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The aim of this study was to identify, quantify and prioritize for the first time the sources

of uncertainty in a mechanistic model describing the anaerobic-aerobic metabolism

of phosphorus accumulating organisms (PAO) in enhanced biological phosphorus

removal (EBPR) systems. These wastewater treatment systems play an important role in

preventing eutrophication and metabolic models provide an advanced tool for improving

their stability via system design, monitoring and prediction. To this end, a global sensitivity

analysis was conducted using standard regression coefficients and Sobol sensitivity

indices, taking into account the effect of 39 input parameters on 10 output variables. Input

uncertainty was characterized with data in the literature and propagated to the output

using the Monte Carlo method. The low degree of linearity between input parameters and

model outputs showed that model simplification by linearization can be pursued only in

very well defined circumstances. Differences between first and total-order sensitivity

indices showed that variance in model predictions was due to interactions between

combinations of inputs, as opposed to the direct effect of individual inputs. The major

sources of uncertainty affecting the prediction of liquid phase concentrations, as well as

intra-cellular glycogen and poly-phosphate was due to 64% of the input parameters. In

contrast, the contribution to variance in intra-cellular PHA constituents was uniformly

distributed among all inputs. In addition to the intra-cellular biomass constituents, notably

PHB, PH2MV and glycogen, uncertainty with respect to input parameters directly related

to anaerobic propionate uptake, aerobic poly-phosphate formation, glycogen formation

and temperature contributed most to the variance of all model outputs. Based on

the distribution of total-order sensitivities, characterization of the influent stream and

intra-cellular fractions of PHA can be expected to significantly improve model reliability.

The variance of EBPR metabolic model predictions was quantified. The means to

account for this variance, with respect to each quantity of interest, given knowledge of the
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corresponding input uncertainties, was prescribed. On this basis, possible avenues and

pre-requisite requirements to simplify EBPR metabolic models for PAO, both structurally

via linearization, as well as by reduction of the number of non-influential variables

were outlined.

Keywords: global sensitivity analysis, Monte Carlo, enhanced biological phosphorus removal, phosphorus

accumulating organism, metabolic model, EBPR, standard regression coefficients, sobol sensitivity analysis

1. INTRODUCTION

Enhanced biological phosphorus removal (EBPR), a variation
of conventional Activated Sludge (AS), is a widely employed
technology to remove phosphorus from wastewater. This
prevents eutrophication in waterways due to the excess of
nutrients (Metcalf and Eddy, 2003; Oehmen et al., 2007). By
engineering alternating anaerobic and aerobic conditions, the
resultant community of phosphorus accumulating organisms
(PAO) assimilates phosphorus from the bulk liquid phase by
intra-cellular accumulation as poly-phosphate (poly-P). Under
stable operation, EBPR installations have been demonstrated to
achieve very high phosphorus removal efficiencies, with effluent
phosphate (PO4) concentrations as low as 0.5 mg/l (Lopez-
Vazquez et al., 2008a).

However, EBPR is known to suffer from operational
instabilities from causes which are not completely understood.
The deterioration of phosphorus removal performance is often
attributed to the proliferation of glycogen accumulating
organisms (GAO), which do not directly contribute to
phosphorus removal yet compete with PAO for carbon sources,
e.g., volatile fatty acids (VFA). In an effort to suppress their
growth, different studies have investigated factors that influence
the competition between these organisms, e.g., the carbon source
(Pijuan et al., 2004; Oehmen et al., 2005b), pH (Filipe et al.,
2001a,b,c), temperature (Whang and Park, 2006; Lopez-Vazquez
et al., 2008b), the P/C ratio in the influent (Liu et al., 1997) and
the aeration levels (Carvalheira et al., 2014a). Metabolic models,
generally a more detailed approach than conventional activated
sludge models (ASM), can be used to effectively describe their
metabolisms and thereby consider the effect of these factors on
the competition between PAO and GAO.

Metabolic models offer a way to integrate information from
various sources within a common mathematical framework.
They describe and predict the metabolism of key organisms
relevant to EBPR on a mechanistic basis. The EBPR metabolic
model stemmed mainly from the work of Smolders et al. (1994),
describing the anaerobic metabolic pathways of PAO. It has
since grown to include the aerobic (Smolders et al., 1995) and
anoxic (Kuba et al., 1996) metabolisms of Accumulibacter PAO,
as well as that of Competibacter and Defluviicoccus-related
GAO (Filipe et al., 2001b; Zeng et al., 2003b; Oehmen et al.,
2005b). These models have also expanded to include the effects
of carbon source, temperature and pH (Oehmen et al., 2005a,
2006; Lopez-Vazquez et al., 2009). Interfaced with ASM, they
have been successfully used to describe the performance of full-
scale EBPR installations (Van Veldhuizen et al., 1999; Meijer
et al., 2001). Furthermore, they offer a means with which to

test hypotheses concerning microbial ecology and explore their
population dynamics under multi-parametric settings, e.g., as
conducted by Lopez-Vazquez et al. (2009) between PAO and
GAO, as well as within their respective sub-groups, e.g., in
Oehmen et al. (2010b) between Accumulibacter PAO clades I
and II.

In recent years, the application of advanced molecular
techniques has led to a more comprehensive understanding
of both the metabolic activity and phylogenetic diversity
(Oehmen et al., 2007), e.g., differing capacities of PAO clades
for denitrification (Zeng et al., 2003a; Flowers et al., 2009;
Oehmen et al., 2010b), utilization of the TCA cycle to supply
reducing power for PHA formation (Lanham et al., 2014) or
shift to glycolysis-driven VFA uptake (Acevedo et al., 2014).
Consequently, the complexity of metabolic models, in terms
of stoichiometric and kinetic descriptions of the underlying
processes, as well as the number of different organisms to
account for, has been on the rise. This trend is set to
continue with the incorporation of newly-recognized putative
PAO and GAO, e.g., Tetrasphaera (Maszenan et al., 2000),
more detailed characterization of GAO metabolisms, namely
glycolysis pathways and VFA-uptake mechanisms, as well as
correct differentiation of alternative metabolic pathways from
the presence of different bacterial strains (Oehmen et al., 2010a).

This ever-increasing complexity and sprawling-nature of
metabolic models must however be justified, given the level of
detail and number of organisms already described. Variations in
model predictions could be exacerbated by uncertainty associated
with the input parameters (Sin et al., 2005). Therefore, this work
seeks to address for the first time, in a comprehensive way,
the subjective uncertainty in metabolic models for EBPR, i.e.,
that arising from incomplete knowledge about the true value of
the model’s input parameters, by performing a global sensitivity
analysis (GSA) to determine the key parameters that influence
their predictions.

Although previous studies reported local sensitivity analyses,
such procedures consider the variation of different input
parameters only one at a time and typically at the same initial
conditions, e.g., in Lopez-Vazquez et al. (2009), Oehmen et al.
(2010b), and Lanham et al. (2014). As such, they do not account
for interactions between different sources of uncertainty, apart
from the case of simple linear models (Saltelli et al., 2006). In
contrast, GSA seeks to ascertain the relative importance of key
processes and/or parameters driving the output dynamics of the
overall system by perturbating all inputs simultaneously. It has
been used effectively in areas of risk assessment (Mokhtari and
Frey, 2005), experimental design (Kent et al., 2013) and model
development (Sin et al., 2009) applied to biochemical systems.
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GSA provides a basis for the justification (or rejection)
of previous assumptions regarding the estimation of input
parameters during model calibration, thereby generating
feedback with which to improve existing model formulations.
Most importantly, GSA enables meaningful comparisons of
different model formulations by decoupling uncertainty in
the required input parameters from the heterogeneity in the
calibration procedure. In this study, a mechanistic model was
developed to integrate available knowledge concerning the
metabolism of Accumulibacter PAO in anaerobic-aerobic EBPR
systems. Given the model’s complexity, underlying assumptions
and uncertainty of the true value of its various input parameters,
a GSA was conducted by simultaneous perturbation of all
input parameters.

