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A B S T R A C T

Ferric based coprecipitation–low pressure membrane filtration is a promising arsenic (As) removal method,
however, membrane fouling mechanisms are not fully understood. In this study we investigated the effect of feed
water composition and membrane pore size on arsenate [As(V)] removal and membrane fouling. We observed
that As removal efficiency was independent of the membrane pore size because the size of the Fe(III) particles
was larger than the pore size of the membranes, attributed to a high calcium concentration in the feed water.
Arsenic coprecipitation with Fe(III) (oxyhydr)oxides rapidly reached equilibrium before membrane filtration,
within 1 min. Therefore, As removal efficiency was not improved by increasing residence time before membrane
filtration. The removal of As(V) was strongly dependent on feed water composition. A higher Fe(III) dose was
required to reduce As(V) to sub-µg/L levels for feed water containing higher concentration of oxyanions such as
phosphate and silicate, and lower concentration of cations such as calcium. Cake-layer formation was observed
to be the predominant membrane fouling mechanism.

1. Introduction

Arsenic (As) is a well-known human carcinogen, classified in Group
1 by International Agency for Research on Cancer – IARC [12,22,36].
The WHO guideline for As in drinking water is 10 µg/L, however
concerns are growing that chronic ingestion of low As concentrations
can also adversely affect human health [1,32]. Therefore, certain water
treatment companies aim to produce drinking water with As con-
centrations below 1 µg/L [1,5,38].

Coprecipitation of arsenate [As(V)] with Fe(III) (oxyhydr)oxides is a
widely used As removal method [10,14,20,29,34]. For arsenite [As
(III)], coprecipitation with Fe(III) (oxyhydr)oxides is less effective in
the pH range of most groundwaters because As(III) is uncharged and
have a significantly lower affinity for adsorption to Fe(III) (oxyhydr)
oxide surfaces. Typically, a Fe(III) coagulant is dosed in water to pro-
duce Fe(III) (oxyhydr)oxides which adsorb As(V) from water [20,29].
The As(V) bearing Fe(III) precipitates are subsequently removed in a

granular media filter [16,17,19,26,31]. These precipitates can also be
removed by low-pressure membranes like microfiltration (MF) and ul-
trafiltration (UF), especially when removal of colloidal As bearing Fe
(III) particles is to be achieved [7,9,15,23,31,42]. However, wide-scale
application of low-pressure membrane filtration for As removal is re-
stricted, because of lack of detailed knowledge about membrane fouling
due to Fe(III) particles and operational consequences.

Arsenate coprecipitation efficiency with Fe(III) (oxyhydr)oxides and
the size of resulting Fe(III) particles is dependent on the ionic compo-
sition of water [33,41]. An overview of possible fouling mechanisms for
low pressure membranes is presented in Fig. 1. It is expected that the Fe
(III) particles which are larger than the membrane pores will be de-
posited on the membrane surface, i.e. form a cake-layer (Fig. 1A)
whereas Fe(III) particles smaller or comparable to the membrane pores
will penetrate deeper into membrane structure and cause internal
particle deposition (Fig. 1B). Also, fouling can occur due to adhesion of
Fe(III) particles to the membrane material (Fig. 1C). To what extent
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these different Fe(III) deposits are removed by backwashing is not yet
fully understood. This understanding is required to develop advanced
membrane cleaning strategies for sustainable membrane operation.

We have previously shown that As levels much lower than 1 µg/L
can be achieved by oxidizing As(III), the predominant As species in
anoxic groundwater, by potassium permanganate (KMnO4) before co-
precipitation with Fe(III)(oxyhydr)oxides [2]. The use of KMnO4,
however, can be avoided by treating the effluents of rapid sand filters
(RSFs) which predominantly contain As(V) due to complete As(III)
oxidation to As(V) in rapid sand filters (Fig. S1) [2,16,17]. Conse-
quently, the aim of this study is to investigate As(V) removal efficiency
and membrane fouling mechanisms during Fe(III) based coprecipitation
in combination with low-pressure membrane filtration with the objec-
tive to achieve an As reduction to below 1 µg/L in RSF effluents.

