

Deliverable D4.3 Fast / innovative monitoring systems for various contaminants in cNES

www.aquanes.eu

COLOPHON

Project

Title:	AquaNES Demonstrating synergies in combined natural and engineered processes for water treatment systems
Call identifier:	H2020-WATER-2015-two-stage;
Topic:	WATER-1B-2015 Demonstration/pilot activities
Funding scheme:	Innovation Action (IA)
Start date:	01.06.2016
Duration:	36 months

Document information

Deliverable no. :	D4.3
Work package:	WP4: Risk Assessment and Water Quality Control
Title:	Fast monitoring systems for various contaminants in cNES
	Report and application manual for demonstrated and validated innovative monitoring systems for <i>E. coli</i> , endocrine disruptors/toxic compounds and antibiotic resistance genes
Lead Beneficiary:	KWR
Authors:	Thomas ter Laak, Annemarie van Wezel, Andrea Brunner, Milou Dingemans (KWR), Harrie Besselink, (BDS), Daniel Sauter (BWB), Joep Appels, Jaap van den Dries (microLAN)
Contact for queries	Thomas ter Laak KWR Watercycle Reserach Institute <u>Thomas.ter.Laak@kwrwater.nl</u>
Dissemination level:	This report is PUBLIC
Due date	31.08.2018 (M27)
Version:	29.06.2019 (M36)

Disclaimer:

This publication reflects only the authors' views and the Executive Agency for Small and Medium-sized Enterprises (EASME) is not liable for any use that may be made of the information contained therein.

The AquaNES project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 689450

Table of contents

Li	st	of fig	gures	iii
Li	st	of ta	bles .	v
Li	st	of ab	brev	iationsvi
E	xec	cutive	e Sur	nmary1
1		Abo	ut th	is document3
	1.1	1	Purj	pose of this document3
	1.2	2	Stru	cture of the deliverable4
	1.3	3	Rela	ation to the project objectives4
2		Inno	ovati	ve, fast and integrated water quality assessment5
	2.	1	Defi	nition of relevant water quality parameters5
	2.	2	Inno	ovative tools in water quality assessment5
	2.	3	Sele	cted Innovative methods to determine water quality within AquaNES7
3		CAL	UX ł	bioassays
	3.	1	Stuc	ly design
	3.	2	Mat	erials and methods
		3.2.1	1	CALUX bioassays
		3.2.2	2	Demonstration sites10
		3.2.3	3	Sampling, storage and shipment of water samples10
		3.2.4	4	Sample processing 11
	3.	3	Rest	ults and discussion of testing at sites12
		3.3.1	L	Round 112
		3.3.2	2	Round 2
		3.3.3	3	Integration of effect-based bioanalysis and chemical non-target screening to globally asses chemical water quality at site 12
	3.4	4	Con	clusions / lessons learned29
4		BAC	Tcor	ntrol
	4.	1	Wor	king principle / technology
	4.	2	Test	ing of the device at AquaNES demonstration sites32
		4.2.1	1	Lange Erlen: Determining total activity in surface water treatment processes33
		4.2.2	2	Hosterwitz (Dresden) and Budapest: measuring coliforms and microbial activity . 38
		4.2.;	3	Ovezande: Monitoring of infiltration of storm water for aquifer storage and recovery
		4.2.4	4	Agon Coutainville: Monitoring faecal contamination in WWTP effluent for aquifer recharge

	4.2	2.5	Rheinbach: Monitoring efficacy of retention soil filters for removal of fecal indica	itors
	4.0	Dic	aussion	43
	4.3	Con	relusion / lessons learned	• 44
5	4.4 An	tibiot	ic restistance genes	· 44
5	5 1	Stu	dv design	45
	5.2	Woi	rking principle	45
	5.3	Mat	terial and methods	. 46
	5.3	.1	Demonstration site	46
	5.3	.2	Sampling	47
	5.3	.3	Selection of ARG and ARB	47
	5.3	.4	ARG analysis	48
	5.3	.5	ARB analysis	49
	5.4	Res	ults and discussion of testing at Belin Schönerlinde	. 49
	5.4	.1	Behaviour of ARG	49
	5.4	.2	Behaviour of ARB	52
	5.5	Con	clusions / lessons learnt	53
	5.5	.1	Analytical methods	53
	5.5	.2	Treatment systems	54
6	Be	nefits	of innovative water quality assessment tools	55
	6.1	Sele	ected Innovative methods to determine water quality within AquaNES	55
	6.2	Rec	omendations for future application and implementation	57
7	Lit	eratu	re	58
A	nnex	1	Sampling, storage and shipment of water samples for CALUX bioanalysis	62
	1	Gen	neral	. 64
	2	Bot	tles and material for sampling	. 64
	3	Clea	aning of materials	. 64
	4	San	npling procedure	. 64
	6	Tra	nsport of samples	65
A	nnex	2	Round 1 sample information	66
A	nnex	3	Round 2 sample information	67
A	nnex	4	Quantified CALUX bioanalysis results – round 1	73
A	nnex	5	Quantified CALUX bioanalysis results – round 2	86
A	nnex	6	Heat-map of quantified CALUX bioanalysis results – round 2	92
A	nnex	7.	LC-HRMS based non-target screening: Material, methods and results	95
	Chen	nicals		95

7.1.1	LC-HRMS experiments	.95
7.1.2	Data analysis	.95
Scree plot .		96

List of figures

Figure 1	Schematic overview of combined natural and engineered treatment technologies within AquaNES4
Figure 2	Illustration of working principle of CALUX bioassay9
Figure 3	Heat-map of round 1 CALUX analysis results for all effect-based bioassays performed and for all participating water treatment sites expressed as fold-induction above the LOQ of each respective bioassay. Results below LOQ are represented by a value of 0.5
Figure 4	Derivation of a trigger value for estrogen activity using the practical approach19
Figure 5	Heat maps according to proposed water quality assessment scheme of bioassay responses at demonstration site 4 (river bank filtration for drinking water, Poznan, Poland) and site 12 (wastewater treatment with constructed wetlands and filters, Berlin, Germany)
Figure 6	Summed feature intensities per sample group on a log scale, corrected for extract concentration
Figure 7	PCA graph of individuals of water samples from site 12, April and July25
Figure 8	Comparison of feature intensities between ozonation effluent and influent (left panel) and ozonation effluent and constructed wetlands (right) samples (April sampling round)
Figure 9	CALUX bioassay response data integrated with non-target screening data. Hierarchical clustering of normalized non-target screening data based on Euclidean distance 28
Figure 10	Schematic overview of the BACTcontrol system. The blue line shows the flow from inlet to outlet
Figure 11	Schematic overview of the enzymatic reaction
Figure 12	Flowsheet of the pilot plant in Lange Erlen
Figure 13	View of the BACT control device installed at the Lange Erlen pilot plant
Figure 14	Total bacterial activity measured in Rhine filtrate, during first month of measurement
Figure 15	Results of online turbidity measurement during device set-up and period from 17 July to 5 August first month of operation for selected periods (Measuring interval: 5 minutes)
Figure 16	Total activity measured in Rhine filtrate between August and September 2017 (data gaps are due to either manual sampling activities or technical problems as indicated in the figure)

Figure 17	Disinfection effect of the AOP treatment step as detected by different microbiological measurement methods (HPC: heterotrophic plate count; ICC: intact cell counts by flow cytometry)
Figure 18	Total activity detected in the outflow of the soil columns and the BAC (Biologically Active Carbon) column
Figure 19	Comparison of BACTcontrol to standard monitoring and ATP method at Hosterwitz, DE (AquaNES Site, no. 2)
Figure 20	Comparison of BACTcontrol to flow cytometry at Budapest, HU (AquaNES Site no. 3)
Figure 21	Test setup of the BACTcontrol at Ovezande
Figure 22	Specific well capacity of the Freshmaker well and measured total (biological) activity of the pre-treated rainwater in Ovezande during the pre-treatment tests in 2019
Figure 23	Test setup of the BACTcontrol at Agon Coutainville42
Figure 24	Test setup of the BACTcontrol at Rheinbach43
Figure 25	Correlation of <i>E. coli</i> counts and BACTcontrol measurements at influent (left) and effluent (right) of RSF filter 143
Figure 27	Mechanisms of horizontal gene transfer from Furuya and Lowy (2006)45
Figure 28	Simplified flow-scheme of pilot-plant at demonstration site 1247
Figure 29	Concentrations for (a) blaTEM, (b) sul1, (c) intl1 and (d) 16S rDNA at different sampling points; columns with error bars = median with 25 th and 75 th percentile; squares = mean
Figure 30	Relative abundance of ARG before and after ozonation expressed as ratio ARG/16S rDNA [%]; columns with error bars = median with 25 th and 75 th percentile.51
Figure 31	Concentrations for (a) ESBL E. coli, (b) ESBL KEC and (c) VRE at different sampling points; columns with error bars = median with 25 th and 75 th percentile; squares = mean

List of tables

AquaNES demonstration sites
Overview CALUX in vitro bioassays for water quality determination9
CALUX bioassays applied to evaluate water treatment technologies during the first sampling campaign
BDS CALUX cell culture information 11
Selection of effect-based CALUX bioassays considered to be relevant for the evaluation and monitoring of innovative water treatment technologies during round 2 of the AquaNES project
AquaNES demonstration sites selected for the second round of the AquaNES project with their treatment trains
Summary of number of samples received and analysed from participating sites 17
Proposed action plan for assessment of water quality, based on EBT for CALUX bioassays applied during round 2 of the AquaNES study
Numbers of detected features, SusDat suspect and WFD priority substance matches across all samples23
Test locations of the BACTcontrol
Cell counts (flowcytometry) and microbial activity (BACTcontrol). Data for dates only where both methods were applied
qPCR parameters for the analysed genes 16S rRNA, blaTEM, sul1 and intl1 49
Applicability of analytical methods for different states of bacterial cells53

List of abbreviations

AOP	Advanced oxidation process
ARB	Antibiotic resistant bacteria
ARG	Antibiotic resistance genes
BAC	Biologically activated carbon
CALUX	Chemical Activated Luciferase eXpression
CEC	Contaminant of emerging concern
CFU	Colony forming unit
cNES	Combined natural and engineered treatment system
CSO	Combined sewer overflow
CW	Constructed wetland
DOC	Dissolved organic carbon
DMSO	Dimethylsulfoxide
ESBL	Extended spectrum β -lactamase producing (bacteria)
EBT	Effect-Based Trigger value
EDC	Endocrine disrupting compounds
GAC	Granular activated carbon
НАССР	Hazard Analysis and Critical Control Points
НС	Hierarchical Clustering
LOD	Limit of detection
LOQ	Limit of quantification
MAR	Managed Aquifer Recharge
MRSA	Methicillin-resistant Staphylococcus aureus
NF	Nanofiltration
NTS	Non-target Screening
RSF	Retention soil filter
qPCR	quantitative polymerase chain reaction
SAT	Soil Aquifer Treatment
TRL	Technology readiness levels
TTC	Threshold of Toxicological Concern
VRE	Vancomycin-resistant Enterococci
WWTP	Wastewater treatment plant

Executive Summary

Water systems worldwide are confronted with thousands of known and unknown emerging compounds as well as difficult to analyse microorganisms. Furthermore, water systems and treatment technologies can transfer or even amplify antibiotic resistant bacteria and / or their genes. Therefore, water service providers, especially providers of drinking water and irrigation water, face a major challenge and are under great pressure to deliver safe and affordable water services to a growing population.

Water quality and treatment performance are generally required to be assessed for a limited set of individual parameters using classic tools and methods. These methods might result in an incomplete assessment, considering the scope, sensitivity and/or speed of detection. Room is now given in the Drinking Water Directive to develop a risk based monitoring program. Customizing monitoring gives the freedom to exclude irrelevant parameters and apply alternative tools, but requires tools to evaluate the output of these tools. Innovative tools can be used for this as long as they are robust, come with risk based thresholds and are accepted by regulators.

The AquaNES project catalyzes innovations in water and wastewater treatment processes and management through improved combinations of natural and engineered treatment systems (cNES). With natural treatment steps being generally less controllable and adaptable, requires tools to assess water quality gain additional importance. They should be able to monitor fast changes or to provide an integrative and effect based interpretation of the water quality. This way the support insights into whether the combinations of engineered and natural treatment steps might introduce new risks such as the development of antibiotic resistance. Therefore, three innovative detection methods have been tested at selected demonstration sites. Thereby providing handles to assess and control water quality in combined natural and technical water treatment systems and safe (re)use of the treated water.

This deliverable summarises the results of their application in the AquaNES demonstration sites. The selected tools are CALUX bioassays for <u>integrative measurement of chemical contaminants and their effects</u> are demonstrated by Biodetection Systems (BDS), the BACTcontrol for <u>fast</u> detection of microbial contamination by MicroLAN and qPCR techniques are applied to monitor antibiotic resistance genes are applied for <u>specific and sensitive</u> detection of antimicrobial resistance genes by Berliner Wasserbetriebe (BWB). In addition to the CALUX bioassays, chemical non-target screening that covers a <u>wide array of chemical contaminants</u> is applied parallel to compare contaminants and effects.

Ten relevant cell-based CALUX bioassays were selected for water quality monitoring in cNES systems. These assays covered a wide array of relevant biological endpoints. For five bioassays health based water quality criteria were available. For the other five bioassays, these values were not available. Therefore, thresholds were derived from a large number of previously measured responses in similar water types from an in house database of BDS. These risk- and data-based thresholds enabled to compare and interpret the responses at the demonstration sites, and to evaluate potential risks. Additionally a framework is developed that translates the outcomes of the bioassays to advice in (additional) monitoring activities. The tool provided robust results that showed limited variation between seasons. The outcomes of the bioassays appeared to be sensitive, robust and sensible, as they reflected relevant toxicological endpoints. The treatment showed significant improvement in water quality (reduction of effects) and the treated water did not exceed defined thresholds. At one demonstration site, the output was compared to extensive non-target chemical screening, illustrating the complementarity of non-target screening to effect based analysis.

The CALUX bioassays are suitable for commercial implementation for the assessment of treatment efficiency as well as water quality assessment of sources or effluents. Nevertheless, a health-based threshold is preferred above a "relative" threshold derived from previously measured responses. Currently, the regulatory acceptance is a bottleneck for wide spread application in environmental monitoring, since current monitoring is on a voluntary basis besides other monitoring activities. So there is an urge to develop risk based thresholds for all bioassays applied in this particular study. This also paves the way towards regulatory acceptance, considering the availability of risk-based thresholds that are particularly suited for risk based monitoring approaches risks based monitoring. Considering the TRL (Technology Readiness Level), the CALUX bioassays are technically ready for the market, but are still (partially) need risk based thresholds and require regulatory acceptance to be adopted in water quality assessment and treatment assessment. This translates to a TRL of 8, with the regulatory acceptance and adoption as major bottleneck for wide spread use and application, leading to a TRL of 9.