First, standard regression coefficients (SRC) (Saltelli et al.,
2008) were determined from the ordinary least squares (OLS)
method using linear regression on the output of Monte Carlo
simulations. Alternative regressionmethods, e.g., step-wise, ridge
or least absolute shrinkage and selection operator (LASSO) were
considered, owing to the additional step of selecting predictor
variables that aid in the interpretation of the fitted model
(Tibshirani, 1996). Nevertheless, regression by OLS was chosen
as the most fit-for-purpose, given that (1) sampling of the
input parameter space was randomized (low collinearity), (2)
the overall number of sample points was large relative to the
number of predictor variables, and (3) the consequences of over-
fitting were negligible, thereby negating the advantages of more
sophisticated methods (Melkumova and Shatskikh, 2017).

SRC results were complemented with sensitivity indices
obtained via the Sobol method for variance decomposition to
investigate non-linear interactions (Sobol, 2001). Furthermore,
Sobol sensitivity indices were also computed to determine
the combined influence of multiple-inputs to reveal higher-
order interactions (Saltelli et al., 2008). Although alternative
variance-based methods are available, e.g., the Fourier amplitude
sensitivity test (FAST), which can be computationally more
efficient, the Sobol method was selected on account of being
more robust, particularly for the determination of total-order
sensitivities (Saltelli and Bolado, 1998).

The contribution of each input parameter’s uncertainty on
the variance of model outputs was then calculated. In this
way, input parameters that most significantly affect the model
output were identified. Opportunities for factor fixing and
model simplification were investigated in view of reducing the
complexity of existing models, thereby facilitating parameter
estimation their integration within the ASM framework. This
would ensure that the limitations and uncertainty intervals
of current metabolic models would be better understood. In
addition, it can flag key parameters that carry the greatest
uncertainty, which would need careful measurement or
further experimental investigation. Models would become more
applicable to the general case rather than being specific to
any particular experimental design, which could significantly
improve their homogeneity and applicability. This would
ultimately lead to improved efficiency and reliability of
EBPR systems, an important pollution control and resource
recovery technology.

2. MATERIALS AND METHODS

2.1. Model Construction, Evaluation, and
Analysis Environment
Data processing and analysis were done in the Python
programming language, ver 3.7. This included: (1)
characterization of input uncertainty, (2) sampling from
the space of input factors, (3) propagation of input uncertainty
to the output and (4) quantifying the contribution of input
uncertainty on the variance of model outputs. Where possible,
parts of the implementation were adapted from SALib ver 1.1.2
(Herman and Usher, 2017). Python script files can be made
available upon request.

2.2. Model Description
The model described the anaerobic-aerobic metabolism of
Accumulibacter PAO. Stoichiometric and kinetic dependencies
on the carbon source as acetate (HAc) and propionate (HPr) were
implemented according to Smolders et al. (1995) and Oehmen
et al. (2005b), respectively. Modifications to the maximum
substrate uptake rates were implemented in accordance with
Carvalheira et al. (2014b). The dependence of intra-cellular
poly-hydroxyalkanoate (PHA) formation on carbon source
followed that of Zeng et al. (2003b). Temperature dependencies
were accounted for as described in Brdjanovic et al. (1997).
The effect of pH on stoichiometric yields and kinetics was
implemented in line with Filipe et al. (2001a) and Filipe et al.
(2001c), respectively. Sequential maintenance on PHA, glycogen
and poly-P followed Lanham et al.’s (2014) formulation.

Overall, the model tracked one 5 h operational cycle, split
between an anaerobic and aerobic phase of equal duration,
supplied with a mixture of HAc and HPr. These included
4 dissolved components in the bulk liquid phase: O2, HAc
HPr and PO4. It also accounted for the concentration of
PAO biomass, alongside its intra-cellular storage compounds:
poly-β-hydroxybutyrate (PHB), poly-β-hydroxyvalerate (PHV),
poly-β-hydroxy-2-methylvalerate (PH2MV), glycogen and poly-
P. The process of biomass growth was described as the
difference between total PHA degradation and that used for
the replenishment of poly-P and glycogen reserves (Murnleitner
et al., 1997; Lopez-Vazquez et al., 2009). In aggregate, the
model consisted of 10 components and 10 kinetic processes (see
Appendices 1, 5 in Supplementary Materials).

2.3. Characterization of Input Uncertainty
A total of 39 input parameters were considered. These were
allocated into four categories for analysis: metabolic parameters,
kinetic parameters, Arrhenius temperature coefficients and
initial conditions. Metabolic parameters included: the ATP
requirement for biomass synthesis from Acetyl-CoA (K1) and
Propionyl-CoA (K2), the yield of ATP per unit of NADH2

oxidized (δ), the phosphate transport coefficient (ε) and the
half-saturation constants (KHAc, KHPr, K PO4

, K PHA, KGly, K fPHA
,

K PP). Kinetic parameters included the maximum specific rates
of anaerobic HAc (qHAc) and HPr (qHPr) uptake, the anaerobic
maintenance coefficient (m ATP, an), as well as the rates of aerobic
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PHA degradation (q PHA), glycogen production (qGly), poly-
P formation (q PP) and the aerobic maintenance coefficient
(m ATP, ox). The maximum intra-cellular fractions of glycogen
(fGly,max) and poly-P (f PP,max) were also regarded as kinetic
parameters. Arrhenius temperature coefficients included those
corresponding to the effect of temperature on: anaerobic uptake
of HAc and HPr (θqVFA ), anaerobic maintenance (θmATP, an ), as
well as aerobic PHA degradation (θqPHA ), glycogen production
(θqGly ), poly-P formation (θqPP ) and aerobic maintenance
(θmATP, ox ). Finally, initial conditions, i.e., the total concentration
of carbon sources SVFA, i and the corresponding fraction of
HAc (rHAc/HPr, i) in the influent, the ratio of PO4 to carbon
(r P/C, i), the initial biomass concentration (X PAO, i), as well as
the intra-cellular fractions of PHA (X PHB, i, X PHV, i, X PH2MV, i),
glycogen (XGly, i) and poly-P (X PP, i) were also taken into
consideration. As the distribution from which the input
parameters were sampled was not uniform, readers are directed
to the Supplementary Materials for a detailed account.

Input uncertainty was characterized by systematic review
of quantities whose values had been measured or otherwise
estimated from experimental data in the literature. Each

parameter was considered a random variable that followed a

uniform distribution between a minimum and maximum value
of a and b, respectively. These ranges were selected based on the
degree of variation, var, around the average, xmean. Variability was
scaled to reflect the number of data reported in the literature, as
50, 25, or 5% for 1, less or equal to 10, or more measurements,
respectively. To ensure that the range extended at least to the
limits found in the literature, the minimum value in the collected
data was taken as the lower bound a if it was smaller than that
determined using var. The upper bound was selected in a similar
manner, as defined by Equations (1) and (2).

a = min((1− var) xmean, xmin) (1)

b = max((1+ var) xmean, xmax) (2)

To conform to bounds within which the model has been

experimentally validated, temperature was sampled between the
limits of 10 to 30◦C, and pH was sampled between 6 and 7.5.

To reflect the nature of knowledge completeness regarding the

value of parameters where sufficient experimental data could
be obtained (i.e., > 50 points), the data was fitted to the
Erlang distribution.

