+TFA]-1 

 [M-H-H2O]-1 

- Base Ions:  [M+H]+1; [M-H]-1 

- Min. Element Counts:  C H 

- Max. Element Counts:  C90 H190 Br3 Cl4 F6 K2 N10 Na2 O18 P3 S5 

 

2. Peak Detection: 

- Filter Peaks:  True 

- Max. Peak Width [min]:  0.8 

- Remove Singlets:  False 
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- Min. # Scans per Peak:  3 

- Min. # Isotopes:  1 

 

------------------------------------------------------------------ 

Processing node 25: Group Compounds 

------------------------------------------------------------------ 

1. Compound Consolidation: 

- Mass Tolerance:  5 ppm 

- RT Tolerance [min]:  0.1 

 

2. Fragment Data Selection: 

- Preferred Ions:  [M+H]+1; [M-H]-1 

 

------------------------------------------------------------------ 

Processing node 27: Search mzCloud 

------------------------------------------------------------------ 

1. Search Settings: 

- Compound Classes:  All 

- Match Ion Activation Type:  True 

- Match Ion Activation Energy:  Match with Tolerance 

- Ion Activation Energy Tolerance:  20 

- Apply Intensity Threshold:  True 

- Precursor Mass Tolerance:  10 ppm 

- FT Fragment Mass Tolerance:  10 ppm 

- IT Fragment Mass Tolerance:  0.4 Da 

- Identity Search:  Cosine 

- Similarity Search:  Similarity Forward 

- Library:  Reference 

- Post Processing:  Recalibrated 

- Match Factor Threshold:  50 

- Max. # Results:  20 

 

------------------------------------------------------------------ 

Processing node 40: Assign Compound Annotations 

------------------------------------------------------------------ 

1. General Settings: 

- Mass Tolerance:  5 ppm 

 

2. Data Sources: 

- Data Source #1:  mzCloud Search 

- Data Source #2:  MassList Search 

- Data Source #3:  Predicted Compositions 

- Data Source #4:  ChemSpider Search 

- Data Source #5:  (not specified) 

 

------------------------------------------------------------------ 

Processing node 22: Search ChemSpider 

------------------------------------------------------------------ 

1. Search Settings: 

- Database(s): 

 ACToR: Aggregated Computational Toxicology Resource 

 DrugBank 

 EAWAG Biocatalysis/Biodegradation Database 

 EPA DSSTox 

 EPA Toxcast 

 FDA UNII - NLM 

- Search Mode:  By Formula or Mass 

- Mass Tolerance:  5 ppm 

- Max. # of results per compound:  20 

- Max. # of Predicted Compositions to be searched per Compound:  3 

- Result Order (for Max. # of results per compound):  Order By Reference Count (DESC) 

 

2. Predicted Composition Annotation: 

- Check All Predicted Compositions:  True 

 

------------------------------------------------------------------ 

Processing node 37: Predict Compositions 
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------------------------------------------------------------------ 

1. Prediction Settings: 

- Mass Tolerance:  5 ppm 

- Min. Element Counts:  C H 

- Max. Element Counts:  C40 H60 Cl5 N10 O18 P3 S5 

- Min. RDBE:  0 

- Max. RDBE:  40 

- Min. H/C:  0.1 

- Max. H/C:  3.5 

- Max. # Candidates:  10 

- Max. # Internal Candidates:  500 

 

2. Pattern Matching: 

- Intensity Tolerance [%]:  30 

- Intensity Threshold [%]:  0.1 

- S/N Threshold:  3 

- Min. Spectral Fit [%]:  30 

- Min. Pattern Cov. [%]:  80 

- Use Dynamic Recalibration:  True 

 

3. Fragments Matching: 

- Use Fragments Matching:  True 

- Mass Tolerance:  5 ppm 

- S/N Threshold:  3 

 

------------------------------------------------------------------ 

Processing node 39: Search Mass Lists 

------------------------------------------------------------------ 

1. Search Settings: 

- Mass Lists:  