2. Materials and methods

2.1. Feed water

Ionic composition of water affects both As(V) adsorption and size of
Fe(III) particles [4]. Also the size of Fe(III) particles is expected to
impact membrane fouling (Fig. 1). Therefore, we used rapid sand filter
effluent samples from two different water treatment plants in the
Netherlands (Fig. S2) which are significantly different in ionic compo-
sition (Table 1 and Table S1).

2.2. Membrane and module characteristics

To investigate the effect of membrane pore size on As removal and
membrane fouling, two commercially available hollow fiber mem-
branes (Pentair X-Flow, The Netherlands) were used which had dif-
ferent average pore sizes (MF: 200 nm and UF: 20 nm, Table 2). Both
types of membranes were made of a similar polymeric polyethersulfone
and polyvinylpyrrolidone (PES/PVP) material. Also, both membranes

were operated inside-out. Fig. 2 presents the scanning electron micro-
scope (SEM) images of the inner-surface and the cross-section of the
membranes.

Experiments were performed with laboratory scale membrane
modules that were made by potting (with an epoxy resin) multiple
hollow fibre membranes in a transparent polyvinyl chloride (PVC) tube,
as previously described by Floris et al. [13]. The total filtration area for
both membranes was 20 cm2, which was realized by installing 2 and 4
hollow fibre membranes for MF and UF respectively.

2.3. Membrane filtration apparatus and filtration procedure

An automated laboratory scale set-up was used for the experiments
(Fig. 3). The setup consisted of a pulsation-free neMYSIS syringe pump
(Cetoni GmbG, Germany) that supplied feed solution to the membrane
module at a constant flow of 8.3 mL/min (corresponding to the flux of
250 L/m2.h). A membrane pump (ProMinent GmbH, Heidelberg, Ger-
many) was used for in-line dosing of the FeCl3 stock solution in the feed
at a constant flow of 0.3 mL/min. The concentration of the FeCl3 stock
solution was adjusted to change Fe(III) dose in different experiments.
The hydraulic residence time (HRT) between the point of Fe(III) dose
and membrane filtration was 1 min in all the experiments except for the
study of coprecipitation kinetics where a HRT of 5 min was applied. The
increased HRT before membrane filtration was achieved by increasing
the length of the feed tube. The trans-membrane pressure (TMP) was
measured by a sensor (Wika Transmitter 891.13.500) every second and
logged using SquirrelView Data Logger (Grant Instruments, Cambridge,
UK).

Each experiment consisted of 6 consecutive filtration (1 h each) and
backwash cycles (33.3 mL/min, 20 sec each cycle). Ultrapure water was
used for backwashing and the backwash flow was provided by a pres-
surised vessel (3 bars) combined with an adjustable flow control.
Samples of the feed water, including Fe(III) dosing, were collected di-
rectly by opening the valve (point 2 in Fig. 3). Permeate was sampled

Fig. 1. Different removal mechanisms for As
bearing Fe(III) particles expected for low-
pressure membrane filtration. (A) Pore size
smaller than Fe(III) particles results in cake
layer formation and pore blocking (B) Pore
size larger or comparable to Fe(III) particles
results in internal deposition. (C) Pore size
larger than Fe(III) particles and adsorption
affinity resulting in internal membrane
fouling. (D) Pore size larger than Fe(III)
particles without adsorption affinity re-
sulting in transport of particles through the
membrane.

Table 1
Composition rapid sand filter effluent samples, designated as feed 1 and feed 2,
obtained from two water treatment plants in the Netherlands.