Model inputs were generated via Monte Carlo sampling,
where each Xi constituted a set of input parameter values with
which to evaluate the model:

Xi = [x1,i, x2,i, ...xK,i] for i = 1, 2, ...N (3)

where N is the total number of samples. Initial concentrations

in the bulk liquid phase, biomass and intra-cellular components
were also included as part of the input uncertainty, given that

characterization of the influent to a sufficient level of detail is a
known obstacle. In this sense, the initial concentrations of HAc,

HPr and PO4 were derived as ratios from the total concentration
of carbon substrate. Intra-cellular fractions of PHB, PHV and
PH2MV were sampled according to the Dirichlet distribution,
in order to ensure that their sum would be equal to the total
PHA fraction, which itself followed the uniform distribution.
The implementation was based on Saltelli et al.’s (2008, 2010)
extension of Sobol sequences to generate quasi-random points.

TheN×M dimensional matrix of inputs, whereM is the total
number of parameters was propagated via the metabolic model,
yielding a three-dimensional matrix of outputs YT×K×N , where
T is the number of time steps and K is the number of output
variables. The mean of the concentration profile over one cycle
was calculated, as the methods for quantifying the sensitivity
indices require scalar values.

2.4. Sensitivity Analysis Measures
2.4.1. Standard Regression Coefficients
Standard regression coefficients were obtained by performing a
series of linear regressions on data from the matrix of inputs and
each column of the output matrix:

yi,k = bm+

M∑

m=1

bm,kxi,m+ ǫi,k for i = 1, 2, ...N and k = 1, 2, ...K

(4)
where yi,k is the vector of values corresponding to the kth output
variable, bm,k is the coefficient of themth input parameter, xi,m is
the value of the mth parameter and ǫi,k is the residual error. As
shown in Equation (5), the standard regression coefficient βm,k,
i.e., the effect of parameter m on output k, relative to all other
parameters, was determined by scaling the input and output
values by their respective means and standard deviations:

yi,k − µk

σk
=

M∑

m=1

βm,k
xi,k − µm

σm
+ ǫi,k (5)

2.4.2. Sobol Method for Variance Decomposition
The variance observed in the output can be expressed as the sum
of variances of individual parameters and their combinations, as
shown in Equations 6 to 8 (Saltelli et al., 2008):

Var(Y) =

M∑

i=1

Vi +

M∑

i<j

Vij + ...+ V1,2,...,m (6)

Vi = VXi (EX i (Y|Xi)) (7)

Vij = VXij (EX∼ij (Y|Xi,Xj))− Vi − Vj (8)

where Var(Y) is the overall variance of the output, Vi is the
variance of the input parameter i and Vij is the partial variance of
parameters i and j. Xi denotes the set values taken by parameter i,
and X∼i denotes the set of values taken by all parameters except i.

Si =
Vi

Var(Y)
(9)
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STi =
EX∼i (Var(Y|X∼i))

Var(Y)
= 1−

VarX∼i (EXi (Y|X∼i))

Var(Y)
(10)

From this, the first-order sensitivity index, also referred to as
the “effect” of a given parameter i, can be calculated as shown
in Equation (9). The total effect of parameter i, including the
direct and interactions with other parameters can be expressed
according to Equation (10). Numerical estimation of the first
and total-order Sobol indices was implemented according to
Saltelli et al. (2010).

3. RESULTS

3.1. Quantification of Output Uncertainty
Using Monte Carlo Simulations
A comprehensive literature review was conducted on relevant
articles from 1993 to 2017 to characterize the variance
of experimentally measured (or indirectly estimated from
experimental data) values of the input parameters necessary to
initialize the metabolic model. As shown in Figure 1, both the
abundance and the minimum and maximum range of the data
varied considerably from one parameter to another. Note that
Figure 1 only shows the variation of input parameters that have
been reported in the literature, and does not include (single)
point values, e.g., the ATP yield per unit of biomass on Propionyl-
CoA (K2) and the half-saturation constant for propionate uptake
(KHPr), nor the characteristic variation of initial conditions. The
underlying data was normalized by subtracting the mean and
dividing by the corresponding standard deviation to illustrate
the variance, rather than the difference in magnitude. In general,
more complete data was obtained for kinetic parameters,
namely the maximum specific rates of anaerobic HAc uptake
(qHAc) and aerobic Poly-P formation (q PP), for which 33 and 90
measurements were reported, respectively.

Only 2 measurements were available for the Arrhenius
temperature coefficients, as only two studies have quantified
the short and long-term temperature dependencies (Brdjanovic
et al., 1997, 1998). The sparsity of data for the half-saturation
coefficients results from the fact that the same values have been
reused in nearly all previous studies concerning EBPR metabolic
models. This is likely due to the assumption that, as in ASM
models, they do not deviate to any appreciable extent. In the
case of metabolic parameters, namely the yield of ATP per unit
of NADH2 (δ) and the phosphate transport coefficient (σ ), the
small number of measurements likely arises from the difficulty
in measuring these quantities experimentally. While another
factor may be that their deviation from the mean has had no
appreciable effect on model predictions, as demonstrated in Zeng
et al. (2003b), this conclusion was drawn from a local sensitivity
analysis. Whether this conclusion holds for initial conditions
other than those applied in the aforementioned study has yet to
be determined.

Once characterized, the input uncertainty was propagated
through the model to obtain a set of concentration profiles for
each permutation of input parameters and initial conditions.
Figure 2 shows a subset obtained by varying the input
parameters, while holding the initial conditions constant to

illustrate the variance in model predictions due to input
uncertainty. Specifically, the total concentration of VFA (SVFA, i)
in the influent was 1.5 C-mmol/l, the ratio of HAc to HPr
(rHAc/HPr, i) was 0.67, and the ratio of PO4 to VFA (r P/C, i) was
1.5. The initial concentration of biomass was 4.43 C-mmol/l, and
the initial fractions of PHA (X PHA, i), glycogen (XGly, i), and poly-
P (X PP, i) were 0.14, 0.36, and 0.3, respectively, in the first part of
this study. When HAc and HPr were not fully consumed in the
anaerobic phase, the model disregarded aerobic consumption of
carbon substrates, so as not to influence the model outputs with
other aerobic processes due to aerobic consumption of VFA.

The uncertainty of model predictions varied from one output
variable to another. In addition, the output variance was also
dependent on time, in line with changing redox conditions.
Most notably, the concentration of biomass was insensitive to
any input uncertainty in the anaerobic phase, since according
to the model no growth is expected in these conditions,
but diverges significantly in the aerobic phase. A similar
trend was observed for concentration profiles of intra-cellular
glycogen (XGly).

The intra-cellular concentrations of PHV and PH2MV were
less sensitive in the anaerobic compared to the aerobic phase,
whereas the concentration of PHB showed greater variance
in both redox environments. However, it must be noted that
PHB was also the most abundant fraction of intra-cellular PHA,
and one that results from the metabolism of both HAc and
HPr, whereas PHV results mainly from the metabolism with
HPr. Consequently, the low variance in the final value of PHV
and PH2MV at the end of the anaerobic phase was likely due
to these factors aggravated by the lower SHPr, i. Likewise, the
lower variance at the end of the aerobic phase results from the
near complete depletion of all PHA components. As shown in
Figure 2, the final concentration of PHV and PH2MV in the
majority of simulations was below 0.1 C-mmol/l.