ExpectedCompounds20180731.massList|suspects_allcombined_NO_SMILES.massList 

- Mass Tolerance:  5 ppm 

- Use Retention Time:  False 

- RT Tolerance [min]:  0.5 

 

------------------------------------------------------------------ 

Processing node 46: Fill Gaps 

------------------------------------------------------------------ 

1. General Settings: 

- Mass Tolerance:  5 ppm 

- S/N Threshold:  1.5 

- Use Real Peak Detection:  True 

 

------------------------------------------------------------------ 

Processing node 43: Mark Background Compounds 

------------------------------------------------------------------ 

1. General Settings: 

- Max. Sample/Blank:  5 

- Max. Blank/Sample:  0 

- Hide Background:  True 

 

------------------------------------------------------------------ 

Processing node 14: Merge Features 

------------------------------------------------------------------ 

1. Peak Consolidation: 

- Mass Tolerance:  5 ppm 

- RT Tolerance [min]:  0.1 

 

------------------------------------------------------------------ 

Processing node 44: Descriptive Statistics 

------------------------------------------------------------------ 

No parameters 

 

------------------------------------------------------------------ 

Processing node 45: Differential Analysis 

------------------------------------------------------------------ 

1. General Settings: 
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- Log10 Transform Values:  True 

 

5.2 HC PWN-UV-GAC 
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FIGURE 17 HIERARCHICAL CLUSTERING OF PWN-UV-GAC FEATURES DETECTED IN POSITIVE (UPPER PANEL) 

AND NEGATIVE (LOWER PANEL) IONIZATION MODE BASED ON PEARSON CORRELATION USING THE 

WARD.D2 METHOD AND MAX NORMALIZED FEATURE INTENSITIES. 27 CLUSTERS. 

5.3 Compound Discoverer Settings AquaNES 

Search name: 

AquaNES_pos_20181207_noPrimSedEfl_log2FC_toxcast_WFD_Btargets_extractsOnly 

Search description: Untargeted environmental research workflow without statistics: Find and 

identify unknown compounds. 

- Performs retention time alignment, unknown compound detection, and compound 

grouping across all samples. Predicts elemental compositions for all compounds, and hides 

chemical background (using Blank samples).  Identifies compounds using mzCloud (ddMS2), 

ChemSpider (exact mass or formula) and local database searches against Mass Lists (exact 

mass and RT) and mzVault spectral libraries.  Performs similarity search for all compounds 

with ddMS2 data using mzCloud. And applies mzLogic to rank order structures from 

ChemSpider and mass list search results. 

 

 

Search date: 07/12/2018 10:15:20 

Created with Discoverer version: 3.0.0.294 

 

[Input Files (0)] 

      -->Select Spectra (38) 

 

      [Select Spectra (38)] 

            -->Detect Compounds (24) 

 

            [Detect Compounds (24)] 

                  -->Group Compounds (25) 

                  -->Merge Features (14) 

 

                  [Group Compounds (25)] 

                        -->Search mzCloud (27) 

                        -->Assign Compound Annotations (40) 

                        -->Search ChemSpider (22) 

                        -->Predict Compositions (37) 

                        -->Search Mass Lists (39) 

                        -->Fill Gaps (44) 

 

                        [Fill Gaps (44)] 

                              -->Mark Background Compounds (43) 

 

                              [Search mzCloud (27)] 

 

                              [Assign Compound Annotations (40)] 

 

                              [Search ChemSpider (22)] 

 

                              [Predict Compositions (37)] 

 

                              [Search Mass Lists (39)] 

 

                              [Mark Background Compounds (43)] 

 

                              [Merge Features (14)] 

 

                              [Differential Analysis (45)] 

 

                              [Descriptive Statistics (46)] 

 

------------------------------------------------------------------ 

Processing node 0: Input Files 

------------------------------------------------------------------ 

Input Data: 

- File Name(s) (Hidden): 
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------------------------------------------------------------------ 