The BACT control was used to study two different parameters, being the detection of E. coli and the generic microbial activity. The BACT control was tested at six different demonstration sites with different water treatment schemes for wastewater treatment and drinking water treatment. The selected sites were: Langen Erlen (CH), Holsterwitz (DE), Budapest (HU) (all drinking water production), Agon Countainville (FR), Rheinbach (DE) (wastewater treatment) and Ovezande (NL) (sub surface storage for irrigation). Within the demonstration sites various technical issues were observed such as clogging by particles and precipitation of salts and freezing of tubing. Additionally, some unexplained peaks responses were observed at Basel that could not be explained by other means of monitoring microbial contamination. These issues illustrated the importance of on-site technical support for regular checks and troubleshooting, housing of the monitoring system and remote data monitoring. Clogging by precipitation of salts could be solved by using H₂O₂ as cleaning agent. Clogging by particles requires additional work that is currently tested by introducing pre-filtration steps. When clogging issues were overcome, stable continuous measurements were obtained with sufficient sensitivity to monitor microbial contamination in various types of water. Furthermore, correlations were observed between activity measurements and parallel cell counts at both water treatment for the production of drinking water and treated wastewater. This illustrates the potency to apply this technique for (near) continuous water quality monitoring. This translates to a TRL of 8, with stable controlled operation and prevention of clogging as the major challenge, especially for more turbid waters.

The qPCR method to detect antimicrobial resistance development was tested at demonstration site 12, Berlin. This is a wastewater treatment plant consisting of a conventional activated sludge treatment, combined ozonation treatment and constructed wetlands. The water along the treatment lines was screened for both antibiotic resistant bacteria and specific gene fragments that indicate antimicrobial resistance. The measurement of antimicrobial resistance genes showed a higher sensitivity than the analysis of the antibiotic resistant bacteria using traditional culturing methods. However, the detection of bacteria (traditional culturing method) and genes (qPCR method) conceptually differs, since the DNA fragments measured can originate from both living and dead organisms, while culturing based measurements require living organisms. Therefore, the results of the two techniques are not directly comparable but complementary. The combination reveals the fate of the alive and dead bacteria and their genes in treatment schemes. There are no quality criteria for presence of antimicrobial resistance in relation to human health risks. Consequently, the technology as well as the regulatory readiness level is still in a "validation phase". The further adoption of these techniques requires the definition of risk based quality criteria for both dead and alive bacteria so the TRL level is at 5-6.

1 About this document

1.1 Purpose of this document

Adding to the commonly applied monitoring systems, this deliverable demonstrates three innovative monitoring systems for cNES relevant parameters and enabling fast interventions. They address effects of complex mixtures of micro pollutants (e.g. endocrine disruption) that affect organisms in the environment and thereby threat functionality of aqueous ecosystems, fecal (microbial) contamination, being the major human health threat and antimicrobial resistance development that is considered an increasingly serious human health threat by the WHO. The tools enable quantitative detection of biological effects induced by chemicals present in a sample, faster detection of fecal contamination by detecting *E. coli* and Coliform bacteria and quantitative detection of antibiotic resistance genes in dead and alive microorganisms. The document describes how and to what extent the tools can

- characterize yet (unknown) endocrine disrupting compounds,
- enable faster and/or more comprehensive assessment of the presence of fecal contamination and
- detect antibiotic resistance genes

at one or more of the 13 water treatment sites of the AquaNES project where combinations of natural and engineered treatment technologies are demonstrated (Table 1).

Table 1 AquaNES demonstration sites

River Bank Filtration schemes for the production of drinking water		
Demonstration Site	No.1	Havel River, Berlin, Germany
Demonstration Site	No.2	Elbe River, Holsterwitz, Dresden, Germany
Demonstration Site	No.3	Danube River, Budapest, Hungary
Demonstration Site	No.4	Warta River, Poznan, Poland
Demonstration Site	No.5	Ganga River, Haridwar, India

Managed Aquifer Recharge & Soil Aquifer Treatment schemes for water storage & quality

mprovement	
Demonstration Site No.6	Lange Erlen, Basel, Switzerland
Demonstration Site No.7	Shafdan WWTP, Tel Aviv, Israel
Demonstration Site No.8	Agon-Coutainville, France
Demonstration Site No.9	Waddinxveen ¹ , Rotterdam, the Netherlands

Constructed wetlands and other natural systems for improved wastewater treatment		
Demonstration Site No.10	Thirasia and Antiparos Islands, Greece	
Demonstration Site No.11	Rheinbach, Erftverband, Germany	
Demonstration Site No.12	Berlin, Germany	
Demonstration Site No.13	Packington, UK	

¹ At a later stage another Dutch site (Ovezande) was selected for experimental work

1.2 Structure of the deliverable

Chapter 2 introduces the relevance of fast and innovative tools in water quality assessment, and distinguishes different types of tools and different applications and benefits. Chapter 3 describes the concept of on CALUX Bioassays, discusses testing activities performed within the AquaNES project and evaluates the relevance and prerequisites of this innovative tool for water quality assessment. At one demonstration site the bioassays are combined with non-target screening chemical analysis in order to reveal similarities, differences and especially the complementarity of these two tools that integrate chemical water quality of complex and undefined mixtures of chemical contaminants. Chapter 4 describes the application of the BACTcontrol, a sensor that can analyse microbial contamination within short timeframes, enabling fast indication of microbial contamination. Chapter 5 studies the potency of quantitative polymerase chain reaction (qPCR) techniques to monitor the presence of antibiotic resistant bacteria or DNA at demonstration site 12 (Berlin wastewater treatment at Schönerlinde). The main purpose of this study is to demonstrate if and how such DNA based techniques can be applied to monitor antimicrobial resistance in the urban water cycle and how outcomes are related to other means of measuring microbial resistance. Chapter 6 provides a generic discussion on the tested tools.

1.3 Relation to the project objectives

The AquaNES project demonstrates the robustness and benefits of combined natural and engineered water treatment technologies. Water quality assessment in general, and especially treatment efficacy of natural treatment steps, that are generally less controllable and adaptable, requires tools to assess water quality in order to monitor <u>fast</u> changes, provide an <u>integrative</u> and <u>effect based</u> interpretation of the water quality and monitor whether the natural treatment steps might <u>introduce risks</u> such as the development of antibiotic resistant bacteria or their genes. Therefore, three innovative and/or fast detection methods have been tested at selected demonstration sites. Thereby providing handles to assess and control water quality in combined natural and technical water treatment systems and safe (re)use of the treated water.

Figure 1 Schematic overview of combined natural and engineered treatment technologies within AquaNES Legend: 1 Sources, 2 Engineered pre-treatment (Site 2, 6-13), 3/4; Managed Aquifer Recharge/Soil Aquifer Treatment (MAR/SAT) (Site 6-9), 5 Constructed Wetland (CW) (Site 10-13), 6 Bank Filtration (BF) 7 Engineered post-treatment (all sites), 8 Uses and Users such as drinking water for consumers, irrigation in agriculture and public space and emission to surface water.

2 Innovative, fast and integrated water quality assessment

Water quality assessment is a complex task with many aspects. It includes assessment of (1) potential contamination of sources of the water, (2) evaluation of treatment efficiency for this (potential) contamination, (3) and the evaluation of treated water. Furthermore, the water quality assessment should be (4) tailored for the system hydrology and dynamics and (5) related to the intended use of the water. Water quality for wastewater treatment emitted to surface water, reuse for irrigation or other purposes and the production of drinking water should comply with predefined water quality standards given in various legislations. However, not all required parameters within these legislations are relevant for each situation. Furthermore, other parameters that are not included might be relevant. Additionally, required parameters cannot always be related to an effect or associated risk. Finally, determination of parameters can take longer than what is required to take timely action.

Various innovative and fast detection methods have been developed over the past decades. These methods might be able to improve monitoring for water quality assessment. This can provide a better and more problem oriented monitoring, in line with the Hazard Analysis and Critical Control Points (HACCP) principle which is included in the revision of Annex II of the Drinking water Directive and the regulation on wastewater for reuse purposes (Commision 2015).

2.1 Definition of relevant water quality parameters

The European Union has a defined set of water quality standards for various water types listed in the European Drinking Water Directive, the European Wastewater Directive, the Groundwater Directive the water framework Directive, etc. (European Commission 1991, European Commission 1998, European Commission 2000, European Commission 2003, European Commission 2003, commission 2006, European Commission 2006, European Commission 2006, European Commission 2006, European Commission 2008, European Commission 2010, Commission 2015). Also outside the European Union governmental organizations set water quality standards (see for example https://www.epa.gov/wqc). Non-governmental organizations such as the WHO set (non-regulatory) water quality criteria (Wirtz 2009, WHO 2011, Moermond and Smit 2016). These quality standards enable water quality assessment for drinking water, irrigation water or effluents emitted to surface water (European Commission 1998, European Commission 2000). However, many contaminants lack quality criteria, and not all are criteria health or risk based. For example, there are no regulatory criteria set for pharmaceuticals in the European Drinking Water Directive nor in the Water Framework Directive (Moermond and Smit 2016). This means that not all parameters that are considered relevant for a specific site, treatment or intended use. Therefore water quality can't always be properly evaluated based on criteria set by legislation alone. For chemicals lacking criteria, a generic threshold of toxicological concern (TTC) can be developed for human health risks (Kroes, Galli et al. 2000, Mons, Heringa et al. 2013). This threshold is based on a statistical approach where the distribution of effect based water quality criteria of a large training set is used to define the 5th percentile of distribution of safe exposure levels, assuming the same distribution for chemicals with and without criteria (Kroes, Galli et al. 2000, Mons, Heringa et al. 2013, Baken and Sjerps 2016). Such approaches provide guidance where regulatory frameworks fail to provide standards.

2.2 Innovative tools in water quality assessment

Water quality is determined by numerous parameters. Here we discuss the variety of water quality criteria. One can distinguish physical characteristics, the presence of organic and inorganic particles

and dissolved molecules or agglomerates, presence of microorganisms and presence of other organisms (i.e. biodiversity) (Rutgers, Mesman et al. 2004). Within AquaNES, various combined natural and engineered water treatment technologies are combined with the purpose of producing water that is of good quality and safe for its intended use. The treatment design and use of treated water requires <u>fast</u> detection methods since residence times of water in the treatment components can be hours to days, and information is required on short notice to enable to stop or adapt treatment timely. Technologies also require to be <u>sensitive</u> since water quality criteria can be set at low concentrations or levels, and sufficient resolution is needed to register trends towards quality criteria and exceedances. Furthermore, the chemical water quality is determined by a plethora of chemicals, so measurements of individual chemicals do not provide the full picture, and <u>integrative</u> approaches are required to enable a more complete water quality assessment. Not all relevant chemical and microbial parameters can be monitored at desired frequencies and sampling locations for technical and practical reasons. However, relevant <u>indicators</u> can be used to trigger additional monitoring in tiered approaches. Fast and or innovative tools can provide these requirements, thereby improving water quality assessment.

Chemical and microbial water quality assessment tools are developed at a high pace. While the advantages of innovative techniques are evident, water quality is generally assessed for a limited set of individual parameters using rather classic tools and methods. The limited set of individual regulated chemical water quality parameters, however, provides an incomplete picture of water quality and treatment performance. Innovative techniques can cover a wider array of contaminants, can be more sensitive, can enable faster detection, can provide indicators for further analysis and can integrate assessment of the effects of contamination by complex mixtures. For example, most micro-pollutants included under regulatory frameworks are parent compounds. As these parent compounds are metabolised, they are transformed to other compounds, and drop out of sight and control of regulatory frameworks, while persistent transformation products can be relevant in both in amount and potential effect (Lambropoulou and Nollet 2014). Furthermore, persistent mobile (very polar) organic chemicals (PMOC) (ter Laak, Sjerps et al. 2015) are often ignored in monitoring and regulation, as these compounds are not well covered by current isolation and separation techniques, while their mobile and persistent nature makes them very hard to remove from water (Reemtsma, Berger et al. 2016). Additionally, environmental and human health effects and risks are not caused by individual chemicals but by the composition of the complex mixture. Bioassays allow to study toxic effects of complex mixtures for specific endpoints.

Microorganism loads in water sources can have a very dynamic character, as emissions are erratic and can be associated with rain events or local contamination. This requires frequent or event specific monitoring and fast detection. Classic plating techniques require days to obtain results and are labour intensive. They might therefore not provide the speed and efficiency needed in water treatment systems. Innovative microbial sensors may fill this gap by providing the required speed and efficiency. They can be used as fast indicator microbial water quality assessment tools.

Detection of microbial resistant bacteria and genes can be classified as a microbial response to chemical contamination with a specific indirect risk. The presence of antimicrobial agents within the water system or its use by humans and livestock can result in the development (selection) of resistant microbes in waste materials of these users. Both the presence of the anti-microbial agents in the users themselves as well as the emissions of these antimicrobial agents through human and veterinary consumption can lead to the emission and further development of antimicrobial resistance in the water cycle, respectively.

AquaNES

Room is now given in the European Drinking Water Directive to develop a risk based monitoring program (Commision 2015). Customizing monitoring gives the freedom to exclude irrelevant parameters and opens opportunities for alternative parameters and tools. However, the acceptance of tools by users and regulators requires demonstration and evaluation these tools (Guillén, Ginebreda et al. 2012). Requirements for acceptance and application are (1) the definition of health/risk based trigger values in order to evaluate samples and (2) collection of reference data on water types. The application of these tools within the demonstration sites intents to illustrate the potential for application in water treatment and its technology readiness level. Additionally, it enables to evaluate treatment efficiency of the innovative treatment schemes tested at the 13 demonstration sites. It is thereby a step towards the application of such tools in water quality assessment in a regulatory setting.

2.3 Selected Innovative methods to determine water quality within AquaNES

Integrated approaches - Effect based monitoring: Biological effects of environmental complex mixtures can be monitored by a suite of bioassays such as isolated receptors, cells, biological tissues, whole organisms or ecosystems for very specific to very generic effect endpoints. The advantage is that such approaches cover a wider array of chemicals and outputs can be linked to biological effects (Oulton, Kohn et al. 2010).

Integrated approaches – non target and suspect screening: Non-targeted chemical approaches analyse integrate responses of complex mixtures by scanning for all chemicals that can be isolated, separated and detected by available techniques. Such approach covers a far wider array of chemicals compared to targeted approaches.

Automated Bacteria Monitoring / sensing microbial contamination– Microbial contamination can be detected by several analysers based on the detection of microbial (enzymatic) activity of for example faecal bacteria such as *E. coli*. This enables rapid batch at-line detection of microbial contamination and can function as an indicator and warning system.

qPCR techniques – Quantitative Polymerase Chain Reaction (qPCR) techniques enable to copy and identify specific DNA or RNA fragments of interest. This can be applied to monitor the presence of antimicrobial resistance genes within an environmental sample. There is a difference between the assessment of DNA or RNA vs. currently applied plating techniques that enable the assessment of intact microorganisms. qPCR is also able to detect DNA fragments of dead or destructed microorganisms.

Within the AquaNES project examples of these four techniques are demonstrated. These tools cover the three relevant aspects of water quality assessment, being <u>fast indication / detection</u>, <u>sensitivity</u> and <u>integrative (effect based)</u> water quality assessment.

3 CALUX bioassays

3.1 Study design

Setting a testing framework for the assessment of the efficiency of these combined (novel) treatment technologies requires the selection of relevant bioassays. To address the selection of relevant CALUX bioassay, a first round of water sampling and bio-analyses using a wide panel of 18 CALUX bioassays, was conducted involving all 13 AquaNES demonstration sites (round 1).