The mean (over time) of the PAO output concentration
profiles for each complete anaerobic-aerobic cycle are
summarized in the form of histograms in Figure 3. These
were obtained by taking into account the uncertainty associated
with the input parameters alongside the initial conditions,
e.g., concentration of carbon sources in the influent, the
prevailing temperature, pH and the starting content of
intra-cellular polymers in the biomass cells, for a total of
164,000 input samples. While there is considerable variance
for all model outputs, the distribution of the concentrations
of carbon compounds (extra-cellular VFA and intra-cellular
PHA) were skewed toward the lower end while the rest were
centered around a particular mean. The mean concentration
profiles of phosphate in the bulk liquid phase and biomass
were subject to the highest degree of variance, whereas the
concentrations of intra-cellular PHV, poly-P and PH2MV
deviated the least under different permutations of input
parameters. The mean intra-cellular poly-P concentration (X PP)
was the only variable with a bi-modal distribution, with a value
near zero in over half of the outcomes. Based on the skewness
of the final outcomes, it can be expected that the coefficient
of determination, as a proxy of the validity of SRC, would
also suffer.
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FIGURE 1 | Variation in the measured or predicted values of the input parameters normalized by their respective mean and standard deviation. The boxplot includes

the normalized median (red horizontal line within the box), interquartile range (IQR), i.e., from 25th to 75th percentile (box), 1.5 times the lowest and highest percentiles

(whiskers) and the number of observations (upper x-axis).

FIGURE 2 | The variance of model predictions given the uncertainty of the input parameters for one set of initial conditions in a 5 h anaerobic-aerobic cycle (2.5 h

each). Mean of the concentration profile is highlighted in red.

3.2. Sensitivity Analysis
3.2.1. First-Order Effects
Two methods were used to assess the first-order effects
of each input parameter on the output parameters:
estimation of SRC and the Sobol method for variance
decomposition. Unlike local sensitivity analyses, these
methods assess the effect of a given input parameter

on an output variable under all possible permutations of
different inputs.

For a linear model, the square of the SRC, i.e., β2, would
be equal to the corresponding first-order index obtained via the
Sobol method (see section 2.3.2). The value of β lies between -
1 and +1, indicating both the direction as well as the magnitude
of the effect of a given input parameter on the output variable.
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FIGURE 3 | Distribution of the average PAO model predictions over one cycle for each output variable obtained via Monte Carlo simulations. µ and var indicate the

mean and variance of the output, respectively. The y-axis indicates the fraction of occurrences corresponding to a particular outcome from 0 to 1.

However, the robustness of this sensitivity measure is dependent
on the degree of linearity between the input with respect to the
output. As such, the validity of SRC as an estimate of the first-
order effect depends on the coefficient of determination (R2). As
a rule of thumb, this value should be ≥ 0.7 for the variance of
the output variable to be sufficiently correlated to the variance of
the input parameter (Campolongo and Saltelli, 1997). Although
the sum of all β2 with respect to a given output for a linear
model would be equal to 1, owing to the non-linear form of the
underlying equations in this work, it was expected to be less than
one (Saltelli et al., 2008).

Figure 4 compares the β2 coefficients and first-order Sobol
sensitivity indices as estimates of the direct effect of each input
on a given output. The higher the value of the index, the higher
the effect of that input parameter on the corresponding output
parameter relative to the other inputs. Specifically, the Sobol
index indicates the relative degree of output that arises from the
uncertainty the input in question. The input parameters were
listed in order of greatest to lowest influence on the model output
uncertainty, reading from left to right. Likewise, the output
variables were ordered frommost to least uncertain, reading from
top to bottom.

The first-order Sobol index was found to be greater than that
of the SRC in every instance. This was in line with expectations,
as the calculation of the first-order Sobol index does not rely
on the assumption of linearity, and is therefore able to capture
non-linear effects as well. Furthermore, the R2 corresponding to
each output ranged from only 0.006 to 0.018, indicating that
SRC is not an appropriate sensitivity measure for this metabolic
model. This suggests that model simplification by linearization of

any part of the system of differential equations by which model
predictions are defined is not a feasible option as long as accurate
predictions are desired in the operating range specified by the
input uncertainty.

As shown by the first-order Sobol indices, the most
influential parameters on the prediction of concentrations in
the bulk liquid phase were the initial concentration of PAO
biomass (X PAO, i) and the intra-cellular concentrations of PHA
constituents (defined in this study as fractions of the total
initial PHA concentration, f PHB, i, f PHV, i and f PH2MV, i), followed
by that of intra-cellular glycogen (fGly, i). That the variance of
components in the liquid phase depends on the concentration
of PAO is a given, as the rate at which substrates are utilized
is directly proportional to the number of organisms. The
importance of intra-cellular PHA and glycogen, particularly on
the prediction of dissolved oxygen (SO2

) and VFA concentrations
is explained by their role in the transport and storage of
carbon sources to survive in alternating feast-famine conditions,
serving as sources of energy and reducing agents for substrate
uptake, growth and cell maintenance. Table 1 presents a
more specific ranking of the influential input parameters for
each output.

Intra-cellular glycogen ranked highly for all liquid phase
outputs apart from the PO4 concentration. The lower influence
of fGly, i on the prediction of S PO4

compared to that of intra-
cellular PHA can be explained by the degree of relatedness of the
processes in question. While PO4 uptake for poly-P formation
under aerobic conditions is directly dependent on intra-cellular
PHA reserves, it is only indirectly dependent on the intra-cellular
glycogen concentration, where the availability of PHA is affected
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FIGURE 4 | Heatmap of the SRC and first-order Sobol indices for PAO-related input parameters. Rows indicate output variables, whereas columns indicate input

parameters. SRC values are located in the lower-left triangle. The first-order Sobol index is in the upper-right triangle. The cut-off value to display the sensitivity index

was 0.05.

by glycogen content in the biomass for PHA formation in the
preceding anaerobic phase.

The pH was highly influential with respect to the prediction
of all liquid phase concentrations, most notably that of S PO4

.
The one exception was SHAc. While seemingly surprising, as
pH is linked directly to the amount of energy ( ATP) required
to transport VFA across the cell membrane, this discrepancy
could be explained by its involvement in the stoichiometric
yield of PHV and PH2MV formation (as opposed to the more

straightforward conversion to PHB), in addition to glycogen and
poly-P degradation during anaerobic PO4 release in the presence
of HPr. In contrast, the stoichiometry with respect to anaerobic
glycogen degradation is independent of pH when HAc is the
primary VFA.

Although temperature ranked among the most influential
input parameters with respect to the intra-cellular concentration
of PHB (X PHB), SHAc and SHPr, it did not do so consistently for
the remaining outputs. As shown in Table 1, it is uncertainty
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TABLE 1 | Input parameters ranked according to the most to the least influential with respect to each of the model output variables, as determined by the first-order

Sobol sensitivity index.