Parameter Unit Feed 1 Feed 2

pH – 7.8 8.2
Arsenic µg/L As 2.3 3.3
Iron µg/L Fe < 10 <10
Manganese µg/L Mn <10 <10
Ortho-phosphate µg/L P 8 62
Silicate µg/L Si 3640 4585
Dissolved organic carbon mg/L C 1.9 2.1
Calcium mg/L Ca 90 48
Magnesium mg/L Mg 11 8.5

Table 2
Membrane and module characteristics. Membranes were supplied by Pentair X-
Flow, the Netherlands. Modules were constructed at KWRWater Cycle Research
Institute, the Netherlands.

UF membrane MF membrane

Commercial identification UFC M5 MF02 M2
Membrane process Ultrafiltration Microfiltration
Membrane material PES/PVP PES/PVP
Pore size [nm] 20 200
Filtration area [cm2] 20 20
No. of fibers per module [–] 4 2
Inner fiber diameter [mm] 0.8 1.5
Volume/Area ratio [mm] 0.2 0.4
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from a beaker that collected the entire permeate volume produced
during a filtration cycle (point 1 in Fig. 3), except in the experiments
where the effect of successive filtration cycles on As(V) removal was
studied. Backwash samples were collected from a beaker that collected
the entire backwash water volume produced during a backwash cycle
(point 3 in Fig. 3).

2.4. Reagents and chemicals

Ferric chloride was dosed using a stock solution that was prepared
by dissolving FeCl3·6H2O (CAS: 10025–77-1, 97% purity, J.T Baker,
Deventer, the Netherlands) in 0.5 L ultrapure water. A stock solution of
1.0 g/L As2O5 (CAS: 12044–50-7, 99% purity) obtained from inorganic
ventures (Nieuwegein, the Netherlands) was used to spike the water
with As(V). The ultrapure water was obtained by treating distilled
water with a Purelab Chorus (Veolia, the Netherlands).

2.5. Analysis methods for water samples

Arsenic, Fe, Ca, Mg, Si, P were measured by inductively coupled
plasma mass spectrometry (ICP-MS) using the Thermo Scientific iCAP
TQ (Thermo Fisher Scientific, Breda, the Netherlands). Total organic
carbon analysis was carried out with a Shimadzu TOC-VCPH total or-
ganic carbon analyser (Shimadzu Benelux, ‘s-Hertogenbosch, the
Netherlands).

2.6. SEM-EDX analysis

Samples of the fouled UF membranes (membrane after 6 filtration
and 5 backwash cycles) and backwashed membranes (6 filtration and 6
backwash cycles) were analyzed by SEM to gain further insights into
fouling mechanisms. The analysis was carried out at the Wageningen
Electron Microscopy Centre at Wageningen University (WUR), using a
SEM device (FEI Magellan 400) that was equipped with an Oxford
Instruments X-MAX X-ray detector for energy dispersive X-ray (EDX)
analysis. The virgin MF and UF membranes were conditioned by ul-
trapure water passage before the SEM analysis. For analysis of each
sample, two fragments of the bore side (longitudinal cut) and two
fragments of the cross-section (transversal cut) were fixed on a sample
holder and coated with tungsten using a Leica SCD 500 sputtercoater.

Fig. 2. The SEM micrographs of the UF and MF membranes. The membranes were pre-conditioned with ultrapure water. (A) and (C) show the inner-surface of the UF
and MF respectively and (B) and (D) show the cross-section of the UF and MF respectively.

Fig. 3. Schematic diagram of the experimental setup. Points marked as 1, 2 and
3 indicate permeate, feed and backwash water sampling points, respectively.
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2.7. Calculations

2.7.1. Rejection efficiency
The rejection efficiency of a solute (e.g. As and Fe) during filtration

is given by

⎜ ⎟= ⎛
⎝

− ⎞
⎠

×R
C
C

1 100[%]i
p

f i (1)

where Ri is the rejection efficiency of a solute i, Cp is the permeate
concentration and Cf is the feed concentration (mg/L).

2.7.2. Membrane permeability recovery
To assess the retention mechanism of Fe(III) particles, the evolution

of membrane permeability under different conditions was analyzed.
The membrane permeability was calculated according to

=k J
TMP

[L/m ·h·bar]2
(2)

where k is the membrane permeability, J is the flux (L/m2.h) and TMP
is the trans-membrane pressure (bar).