Processing node 38: Select Spectra 

------------------------------------------------------------------ 

1. General Settings: 

- Precursor Selection:  Use MS(n - 1) Precursor 

- Use Isotope Pattern in Precursor Reevaluation:  True 

- Provide Profile Spectra:  Automatic 

- Store Chromatograms:  False 

 

2. Spectrum Properties Filter: 

- Lower RT Limit:  2 

- Upper RT Limit:  27 

- First Scan:  0 

- Last Scan:  0 

- Ignore Specified Scans:  (not specified) 
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- Lowest Charge State:  0 

- Highest Charge State:  0 

- Min. Precursor Mass:  100 Da 

- Max. Precursor Mass:  5000 Da 

- Total Intensity Threshold:  0 

- Minimum Peak Count:  1 

 

3. Scan Event Filters: 

- Mass Analyzer:  (not specified) 

- MS Order:  Any 

- Activation Type:  (not specified) 

- Min. Collision Energy:  0 

- Max. Collision Energy:  1000 

- Scan Type:  Any 

- Polarity Mode:  (not specified) 

 

4. Peak Filters: 

- S/N Threshold (FT-only):  1.5 

 

5. Replacements for Unrecognized Properties: 

- Unrecognized Charge Replacements:  1 

- Unrecognized Mass Analyzer Replacements:  ITMS 

- Unrecognized MS Order Replacements:  MS2 

- Unrecognized Activation Type Replacements:  CID 

- Unrecognized Polarity Replacements:  + 

- Unrecognized MS Resolution@200 Replacements:  60000 

- Unrecognized MSn Resolution@200 Replacements:  30000 

 

------------------------------------------------------------------ 

Processing node 24: Detect Compounds 

------------------------------------------------------------------ 

1. General Settings: 

- Mass Tolerance [ppm]:  5 ppm 

- Intensity Tolerance [%]:  30 

- S/N Threshold:  3 

- Min. Peak Intensity:  100000 

- Ions: 

 [M+2H]+2 

 [M+ACN+H]+1 

 [M+Cl]-1 

 [M+H]+1 

 [M+H+MeOH]+1 

 [M+H-H2O]+1 

 [M+K]+1 

 [M+Na]+1 

 [M+NH4]+1 

 [M-H]-1 

- Base Ions:  [M+H]+1; [M-H]-1 

- Min. Element Counts:  C H 

- Max. Element Counts:  C90 H190 Br3 Cl4 F6 K2 N10 Na2 O18 P3 S5 

 

2. Peak Detection: 

- Filter Peaks:  True 

- Max. Peak Width [min]:  0.8 

- Remove Singlets:  False 

- Min. # Scans per Peak:  3 

- Min. # Isotopes:  1 

 

------------------------------------------------------------------ 

Processing node 25: Group Compounds 

------------------------------------------------------------------ 

1. Compound Consolidation: 

- Mass Tolerance:  5 ppm 

- RT Tolerance [min]:  0.1 

 

2. Fragment Data Selection: 

- Preferred Ions:  [M+H]+1; [M-H]-1 
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------------------------------------------------------------------ 

Processing node 27: Search mzCloud 

------------------------------------------------------------------ 

1. Search Settings: 

- Compound Classes:  All 

- Match Ion Activation Type:  True 

- Match Ion Activation Energy:  Match with Tolerance 

- Ion Activation Energy Tolerance:  20 

- Apply Intensity Threshold:  True 

- Precursor Mass Tolerance:  10 ppm 

- FT Fragment Mass Tolerance:  10 ppm 

- IT Fragment Mass Tolerance:  0.4 Da 

- Identity Search:  Cosine 

- Similarity Search:  Similarity Forward 

- Library:  Reference 

- Post Processing:  Recalibrated 

- Match Factor Threshold:  50 

- Max. # Results:  20 

 

------------------------------------------------------------------ 

Processing node 40: Assign Compound Annotations 

------------------------------------------------------------------ 

1. General Settings: 

- Mass Tolerance:  3 ppm 

 