SO2
SHAc SHPr S PO4

X PAO X PHB X PHV X PH2MV
XGly X PP

f PH2MV, i f PHB, i f PHB, i pH f PH2MV, i f Gly, i f PP,max qHAc f PHB, i f PHB, i

f PHB, i f Gly, i S VFA, i X PAO, i f PP, i K PO4
θmATP, ox KfPHA f PH2MV, i f PH2MV, i

f PP, i f PH2MV, i f PHV, i f PH2MV, i θqVFA θqPP r P/C, i f PP, i f Gly, i θmATP, ox

X PAO, i rHAc/HPr, i f PH2MV, i f PHV, i f PHV, i θqVFA θqPHA rHAc/HPr, i f Gly, i

f Gly, i T X PAO, i r P/C, i f Gly, i f PP,max qHAc X PAO, i θmATP, ox

f PHV, i S VFA, i r P/C, i q VFA pH q PHA K PO4
pH rHAc/HPr, i

pH f PHV, i f Gly, i θmATP, ox θmATP, ox pH q PHA r P/C, i f PP, i

r P/C, i X PAO, i rHAc/HPr, i f PP, i f PHB, i K PHA T r P/C, i

m ATP, ox f PP, i f PHB, i KO2 θqPP f PHV, i

rHAc/HPr, i θqVFA θqVFA f PHV, i q VFA S VFA, i

θqPHA T θqGly
q VFA

T KHAc m ATP, ox θqVFA

pH f PP, i f PHV, i X PAO, i

θmATP, ox θqGly
f PP, i

q PHA qHAc f Gly,max

f PP,max m ATP, ox pH

qHAc q PP

θqPHA

KfPHA

K PP

ε

X PAO, i

rHAc/HPr, i

K2

f PHB, i

f PH2MV, i

θmATP, ox

Input parameters whose sensitivity was lower than the average are not shown.

regarding the Arrhenius coefficients (θi) that drives the variance
in model outputs in general. When both temperature and
Arrhenius coefficient are influential, with the exception of SHAc,
the Arrhenius coefficient is more important. Although seemingly
surprising, given comparable variances of the corresponding
input uncertainties (50% around the mean), this discrepancy
may be due to the exponential form of the temperature
dependence of the kinetic processes. In general, the Arrhenius
coefficient for VFA uptake (θqVFA ), PHA formation (θqPHA ) and
poly-P formation (θqPP ) are more influential for all outputs. The
Arrhenius coefficient corresponding to aerobic maintenance
(θmATP, ox ) ranks notably high with respect to the prediction of
X PAO, the intra-cellular concentration of PHV (X PHV), S PO4

and
the concentration of intra-cellular poly-P (X PP).

3.2.2. Comparing First-Order and Total-Order Effects
The Sobol method decomposes the variance of the output
variables (or sets of variables) into fractions attributable to
either individual input parameters or sets of inputs. Unlike
SRC, the resultant sensitivity indices take into account non-
linear responses, as well as interactions between different
input parameters (Saltelli and Annoni, 2010). The total-order
sensitivity index quantifies the aggregate influence of a given

input parameter, inclusive of its interaction with all other inputs
on a given output variable.

As shown in Figure 5, the total-order sensitivity was found
to be greater than that of the first-order in all instances. This,
coupled with the fact that the confidence interval was on average
approximately 8% of the sensitivity index, confirms that the
total-order indices were an accurate apportionment of the
input uncertainties to the output variance (Saltelli et al., 2010).
Although the relative influence of the input parameters on
the output variables was identical for both first and total-order
sensitivities, the magnitude of the effect was more pronounced
in the latter. Whereas the first-order indices ranged from 0
to 0.12, the maximum value of the total-order indices was 1.
Differences between the first and sensitivities show that the major
cause of variance in the model outputs was not the uncertainty
of individual parameters. Rather, it was the interaction among
the inputs, revealed by simultaneous perturbation of input
parameters using the Monte Carlo method.

As seen from the lower-right quadrant of Figure 5, the total
effect of the half-saturation constants for f PHA, PO4, O2, HAc,
as well as the yield of ATP per unit of biomass on propionyl-
CoA (K2) and the aerobic phosphate transport coefficient (ε)
on the output variables were relatively small. The exception to
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FIGURE 5 | Heatmap of the first and total-order Sobol indices. Rows represent output variables and columns represent input parameters. The first-order effect is in

the lower-left triangle. The total-order index is in the upper-right triangle. The cut-off values to display the first and total-order sensitivities were 0.05 and 0.3,

respectively.

this trend were the intra-cellular PHA concentrations : X PHB,
X PHV and X PH2MV. However, as the distribution of the total effect
was relatively uniform beyond the limits of this quadrant, it was
difficult to assess opportunities for model simplification based
solely on the raw values of the Sobol indices. In contrast to the

first-order sensitivities, it would no longer be feasible to assign
fixed values to the aforementioned input parameters, as their
influence on the concentration of intra-cellular PHA components
are not negligible when higher order interactions are taken
into account.
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3.2.3. Relative Contribution of Total Effects
Although the total-order indices were large in many cases,
their significance must be taken in the context of the other
parameters. It is known that for a linear model the sum of the
first-order Sobol indices must be equal to 1. Further, the first-
order sensitivities would be equal to the total-order ones in the
absence of interactions. Based on this notion, the total-order
indices for each output variable were normalized such that their
sum would be equal to 1. The data was then separated according
to four principal groups of input parameters: (1) metabolic
parameters, (2) kinetic parameters, (3) Arrhenius temperature
coefficients and (4) initial process conditions. The corresponding
heat-maps of the transformed total-order sensitivity indices for
each group are shown in Figures 6A–D. Table 2, discussed in
section 4, presents the most influential inputs with respect to
each output variable.

From Figure 6A, it can be seen that variance in the prediction
of liquid phase concentrations, i.e., SO2

, SHAc, SHPr, S PO4
, and

X PAO was due primarily to the uncertainty of a subset of
metabolic parameters. This is in contrast to variance in the
predition of intra-cellular PHA concentrations, which were due
to the uncertainty associated with all metabolic parameters more
evenly. Similarly, the prediction of liquid phase concentrations
was more sensitive to a smaller subset of kinetic parameters
than the prediction of intra-cellular components, specifically the
PHA constituents (Figure 6B). The largest difference between
the influential and non-influential parameters was found with
respect to SHAc and SHPr. This was in line with expectations, as
the kinetics of anaerobic VFA uptake tend to be the fastest in
the metabolic model of interest. It was curious to note that the
effect of the maximum intra-cellular fraction of glycogen (fGly,max)
was more influential than that of poly-P (f PP,max) with respect to
all outputs. This may be explained by the difference in input
uncertainty, as the reported values of fGly deviate more from each
other among the different studies.

As shown in Figure 6C and by the ranking in Table 2,
the most influential temperature coefficients were those
corresponding to anaerobic maintenance (θmATP, an ), aerobic
poly-P formation (θqPP ) and glycogen formation (θqGly ),
respectively. The greatest difference between the influential
and non-influential parameters was with respect to the VFA
concentration in the liquid phase and the intra-cellular
concentration of glycogen (XGly).

With regards to the input parameters defining the initial state
and the prevailing process conditions, the most influential were
the initial intra-cellular fraction of glycogen and PHA, followed
by the total VFA concentration in the influent (SVFA, i) and
the closely related ratio of HAc to HPr (rHAc/HPr, i), as shown in
Figure 6D. Compared with metabolic and kinetic parameters,
the contribution of input uncertainties on output variance
was spread out more evenly among the Arrhenius temperature
coefficients and prevailing process conditions. This indicates
that reducing input uncertainty in the model’s dependence
on temperature and detailed characterization of the influent,
inclusive of the intra-cellular components in the biomass, will
lead to significant improvements to the accuracy of model
predictions with respect to all output variables. In contrast, more

careful consideration in the course of parameter prioritization
is required for the metabolic and kinetic parameters, given
the relatively larger discrepancy between influential and non-
influential ones.

4. DISCUSSION

4.1. Opportunities for Model Simplification
Based on First-Order Sensitivities
Linearization of at least parts of the model would result in
significantly lower computational cost, and would thereby lower
the barrier for the efective use of metabolic models in process
monitoring and control. It would also result in more efficient use
of resources for the study of more detailed scenarios. This would
translate to shorter simulation times and knock-on benefits
of the accompanying experimental design, where simulations
are used to screen for subsequent laboratory or field work.
The validity of SRC depends on the associated R2 values,
which indicate the degree to which interactions between input
parameters and output variables can be linearized. By extension,
given that metabolic models, particularly those that consider the
interaction between multiple species of PAO and GAO are over-
parametrized (Yagci et al., 2004), coefficients of determination
also indicate the feasibility of model simplification.