The permeability recovery for each backwash cycle was calculated
by

= ×k
k
k

100[%]R
after backwash

clean membrane (3)

where kR is the permeability recovery, kafter backwash is the membrane
permeability after backwash and kclean membrane is the permeability of
the virgin membrane.

2.7.3. Fouling analysis with resistance-in-series model
To assess the predominant membrane fouling mechanisms, we de-

veloped a resistance in series model [6,13,27].
For the flux in porous media we use Darcy's Law [8,28] which is

given by

=J TMP ν R/( · )[L/m ·h]T
2 (4)

where ν is the dynamic viscosity of the solution (Pa.s) and RT is the total
resistance to filtration (1/m) which is the sum of clean membrane re-
sistance (RM), resistance due to the external cake-layer deposition (RE)
and the resistance due to the internal deposition (RI).

= + +R R R R [1/m]T M E I (5)

We obtain RM by filtration of ultrapure water through a virgin
membrane according to Eq. (4) and is given by

= ⎛
⎝

⎞
⎠

R TMP
ν J·M

virgin ultrapurewater,

The filtration of feed water, which includes Fe(III) particles, through
a virgin membrane is expected to cause membrane fouling due to
particle deposition and therefore RT can be obtained as follows.

= ⎛
⎝

⎞
⎠

R TMP
ν J·T

fouled

The internal and external fouling resistance (RE + RI) is equal to
RT–RM.

We further assume that the hydraulic backwash will remove all the
external fouling (we checked this assumption by SEM–EDX, see Section
3.2.2). We therefore obtain RI as follows

= ⎛
⎝

⎞
⎠

R TMP
ν J·I

backwashed

We finally determine RE by subtracting the membrane resistance
(RM) and internal resistance (RI) from the total resistance (RT).

Fig. 4. Removal efficiency of As and Fe
in function of Fe(III) dose in experiments
with (A) UF and (B) MF. The experiments
were performed with Feed 1 after spiking
with As(V) to achieve initial As = As
(V) = 5 µg/L. The removal of 80% cor-
responds to 1 µg/L residual As in water.
(C) Residual As in function of Fe(III)
dose, feed water quality and hydraulic
residence time between point of Fe(III)
dosing and UF. Feed 1 and Feed 2 were
not spiked with additional As(V).
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3. Results and discussion

3.1. Arsenic removal efficiency

3.1.1. Impact of membrane pore size
The effect of membrane pore size on As(V) removal efficiency was

studied using Feed 1 which had been spiked to achieve 5 µg/L As(V)
concentration. The experiments included dosing of different Fe(III)
concentrations (0–4 mg/L) into the feed solution and filtration-back-
wash cycles. We observed that in the absence of Fe(III) dose, no As(V)
was removed for both MF and UF membranes (Fig. 4A and 4B) due to
the small size of As(V) oxyanion [3,25]. Also, adsorption of As(V) to the
membranes did not occur because of lack of affinity between As(V)
oxyanion (Fig. S3) and the membranes which have been shown to have
a negative surface charge in previous studies [13,24,37]. With Fe(III)
dosing, As(V) removal was significant, due to coprecipitation of As(V)
with formed Fe(III) (oxyhydr)oxides [15]. Arsenic removal efficiency
increased with increasing Fe(III) dosage for both MF and UF mem-
branes. Also, the removal of Fe close to 100% was observed in all cases
(Fig. 4A and B). These results indicate that As removal efficiency was
independent of membrane pore sizes because the size of Fe(III) particles
was larger than, or at least comparable to, the membrane pore sizes.
This conclusion is also supported by Ahmad et al. [4] where we ob-
served Fe(III) particle sizes in the range of 2–80 µm (25 µm most
abundant). The growth of Fe(III) precipitates to such large sizes can be
attributed to the natural presence of high Ca concentrations in given
feed water [4].