Based on the results of this first study and information provided in literature (Brand, de Jongh et al. 2013, Van der Oost, Sileno et al. 2017, Escher, Aït-Aïssa et al. 2018), a selection of the 10 most relevant CALUX bioassays was made. Besides that, the Cytotox assay was applied to evaluate if the results of the other assays were not compromised by death of the exposed cells. Six of the demonstration sites were invited to enter the second round (round 2) of sampling and CALUX analyses based on the outcome of round 1 and to cover different combinations of natural and engineered treatment technologies. In the second comprehensive study, the selected bioassays were used to evaluate the performance and efficiency of the innovative technologies in relation to the whole water treatment process. Furthermore, for each of the selected bioassays and based on both literature information and experimental derived data, bioassay-specific effect-based trigger values (EBTs) were developed and a concept action plan was drafted and proposed. Finally, water samples from one of the water treatment sites were analysed using both effect-based bioanalysis and non-target chemical analysis using high resolution mass spectrometry.

3.2 Materials and methods

3.2.1 CALUX bioassays

The CALUX (Chemical Activated Luciferase eXpression) bioassays group comprises human bone cell lines (U2-OS) or rat hepatoma cells (H4IIE), incorporating the firefly luciferase gene coupled to "responsive elements" as a reporter gene for the presence of compounds activating these responsive elements (Figure 2) (Murk, Legler et al. 1996, Sonneveld, Jansen et al. 2005, Van der Linden, Heringa et al. 2008, Pieterse, Felzel et al. 2013, Van der Burg, Van der Linden et al. 2013, Van der Linden, von Bergh et al. 2014). Cells that are exposed to compounds of interest not only express proteins that are under normal circumstances associated to responsive elements, but also luciferase. By addition of the appropriate substrate for luciferase, light is emitted (Figure 2). The amount of light produced is proportional to the amount of ligand-specific receptor binding, which is benchmarked against the relevant reference compounds (Table 2).

Toxicity endpoints relevant for water monitoring	Specific pathway	Most promising bioassay(s)
Xenobiotic metabolism	PXR receptor agonists AhR receptor agonists	HG5LN PXR assay, PXR HepG2 assay, PXR CALUX, DR CALUX, AhR geneblazer
Hormone-mediated mode of action	(anti)estrogenic activity (anti)androgenic activity (anti)glucocorticoid activity (anti)progestin activity	ERα CALUX, YES assay AR CALUX, AR-MDA-kb2 GR CALUX, GR-MDA-kb2 PR CALUX
Reactive mode of action	Gene mutations Chromosomal mutations DNA damage response	Ames fluctuation assay, ToxTracker Micronucleus assay, ToxTracker UMUc assay, Vitotox P53(+/-S9) CALUX
Adaptive stress response	Oxidative stress pathway	Nrf2 CALUX, AREc32 assay
Developmental toxicity	Focus point endocrine disruption	Various nuclear receptor activation assays, H295R assay)

Table 2 Overview CALUX in vitro bioassays for water quality determination

If samples are cytotoxic, results of the other CALUX bioassays cannot be used as their outcomes can be compromised by the generic toxicity to the exposed cells. Therefore, the cytotoxic potency of all the samples under investigation is tested using the cytotox CALUX bioassay. The cytotox CALUX bioassay constitutively expresses luciferase and hence, light is constantly emitted. A dose-dependent reduction of emitted light is indicative for cytotoxic effects of the samples under investigation.

Figure 2 Illustration of working principle of CALUX bioassay

A wide panel of CALUX bioassays, each addressing specific biological endpoints such as estrogen activity and genotoxicity, have been developed. Not all of the available CALUX bioassays are relevant for monitoring water quality. Relevant bioassays were selected based on the results a wide-panel CALUX screening (18 bioassays; see Table 3) of water samples obtained from all participating water treatment

sites (round 1). The selected effect-based bioassays were used to further assess the efficiency of various innovative treatment technologies (round 2).

Assay	Responsive towards	Reference	Cell type
Cytotox CALUX	cytotoxicity	TBT	U2OS
ERα CALUX	hormone-mediated MoA (estrogen activity (ERα receptor))	17β-estradiol	U2OS
anti-ERα CALUX	hormone-mediated MoA (anti-estrogen activity (ERα receptor))	Tamoxifen	U2OS
AR CALUX	hormone-mediated MoA (androgen activity)	DHT	U2OS
anti-AR CALUX	hormone-mediated MoA (anti-androgen activity)	Flutamide	U2OS
GR CALUX	hormone-mediated MoA (glucocorticoid activity)	Dexamethasone	U2OS
anti-GR CALUX	hormone-mediated MoA (anti-glucocorticoid activity)	Ru486	U2OS
PR CALUX	hormone-mediated MoA (progestin activity)	Org2058	U2OS
anti-PR CALUX	hormone-mediated MoA (anti-progestin activity)	Ru486	U2OS
PPARα CALUX	peroxisome proliferators	Rosiglitazone	U2OS
PPARδ CALUX	peroxisome proliferators	Rosiglitazone	U2OS
PPARy CALUX	peroxisome proliferators	Rosiglitazone	U2OS
PAH CALUX	xenobiotic metabolism (metabolic instable; PAH-like)	B[a]P	H4IIE
DR CALUX	xenobiotic metabolism (metabolic stable; dioxin-like)	2,3,7,8-TCDD	H4IIE
PXR CALUX	xenobiotic metabolism	Nicardipine	U2OS
Nrf2 CALUX	oxidative stress inducers	Curcumine	U2OS
P53 CALUX (-S9)	genotoxicity (without metabolic activation)	Actinomycin D	U2OS
P53 CALUX (+S9)	genotoxicity (with metabolic activation)	Cyclophosphamide	U2OS

 Table 3
 CALUX bioassays applied to evaluate water treatment technologies during the first sampling campaign

3.2.2 Demonstration sites

In total, 13 water treatment sites participated in the AquaNES project. In Table 1 participating demonstration sites are listed. For the first sampling round, all demonstration sites were invited to collect and send 2 water samples to BDS. The water samples should at least be collected before and after the innovative treatment technology train studied at each site. The additional sampling of a third water sample was requested (if possible) which represent the input water (influent) of the water treatment site. This sample was considered to be the most contaminated sample and was used as benchmark for the CALUX analyses.

Following evaluation of all CALUX analysis results of the water samples obtained during the first sampling round, 6 demonstration sites were selected to participate in the second round of the present study. These sites were selected because they showed relevant changes in responses before and after treatment in round 1 and covered both surface water and wastewater as source and (intended) use irrigation, and drinking water. During the second round, the six participating sites were requested to send 18 water samples. For each of the 6 participating treatment sites, a combined spatial/temporal sampling scheme was constructed (Annex 3).

3.2.3 Sampling, storage and shipment of water samples

Prior to sampling of water at the demonstration sites and shipment of the samples to BDS, Amsterdam, the Netherlands, a protocol for sampling, storing and shipment was drafted by BDS and send to all

participating demonstration sites (Annex 1). In addition, a sampling form was send to the demonstration site to be filled in at the moment of sampling. Upon arrival of the samples at BDS, each of the samples received a unique BDS sample code. For the first round of the AquaNES project, 2 to 4 samples were received from all demonstration sites (Annex 2). For the second round of the study, 6 selected treatment sites collected a minimum of 18 water samples during multiple sample campaigns (Annex 3).

3.2.4 Sample processing

The water samples were extracted by means of Solid Phase Extraction (SPE) according to BDS protocol p-bds-096. In short, the water samples were extracted by loading SPE columns (OASIS HLB SPE cartridges, 500 mg, 6 cc, Waters 186000115) with approximately 500-1000 ml of water and eluted with 10 ml of methanol followed by 10 ml of acetonitrile. Both fractions were pooled and evaporated under a gentle stream of nitrogen. The final extracts were re-dissolved in 150 μ l of dimethylsulfoxide (DMSO) after which serial dilutions in DMSO were prepared. Water samples collected by site 6 (Lange Erlen, Basel, Switzerland) were extracted and re-dissolved in DMSO by the Fachhochschule Nordwest-schweiz (FHNW; Campus Muttenz, Muttenz, Switzerland). The processing of the samples was according to the SOP used at BDS. Samples were shipped to BDS as extracts in DMSO.

For determination of the various CALUX activities, CALUX cells were seeded in 96 wells plates in assay medium. Following exposure of the CALUX cells to serial dilutions of the sample extracts in triplicate, the induction of luciferase production is quantified by measuring luminescence following addition of the substrate luciferin. On each 96-well plate, a complete calibration curve for each respective bioassays is also analysed using the relevant reference compounds. In Table 4 the exposure conditions for the various bioassays, are given. Analysis results of the test samples are interpolated in the calibration curve for quantitative determination of (ant)agonistic potential of the test samples. Only dilutions that do not show any signs of cytotoxicity (relative induction in the cytotox CALUX bioassay > 80%) are used for final evaluation of CALUX analysis results. Final results are expressed as μ g, ng or pg reference compound equivalents per litre of processed water.

The bioassays were performed according to standard BDS protocols p-bds-083 (Culturing U2OS CALUX cells), p-bds-04 (Analysis of Ah-receptor mediated luciferase activity in DRCALUX cells), p-bds-066 (Analysis of luciferase activity in the PAH CALUX bioassay), p-bds-085 (Analysing samples with U2-OS CALUX bioassays using sigmoidal dose response curves (with 0.1% or 1% DMSO)), p-bds-070 (Harvesting the cells and measurement), and p-bds-084 (Calculating U2OS CALUX results using sigmoidal dose response curves). BDS protocols are available upon request.

Assay	(anti)ERα, (anti)AR, (anti)GR, (anti)PR, PPARα, PPARδ, PPARγ, PXR	Cytotox, Nrf2, P53 (+/-S9)	PAH, DR
Cell type	U2OS	U2OS	H4IIE
Species	Human	Human	Rat
Confluence	10000 cells per well	10000 cells per well	>95% confluence
Medium used	DMEM/F12	DMEM/F12	αMEM
Additions to	 Stripped FCS 	-Stripped FCS	-FCS
assay medium	 Non essential amino acids 	-Non essential amino acids	
%DMSO	0.1%	1%	0.8%
Exposure time	24 hrs	24 hrs	4 hrs (PAH), 24 hrs (DR)

Table 4 BDS CALUX cell culture information

3.3 Results and discussion of testing at sites

3.3.1 Round 1

During the first round of the AquaNES study, water samples from all 13 participating water treatment sites were tested on a wide panel of 18 effect-based CALUX bioassays (see table 2). In Figure 3, the final analysis results are presented in a heat-map, expressed as fold-induction above the LOQ of each respective bioassay. The quantified CALUX analysis results for all bioassays tested and all demonstration sites are given in Annex 4 (a-m).

As can be observed in the heat-maps presented in Figure 3, the level of micro-pollutants that exhibit bioactivity, is most pronounced in the demonstration sites that utilise constructed wetlands (WP3 demonstration sites). These sites use wastewater as influent that is expected to have relatively high micro-pollutant levels. In contrast, demonstration sites from WP2 use other, less contaminated, sources of influent (such as surface waters) which is reflected in lower bio-activity levels particularly in influent samples. For demonstration site 1-4 (WP1), a third sample representing the feed water of the water treatment plant, was not received. Such a sample would be a well or surface water sample expected to contain low levels of micro-pollutants.

In general, treatment of the water samples decreased the bioactivity in the samples at all demonstration sites. In most cases, the bioactivity in water samples is already significantly decreased before the water passes the innovative treatment technologies under investigation. Following water treatment using the innovative treatment technologies, CALUX activities are further reduced indicating further removal or degradation of bioactive micro-pollutants.

With respect to the selection of bioassays, the CALUX analysis results indicate clearly that anti-ER α , PR and P53 (-S9) activity was hardly demonstrated in the water samples from any of the demonstration sites. Therefore, these bioassays will not be used during the second campaign of the study. From the remaining bioassays, DR and PAH CALUX activity (metabolic stable and instable compounds able to activate the Aryl Hydrocarbon receptor) was observed in multiple demonstration sites. However, these activities seemed to be rather consistent in most samples analysed and no clear effect of water treatment was observed. Furthermore, these bioassays suffered in many cases from background activity obscuring the final results. These bioassays therefore do not seem appropriate to be used for the second campaign.

All other bioassays demonstrated activity in the tested water samples and can be used for evaluating the treatment efficiency. Most of the relevant bioassays are designed to detect compounds with an endocrine mode of action. In addition, a number of bioassays representing other modes of action (induction of xenobiotic metabolism, lipid metabolism, genotoxicity, oxidative stress response and cytotoxicity) also were able to detect activity in the tested water samples and demonstrated efficiency of water treatment in the present pilot study. Together this battery of bioassays covers a rather wide variety of toxicological endpoints. Based on the results of this first study and information provided in literature (Van der Oost, Sileno et al. 2017, Escher, Aït-Aïssa et al. 2018), 11 bioassays considered to be most relevant for water quality assessment are selected and presented in Table 4.

		Cytotox CA	AR CALUX	anti-AR CAL	ERa CALUX	anti-ERa CA	GR CALUX	anti-GR CAL	PR CALUX	anti-PR CAL	PPARa2 CA	PPARd CAL	PPARg2 CA	PAH CALUX	DR CALUX	PXR CALUX	Nrf2 CALUX	P53 CALUX	P53 CALUX
		LUX		_ux		LUX		-ux		.ux	LUX	UX	LUX					(-S9)	(+S9)
site 1	2017_11_27_ site 1_feed NF	0.5	0.5	0.5	3.1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	8.8	0.5	3.75	0.5	0.5	0.5
	2017_11_27_ site 1_permeate NF	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.92	0.5	0.5	0.5	0.5	0.5
site 2	WW Hosterwitz influent (river (Elbe) water)	0.5	0.5	0.5	1.3	0.5	0.5	1.1	0.5	0.5	0.5	0.5	0.5	40	1.7	2.3		0.5	
	WW Hosterwitz effluent (treated water)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5
site 3	Treatment plant influent water (above slow filter)	0.5	0.5	0.5	0.5	0.5	0.5	1	0.5	0.5	0.5	0.5	0.5	15	1.1	1.6		0.5	
	Treatment plant effluent water (RO permeate)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5	0.5
site 4	Mosina treatment station influent	0.5	0.5	1.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	7.0	25	7.6	7.1	0.5	1.9
	Mosina treatment station effluent	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		2.2	1.6	0.5	0.5
site 5	Ganga	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		13	0.5	0.5	0.5	0.5
	SP1 RBF	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	25	0.5	0.5	0.5	0.5	
	SP4 A0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	18	6	1.3	1.2	0.5	0.5

A River Bank Filtration schemes for the production of drinking water

"

B Managed Aquifer Recharge & Soil Aquifer Treatment schemes for water storage & quality improvement

	Cyto	ARO	anti-	ERa	anti-l	GRO	anti-	PRO	anti-l	PPA	PPA	PPA	РАН	DRO	PXR	Nrf2	P53 (P53 (
	tox CAL	ALUX	AR CAL	CALUX	ERa CAL	ALUX	3R CAL	ALUX	PR CALL	Ra2 CAL	Rd CALU	₹g2 CAL	CALUX	ALUX	CALUX	CALUX	SALUX (-	CALUX (-
	x		×		.ux		×		×	UX V	×	чх					(es	+S9)
1 - raw river Wiese wate	0.5	0.5		1.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	23		1.3	0.5	0.5	
2 - pre-treated river Wie	0.5	0.5	1.9	0.5	0.5	0.5	2.9	0.5	0.5	0.5	0.5	0.5	18		0.5	0.5	0.5	
3 - after AOP treatment	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2.2	0.5	1.2	0.5	0.5	0.5
SHAF_R1	110	22	13	520	0.5	6.4	0.5	0.5		34	4.3	10			41	0.5	0.5	
SHAF_OZA500	0.5	0.5	1.3	18	0.5	5	0.5	0.5	1	0.5	0.5	0.5			4.8		0.5	0.5
SHAF_OZOAOZ	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			1.4		0.5	
raw water WWTP inlet	14	63	0.5	710	0.5	0.5	12.5	0.5		26	4.2	11	11000	130			0.5	2.5
raw water WWTP outlet (before Mare a Sorre)	3.3	0.5			0.5			0.5		0.5	0.5		54				0.5	
raw water WWTP outlet (Mare a Sorre)	3.3	0.5			0.5			0.5		0.5	0.5		16				0.5	0.5
Nootdorp BASSIN	1.4	0.5	0.5	1.8	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			2.6	9.1	4.5	3.4
Nootdorp ASR	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		4.8	1.5	0.5	0.5	
Nootdorp OPPW	2.5	0.5	2.5	1.25	0.5	0.5	5.7	0.5	1.6	0.5	0.5	0.5		9.3	0.5	0.5	0.5	
Nootdorp VLOTTER(KIST)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	45	2.7	3.1	1.3	0.5	0.5