Given the small SRC values (< 0.1) and the accompanying
R2 (< 0.018) for all output variables, there is little room for
model simplification by linearization of its parts. However, this
conclusion is drawn from results obtained by simultaneous
perturbation of the model’s input parameters, inclusive of the
initial conditions. Consequently, although linearization is not
feasible for the general case, it may be possible where the initial
conditions, i.e., information concerning the concentrations in
the bulk liquid phase and the intra-cellular state of PAO cells
at the beginning of the anaerobic phase, as well as T and
pH, are well-defined and not subject to an appreciable extent
of fluctuation from one cycle to another. This can be expected
to be the case for laboratory-scale experiments. It may also
hold true for wastewater treatment plants where the influent
is well characterized and not subject to a significant degree
of fluctuation, or if the variation itself is well defined. Based
on Figure 2, linearization may be most readily applied to the
prediction of HAc andHPr concentrations. It may also be feasible
if the system were to be modeled as discrete stages (with redox
conditions defining model boundaries), as the predicted behavior
follows distinct patterns in the anaerobic and aerobic stages.
However, the applicability of such a model would be limited to
systems where the redox conditions can be strictly ensured, e.g.,
no excess of dissolved oxygen in the anaerobic phase.

4.1.1. Influence of Initial Conditions
As shown in Figure 5 and highlighted in Table 1, the most
influential parameters tended to describe process conditions,
starting with the initial intra-cellular fractions (PHA, glycogen
and poly-P), followed by the biomass concentration (X PAO, i), pH,
T, and the influent (r P/C, i, rHAc/HPr, i, SVFA, i). It is important to
note that the effect of these parameters was typically higher than
other metabolic or kinetic parameters. Uncertainty in initial
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FIGURE 6 | (A) Normalized total effect of the half-saturation coefficients and metabolic yields on the model outputs. (B) Normalized total effect of the kinetic

parameters on the model outputs. (C) Normalized total effect of the Arrhenius temperature coefficients on the model outputs. (D) Normalized total effect of the initial

conditions on the model outputs.

conditions affects the variance of model outputs to a greater
degree than input parameters associated with process kinetics or
stoichiometry. This finding poses two challenges.

On one hand, if metabolic models are to be applied in full-
scale wastewater treatment works, detailed characterization of the
influent, namely of the intra-cellular components in biomass, will
significantly reduce the variance of all model outputs, leading
to more accurate predictions. While characterization of liquid
phase components, i.e., the concentrations of HAc, HPr, and PO4,
as well as T and pH may be readily achieved by installation of
simple sensors and basic testing protocols, the quantification
of biomass of specific microbial groups and their corresponding
intra-cellular fractions remains a challenge due to cost and/or
complexity issues.

On the other hand, the uncertainty of experimental methods
used to measure these quantities should be acknowledged

and improved where possible. While quantification of the
Accumulibacter PAO population in both laboratory and full-
scale reactors using culture-independent molecular methods has
become standard practice (López-Vázquez et al., 2007a; Oehmen
et al., 2010b; Lanham et al., 2014), there is some controversy over
the accuracy of such measurements.The relative abundances
measured by different methods, e.g., quantitative fluorescence
in situ hybridization (qFISH) via target sequences in the 16S
rRNA molecule or real-time quantitative polymerase chain
reaction (qPCR) via the poly-P kinase gene (ppk1 are not
always in complete agreement (Fukushima et al., 2007). This
may be attributed to factors such as the sensitivity to low cell
counts, differences in cellular metabolic activities, heterogeneities
in experimental protocol (e.g., sample preparation), or sample
characteristics (Moter and Göbel, 2000; van Loosdrecht et al.,
2016; Huber et al., 2018). This is not to mention the added
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TABLE 2 | Input parameters ranked according to the most to the least influential with respect to each of the model output variables, as determined by the total-order

Sobol sensitivity index.

Group SO2
SHAc SHPr S PO4

X PAO X PHB X PHV X PH2MV
XGly X PP

Metabolic KGly KGly δ KHPr KGly δ K PHA K1 KGly δ

K PP K PHA K PHA K PP K PHA KHPr KHPr K PP K PP KHPr

KHPr δ K PP K PHA δ KGly K PP δ K1 K PP

K1 K1 KHPr K1 KHPr K PHA KGly KHPr δ K PHA

δ K PP KGly δ K1 K1 δ K PHA KHPr KGly

K PHA KHPr K1 KGly K PP K PP K1 KGly K PHA K1

Kinetic qGly qGly f Gly,max qHPr q PP q PP m ATP, an m ATP, an qHPr q PP

f Gly,max qHPr m ATP, an m ATP, an qHPr f Gly,max q PP q PP q PP qHPr

qHPr f Gly,max qGly qGly m ATP, an qGly qHPr qHPr m ATP, an m ATP, an

m ATP, an m ATP, an qHPr f Gly,max qGly qHPr f Gly,max f Gly,max qGly f Gly,max

q PP q PP q PP q PP f Gly,max m ATP, an qGly qGly f Gly,max qGly

Arrhenius coef θqPP θmATP, an θmATP, an θqPP θqGly
θqPP θmATP, an θqGly

θmATP, an θqPP

θmATP, an θqGly
θqGly

θqGly
θmATP, an θmATP, an θqPP θqPP θqPP θmATP, an

θqGly
θqPP θqPP θmATP, an θqPP θqGly

θqGly
θmATP, an θqGly

θqGly

Process condition f Gly, i T f PHB, i f PH2MV, i f PH2MV, i f PHB, i T rHAc/HPr, i S VFA, i f Gly, i

rHAc/HPr, i S VFA, i f PH2MV, i S VFA, i T S VFA, i f PH2MV, i f Gly, i T f PHB, i

S VFA, i f Gly, i S VFA, i f Gly, i f PHB, i rHAc/HPr, i S VFA, i X PAO, i f Gly, i T

f PHB, i f PH2MV, i rHAc/HPr, i f PHB, i S VFA, i T f PHB, i T rHAc/HPr, i rHAc/HPr, i

f PH2MV, i f PHB, i f Gly, i rHAc/HPr, i rHAc/HPr, i f PH2MV, i f Gly, i f PP, i f PHB, i S VFA, i

T rHAc/HPr, i T T f Gly, i f Gly, i r P/C, i f PHB, i f PH2MV, i f PH2MV, i

f PHV, i f PHV, i f PHV, i f PHV, i f PHV, i f PHV, i X PAO, i S VFA, i f PHV, i f PHV, i

f PP, i f PP, i f PP, i f PP, i f PP, i r P/C, i rHAc/HPr, i f PH2MV, i f PP, i f PP, i

r P/C, i r P/C, i r P/C, i r P/C, i r P/C, i X PAO, i f PP, i r P/C, i r P/C, i r P/C, i

X PAO, i X PAO, i X PAO, i f PHV, i f PHV, i X PAO, i

pH

Input parameters whose sensitivity was lower than the average are not shown.

complication of the specificity of the technique to target the
desired organism, e.g., the overlap of multiple FISH probes
resulting in the over-estimation of Accumulibacter (Albertsen
et al., 2016).