3.1.2. Impact of feed water composition and hydraulic residence time
Arsenic coprecipitation with Fe(III) (oxyhydr)oxides is known to be

sensitive to ionic composition of water [4,29,40]. To gain further in-
sights into the effect of water composition on As removal, experiments
were carried out with the two feed solutions with different ionic com-
position using UF membranes. Arsenic concentrations below 1 µg/L
were obtained by dosing 1 mg/L Fe(III) dose for Feed 1 and 3 mg/L Fe
(III) dose for Feed 2 (Fig. 4C). The lower As(V) removal efficiency for
Feed 1 compared to Feed 2 can be explained by taking into account the
effect of feed water composition on the coprecipitation of As(V) and Fe
(III) (oxyhydr)oxides. For example, the concentration of phosphate and
silicate oxyanions, which compete with As(V) for adsorption sites on Fe
(III) (oxyhydr)oxides, is much higher in Feed 2 than Feed 1 (Table 1). In
addition, Feed 2 has a lower concentration of bivalent cations than Feed
1 (90 mg/L compared to 48 mg/L Ca). It is known that the presence of
bivalent cations can enhance the efficiency of As(V) coprecipitation
with Fe(III) (oxyhydr)oxides involving mechanisms such as neu-
tralization of the Fe(III) precipitate surface charge by Ca and formation
of ternary complexes between Fe(III), As(V) and Ca [39,40,41]. Finally,
Feed 1 has a lower pH compared to Feed 2 which can also contribute to
the higher As adsorption to Fe(III) precipitates due to the fact that Fe
(III) (oxyhydr)oxides at lower pH will have more positive charge on the
surface and hence a higher number of adsorption sites for oxyanions
[21,30].

To gain insights into the kinetics of As(V) and Fe(III) (oxyhydr)oxide
coprecipitation, a set of experiments was carried out at an increased
HRT of 5 min before removal of the formed Fe(III) (oxyhydr)oxides by
the membranes. Results show that As(V) concentrations in the permeate
at 5 min HRT is comparable to As(V) concentrations found in experi-
ments having 1 min HRT (applied in all experiments) (Fig. 4C), in-
dicating that As(V) coprecipitation with Fe(III) (oxyhydr)oxides rapidly
reached equilibrium within 1 min. Such rapid coprecipitation of As has
also been reported in previous studies [14,18,30].

We also studied As(V) removal as a function of the successive
number of filtration cycles (filtration cycles 1, 3 and 6). No differences
were observed for As(V) removal between the filtration cycles (Fig. 5),
confirming that As(V) uptake by Fe(III) precipitates reached equili-
brium before the suspension entered the membrane, i.e. in 1 min.

3.2. Membrane fouling

3.2.1. Clean water flux measurements
Prior to dosing Fe(III), the membranes were conditioned using ul-

trapure water at a flux of 250 L/m2 h until a stable TMP was achieved
(normally 1 h). The calculated permeability (k) and the membrane
resistance (RM) (Table 3) were used for the permeability recovery cal-
culations (following sections) and to verify the integrity of the mem-
brane modules before each experiment. The TMP for MF was lower than
the measurement limit of the sensor in the experimental setup

Fig. 5. Arsenic removal in function of the number of filtration cycles. Only UF
membranes were used for this experiment. Fe(III) dose for Feed 1 and Feed 2
was 1 mg/L and 3 mg/L, respectively. Bulk permeate refers to total permeate
volume produced by the 6 filtration cycles.

Table 3
Clean water permeability and corresponding resistance calculated from the
ultrapure water flux.

UF MF*

Permeability (L/m2.hour.bar) (1.25 ± 0.08) × 103 > 3.13 × 105

Membrane resistance (1/m) (2.88 ± 0.24) × 1011 < 1.15 × 109

* TMP was lower than the lower measurement limit of the sensor
(0.0008 bar).