C Constructed wetlands and other natural systems for improved wastewater treatment

		Cytoto	AR CA	anti-A	ERa C	anti-El	GR C/	anti-G	PR CA	anti-Pl	PPAR	PPAR	PPAR	РАН С	DR CA	PXR C	Nrf2 C	P53 C,	P53 C,
		X CALUX	ILUX	R CALUX	ALUX	Ra CALUX	1LUX	R CALUX	LUX	R CALUX	32 CALUX	d CALUX	g2 CALUX	ALUX	ILUX	ALUX	ALUX	ALUX (-S9)	ALUX (+S9)
site 10	No. 1	16	41	3.9	1500	0.5	10	0.5	0.5	0.5	11	3.8	14	430	35	12	25	0.5	16
	No. 2	44	56	35	1500	0.5	4.3	4.9	0.5	71		3.4	4	26		15	19	0.5	110
	No. 3	0.5	0.5	0.5		0.5	2.3	0.5	0.5	0.5	2.9	0.5	0.5	0.5	23		4.8	0.5	
site 11	Inflow WWTP	220	56	37	400	4.8	0.5	47	0.5	110	12	13	0.5		32	45	0.5	0.5	0.5
	Pilot RSF Rheinbed Inflow	0.5	0.5	1	5.7	0.5	3.4	0.5	0.5	0.5	0.5	0.5			25	12	7.6	0.5	0.5
	Pilot RSF Rheinbed Outflow	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	24	0.5	0.5	1.0	0.5	0.5
site 12	WWTP Schonerlinde. Primary sedimentation	12.5	0.5	0.5	550	0.5	6.4	0.5	0.5	11	34	5.1			65	15	8.5	0.5	2.8
	WWTP Schonerlinde. Secondary sedimentation	1.4	100	1.25	4.7	0.5	6.3	0.5	0.5	0.5	0.5	0.5		140		4.6	1.4	0.5	0.5
	WWTP Schonerlinde. Ozonation	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5		1.3		0.5	0.5
	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	15		2.1		0.5	0.5
site 13	S13-1	8.8	100	13		0.5	16	0.5	11		20	0.5			32		16	0.5	9.5
	S13-2	3.5	0.5	3.9		0.5	0.5	0.5	0.5	1.1	0.5	0.5		34	3.2	13	0.5	0.5	0.5
	S13-3	0.5	0.5	0.5	1.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	18	8.5	6.7	2.9	0.5	0.5

Figure 3 Heat-map of round 1 CALUX analysis results for all effect-based bioassays performed and for all participating water treatment sites expressed as fold-induction above the LOQ of each respective bioassay. Results below LOQ are represented by a value of 0.5

AquaNES

 Table 5
 Selection of effect-based CALUX bioassays considered to be relevant for the evaluation and monitoring of innovative water treatment technologies during round 2 of the AquaNES project

Assay	Responsive towards	Reference	Cell type
Cytotox CALUX	cytotoxicity	TBT	U2OS
ERα CALUX	hormone-mediated MoA (estrogen activity (ERα receptor))	17β-estradiol	U2OS
AR CALUX	hormone-mediated MoA (androgen acitivity	DHT	U2OS
anti-AR CALUX	hormone-mediated MoA (anti-androgen activity)	Flutamide	U2OS
GR CALUX	hormone-mediated MoA (glucocorticoid activity)	Dexamethasone	U2OS
anti-PR CALUX	hormone-mediated MoA (anti-progestin activity)	Ru486	U2OS
PPARα CALUX	peroxisome proliferators	GW7647	U2OS
PPARγ CALUX	peroxisome proliferators	Rosiglitazone	U2OS
PXR CALUX	xenobiotic metabolism	Nicardipine	U2OS
Nrf2 CALUX	oxidative stress inducers	Curcumine	U2OS
P53 CALUX (+S9)	genotoxicity (with metabolic activation)	Cyclophosphamide	U2OS

For the selection of demonstration sites for the second round of analyses, the criteria are whether the sites were expected to be in operation during the planned sampling rounds over various seasons, the practical availability of water samples, the origin of source water and the type of innovative treatment technology. Initially it was foreseen to select of 2 sites from WP 1-3, however, WP 1 (River Bank Filtration schemes for the production of drinking water) revealed rather low responses in the round 1 bio assays, so only one site with the highest responses (site 4) was selected. Additionally, site 6 (WP2, Managed Aquifer Recharge & Soil Aquifer Treatment schemes for water storage & quality improvement) was selected, as this site was considered more closely related to demonstration sites from WP1 (also river water passing soil as (pre) treatment for drinking water treatment) and basically different from other sites in WP2 having wastewater as source. Since site 9 (Waddinxveen / Ovezande, the Netherlands) from WP2 was not operational yet, Site 7 and 8 were selected from WP2. Finally,sites 11 and 12 of WP3 (Constructed wetlands as post treatment of communal wastewater) were selected as these sites have the most comprehensive analysis of organic micro-contaminants and on–site support. The final selection of 6 demonstration sites is presented in Table 6.

Table 6 AquaNES demonstration sites selected for the second round of the AquaNES project with their treatment trains

Site No.4	Warta River, Poznan, Poland	Bank filtration (aquifer effluent) – aeration-high rate filtration-ozonation - GAC filtration
Site No.6	Lange Erlen, Basel, Switzerland	River water-sand filtration-advanced oxidation - soil/BAC filtration - infiltration (MAR)-GAC/UV disinfection
Site No.7	Shafdan WWTP, Tel Aviv, Israel	WWTP effluent - biofiltration - advanced oxidation (ozonation/electro pulse) - SAT
Site No.8	Agon-Coutainville, France	WWTP effluent (activated sludge) - reactive beds – UV - sand dune infiltration (MAR)
Site No.11	Erftverband, Germany	WWTP effluent (activated sludge) - retention soil filter (with/without GAC)
Site No.12	Berlin, Germany	WWTP effluent-ozonation - filtration (sand/GAC; sand/anthracite; BAC) or constructed wetlands

3.3.2 Round 2

The selected participants were requested to collect 18 water samples according to a spatial and temporal sampling scheme in order to evaluate the treatment efficiency of individual treatment technologies applied at each site and evaluate possible temporal seasonal changes. In Annex 3, sample information on the samples collected at each site is provided. In addition, a schematic representation of each of the sites in given, indicating the various sampling points. In Table 7, an overview of the samples received and analysed is given.

Site	Shipments received	Samples received	Samples analysed
4	3	18	18
6	3	31	31
7	3	19	19
8	4	18	18
11	6	19	19
12	3	20	20
Total	22	125	125

Table 7	Summary of num	nber of samples received	d and analysed from	participating sites
---------	----------------	--------------------------	---------------------	---------------------

All quantified CALUX analysis results for samples received, are presented in Annex 5. The final analysis results are also presented in a heat-map, expressed as fold-induction above the LOQ of each respective bioassay (Annex 5 a-f). As could be observed during the first round of the present study, the level of micro-pollutants in demonstration sites that utilise wastewater as water source (sites 11 and 12) is most pronounced, whereas demonstration sites (sites 4 and 6) using other sources of influent (such as surface waters) are less contaminated reflected by lower bio-active responses.

In general, all treatment trains applied at selected sites, containing the innovative combinations of natural and engineered treatment technologies, are effective in reducing the biological response caused by chemicals in the water when comparing bioactive responses in influent and effluent waters. However, removal of such compounds was not always linear along the treatment process suggesting that some treatment steps lead to the formation or incomplete removal of bioactive compounds. Especially compounds causing oxidative stress and inducing (xenobiotic) metabolism are still present at most sites after various treatment steps along the treatment train. In some case, an increase in Nrf2 CALUX bioactivity was observed after specific treatment steps (site 8, sample point S5-4 FRE4 Sand Dune Aquifer). Ozonation is known lead to an increase of oxidative species and hence increased Nrf2 CALUX activity. However, this could not be demonstrated in this study. Endocrine activity and in particular estrogenic activity was observed in influents of all sites except for site 6. The estrogenic activity decreased when passing through the various treatment trains studied and only in waters from site 8 and 12, residual estrogenic activity was observed after the final treatment step.

The obtained bioassay results suggest that the use of lines of different treatment technologies is an efficient approach to reduce bio-active substances. Not a single technology is capable of reducing bio-active responses completely but the combined use of innovative technologies significantly reduced bio-active responses in water samples as compared to activity in source water samples. The efficiency of different treatment trains as applied by the participating sites are, however difficult to compare. As indicated before, the various sites use very different source waters. Furthermore, in some cases the waters have been treated prior to entering the innovative treatment train resulting in different contaminants loads.

The sampling schemes at the sites does not allow for evaluating of possible time-trends. Although some minor differences between sampling campaigns at the various sites were observed, no clear dependence of contamination levels on time or season were observed.

From all analyses performed, it can be concluded that the panel of effect-based bioassays used in the present study is very much suitable for the monitoring and evaluation of the efficiency of innovative water treatment technologies and the monitoring of the water treatment process as a whole. It provides sufficient sensitivity / resolution to observe effects of treatment, and data suggest rather robust results since various sampling rounds provided similar patterns. However, for assessment of water quality for (re)use as drinking water, irrigation water or emission into sensitive surface waters or sub-surface storage, effect-based trigger values (EBTs) have to be developed to be able to indicate acceptable risk for complex mixtures as they occur in waterbodies. Furthermore, these trigger values need to be adopted in regulatory water frameworks, as this paves the way towards widespread use. At this moment the results of effect-based bioassays are only benchmarked against each other. No benchmark against a widely approved measure of chemical water quality has been adopted and therefore, the EU Water Framework Directive (WFD) does not allow bioassays for monitoring waterbodies. In contrast, official EU limit values for dioxins and dioxin-like compounds in food and feed samples have been put in place and the regulations allow bioanalytical methods for screening of food and feed samples (European Commission 2012).

To evaluate the present CALUX bioassay analysis results and quantify the water quality along the treatment trains studied, bioassay specific trigger values are required. Recently, a number of bioassayspecific effect-based trigger values have been derived for drinking and environmental waters using a statistical/theoretical approach (Brand, de Jongh et al. 2013, Van der Oost, Sileno et al. 2017, Escher, Aït-Aïssa et al. 2018). However, no EBTs are currently reported for the AR, GR, PPARa, PPARg and P53(+S9) CALUX bioassays used in the present study. In an attempt to derive EBTs for these bioassays, a practical approach was applied using CALUX bioassay analysis results from a large set of water samples (drinking water, waste water and environmental water). The distribution of these CALUX bioanalysis results were evaluated and a practical EBT was derived based on the percentage of samples showing analysis results below this EBT. Since the data set used for deriving this EBT was based on (mostly) coded water samples and therefore, the water source was unknown, the percentage used for deriving the practical EBT was set at 80% to prevent bias. Using this practical approach, EBTs were derived for all CALUX bioassays applied in the present AquaNES project. Comparison of bioassay EBTs reported in literature with their practical derived counterparts showed values in the same range. This indicates that practical derived EBTs for bioassays for which no EBT was reported, can be used for evaluation and quantification of water quality along the treatment trains studied in the present study.

In Figure 4, an example for the determination of a practical derived effect-based trigger value for estrogenic compounds is given, where 80% of the analysed samples have an estrogenic activity below the effect-based trigger value. The obtained EBT for estrogen activity (1.6 ng 17 β -estradiol eq./l water) is comparable to the EBTs for estrogen activity reported in literature (0.1 – 3.8 ng 17 β -estradiol eq./l water) (Brand, de Jongh et al. 2013, Van der Oost, Sileno et al. 2017, Escher, Aït-Aïssa et al. 2018). In Figure 8, effect-based trigger values the biological endpoints used in the present AquaNES study are given. In case trigger values for specific bioassays were available in literature, these EBTs were used. For all remaining CALUX bioassays, trigger values were derived according to the practical approach. In addition, an action plan for water treatment plant operators is proposed in case bioanalysis results exceed the derived trigger values. In Table 8, this proposed action plan is presented. This action plan

provides a reasonable level of protection while leading to risk management measures at a realistic number of sites only.

Applying trigger values and the proposed action plan on the quantified CALUX analysis results of water samples obtained during the second round of the present study, allows for a better evaluation of the impact of the various innovative technologies on treatment efficiency . In addition, it also allows for actual water quality assessment. Heat-maps of quantified CALUX analysis results for sites 4 and 12 are presented in Figure 5 and the trigger values and action plan is applied. These two sites were selected as they covered drinking water treatment and wastewater treatment. Using this approach, it becomes clear that quantifiable bioactivities do not necessarily mean that water quality is poor. Only when effect-based bioactivities exceed trigger values, possible action is required. In Annex 6 a-c, heatmaps of EBTs and the proposed action plan applied on quantified CALUX analysis results from all sites are presented. Based on this interpretation of analysis results, only water obtained from the Sand Dune Aquifer sampling point from site 8 shows elevated Nrf2 CALUX activity at levels at which action might be needed.

ERα CALUX (water) :Freq. dist. (histogram)

Figure 4 Derivation of a trigger value for estrogen activity using the practical approach

Table 8Proposed action plan for assessment of water quality, based on EBT for CALUX bioassays applied
during round 2 of the AquaNES study.

Assay	Unit	EBT	Reference	1*EBT	3*EBT	10*EBT	100*EBT
Cytotox CALUX							
AR CALUX	ng DHT eq./I	32	Besselink	32	96	320	3200
anti-AR CALUX	ug Flutamide eq./I	14	Escher et al. (2018)	14	42	140	1400
ERa CALUX	ng 17b-Estradiol eq./I	0.1	Escher et al. (2018)	0	0.3	1	10
GR CALUX	ng Dexamethasone eq./l	56	Besselink	56	168	560	5600
anti-PR CALUX	ng Ru486 eq./l	1.2	Escher et al. (2018)	1	3.6	12	120
PPARa CALUX	ng GW7647 eq./I	22	Besselink	22	66	220	2200
PPARg2 CALUX	ng Roziglitazone eq./l	91	Besselink	91	273	910	9100
PXR CALUX	ug Nicardipine eq./l	43	Escher et al. (2018)	43	129	430	4300
Nrf2 CALUX	ug Curcumine eq./I	20	Escher et al. (2018)	20	60	200	2000
P53 (+S9) CALUX	ug Cyclophosphamide eq./l	1100	Besselink	1100	3300	11000	110000

CALUX result < 1*EBT (or LOQ) no further action required

1*EBT < CALUX result < 3*EBT quality check data, continue to monitor every three months, until 1 year and the EBT < 1

3*EBT <CALUX result < 10*EBT data check, immediate re-sampling and analysis to confirm EBT. It is also required to quantify specific target compounds which are known to cause the effects observed in the respective bioassay

CALUX result < 100*EBT all of the above plus enhance source identification program. Also monitoring in the distribution system closer to the point of exposure to confirm attenuation of CEC is occurring and to confirm the magnitude of safety factors associated with removal efficiency, dilution and post-treatment.