Similarly, while glycogen is an important source of carbon,
energy (ATP) and reducing agents (NADH2) in both PAO and
bacterial metabolisms in other environments, it has proven to be
difficult to accurately quantify. Protocols depend on the type of
cell and the state of cell-aggregation, i.e., on whether the biomass
is floccular or granular (Lanham et al., 2012). Consequently,
model predictions have been shown to exceed the measured
concentrations of PHA and poly-P (Brdjanovic et al., 2000;
Meijer et al., 2002). Lopez-Vazquez et al. (2009) found that
current metabolic models consistently overestimated the XGly

concentration by as much as 25%. In view of cumulative errors
in long-term multi-cycle simulations, even small errors can lead
to significant deviations in prediction accuracy. As such, the
problem of accurate, fast and (if possible) simpler quantification
of intra-cellular fractions, namely that of glycogen and PHA,
requires more attention to reduce prediction error, and thus
for the effective deployment of metabolic models in full-scale
wastewater treatment plants.

4.1.2. Influence of Temperature Coefficients
As shown in Figure 5 and Table 2, the Arrhenius temperature
coefficients for anaerobic maintenance (θmATP,an ), aerobic
glycogen production (θqGly ) and poly-P formation (θqPP ) rank
among the most influential inputs for all output variables.
Although relatively abundant data is available for the kinetic
uptake rates (Figure 1), relatively limited attention has been
devoted to temperature coefficients, apart from the work of
Brdjanovic et al. (1997, 1998). One limitation of this work was
that the reported temperature dependencies have only been
verified to a limited range of operating temperatures (typically
between 10 and 20 ◦C). Given that Arrhenius temperature
coefficients are expected to take a constant value in theory,
further investigation of the kinetic processes are required to
specify the uncertainty in these parameters, and thereby ascertain
the accuracy of model predictions.

This is of particular importance in the context of using
metabolic models to study the competition between PAO and
GAO, as performed by Lopez-Vazquez et al. (2009). It would also
enable more accurate study of PAO kinetics at wider temperature
ranges, particularly in light of recent, seemingly contradictory
findings concerning the population dynamics of PAO and
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GAO at higher temperatures (Ong et al., 2014; Shen et al.,
2017). Information concerning the temperature coefficients
of (Competibacter) GAO mirror that of PAO, their values
deriving from only two investigations (López-Vázquez et al.,
2007b; Lopez-Vazquez et al., 2008a). Recent findings concerning
the identity of Accumulibacter PAO clades, subdivisions of
Competibacter GAO, as well as Defluvicoccus-related GAO
(Oehmen et al., 2010b), call for a more comprehensive re-
evaluation of the temperature dependencies to determine their
“true” values.

4.1.3. Influence of Kinetic Parameters
After considering initial conditions and temperature parameters,
the burden of improving model reliability falls on reducing
the input uncertainty associated with kinetic parameters. The
priority should be the estimation of the maximum specific
rates of anaerobic HPr uptake (qHPr), stand maintenance
coefficient (m ATP,an), aerobic poly-P formation (q PP), glycogen
production (qGly) and the aerobic maintenance coefficient
(m ATP,ox). Interestingly, these parameters were highly influential
on the prediction of all model outputs, despite the fact that data
concerning kinetic parameters were the most abundant. This
was likely due to the comparatively large variance in the input
values, notably in the case of q PP. This suggests that there may
be a “natural” level of variation that can be expected in the
values of certain kinetic parameters, notably in the maximum
rates of change involved in Monod-type expressions, for which
additional measurements will not lead to further improvements
in model prediction accuracy. This inherent level of variation
may be related to the characteristics of the biomass and/or
influent of the system in question.

4.1.4. Influence of Metabolic Parameters
As seen from Table 2, the most influential metabolic parameters
were the half-saturation constants for anaerobic HPr uptake
(KHPr), and PHA formation (K PHA), as well as those associated
with aerobic glycogen (KGly), poly-P formation (K PP) and δ.
All of these are strongly linked to the transport of HPr across
the cell membrane, storage of PHA and subsequent regeneration
of glycogen. These parameters may become more influential in
determining the composition of the PAO-GAO community in
simulations involving both groups of microorganisms. As such, it
is important that the uncertainty of these parameters be reduced
to improve model prediction reliability, as the preferential
uptake of HPr has been shown to be one of the key factors
in the competition between the two groups of microorganisms
(Oehmen et al., 2005b; Carvalheira et al., 2014b).

4.1.5. Model Simplification by Fixing Non-influential

Parameters
The contribution of input uncertainty on the variance of
model predictions was found to vary from one output variable
to another (Figure 5). For the prediction of liquid phase
concentrations (SO2

, SHAc, SHPr, S PO4
, X PAO), as well as intra-

cellular concentrations of glycogen (XGly) and poly-phosphate
(X PP), the vast majority of uncertainty could be attributed
to a smaller subset of input parameters (64%). This suggests

that uncertainty in some input parameters did not affect
the prediction accuracy of liquid phase components to an
appreciable extent. These include the maximum specific rate of
HAc uptake (q PAO) and aerobic PHA degradation (q PHA), the
maximum intra-cellular fraction of poly-P (f PP,max), the aerobic
maintenance coefficient (m ATP, an), the half-saturation constants
for f PHA, PO4, O2 and HAc, as well as the phosphate transport
coefficient (ε) and ATP yield per unit of biomass on Propionyl-
CoA (K2). Concerning the prediction of intra-cellular PHA,
the total-order sensitivity indices were significant and nearly
uniformly distributed among all of these input parameters. Since
uncertainty in these input parameters has little effect on the
model output outside of the intra-cellular PHA concentrations,
they could potentially be fixed to constant values.

Reducing the uncertainty regarding any of the
aforementioned input parameters will significantly improve
model reliability. In the context of simplifying metabolic models
for integration within the wider ASM framework, these results
merit further investigation to determine the trade-off between
fixing the aforementioned input parameters, especially where
the total-order index was lesser than 0.5, and the prediction
error with regards to intra-cellular PHA.

4.2. Limitations and Future Perspectives
This work has for the first time assessed the overall effect of
input parameter uncertainty on the variance of metabolic model
predictions. Most of the propagated uncertainty propagation is
not linear from one parameter to one output, but rather due to
the interaction of multiple parameters. This brings conclusions in
previous studies focused on parameter estimation for metabolic
models in EBPR into question.Parameters such as the anaerobic
maintenance coefficient (m ATP, an) and the yield of ATP per unit
of NADH2 (δ) have often been justified as constants on the
basis of local sensitivity analyses specific to particular conditions,
typically in lab-scale reactors, e.g., in Zeng et al. (2003b).

This does not invalidate previous findings, as prediction
uncertainty does indeed depend on the particular process
conditions. However, in view of applying EBPRmetabolic models
to the general case, i.e., to characterize systems where the influent
cannot be strictly controlled and/or process conditions vary
spatially and temporally in the reactor, this study does highlight
that local sensitivity analyses are not sufficient to identify regions
in which current EBPR metabolic models may be accurately
used. More data is needed to determine the true value or at
the least the experimental range of a number of parameters.
Baring that, if a natural degree of variation exists for certain input
parameters, then its distribution should be defined.

Although the input space was sampled to conform to the
assumptions of the metabolic model, i.e., within a narrow range
of temperatures, pH and an influent mixture of HAc and HPr,
the predictions may not be valid in situations where the PAO
population is subject to limiting conditions for extended periods
of time. For instance, PAO have been found to shift from PHA
to glycogen accumulation in anaerobic conditions following a
lack of PO4 in the influent (Acevedo et al., 2014, 2017)—a
phenotypic behavior characteristic of their GAO competitors.
Similarly, PAO have been shown to employ the tricarboxylic
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acid (TCA) cycle to supplement the production of reducing
agents to cope with a lack of VFA in the influent, or due to
glycogen depletion, possibly as a result of prolonged periods of
cellular maintenance (Lanham et al., 2013, 2014). It has also
been found that PAO require a longer period of adjustment
compared to GAO following extended starvation periods (Vargas
et al., 2013; Carvalheira et al., 2014c). As such, the model
would require additional considerations of the kinetic and
metabolic parameters, or (more likely) structural modifications
to the formulation of kinetic rates in order to accurately reflect
observations of such behavior in response to or during recovery
from long-term duress.