Fig. 6. Evolution of TMP during UF experiments. During the experiments, flux
was constant at 250 L/m2.h. For MF the TMP was consistently lower than the
lower measurement limit (0.0008 bar) therefore not shown in the graph.
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(0.0008 bar) and therefore the exact permeability could not be calcu-
lated for MF. In the following sections we discuss Fe(III) particle re-
tention and fouling of UF membranes.

3.2.2. Fouling of UF membranes
Fig. 6 presents the effect of Fe(III) particle deposition on TMP

during 6 filtration–backwash cycles for Feed 1 and Feed 2 with 1 and
3 mg/L Fe(III) dosing respectively which resulted in As below 1 µg/L in
the permeate. The initial TMP (clean membrane) was similar for both
feeds, but the difference in Fe(III) dose produced clear differences in
TMP increase during the filtration cycles. For example, the average
TMP increase per cycle for Feed 1 and Feed 2 was 0.012 and 0.072 bar/
h respectively which shows the higher susceptibility of membrane
fouling at a higher Fe(III) dose. Nevertheless, in both cases the initial
TMP was effectively restored after the backwash procedure (Fig. 6 and
Fig. S4), indicating a predominance of reversible fouling at 1 and 3 mg/
L Fe(III) dosing.

To further elucidate fouling mechanisms, membranes were analyzed
visually and with SEM–EDX (Figs. 7–9). The visual effect of the de-
position of Fe(III) precipitates on UF membrane before backwash (i.e.
after 6 filtration and 5 backwash cycles) compared to after backwash
(i.e. 6 filtration and 6 backwash cycles) in an experiment with Feed 2
dosed with 3 mg/L Fe(III) (As below 1 µg/L) is presented in Fig. 7. The
surface of the UF before backwash is visually very different from both
the virgin UF membrane and the backwashed UF membrane. It shows
an irregular layer of reddish-brown deposit (As bearing Fe(III) pre-
cipitates). No such deposits are observed in the virgin and backwashed
UF membranes which implies that the hydraulic backwash effectively

Fig. 7. The visuals of the UF membranes after experiments with Feed 2 dosed
with 3 mg/L Fe(III). (A) Virgin membrane after conditioning with ultrapure
water, (B) UF before backwash (membrane after 6 filtration and 5 backwash
cycles) and (C) UF after backwash (6 filtration and 6 backwash cycles).

Fig. 8. SEM micrograph (A and C) and EDX scans (B and D) of the cross section of the UF membrane specimen shown in Fig. 7B. (A) Cross section of UF membrane
before backwash. (B) EDX spectrum of Fig. 8A, showing signal from Fe-atoms, indicating the presence of a Fe-based cake layer on the membrane surface. (C) Enlarged
section of Fig. 8A, indicating the line at which EDX data is acquired. (D) EDX data of the line in Fig. 8C, highlighting Fe (yellow), O (green) and S (blue) signals along
the line as function of detector-counts per second (cps). The dot on the line in Fig. 8C equals 0 µm on the y-axis of Fig. 8D. At distance> 8 µm, increasing sulfur signal
indicates the presence of the supporting layer. At distance 8–2 µm, low sulfur signal and higher iron and oxygen signal indicates the presence (and thickness) of the
deposited Fe(III) (oxyhydr)oxide cake-layer. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
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removed the Fe(III) deposits.
SEM micrographs and EDX scans of the cross section of the fouled

UF membrane (i.e. the membrane specimen shown in Fig. 7B), show Fe-
signal restricted only to an approximate depth of 7 µm on the mem-
brane surface (Fig. 8). This confirms that Fe(III) particles were de-
posited as a cake-layer on membrane surface. Thus, based on membrane
permeability recovery and complimentary visual and SEM-EDX analysis
we conclude that the removal of As bearing Fe(III) particles occurred
largely on the surface of UF membrane i.e. by cake-layer formation.
Membrane permeability was reduced during a filtration cycle probably
due to a growing cake on the membrane surface and a hydraulic
backwash effectively removed the surface deposits and restored mem-
brane permeability (Fig. 6 and Fig. S4).