2. Data Sources: 

- Data Source #1:  MassList Search 

- Data Source #2:  mzCloud Search 

- Data Source #3:  ChemSpider Search 

- Data Source #4:  Predicted Compositions 

- Data Source #5:  (not specified) 

 

------------------------------------------------------------------ 

Processing node 22: Search ChemSpider 

------------------------------------------------------------------ 

1. Search Settings: 

- Database(s): 

 EAWAG Biocatalysis/Biodegradation Database 

 EPA DSSTox 

 EPA Toxcast 

- Search Mode:  By Formula or Mass 

- Mass Tolerance:  3 ppm 

- Max. # of results per compound:  20 

- Max. # of Predicted Compositions to be searched per Compound:  3 

- Result Order (for Max. # of results per compound):  Order By Reference Count (DESC) 

 

2. Predicted Composition Annotation: 

- Check All Predicted Compositions:  True 

 

------------------------------------------------------------------ 

Processing node 37: Predict Compositions 

------------------------------------------------------------------ 

1. Prediction Settings: 

- Mass Tolerance:  3 ppm 

- Min. Element Counts:  C H 

- Max. Element Counts:  C90 H190 Br3 Cl8 F18 N10 O18 P3 S5 

- Min. RDBE:  0 

- Max. RDBE:  40 

- Min. H/C:  0.1 

- Max. H/C:  3.5 

- Max. # Candidates:  10 

- Max. # Internal Candidates:  500 

 

2. Pattern Matching: 

- Intensity Tolerance [%]:  30 

- Intensity Threshold [%]:  0.1 
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- S/N Threshold:  3 

- Min. Spectral Fit [%]:  30 

- Min. Pattern Cov. [%]:  80 

- Use Dynamic Recalibration:  True 

 

3. Fragments Matching: 

- Use Fragments Matching:  True 

- Mass Tolerance:  5 ppm 

- S/N Threshold:  3 

 

------------------------------------------------------------------ 

Processing node 39: Search Mass Lists 

------------------------------------------------------------------ 

1. Search Settings: 

- Mass Lists:  

SusDat4cd30.massList|P53_chemPar.massList|PXR_chemPar.massList|PPARg2r_chemPar.mass

List|PPARa2_chemPar.massList|Nrf2_chemPar.massList|ERa_chemPar.massList|Cytotox_chemP

ar.massList|AR_chemPar.massList|GR_chemPar.massList|WFD_prioritySubst_chemPar.massList

|anti.AR_chemPar.massList|BerlinTargets.massList 

- Mass Tolerance:  3 ppm 

- Use Retention Time:  False 

- RT Tolerance [min]:  0.5 

 

------------------------------------------------------------------ 

Processing node 44: Fill Gaps 

------------------------------------------------------------------ 

1. General Settings: 

- Mass Tolerance:  5 ppm 

- S/N Threshold:  1.5 

- Use Real Peak Detection:  True 

 

------------------------------------------------------------------ 

Processing node 43: Mark Background Compounds 

------------------------------------------------------------------ 

1. General Settings: 

- Max. Sample/Blank:  5 

- Max. Blank/Sample:  0 

- Hide Background:  False 

 

------------------------------------------------------------------ 

Processing node 14: Merge Features 

------------------------------------------------------------------ 

1. Peak Consolidation: 

- Mass Tolerance:  3 ppm 

- RT Tolerance [min]:  0.1 

 

------------------------------------------------------------------ 

Processing node 45: Differential Analysis 

------------------------------------------------------------------ 

1. General Settings: 

- Log10 Transform Values:  True 

 

------------------------------------------------------------------ 

Processing node 46: Descriptive Statistics 

------------------------------------------------------------------ 

No parameters 
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5.4 AquaNES Screeplot 

 

Two thirds of the variance in the NTS data could be explained by the first two principal 

components as shown in the Screeplot. 
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