This work used SRC and the Sobol method to conduct
a global sensitivity analysis of a metabolic model for PAO.
Various groups of input parameters were considered,
including metabolic parameters, kinetic parameters, Arrhenius
temperature coefficients and the initial conditions required
to initialize the model. However, certain factors often
held constant in laboratory-scale studies yet crucial to the
operation of full-scale wastewater treatment plants were
not accounted for. These included the sludge retention time
(SRT), hydraulic retention time (HRT) and the lengths of
the anaerobic and aerobic phases, which would often be the
only means by which to adjust process conditions without
interfering with the influent in the event of process disruption.
Temperature and pH were also assumed constant over any given
anaerobic-aerobic cycle.

Further, this work did not consider an anoxic phase, for
which metabolic models have been formulated previously, e.g.,
in Oehmen et al. (2010b). This was for practical reasons, as
the additional burden of quantifying the effect of uncertainty
in parameters relevant to anoxic conditions would lead to
an exponential increase in the number of model evaluations
required to converge to the true value of (variance-based)
sensitivity indices. Nevertheless, given the growing interest in
anaerobic-aerobic-anoxic EBPR, owing to the potential of
further energy savings from reduced aeration requirements, as
well as simultaneous removal of nitrogen alongside phosphorus,
future work may first consider the evaluation of parameter
importance using computationally less expensive screening
methods, e.g., the elementary effects (EE) method, where the
convergence of sensitivity indices is less dependent of the
number of model evaluations (Saltelli et al., 2008). In this
way, non-influential parameters would be identified prior to
more detailed investigations of the interactions between those
input parameters which contribute most to the variance in
model predictions. To account for interactions between different
inputs, higher-order sensitivities should be accounted for. This is
typically achieved by variance-based methods e.g., Sobol indices
(Saltelli et al., 2008) and Mara’s (2009) extention of RBD-FAST,
or density-based methods such as those detailed in Plischke et al.
(2013) and Pianosi and Wagener (2015).

Finally, the driving force for the development of metabolic
models has been the prediction of conditions more favorable
to PAO than GAO. As such, despite the absence of evidence
suggesting co-metabolism, i.e., the lack of dependence of one
organism on metabolites synthesized by the other, it would

be worthwhile to complement the results obtained in this
work with uncertainties in the prediction of concentrations
for both Competibacter and Defluvicoccus-related GAO. This, as
well as the differentiation between different PAO clades would
merit further investigation to understand the uncertainty not
only in the prediction of individual metabolic models, but also
how it would propagate in studying the competition between
organisms relevant to EBPR.

5. CONCLUSIONS

This work conducted an uncertainty and global sensitivity
analysis of a metabolic model describing the behavior of PAO in
alternating anaerobic and aerobic EBPR. The input uncertainty
was characterized based on the relative abundance of data in
the literature for each input parameter required to initialize the
model. The input uncertainty was propagated to the output using
theMonte Carlo method. Differences in the variance of themean
concentration profiles indicated that concentrations of phosphate
in the bulk liquid phase and biomass were the most uncertain,
whereas the concentrations of intra-cellular PHV, poly-P and
PH2MV were the least uncertain.

The global sensitivity analysis was conducted using SRC
and Sobol sensitivity indices. The analysis comprised a total
of 39 input parameters: 12 metabolic parameters, 10 kinetic
parameters, 6 Arrhenius temperature coefficients and 9 initial
conditions (influent), including temperature and pH. SRC
were found to be an inadequate sensitivity measure for this
model due to the low degree of linearity between the input
parameters and the output variables. Consequently, reduction
of model complexity by linearization of its parts is not
feasible in the general case, and limited to particular subsets
of output variables for more specific scenarios with well-
defined initial conditions. Differences between first and total-
order Sobol indices indicated that the variance in model
predictions was mainly due to interaction effects between
combinations of input parameters rather than the uncertainty of
individual ones.

The contribution of each of the input parameters on the
uncertainty of model predictions varied with the output variable
in question. For the prediction of liquid phase concentrations
and intra-cellular fractions of glycogen and poly-phosphate,
the vast majority of the uncertainty could be attributed to a
smaller subset of input parameters (64% ). For the prediction
of intra-cellular PHA constituents, the contribution was nearly
uniformly distributed among all input parameters, indicating
a high-degree of interaction. Although the contribution could
not be isolated to any particular group of inputs (metabolic
parameters, kinetic parameters, temperature coefficients, process
conditions), the initial fractions of PHV, PH2MV and glycogen
ranked consistently among the most influential factors, both in
terms of direct as well as total effect, suggesting that the value
of these parameters should be carefully measured when applying
EBPR metabolic models.

This work contributed a step toward a more complete
understanding of the uncertainties associated with EBPR
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metabolic model predictions, and how to address these
uncertainties on an individual basis given knowledge of the
corresponding input uncertainty. Possible approaches and pre-
requisite conditions to simplify metabolic models for PAO,
both structurally via linearization, as well as by reducing the
number of non-influential variables were illustrated based on the
results of the sensitivity analyses. Parameters requiring further
experimental consideration were highlighted. This will translate
to more accurate prediction of PAO behavior, thus facilitating
process monitoring and control. Further, the findings of this
work will lead to more informed decision-making in model
building and in fundamental investigations of organisms relevant
to EBPR systems.
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NOMENCLATURE

Symbol Meaning Units

EBPR enhanced biological phosphorus removal

AS activated sludge

ASM activated sludge model

SRC standard regression coefficients

OLS ordinary least squares

LASSO least absolute shrinkage and selection operator

RBD-FAST Fourier amplitude sensitivity test via random balanced designs

GSA global sensitivity analysis

PHA poly-β-hydroxy-alkanoate

PHB poly-β-hydroxy-butyrate

PHV poly-β-hydroxy-valerate

PH2MV poly-β-hydroxy-methyvalerate

PAO phosphorus accumulating organism

GAO glycogen accumulating organism

poly-P poly-phosphate

VFA volatile fatty acids

HAc acetate

HPr propionate

SRT solids retention time

HRT hydraulic retention time

T temperature ◦C

X j intra-cellular concentration of component j C-mol/l

X j, i initial intra-cellular concentration of component j P or C-mol/l

f j intra-cellular fraction of component j per unit of biomass P or C-mol/C-mol

f j i initial intra-cellular fraction of component j per unit of biomass P or C-mol/C-mol

f j, max maximum intra-cellular fraction of component j per unit of biomass P or C-mol/C-mol

S j concentration of j in the bulk liquid phase P or C-mol/l

S VFA, i initial concentration of j in the bulk liquid phase C-mol/l

r P/C, i ratio of the PO4 to VFA concentration in the influent

rHAc/HPr, i ratio of acetate to propionate in the influent VFA

q j maximum rate of conversion of component j P or C-mol/C-molh−1

m ATP, an anaerobic maintenance coefficient P-mol/C-molh−1

m ATP, ox aerobic maintenance coefficient ATP-mol/C-molh−1

K j half-saturation constant of component j C-mol/l

θ j Arrhenius temperature coefficient of component j

δ yield of ATP per unit of NADH oxidized (P/O ratio) ATP-mol/NADH-mol

ε aerobic PO4 transport coefficient P-mol/NADH-mol

K1 ATP required for biomass synthesis from Acetyl-CoA* ATP-mol/C-mol

K2 ATP required for biomass synthesis from Propionyl-CoA* ATP-mol/C-mol
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