AquaNES

Site 4

12/03/2018	\$1	\$2	\$3	\$ 4	S5	S 6
Cytotox CALUX	1	LOQ	LOQ	LOQ	LOQ	LOQ
AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-AR CALUX	18	13	LOQ	LOQ	LOQ	LOQ
ERa CALUX	LOQ	LOQ	0.1	LOQ	LOQ	LOQ
GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-PR CALUX	62	4.8	LOQ	LOQ	LOQ	LOQ
PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PXR CALUX	17	35	40	13	10	8.5
Nrf2 CALUX	1000	140	LOQ	LOQ	15	22
P53 CALUX (+S9)	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ

21/08/2018	S1	S2	S3	\$ 4	S5	S6
Cytotox CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
ERa CALUX	0.8	3.2	LOQ	LOQ	0.8	LOQ
GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-PR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PXR CALUX	24	22	16	LOQ	6.4	LOQ
Nrf2 CALUX	74	59	70	60	37	LOQ
P53 CALUX (+S9)	1900	LOQ	1900	LOQ	LOQ	LOQ

08/10/2018	\$1	S2	S 3	\$ 4	S5	S6
Cytotox CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
ERa CALUX	0.1	0.3	LOQ	0.2	LOQ	LOQ
GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-PR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PXR CALUX	23.0	23.0	15.0	10.0	20.0	7.2
Nrf2 CALUX	LOQ	130	LOQ	26	LOQ	42
P53 CALUX (+S9)						

S1 S2 **S**3 **S4 S**5 **S**6 **S7** Cvtotox CALUX 100 18 1.00 1.00 100 1.00 ARCALUX 155 1.00 1.00 1.00 100 1.00 LOO anti-ARCALUX 1.00 4.6 LOQ LOQ LOQ ERa CALUX 04 1.8 0.1 04 03 01 87 21 GR CALUX 110 210 71 25 40.0 100 1.00 1.00 1.00 1.00 anti-PR CALUX PPARa2 CALUX 400.0 LOQ LOQ LOQ LOQ LOQ PPARa2 CALUX 1300 LOQ LOQ LOQ LOQ LOQ LOQ PXR CALUX LOQ 25 12 19 8 Nrf2 CALUX 760 110 51 180 77 79 P53 CALUX (+S9) LOQ 10000 LOQ LOQ LOQ LOQ 17/04/2018 **\$1 S**2 **\$**3 **\$4 \$**5 **S**6 **\$7** Cytotox CALUX LOQ LOQ LOQ LOQ LOQ LOQ 53.0 ARCALUX 430 LOQ LOQ LOQ LOQ LOQ LOQ anti-AR CALUX LOQ 2.6 LOQ LOQ 1.8 LOQ 1.1 ERa CALUX 45 LOQ LOQ LOQ LOQ LOQ 1.0 GR CALUX 15.0 LOQ LOQ LOQ 50.0 160 42.0 anti-PRCALUX 54 LOQ LOQ LOQ 4.1 LOQ LOQ PPARa2 CALUX 140 LOQ LOQ LOQ LOQ LOQ LOQ PPARg2 CALUX LOQ 81 LOQ LOQ LOQ LOQ LOQ PXR CALUX 80 100 93 LOQ 37 35 11 Nrf2 CALUX 810 320 130 LOQ 190 110 140 P53 CALUX (+S9) 570 2200 LOQ LOQ LOQ LOQ LOQ **S**2 **S**3 **S**4 **\$**5 **S**6 **S**7 16/07/2018 **S1** LOQ Cvtotox CALUX 25 2.8 0.7 LOQ LOQ LOQ ARCALUX 130 LOQ LOQ LOQ LOQ LOQ LOQ anti-ARCALUX LOQ LOQ LOQ LOQ 21 LOQ LOQ ERa CALUX 51 1.0 0.1 LOQ LOQ LOQ LOQ GR CALUX 110 48 LOQ 41 130 24 22 anti-PRCALUX 40 LOQ LOQ LOQ LOQ LOQ LOQ PPARa2 CALUX 420 LOQ 20 LOQ LOQ LOQ LOQ PPARg2 CALUX 1100 LOQ LOQ LOQ LOQ LOQ LOQ PXR CALUX 100 72 48 8.3 30.0 33.0 31.0 Nif2 CALUX 740 200 170 LOQ 190 110 82 P53 CALUX (+S9) 25000 LOQ LOQ LOQ 1500 LOQ LOQ

Proposed action plan

CALUX result < 1*EBT (or LOQ): no further action required

1*EBT < CALUX result < 3*EBT: quality check data, continue to monitor every three months, until 1 year and the EBT < 1

3*EBT < CALUX result < 10*EBT: data check, immediate re-sampling and analysis to confirm EBT. It is also required to quantify specific target compounds which are known to cause the effects observed in the respective bioassay. Continue to monitor every 10*EBT < CALUX result < 100*EBT: all of the above plus enhance source identification program. Also monitoring in the distribution system closer to the point of exposure to confirm the magnitude of safety factors associated with removal efficiency, dilution and 100*EBT < CALUX result: all of the above plus immediately confer with the local environmental authority's to determine the required response action. Confirm plant; corrective actions through additional monitoring that indicates the CEC levels are below at least an

Figure 5 Heat maps according to proposed water quality assessment scheme of bioassay responses at demonstration site 4 (river bank filtration for drinking water, Poznan, Poland) and site 12 (wastewater treatment with constructed wetlands and filters, Berlin, Germany)

23/01/2018

Site 12

AquaNES

3.3.3 Integration of effect-based bioanalysis and chemical non-target screening to globally asses chemical water quality at site 12

Advancements in high-resolution mass spectrometry (HRMS) based screening methods have enabled a shift from target to non-target analyses to detect a much wider array of chemicals in (water) samples (Hollender, Schymanski et al. 2017). Non-target screening has therefore become a promising tool to evaluate the changes of chemical water quality during water treatment (Nürenberg, Schulz et al. 2015). However, the wealth of data resulting from non-target screenings renders structural identification, let alone toxicological evaluation of all compounds, virtually impossible. Consequently, prioritisation is required to define which of the unknown compounds need to be studied/identified first. This can happen on different levels: the abundance of an unknown feature in the sample, the matching of a feature with a suspect list entry, the trend profile of a feature's intensity across treatment steps and/or its correlation with a biological effect, for example reflected in a bioassay response. A feature represents a given compound and consists of a unique combination of an accurate mass and a retention time. Without identifying the feature, information on its response, measured in instrument counts (Sjerps, Vughs et al. 2016) or response relative to an internal standard (Parry and Young 2016), can be automatically extracted. Through suspect screening against a suspect list, potential candidates that match a feature based on their accurate mass can be found and ranked according to their occurrence or toxicity such as evaluated in CALUX bioassays (Brunner, Dingemans et al. 2019). As in vivo toxicity data is limited, *in vitro* bioassay data can be used as a proxy, such as the ToxCast database that includes high throughput in vitro toxicity information of >8000 environmentally relevant compounds and >1500 bioassays (Schroeder, Ankley et al. 2016). To more comprehensively assess changes in water quality, the trend profiles of feature intensities across treatment steps can be considered through application of data science methods that reveal patterns in the data. These profiles allow distinction between persistence, elimination and formation of a feature during treatments and prioritisation based thereupon (Schollée, Schymanski et al. 2016). Ultimately, trend profiles can be integrated with the bioassay read out profiles resulting in a fit for purpose method to monitor water quality in samples and across treatment steps.

Here, we performed non-target screening analyses on the extracted water samples from site 12 from April and July 2018 in technical triplicates, using an Orbitrap Fusion mass spectrometer (Thermo Scientific). Figure 28 in chapter 5 gives the treatment scheme of site 12.

Detected features were matched against the Water Framework Directive priority list and the SusDat database of the European Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances (NORMAN) consisting of more than 40.000 chemicals relevant for environmental monitoring. A novel data analysis workflow was applied to efficiently interpret the wealth of data generated that combined the points mentioned above. Thereby including integration of the biological effect data generated in the CALUX bioassays and the chemical monitoring data. The primary sedimentation effluent was excluded from the data analysis as the amount of features detected exceeded the processing power of the available IT infrastructure. Detailed material and methods can be found in Annex 7.

First, overall feature numbers and intensities, as well as suspect matches against the NORMAN SusDat and the WFD priority lists were determined, the results of which are shown in Table 9 and Figure 6. As expected and consistent with the CALUX assay results, the secondary effluent that was the influent for the ozonation showed most features in both sample types and post-GAC filter samples the least, respectively. Apart from the GAC filter step, there was a no or a limited reduction in feature numbers

observed through technological and natural treatment steps. Note that the post-ozonation steps constructed wetlands, sand BAC filter and sand anthracite filter are performed in parallel as is indicated by the numbering. Post-GAC treatment succeeds the sand anthracite filter treatment. Summed feature intensities, however, did show significant decrease after ozonation of roughly a factor 3.6 in April and a factor 1.5 in July, respectively. Treatments steps 3a, b and c show limited removal in April (factor 1.0-1.5) and slightly higher removal in July (factor 1.3-1.7).

The GAC treatment after the sand anthracite filter reduces the intensities by a factor 5.2 in April but only by a factor 1.4 in July. This suggests that the longer operation and or higher temperatures in July improve removal by biologically active filters while the Activated carbon sorption capacity is reduced during the same period of operation (saturation). In general this illustrates that the performance of a treatment train can change over operation time and due to conditions and treatment settings. As feature numbers do not reflect the abundance of a given feature in the sample this could either mean that the features persist at lower concentrations in the samples that the features initially present are transformed into new features, or that previously sorbed features are later released by competition of sorption sites.

Table 9	Numbers of detected features,	SusDat suspect	and WFD	priority	substance	matches	across	all
	samples.							

Treatment steps 1,2,3 are sequential. 3a, b and c are performed in parallel. Step 4c succeeds 3c. Color codes guide the eye, red indicates higher numbers and green lower numbers relative to the distribution observed number of features per feature-class

	Ozonation influent	Ozonation effluent	Constructed Wetlands	Sand BAC Filter	Sand Anthracite Filter	PostGac Filter			
Treatment step	1	2	3a	3b	3c	4c			
All Features									
April	26235	23389	24187	22370	25567	8561			
July	26394	26228	25567	25648	25691	17598			
SusDat suspect matches									
April	13151	11748	12221	11073	12748	4146			
July	13203	13087	12764	12755	12859	8820			
WFD suspect matches									
April	41	41	41	38	41	11			
July	41	42	41	41	41	26			

Summed feature intensities per sample group

Figure 6 Summed feature intensities per sample group on a log scale, corrected for extract concentration

Next, the multivariate analysis technique principal component analysis (PCA) was applied for a qualitative overview and to group and characterize samples and features. Through reduction of the data complexity PCA can reveal relationships between samples when the principal components are depicted in a so called scores plot (Schollée, Schymanski et al. 2016)). Two thirds of the variance in the data could be explained by the first two principal components as shown in the Screen plot in Annex 7. Therefore, only the first two components were considered in the following. Figure 7 shows the distribution of the Site 12 water samples according to the first two components, referred to as dimension 1 and 2. The technical triplicates cluster together indicating good measurement reproducibilty. Dimension 1 is separating the ozonation influent from the other samples. It could thus reflect overall signal intensities. Feature numbers increse along this dimension 2 could be representing the seasonal influence, i.e. the variability between April and July samples. In addition, it could be explaining variability introduced by transformation processes with the parent compounds present in the ozonation influent (negative Dimension 2) and transformation products in the ozonation effluent and other treated samples (positive Dimension 2, decreasing).

Figure 7 PCA graph of individuals of water samples from site 12, April and July. Samples are coloured according to their cosine similarity, a measure for the difference of samples (cos²) (A), date (B), and sampling point (C)

To investigate changes due to treatment steps, features were consequently plotted according to their changes between two samples and the significance thereof in so called Volcano plots (Cui and Churchill 2003). In these plots features on the left side of the y-axis are those that are removed by a given treatment step and features on the right those that are formed. Such a Volcano plot is shown in Figure 8 for the changes in features due to ozonation (left panel) and constructed wetland treatment (right panel) samples of the April sampling round. All features above the red line that indicates significance (p-value < 0.05) and on the left side of the y-axis represent compounds that are removed through the respective treatment technology. On the contrary, the features on the right side of the y-axis are introduced during these treatment steps and are either formed from parent compounds present in the influent or in the case of the constructed wetlands, stem from the wetlands themselves. As the features are coloured according to their retention time which can serve as a measure for polarity of a compound, the Volcano plot can reveal differences in the physicochemical properties of the chemicals before and after treatment. Visual inspection suggests that the influent sample of the constructed wetlands is more hydrophobic than the wetlands effluent. This is in line with the current understanding that more polar substances are less readily removed in such water treatment steps, as they are less prone to sorption.

The high number of features (> 25000) detected in the non-target screening data calls for prioritisation of relevant features of which the structure should subsequently be identified. Which features are categorized as relevant strongly depends upon context. In the scope of AquaNES, focus could be on the features that are persistent across treatments as these pose a risk to the final water quality, as well as the features that are different in constructed wetlands treatment compared to other treatments.

The Volcano plot shown in Figure 8 assists in prioritizing features based on their changes and intensities. The five peaks that show the greatest increase in intensity during ozonation and constructed wetland passage, respectively, are coloured in red, those that show greatest removal are coloured blue. These Top5 features can serve as a starting point for identification.

Alternatively, Hierarchical Clustering (HC) can facilitate prioritisation efforts. HC is a strategy that can cluster samples and features based on their similarity and thus reveal trend profiles of features

between samples or is able to cluster groups of features that show similarities in their distribution over samples, through treatment trains or seasons. This means that clusters of features that are persistent, are formed during a specific treatment step or do not change across treatments each fall in their own cluster. Here, we performed HC on the NTS data set based on Euclidean distances after data normalization, integrated the chemical NTS data with the effect-based data from the CALUX bioassays and visualized the clustering output in the heat map shown in Figure 9.

In this heat-map the relative intensity of each feature (vertical) for each sample (horizontal) is shown ranging from blue (lowest intensity) to red (highest intensity). Based on these intensities the samples are clustered; as expected the technical triplicates cluster together, however, April and July samples do not in all cases, indicating some seasonal changes in water quality. Ozonation influent is clearly separated from the treated samples. Based on this heat-map, feature clusters can be selected for the selection of indicators for treatment performance or further identification studies. Features that show high intensities in the ozonation effluent but not in the influent potentially represent ozonation transformation products (oxidation by-products), while features that still show high intensities in the Post-GAC filter samples are thus not removed by the multi-step treatment.

Furthermore, through integration of the non-target screening data with the CALUX assay readouts, feature clusters that show high intensities when a CALUX response is observed can be determined and prioritized for subsequent identification, as the potentially are responsible for the observed biological effect. Thereby, the integration of chemical non-target screening data with effect-based bioanalysis can assist in more efficient prioritisation and a more comprehensive assessment of chemical water quality and changes during treatment.