3.2.3. Fouling analysis by resistance-in-series model
The resistance model (see Section 2.7.3) was used to further un-

derstand the fouling and contribution of different resistances during
filtration. For both Feed 1 and Feed 2, dosed with different Fe(III)
concentrations, the total resistance was dominated by membrane re-
sistance (RM) followed by external resistance (RE) (Fig. 10A). The in-
ternal resistance (RI), on the other hand, was very small and may be due
to some internal deposition of Fe(III) particles which might have pe-
netrated somewhat deeper into the membrane pores [35]. Particles
deposited within the membrane pore structure are likely to be subjected
to lower hydraulic shear forces and are therefore not effectively re-
moved by hydraulic backwashing [11]. The contribution of RE for Feed

2 was higher than Feed 1 which can be explained easily by the higher Fe
(III) dose applied for Feed 2.

The resistance analysis was also carried out with different Fe(III)
doses in Feed 1 (Fig. 10B). The total resistance systematically increased
with the increments in Fe(III) dose. Again, RM dominated the total re-
sistance followed by RE and the RI was the smallest. The systematic
increase in the RE as a function of Fe(III) dose is consistent with the
trend observed (cake-layer build-up) in the experiments with Feed 1
and Feed 2 at their specific optimum Fe(III) doses required for As re-
moval to below 1 µg/L (Fig. 10A). Thus, cake-layer formation was
found to be the major proportion of fouling resistance.

4. Conclusions and implications for the practice

The removal of As(V) and membrane fouling mechanisms during Fe
(III) based coprecipitation–low pressure membrane filtration were stu-
died for achieving As reduction to very low levels below 1 µg/L in rapid
sand filter effluents. We found that As(V) removal efficiency was in-
dependent of the membrane pore size because the size of the Fe(III)
particles was larger than the pore size of UF and MF membranes. Also,
As(V) coprecipitation with Fe(III) (oxyhydr)oxides rapidly reached
equilibrium before membrane filtration, within 1 min. This resulted in a
stable As removal efficiency even at an increased residence time of
5 min before membrane filtration. The removal efficiency of As(V) was
nevertheless dependent on feed water composition, in such a way that a
higher Fe(III) dose was required to reduce As to below 1 µg/L for the

Fig. 9. SEM–EDX of the solid depositions found on the bored side of the UF membrane. (A) 50 000× maginified image (B) 150 000× magnified image. (C) Spectrum
shows the elemental composition at the bored side of the UF before backwash. Na and Cl are present due to the drying and crystallization of NaCl. The small calcium
peak can be explained by coprecipitation of calcium with Fe(III)(oxyhydr)oxides. The high carbon, oxygen and sulfur peaks are from the membrane material (PES,
(C12H8O3S)n). Tungsten was used to coat the sample. The observed fractures in the cake layer in Fig. 9A is an artefact and caused by drying during preparation or
storage. The deposits in Fig. 9B appear to consist of primary spherical particles with an average size 65 nm.
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feed water which had higher phosphate and silicate concentrations and
lower calcium and magnesium concentrations.

In all the UF experiments, Fe(III) particles formed a cake-layer on
the membrane surface which reduced membrane permeability during
filtration. The cake on the UF membranes was effectively removed with
a hydraulic backwash, resulting in near-complete restoration of mem-
brane permeability. The fouling mechanisms for MF, on the other hand,
could not be studied in detail and therefore it is difficult to draw clear
conclusions about MF fouling. However, we postulate for future work
that more open low-pressure membranes may be more susceptible to
irreversible fouling due to a large pore size which can allow some Fe
(III) particles to penetrate deeper into the membrane structure and get
immobilized there.

It is noteworthy that direct translation of our results for long-term
application may be limited by the fact that we studied the membrane
fouling only for 6 filtration and backwash cycles. At water treatment
plants, long term membrane operation can result in a significant per-
meability reduction due to slow build-up of internal membrane fouling
which was negligibly small in our UF experiments.
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