The combination of the assessment of number of features, total intensity of the response and various statistical techniques to analyse similarities and dissimilarities between samples in treatment trains and at different sampling occasions. This enables us to view the obtained data in multiple ways and assess the qualitative as well as quantitative impact of treatment steps as well as differences between sampling rounds. Furthermore the correlations of the output with effect based sampling results that integrate all chemicals that have a specific biological effect is a first step towards identifying chemicals responsible for observed effects.

Figure 9 CALUX bioassay response data integrated with non-target screening data. Hierarchical clustering of normalized non-target screening data based on Euclidean distance

- 3.4 Conclusions / lessons learned
 - Most effect-based CALUX bioassays demonstrated activity in water samples obtained from the demonstration sites.
 - The results from effect-based CALUX bioassays can be used as an indicator parameter for removal of bioactive substances by various water treatment technologies and compare treatments to each other.
 - Influent obtained from demonstration sites using wastewater for treatment showed highest bioactivity.
 - Development of effect-based trigger values (EBTs) is required for the assessment water quality and implementation of effect-based bioassays in regulatory water frameworks for risk assessment.
 - EBTs contribute to a realistic evaluation of efficiency of novel innovative water treatment technologies and assessment of the water quality.
 - The development of an action plan for water treatment plant operators based on EBT, enhances the applicability of effect-based bioassay for assessment of water quality.
 - Comparison of chemical analysis and bioassays showed that they are complementary techniques. Their integrated results enable aid efficient prioritization of organic micropollutants and ultimately a more comprehensive assessment of chemical water quality and changes during treatment

4 BACTcontrol

4.1 Working principle / technology

BACTcontrol[™] system is an automated online instrument for the detection of microbiological (enzymatic) activity in water. The system is used to monitor microbial water quality for various types of water that are intended to be (re)used for irrigation or human consumption. This system can monitor microbial activity, and notice changes (events) within a time frame of 1-2 hours. Registration of an event can initiate in depth microbiological analysis as well as potential measures to prevent microbial contamination from spreading in the system or ending up in the produced water. Its fast detection makes the technique suitable for on line water quality monitoring and complimentary to off-line cultivation methods.

BACT control monitors the enzyme activities of β -glucuronidase (GLUC), β -galactosidase (GAL), β -glucosidase (GLUCAN) and alkaline phosphatase (ALP), enzymes of *E. coli*, coliforms, enterococci and total bacterial activity, respectively.

A schematic overview of the BACT control device is shown in Figure 10 and Figure 11. The main element of the device is the reactor, which consists of two chambers separated by a ceramic filter with a pore size of $0.45 \,\mu\text{m}$. In the reaction chamber the water sample is concentrated by the filter, the temperature and reaction are stabilized while the sample is constantly stirred by a magnetic stirrer and the enzymatic activities are measured by the fluorescence detector during the incubation period. Prior to each measurement, the water sample is pumped from the water source through the reactor chamber at flow rates from 1 to 24 ml per minute, the time needed for the filtering depends on the volume that has to be filtered, the turbidity of the water and the condition of the filter. The sampled water volume is also measured by the pump during this process.

After the sample has been pumped through the reactor and concentration has taken place, the temperature is adjusted, and the reaction buffer is injected into the reactor chamber. Different buffers are used for the detection of *E. coli*, coliforms, enterococci and total bacteria activity. They contain the different substrates that are hydrolysed to 4-methylumbelliferone (MUF).

- 4-methylumbelliferyl-β-D-glucuronide (MUG) by GLUC
- 4-methylumbelliferyl-β-D-galactopyranoside (MUGal) by GAL
- 4-methylumbelliferyl-β-D-glucopyranoside (MUGlu) by GLUCAN
- 4-methylumbelliferyl-β-D-phosphate (MUP) by ALP

Serial detection of E. coli, coliforms, enterococci and TA is possible.

MUF fluoresces after excitation via UV irradiation (λ_{ex} 360 nm; λ_{em} 450 nm).

Figure 10 Schematic overview of the BACTcontrol system. The blue line shows the flow from inlet to outlet.

A schematic view of the enzymatic reaction is shown in Figure 11 below.

Figure 11 Schematic overview of the enzymatic reaction

After setting the temperature inside the reaction chamber to the optimum temperature (i.e. 44 ± 0.1 °C for GLUC, 36 ± 0.1 °C for GAL, 37 ± 0.1 °C for GLUCAN, 45 ± 0.1 °C for ALP), the sample in the reaction chamber is stirred for 20 minutes, followed by a 20 minute measurement of the fluorescence intensity that are performed without stirring.

The fluorescence intensity of the fluorometer has been calibrated using a standard with a concentration of 1000 nM MUF. This calibration allows the fluorometer to measure and quantify the production rate and define the hydrolysis rate of the substrate by converting the fluorescence intensity into MUF production per time and volume (pmol MUF * min * 100 ml⁻¹).

The increase in fluorescence is automatically saved to the BACT control computer and the slope of the signal in the steady state phase is used to calculate the enzymatic activity by ordinary least square linear regression analysis. Furthermore, the software calculates a limit of detection for each measurement performed. For this statistical approach, the measurement is regarded as significant if the average signal during the measurement exceeds the standard deviation in relation to the theoretical zero line of the reaction by factor three. The limit of detection calculation is determined after the stabilization.

4.2 Testing of the device at AquaNES demonstration sites

BACT control has been applied at six demonstration sites. Table 10 shows the locations and details of the tested water type and testing period. The sections below give details on the experiences and results of these tests.

Site	Water type and use	Treatment technology	Samples	Parameter tested	Period of testing
No. 6 Lange Erlen, CH	Drinking water production from surface water using artificial groundwater recharge	UV/H ₂ O2 treatment of sand-filtered surface water before soil infiltration	Sand filtered surface water Effluent from soil columns	Total activity	July – December 2017 Spring 2018
No. 2 Hosterwitz, DE	Drinking water production from bank filtrate and infiltrated surface water	River bank filtration assessment and subsequent flocculation and filtration steps	Surface water before and after flocculation Bank filtrate Effluent from ultrafiltration	Total activity, colony count, coliform count and ATP	March-April 2019
No.3 Budapest, HU	Drinking water production from bank filtrate and infiltrated surface water	River bank filtration assessment and subsequent disinfection steps	Bank filtrate Ozonation Sand filtration UV disinfection	Total activity and cell count	March-April 2019
No. 9 Ovezande, NL	Infiltration of harvested rainwater for reuse	Filtration	Filtered storm water	Total activity	February - March 2019
No. 8 Agon Coutainville, FR	Secondary effluent of municipal WWTP	Conventional activated sludge (CAS) process	Secondary effluent	<i>E. coli</i> activity and total coliforms	Spring 2017
No. 11 Rheinbach, DE	Polished secondary effluent of municipal WWTP	CAS followed by retention soil filter	Feed and outflow of the retention soil filter	<i>E. coli</i> activity and total coliforms	July 2018 to February 2019

Table 10 Test locations of the BACTcontrol

4.2.1 Lange Erlen: Determining total activity in surface water treatment processes

The Lange Erlen site produces drinking water for the city of Basel (CH) from the river Rhine (surface water abstraction). The treatment train encompasses screening, filtration and subsequent soil infiltration. Re-abstracted groundwater is treated by granular activated carbon and is finally UV-disinfected.

The AquaNES intervention around this drinking water production chain consists of a $UV+H_2O_2$ pretreatment of Rhine filtrate before soil infiltration. To this end, a pilot plant (reactor and column setups) was operated to investigate the effectiveness of the advanced oxidation process for the removal of micro-pollutant and any effects on biodegradation and sorption. The soil infiltration of the full-scale was represented by two types of columns: one containing soil from the real infiltration sites mixed with sand, the second system contained used granular activated carbon from the full-scale plant and served as a biologically active carbon (Figure 12).

Figure 12 Flowsheet of the pilot plant in Lange Erlen

The <u>BACTcontrol</u> device was used for continuous monitoring of the feed water of the process (point S1 in above scheme). It was installed in the experimental hall next to the UV reactor (Figure 13). A hose was fixed permanently to the device. The feed consists of sand filtered Rhine water, so called Rhine filtrate. This line of the pilot plant is fed from the full-scale sand filter.

Periodically samples were taken manually of the UV/H2O2 treated water (point S2) and the sampling ports of the soil columns (S5 and S6) by connecting the sampling hose via some fittings.

4.2.1.1 Results

4.2.1.1.1 Variability / fluctuation of inflow water quality

The total activity in the Rhine filtrate varied between 260 and 400 pmol/min for the first days of operation. It then increased steeply to values around and above 1200 pmol/min and peaked in 2250 pmol/min. During these three days values raised and dropped frequently. After a week of operation, the values stabilised between 250 and 500 pmol/min. Furthermore temporary disturbances were observed. Attempts to link the variations to external influences, as e.g. heavy rainfall impacting on the water quality failed. It is also not expected to see such effects in the tested system as the scheme operates a full-scale sand filter and the intake of surface water is stopped anyhow at elevated turbidity. The only coincidence detected was related to the operational state of the full-scale sand filter. When it was switched on again after some days of stagnation, a slight increase in bacterial activity was observed, maybe due to material or biomass mobilization from the filter.

Figure 14 Total bacterial activity measured in Rhine filtrate, during first month of measurement

The variations and decline in values were not reflected by any other online-measured parameter (such as turbidity – see Figure 15 – UVA254 or electrical conductivity – not shown). Turbidity is on average 0.5 FNU or well below. The period with the highest values and biggest fluctuation in turbidity occurs from 26 July to 2 August. Any outliers do not occur on days with microbial activity peaks. The period 3-13 August, which shows stable values for microbial activity at around 120 pmol/min is also characterised by a narrow spread of turbidity values around 0.3 FNU (Figure 15).

Grab samples were also analysed by flow cytometry, heterotrophic plate counts and ATP measurements, yet not always in the experimental period.

Date	Total cell [cells/mL]	Intact cell [cells/mL]	Microbial activity [pmol/min]	HPC [CFU/mL]
10.07.2017	1'171'800	1'054'600	Not measured	740
15.08.2017	2'054'800	1'827'000	138 ± 10	Not measured
05.09.2017	2'385'200	1'757'800	182 ± 22	Not measured

Figure 15 Results of online turbidity measurement during device set-up and period from 17 July to 5 August first month of operation for selected periods (Measuring interval: 5 minutes)

During the subsequent months of operation (August-September 2017) a continuous stable measurement was impaired by relatively frequent maintenance efforts (refilling chemicals and replacing filter) and adaptation of operational settings (Figure 16).

Figure 16 Total activity measured in Rhine filtrate between August and September 2017 (data gaps are due to either manual sampling activities or technical problems as indicated in the figure)

4.2.1.1.2 Disinfection effect of the AOP treatment step

The BACT control was also tested to observe a disinfection efficiency of UV/H_2O_2 treatment. The applied dose of 6000 J/m² is very high compared to minimal doses of 400 J/m² normally applied in drinking water disinfection.

For this comparison several consecutive measurements of the inflow (Rhine filtrate) were compared to several consecutive measurements in the AOP treated stream (outflow) on the same day (Figure 17). The reduction is thus not calculated from paired values but averaged from inflow and outflow data.

Measurements with the BACT control device on two separate occasions gave quite different results. The detected reduction was 70 % and 30 %. These measurements were obtained with differing activities of 130 and 300 pmol/min, respectively. ATP measurement and cultivation methods showed a much higher disinfection of 94-97 %. Lower and variable disinfection, as measured by the BACT control might be due to suboptimal or varying sample volume and reagent dosing.

AquaNES

Figure 17 Disinfection effect of the AOP treatment step as detected by different microbiological measurement methods (HPC: heterotrophic plate count; ICC: intact cell counts by flow cytometry)

4.2.1.1.3 Long-term effect of natural treatment step in combination with advanced oxidation

During spring 2018 the effluent of the soil columns was sampled to detect differences in the bacterial activity. The soil columns were fed with water that either had or had not received AOP treatment.

For this purpose the effluent of the two columns was measured several times a day. The results are depicted in Figure 18. Whilst values for the non-AOP pretreated column were around 323 pmol/min. on average, those of the AOP column fluctuated strongly with frequent peaks exceeding 1'200 pmol/min. and even up to 2'000 pmol/min.

This finding for the soil column receiving AOP treated water could not be properly explained. It is unclear whether this really reflects strongly varying bacterial activity, caused by uneven flushed out biomass from the column, or whether it is rather an artefact related to the measurement. However, when switching the lines, no air bubbles or particles were detected in the tubes nor in the reaction chamber. Such effect has not been observed in earlier measurements in August 2017 (data not shown).

Interestingly, the effluent of the baseline of the soil column (sampling point S6) and all measurements of the BAC column receiving AOP treated water (sampling point S10) showed similar levels that were on slightly lower than the levels of the soil treatment of water that was not pretreated with AOP. It thus cannot be confirmed the peaks are related to the AOP pre-treatment.

AquaNES

Activity in Column Effluents

Figure 18 Total activity detected in the outflow of the soil columns and the BAC (Biologically Active Carbon) column

(The red and greenish dashed lines depict the hypothetic trend/data for the column not measured when the other columns were sampled. This baseline differs between both soil columns by approx. 70 pmol/min)

4.2.2 Hosterwitz (Dresden) and Budapest: measuring coliforms and microbial activity

The TU Dresden team applied BACTcontrol to determine *E. coli* and coliforms normalized for their biomass and intact cells at site no. 2 Hosterwitz, DE and site no. 3 Budapest, HU, in the spring of 2019, respectively. There was a strong emphasis on robust operation and technical support as well as parallel assessment using other monitoring methods. The sampling was well coordinated following well described procedures and careful planning.

4.2.2.1 Results

Figure 19 show that BACT control results, normalized for microbial biomass are in line with the colony count and ATP measurements. Furthermore, the reduction of bacteria and their activity along the treatment train follows the same trend.

Figure 19 Comparison of BACTcontrol (total activity in pmol/min) to standard monitoring and ATP method at Hosterwitz, DE (AquaNES Site, no. 2)

In Budapest, the BACT control measurements of total enzyme activity are compared to intact cell counts. Figure 20 show a similar pattern of both parameters, but residues of enzyme activity seem to remain at higher levels along treatment trains than the intact cell counts. This presumed discrepancy can be explained by the fact that enzymes can maintain activity even when cells are broken / dead.

Figure 20 Comparison of BACTcontrol to flow cytometry at Budapest, HU (AquaNES Site no. 3)

Application of results

The observed correlations between BACTcontrol measurements and more traditional methods for the detection of microbial contamination illustrate the potential applicability of the BACTcontrol for monitoring microbial water quality as well as treatment performance. The results show how the enzyme activity measurements correlate with more traditional units of water quality monitoring. The correlation supports the applicability of innovative fast detection methods of the BACTcontrol. Thereby it supports acceptance within the water sector as well as in regulation. Before further implementation, the observed correlation requires standardization in order to translate the output of the BACTcontrol to typical endpoints such as cell count or colony growth currently used for water quality monitoring. Such assessments are necessary to implement innovative techniques in such a way that they are able to evaluate if regulatory quality criteria or other water quality thresholds are exceeded. Nevertheless the current results indicate that the tool can be applied for first tier monitoring of variations in water quality or performance efficiency, and to initiate further testing if trends (increase) are observed.

4.2.3 Ovezande: Monitoring of infiltration of storm water for aquifer storage and recovery

<u>Site 9:</u> The Ovezande site is a polder located in the southwest of the Netherlands. The underlying aquifer is prone to salinization. The infiltrated storm water fulfils two purposes, first it will reduce saline intrusion and additionally it will be reused for irrigation purposes. The technology is designed to enable high rate water treatment and subsurface infiltration during storm water events. The technical challenge for this site was to design a stand-alone, high capacity rainwater treatment unit with a low spatial footprint that decreases infiltration well clogging rate cost-effective manner. The goal was an optimal design and operation to prevent overflows and optimize fresh water storage. One of the issues with clogging is the growth of bacteria in flocs that can lead to clogging after the filtration steps. Therefore the monitoring of bacterial activity is relevant for the monitoring of microbial-induced clogging. During winter and early spring of 2019 the BACTcontrol was installed to measure the total microbial activity after filtration, as an indicator for microbial clogging potency under different post-filtration disinfection treatments.

4.2.3.1 Results

Figure 21 Test setup of the BACTcontrol at Ovezande

Clogging was observed by the penetration of small particles through pre-filtration steps (5 and 1 micron filters) and microbial growth within weeks of operation. Local UV disinfection after pre-filtration, did not improve the infiltration performance of the well, but continuous dosing of disinfectant (Na-

hypochlorite) did. Rapid pre-treatment using compact filtration is a challenge, removal of even the finest particles and prevention of biological growth are vital for the operation of the infiltration well. The BACT control was able to monitor total activity during the full operational period with different disinfection steps without large technical issues of failures (data shown below of a 3 months period in Figure 22). The filtration pretreatment prevented the microfluidics from clogging BACT control microfluidic device in combination with thanks H2O2 washing of the device to prevent precipitation of salts. As observed in Figure 22, initial operation of the well without disinfection lead to clogging and reduction of infiltration rates within days to a week. The UV disinfection was not able to prevent clogging. The operation with irregular chlorination also was not able to prevent clogging, and BACT control measurements illustrated high microbial activity. The continuous chlorination lead to stabilization of the well capacity, preventing clogging and showing lower microbial activity. The total activity measurements performed by the BACT control suggest incomplete disinfection at the dosing point for continuous chlorination. However, the activity was measured directly after chlorination, while chlorinated water is infiltrated, leading to better permeability of filters below the surface. Future assessment of microbial activity inside the wells are required to define thresholds for microbial activity that can induce clogging.

Figure 22 Specific well capacity of the Freshmaker well and measured total (biological) activity of the pretreated rainwater in Ovezande during the pre-treatment tests in 2019. The black dots give the specific well capacity. The green dots give the total microbial activity just after the disinfection step and before infiltration.

As a spin-off quality criteria for hardness (<2mmol/L) could be derived to prevent precipitation of salt complexes in the BACT control device that hamper analysis.

4.2.4 Agon Coutainville: Monitoring faecal contamination in WWTP effluent for aquifer recharge

<u>Site 8:</u> The Agon-Countainville site uses secondary effluent after reed bed and sand dune filtration for golf course irrigation in a coastal area. The underlying aquifer is prone to salinization. The BACTcontrol is implemented from May to September 2017 to monitor *E. coli* and total coliforms. The main focus of this implementation is to demonstrate how innovative water quality monitoring devices such as the BACTcontrol can be linked to other monitoring data and modelling efforts. At this rather remote site (with no on-site personnel and technical staff), modelling is linked to data management and communication, in order to facilitate remote operation and quality control.

Figure 23 Test setup of the BACTcontrol at Agon Coutainville

4.2.4.1 Results:

Operation of the BACTcontrol at a remote site testing treated wastewater effluent with no availability of technical staff illustrated how technical issues such as clogging of microfluidic systems can compromise measurements, and therefore remote monitoring and data management. During a short period of time there was a big increase of fecal bacteria observed by The BACTcontrol. Unfortunately, this was not verified by parallel measurements using classic techniques. The increase might have indicated a disruption of the test system. However soon after the observed increase, the BACTcontrol clogged, hampering further data acquisition.

Obtained results (data not shown) revealed the importance of on-site availability of technical staff and troubleshooting to be essential, since microfluidics in the system are prone to clogging especially when working with treated wastewater. Therefore, remote application of the BACTcontrol should be performed carefully, with well-functioning communication network to monitor performance and sufficient technical support that can solve clogging or other issues in due time. The experiences from this site were used in later testing at other sites.

4.2.5 Rheinbach: Monitoring efficacy of retention soil filters for removal of fecal indicators

<u>Site 11:</u> Rheinbach is a wastewater treatment plant with pilot scale Retention Soil Filters (RSF) are applied to treat (polish) effluent during dry periods and treat storm water overflow during heavy rainfall. The efficiency of this so called "RSFWWTP+" system and the effects on water quality are studied. During July 2018 to February 2019 BACTcontrol was installed to monitor fecal bacteria (*E.coli*) in treated wastewater before and after retention soil filter treatment.

Figure 24 Test setup of the BACTcontrol at Rheinbach

During application of the device some issues rose with the freezing of buffers during the winter months, illustrating how harsh weather conditions can compromise operation. All in all the BACT control illustrated the variability of *E. coli* activity, furthermore it showed that the RSF treatment lead to a significant reduction of *E. coli* activity. Parallel measurements of *E. coli* and *E. coli* counts show a correlation between the two methods. Correlations appeared to be stronger before retention soil filter treatment than after this treatment, with a respective correlation coefficient of 0.77 and 0.62 respectively (Figure 25).

Figure 25 Correlation of *E. coli* counts and BACTcontrol measurements at influent (left) and effluent (right) of RSF filter 1

Nevertheless, 77 % and 62 % of the variation could be explained by the BACTcontrol measurements. However, the overall level of fecal contamination in inflow and outflow could not properly be detected by the BACTcontrol measurements. Whilst the cultivation method detected difference of one order of magnitude, the activity detects by BACTcontrol were in the same range.

These results support the application of the BACT control as a fast detection device to monitor fecal contamination in wastewater treatment plant effluent, as a first tier quality control tool. Obtained responses can initiate further research or induce mitigation measures if deemed necessary. Besides that the tool might also be used as a substitute in future, when the correlations between the different measuring techniques (i.e. plate counting vs. activity measurements) are sufficiently validated.

4.3 Discussion

The BACTcontrol was used for different purposes in different types of water. Various technical issues were observed such as clogging by particles and precipitation of salts and freezing (site 8 and 11). These issues illustrated the importance of on-site technical support for regular checks and troubleshooting and remote data monitoring. This means that applications in remote locations require specific measures to obtain robust operation. Furthermore, variations in sensor response could not always be explained or related to other measurements (site 6), rendering some needs for research to determine the causes of the observed results, and potentially solving this issue.

Nevertheless, observed clogging by precipitation of salts could be solved by using H_2O_2 as cleaning agent (site 9). The clogging because of turbid samples will al always be an issue for microfluidic sensors such as the BACT control. Rendering its application in relatively turbid (waste)water streams or water types that are susceptible to strong variations of turbidity (e.g. storm water) difficult. Currently, pre-filtration units are tested to enable measurements in more turbid waters (results not presented in this report). Nevertheless, it was observed that the system generated stable continuous measurements for several months and provided sufficient sensitivity to monitor microbial contamination in various types of water. Furthermore, correlations were observed between activity measurements and parallel cell counts at both water treatment for the production of drinking water (site 2 and 3) and treated wastewater. This illustrates the potency to apply this technique for (near) continuous water quality monitoring.

4.4 Conclusion / lessons learned

- On site on-site technical support are essential for continuous operation of the BACT control
- Clogging because of precipitation of salts can be prevented by washing
- Clogging because of particles turbidity is an issue for turbid water types, so pre-filtration steps might be necessary
- BACT control measurements correlate with colony counts, cell counts and ATP measurements
- When technical issues are under control, BACTcontrol measurements can provide nearcontinuous measurements on microbial contamination which can be applied for monitoring performance of natural and engineered treatment and water quality control

AquaNES

5 Antibiotic restistence genes

5.1 Study design

Due to the frequent application of antibiotics in human and veterinary medicine, antibiotic resistant bacteria (ARB) and genes encoding for antibiotic resistance can be found in different compartments of the water cycle (Stoll et al., 2012). Bacteria can receive antibiotic resistance genes (ARG) by spontaneous DNA-mutations and vertical or horizontal gene transfer. Horizontal gene transfer is a major pathway for the dissemination of ARG in the environment and even allows a gene exchange between different strains and species (Frost et al., 2005). As shown in Figure 27 the genes can be exchanged directly between bacterial cells via mobile gene elements (conjugation), injected by bacteriophages (transduction) or taken up with free DNA (transformation).

Figure 26 Mechanisms of horizontal gene transfer from Furuya and Lowy (2006)

Conventionally the presence of ARB has been analysed using microbiological culture methods. Their main disadvantages are long incubation times in the range of days and the fact that organisms in a so called viable but not culturable (VBNC) state are not considered in the quantification. It has been shown that bacteria in VBNC state are relevant since they are able to reproduce under certain conditions (Ramamurthy et al., 2014). ARG analysis based on quantitative Polymerase Chain Reaction (qPCR) technology represents an innovative approach with the potential to overcome the shortcomings of conventional culture methods.

ARG analysis in the AquaNES project is performed by BWB in cooperation with the Water Technology Centre (TZW).

5.2 Working principle

The qPCR analysis enables to quantify a certain target-DNA fragment (e.g. an ARG) in a sample by amplifying the target-DNA with Polymerase Chain Reaction (PCR) and simultaneously introducing a fluorescent probe into the DNA which later allows for optical measurement. The PCR is a repetitive process, in which the target-DNA is duplicated with each cycle. The cycle consists of the following three steps:

- 1. Denaturation: High temperatures (>90°C) break the hydrogen bonds between complementary bases and double-stranded DNA is separated in two single-stranded DNA molecules
- 2. Primer annealing: After lowering the temperature the specific primers bind to the start and the end of target-region of the single-stranded DNA
- 3. Elongation: At temperatures around 70-80 °C the enzyme DNA polymerase synthesizes a complementary DNA strand starting at the position of the primers. The DNA fragment is doublestranded again

The fluorescent probe gets excited after binding to the single-stranded DNA. Since the amount of target-DNA is increasing exponentially with the cycles, the measurable fluorescence increases accordingly. A sufficient level of fluorescence is required in order to guarantee accurate quantification. Knowing the number PCR-cycles the initial amount of target DNA-copies can be calculated.

5.3 Material and methods

5.3.1 Demonstration site

The ARG and ARB analysis monitoring was conducted at demonstration site 12 (WWTP Schönerlinde). As shown in Figure 28 secondary effluent is treated with ozone, followed by two vertical-flow constructed wetlands (CW) and different deep-bed filter systems.

The ozonation process is operated with a specific ozone dose of $0.7 \text{ mg O}_3/\text{mg DOC}$ and a hydraulic retention time of approximately 30 min.

Both CW have a surface area of 11 m² each and were planted with *Phragmites australis* and *Carex acutiformis* in equal parts. They were operated under saturated conditions with filtration rates of 200 mm/d, 400 mm/d and 1000 mm/d in different phases. In CW1, technical sand is used as filter material (bed depth = 0.55 m, d = 0.2-2 mm). In CW2, coarser filter material (bed depth = 0.8 m) consisting of a homogeneous mix of lava gravel (d = 4-8 mm) and biochar (d = 8-20 mm) is tested.

All deep-bed filter columns are constructed identically with a diameter of 0.3 m but differ in their filter media. The 3 filters BAC, S/BAC and S/A which are operated in parallel contain activated carbon (d = 1.4-2.4 mm), sand (d = 0.7-1.25 mm) / activated carbon (d = 1.4-2.4 mm) and sand (d = 0.7-1.25 mm) / anthracite (d = 1.4-2.5 mm), respectively. The post-GAC filter is operated with activated carbon (d = 0.6-2.4 mm) subsequent to the S/A. The dual-media filters S/A and S/BAC are additionally equipped with coagulant dosing for phosphorous removal.

Figure 27 Simplified flow-scheme of pilot-plant at demonstration site 12

5.3.2 Sampling

A total of 10 sampling rounds were carried out between September 2017 and September 2018. In 1 out of 10 sampling rounds constructed wetlands were not included.

All samples were taken as grab samples in sterile 1L-plastic bottles. A time offset corresponding to the hydraulic retention times between the sampling points was considered in order to have corresponding influent and effluent samples. Immediately after sampling the samples were cooled and the cooled samples were shipped to the laboratory via courier and analysed / processed within 24 hours.

5.3.3 Selection of ARG and ARB

Before starting an ARG monitoring program it is essential to make a selection of relevant and representative genes. Otherwise analytical efforts will be high and for many genes results will be poor due to insignificant concentrations. The main aspects that were taken into account for gene selection of the present investigations are listed below:

- Relevant and varying levels in the environment
- Indicator genes for antibiotic group
- Medical relevance
- Data availability

Based on these criteria 2 resistance encoding genes and 2 other relevant genes were selected for the analysis:

- <u>blaTEM</u>: encodes for resistance to β -lactam antibiotics.
- <u>sul1</u>: encodes for resistance to sulphonamide antibiotics.
- <u>class 1 integron (intl1)</u>: integrons are mobile gene elements that can capture gene cassettes,
 e.g. ARG, and spread among bacteria via plasmids or transposons. Gene cassettes integrated
 by intl1 encode almost exclusively antibiotic resistance determinants (Gillings et al., 2008) for
 which reason intl1 are associated with multiple antibiotic resistances.
- <u>16S rDNA:</u> encodes for 16S ribosomal RNA which is present exclusively in prokaryotic cells.
 Therefore it can be used as an indicator parameter for total bacteria.

A set of different ARB was analysed with conventional culture methods in parallel to the ARG. The following ARB were selected for the analysis:

- Extended spectrum β-lactamase producing (ESBL) E. coli
- ESBL KEC (Klebsiella, Enterobacter, Citrobacter)
- Vancomycin-resistant Enterococci (VRE)
- Methicillin-resistant Staphylococcus aureus (MRSA)

5.3.4 ARG analysis

The sample volume is filtered through a 0.2 μ m Supor®-200 membrane (47 mm diameter, Pall Life Science). Cells (and the contained DNA) are retained while free DNA passes the filter. The membranes are stored at -20 °C until DNA extraction and analysis. Total DNA is extracted directly from the membranes by using the Fast DNA® SPIN Kit for Soil (MP Biomedicals) according to manufacturer's instructions.

Gene copy numbers of the 16S ribosomal DNA and the ARG are measured by quantitative real-time PCR (qPCR). For the investigations primer sets are used as shown in Table 12, allowing the amplification of short amplicons (160-420 base pairs). All qPCRs were performed using a Rotor-Gene 6000 cycler (Corbett) with SensiMix SYBR No-Rox Kit (Bioline). The temperature profile for the SensiMix was as follows: 10 min 95 °C (initial phase), 45 cycles of 15 s at 94 °C (denaturation), 20 s at 55-68 °C (annealing) and 15-25 s at 72 °C (elongation), followed by melting curve analysis.

All samples and standards were analysed in duplicates. The presence of PCR inhibitors was excluded by analysing dilutions of the DNA samples. Calibration was performed with serial dilutions of a known quantity of linearized plasmid containing according to gene fragments. For quality control, R^2 of the standard curve as well as the amplification efficiency were determined and melting curves analysis was performed. Only qPCR experiment with R^2 values >0.980 and efficiencies between 90 and 105% were considered. Amplification products were verified via QIAxcel® Advanced system (Qiagen). Table 12, shows the main parameters applied in the qPCR analysis.

A more detailed description of the methods was published by Stange and Thiem (Stange and Tiehm 2015). The level of quantification (LOQ) in the conducted analyses was 30 copies/mL. When results were below LOQ, the value of the LOQ was used.

Gene	Sequence (5'-3')	Amplicon in bp	Reference	Annealing temp. Elongation time
16S rRNA	f: cctacgggaggcagcag r: attaccgcggctgctggc	160	Smits et al., 2004 (Smits, Devenoges et al. 2004)	68 °C 20 s
blaTEM	F: TTCCTGTTTTTGCTCACCCAG R: CTCAAGGATCTTACCGCTGTTG	112	Bibbal et al., 2007 (Bibbal, Dupouy et al. 2007)	66 °C 20s
sul1	F: CGCACCGGAAACATCGCTGCAC R: TGAAGTTCCGCCGCAAGGCTCG	160	Pei et al., 2006 (Pei, Kim et al. 2006)	68 °C 20 s
intl1	F: GCCTTGATGTTACCCGAGAG R: GATCGGTCGAATGCGTGT	196	Barraud et al., 2010 (Barraud, Baclet et al. 2010)	63°C 20 s

Table 12 qPCR parameters for the analysed genes 16S rRNA, blaTEM, sul1 and intl1

5.3.5 ARB analysis

A sample volume of 1-100 mL was filtered through a 0.2 μ m pore size membrane and the membrane was placed on different selective CHROM agar plates (MAST Diagnostica) and incubated at 42°C ± 1°C for 24 h. The grown colonies where classified according the manufacturer's instructions. Further verification tests (like PCR test and MALDI-TOF) were performed to ensure the classification.

The LOQ for ARB analysis was 1/100 mL. When results were below LOQ, the value of the LOQ was used.

Conventional *E. coli* and Coliform analyses with the Colilert® method were carried out in parallel in order to be able to compare ARB behaviour to the overall community.

5.4 Results and discussion of testing at Belin Schönerlinde

5.4.1 Behaviour of ARG

All analysed genes could be detected and quantified in the effluent of the WWTP (=influent of the pilot-plant), which is a precondition for their suitability as monitoring parameters in municipal wastewater. Figure 29 shows the median and mean concentrations of ARG measured for the different sampling points. As expected total bacteria indicator 16S rDNA was found at highest concentrations (median: $3.6*10^6$ copies/mL). Median values for sul1 ($3.9*10^4$ copies/mL) and intl1 ($9.6*10^4$ copies/mL) were significantly higher than for blaTEM (76 copies/mL).

AquaNES

Figure 28 Concentrations for (a) blaTEM, (b) sul1, (c) intl1 and (d) 16S rDNA at different sampling points; columns with error bars = median with 25th and 75th percentile; squares = mean

5.4.1.1 Ozonation

As depicted in Figure 29, (a)/(b) ARG were removed by less than 1 log-unit during ozonation. BlaTEM was usually present at low levels in the range of $10^{1}-10^{2}$ copies/mL and in 8 out of 10 samplings it was removed below LOQ which didn't allow for determining a reliable reduction. In 2 samplings influent concentrations were higher and log-reductions of 0.6 and 0.7 were calculated. Sul1 could only be removed by 0.4 log-units on average. No relevant removal during ozonation was observed for intl1 and 16S rDNA (Figure 29, (c)/(d)).

Ozonation is known to be an efficient disinfection process that reduces indicator parameters such as *E. coli* or Enterococci by >2 log-units. Gene analyses by qPCR showed much lower reductions which can be explained based on disinfection mechanisms of ozonation. Ozone mainly attacks surface structures of cells and causes damages in the cell membranes (Ho 2017). These damages increase permeability for ozone and intracellular components such as DNA can also be oxidized. However, with commonly applied levels of ozone DNA oxidation only takes place to a limited extent (Cho, Kim et al. 2010). As a consequence many damaged cells that contain intact DNA are present in the effluent of the ozonation. The applied qPCR method considers these damaged bacteria as well as active and VBNC ones.

It has been reported that although absolute numbers of ARG are reduced by ozone treatment of secondary effluent their relative abundance in the surviving population can increase (Alexander, Knopp et al. 2016). These findings could not be confirmed for blaTEM, sul1 or intl1 in the present investiga-

tion. Relative abundances were calculated as the ratio of ARG concentration and total bacteria indicator 16S rDNA. As displayed in Figure 30 ozonation caused a slight decrease in relative abundance for the analysed ARG. An enrichment of antibiotic resistant individuals would be particularly critical assuming that the surviving population develops in the receiving water after discharging the treated wastewater. Further research would be important to get a better understanding of the fate of ARG and ARB after their release into the environment.

Figure 29 Relative abundance of ARG before and after ozonation expressed as ratio ARG/16S rDNA [%]; columns with error bars = median with 25th and 75th percentile

5.4.1.2 Post-treatment

Since blaTEM was usually removed below LOQ during ozonation reliable assessment of its behaviour in the post-treatment steps was not possible. However, when it appeared in quantifiable concentrations (n = 2) in ozonation effluent it was removed by >0.9 log-units in all post-treatments. The other analysed DNA-fragments were removed by >1 log-unit (related to ozonation effluent) in all post-treatments except for BAC filtration. Median concentrations of sul1 and intl1 after CW treatment were lower than after flocculation/filtration steps S/BAC and S/A. The observed difference was more pronounced for CW1 which performed better than CW2 for all analysed genes. The treatment efficiency of the post-GAC filter, which treats the effluent of the S/A only, is difficult to assess since only in two occasions quantifiable results were obtained after ozone treatment, prior to these treatment steps.

All post-treatments were more efficient in ARG removal compared to ozonation. In contrast to the chemical inactivation by ozone the filter systems retain bacteria in the filter bed by physical means. Thus, the complete cells including their DNA are removed from the water which explains the reduced ARG concentrations in the effluents. In case that retained cells are digested by other microorganisms and ARG are set free and dissolved in water they would no longer be detected with the applied method due to membrane filtration in the beginning of the sample treatment. Based on the present results it is not possible to make a statement about the amounts and therefore the relevance of free DNA in the filter effluents.

Figure 30 shows that levels of ARG were lower after dual-media filters that contain a sand layer compared to the single-media BAC and after the sand CW (CW1) compared to CW2 with the coarser filter material. Hence, the results of sul1, intl1 and 16S rDNA clearly demonstrate that the use of fine filter material such as sand is important for efficient ARG removal.

All genes that were not removed below LOQ (sul1, intl1, 16S rDNA) showed similar behaviour in the different treatment steps. If this can be confirmed by further studies, it could be an option to quantify only indicator genes with representative behaviour in order to reduce analytical efforts.

5.4.2 Behaviour of ARB

Since MRSA was not detected in any of the samples at the beginning of the monitoring the parameter was excluded from the analysis. The other 3 analysed antibiotic resistant bacteria (ARB) could be found in the WWTP effluent in the range of $10^{1}-10^{2}/100$ mL. As shown in Figure 31 median concentrations for ESBL *E. coli*, ESBL KEC and VRE amounted to 430/100 mL, 55/100 mL and 250/100 mL, respectively.

Figure 30 Concentrations for (a) ESBL E. coli, (b) ESBL KEC and (c) VRE at different sampling points; columns with error bars = median with 25th and 75th percentile; squares = mean

5.4.2.1 Ozonation

In contrast to ARG efficient reduction during ozone treatment could be observed for all analysed ARB. Levels after ozonation were usually below 10/100 mL. Calculated logarithmic reductions were slightly higher for ESBL *E. coli* and VRE (~ 2 log-units) than for ESBL KEC (~ 1.7 log-units). It has to be considered though, that influent concentrations of ESBL KEC were lower. Treatment efficiency of ozonation for the 3 ARB is therefore assumed to be comparable.

ARB are quantified with conventional culture methods where only viable cells can be detected. Bacteria with cell membrane damages caused by ozone are not quantified with culture methods which explains the observed strong effect of ozonation on ARB. One approach for achieving qPCR results that are more similar to ARB is a live/dead discrimination using propidium monoazide (PMA). PMA exclusively penetrates dead cells and makes it possible to differentiate them from intact cells in the subsequent qPCR. Jaeger et al. (Jäger, Alexander et al. 2018) studied the removal of different bacteria during ozonation using PMA-qPCR in comparison to culture methods. Observed removals for culture

methods were still higher than for PMA-qPCR which was interpreted as VBNC cells. Especially for environmental samples with a large mix of bacteria PMA staining is not trivial because PMA concentration usually needs to adapted to the analysed species (Ho 2017).

Parallel analysis of *E. coli* and Coliforms with the same water samples demonstrated that behaviour of ARB during ozonation was comparable to the overall community. Median removal for ESBL *E. coli* was 2.0 log-units compared to 2.2 log-units for *E.coli* (Colilert). ESBL KEC and Coliforms (Colilert) were both reduced by 1.7 log-units (median).

5.4.2.2 Post-treatment

Concentrations of ESBL KEC and VRE were close to or below LOQ after ozonation. The effect of the different post-treatment systems could therefore not be studied. It can only be stated that none of the post-treatments caused an increase of the 2 parameters by regrowth.

ESBL E. coli was still present at low levels after ozonation and post-treatments often removed it below LOQ. Comparing the mean concentrations after the different post-treatment steps that reduction in CW was slightly more robust than in the deep-bed filters operated in parallel.

5.5 Conclusions / lessons learnt

5.5.1 Analytical methods

ARG analysis by qPCR is a suitable monitoring tool for wastewater treatment processes that allows for fast quantification of antibiotic resistance determinants. However, for interpretation of results it is essential to consider that they are not directly comparable to ARB results due the different methodologies.

Special attention is required for the interpretation of ARG results in processes that don't retain but damage or inactivate the bacteria (e.g. ozone treatment). Here, the biggest differences to ARB results are expected. For treatment systems that retain the complete cells (e.g. filters) results for removal efficiency by ARG and ARB analysis will be more similar. An approach to exclude dead cells from ARG analysis is the PMA-qPCR. However, in complex environmental samples the use of PMA can pose a problem. Table 13 shows the applicability of the discussed analytical tools with respect to the state of bacteria.

State of cells	qPCR	qPCR with PMA	cultivation
Viable and culturable	Х	Х	Х
Viable but not culturable (VBNC)	Х	Х	
Dead	Х		

Table 13 Applicability of analytical methods for different states of bacterial cells

Since qPCR and cultivation methods deliver different information their relevance also depends on the studied topic. When focus is set on dissemination of antibiotic resistances it makes sense to include dead cells because they are known to contribute to ARG spread via horizontal gene transfer. If pathogenic effects of antibiotic resistant bacteria have priority results from ARB analysis might be more relevant because only viable cells contribute to pathogenicity.

5.5.2 Treatment systems

It could be demonstrated that the process combination of the studied cNES creates synergies for the removal of ARB and ARG. Since ARB were already reduced below or close to LOQ during ozonation performance of post-treatment could not be assessed reliably. However, when quantifiable concentrations of ARB were present after ozonation (e.g. ESBL *E. coli*) additional removal in post-treatments was observed. Results of ARG showed that ozone treatment without post-treatment is not effective (removal of less than 1 log-unit). Filtration steps with suitable filter media achieved additional reduction of ARG by \geq 1 log-unit.

Grain size of the filter media was shown to be an important factor for efficient ARG retention. Filter media for CW or deep-bed filters should therefore not be too coarse in order to enable sufficient removal of ARG.

6 Benefits of innovative water quality assessment tools

Water quality is determined by numerous parameters. Within AquaNES, various combined natural and engineered water treatment technologies are combined with the purpose of producing water that is of good quality and safe for its intended use at all times. Within this study three fast and/or innovative tools have been applied to a selection of the AquaNES demonstration sites.

6.1 Selected Innovative methods to determine water quality within AquaNES

Within the AquaNES project integrated approaches such as effect based monitoring combined with non-target chemical screening, microbial sensors, to detect fecal contamination sensors and qPCR techniques to detect antimicrobial resistance are demonstrated.

CALUX bioassays have been applied to provide an integrated and effect based approach for monitoring water quality and assess treatment efficiency. The main advantage of these effect-based analytical tools is that the output provides specific biological/toxic effect of the total complex mixture of chemicals present in the sample. These bioassays do not enable the determination of individual chemicals present and responsible for the output of the assay as multiple chemicals can either induce or reduce responses of these assays. Potential culprit chemicals can be suggested based on known mechanisms of action (for example from literature or in vitro toxicity databases such as EPA's ToxCast database) or identified based on effect-directed analysis approaches (Zwart, Nio et al. 2018). By using both bioassays and non-target screening (chemical analyses) in parallel the outcomes are correlated to reveal potential culprit chemicals.

The experiments performed within AquaNES clearly demonstrated that CALUX bioassays are sensitive and robust bioanalytical tools that can be used to evaluate the efficiency of innovative natural and engineered treatment technologies to improve water quality. The selected suite of toxicological endpoints covered various relevant toxicological mechanisms. The combination of these assays thereby provide a rather integrated assessment of the water quality. The Achilles heel for wide-spread application of these bioassays in water quality assessment and treatment efficiency studies, is the lack of regulatory acceptable limit values or trigger values for each of the individual bioassays which enables quantified monitoring of water quality possible. In addition to such effect-based trigger values (EBTs), an action plan is lacking in case a bioanalysis result exceeds the proposed EBT. Within this study, trigger values were collected from literature or derived from available reference projects of BDS. Further research is necessary to obtain and evaluate these trigger values and to formulate clear criteria such as an action plan that can be adopted by regulatory frameworks. Within this study a framework for such an action plan is proposed to guide monitoring and further actions when trigger values are exceeded. Putting this in perspective of technology readiness levels (TRL), one can argue that the tool itself is robust and sensitive TRL 9. But that without proper trigger values and regulatory acceptance, the highest technology readiness level is not reached since there are no regulatory frameworks that opens the market for such tools. A TRL 8 therefore is more appropriate.

Microbial water quality assessment using an at-line sensor enables to assess the microbial water quality. The main advantage of the tested sensor is it fast response time (2-4 hours) compared to classical plating techniques (several days) which enable both source and product control. Fast assessment of water quality is especially of relevance for microorganisms as these microorganisms have dynamic concentrations (in sources), variable removal rates during treatment (Smeets and Medema 2006, Smeets, Rietveld et al. 2010) and can have very acute effects on people exposed to the water. Examples of such effects are people getting ill due to contaminated drinking water or surface water that is used

for recreation or irrigation, but also organisms in receiving ecosystems can be affected. The innovative microbial sensor BACT control fills this gap by providing the required speed and efficiency and can be used as fast indicator microbial water quality assessment tool. Thereby this tool is of high value for water quality assessment and control. The tool was applied to study generic microbial activity and the presence of *E. coli* bacteria. Thereby it fits in current legislation and regulation frameworks that use E. coli as an indicator organism. Initial experiments revealed that, within a water treatment setting, controlling water quality, the system is sensitive for clogging. This is something that needs to be prevented in order to provide smooth operation of the system. This illustrates that the tool might not be suitable for waste streams with a high particle load without proper pre-filtration steps, since the presence of particles compromise continuous operation. The analytical sensitivity is insufficient to meet drinking water quality standards (European Commission 1998, WHO 2011), but one has to realize that classic plating techniques hold the same disadvantage, as their sensitivity is also insufficient to reach these levels. When clogging is prevented, the assessment of *E.coli* and microbial activity show good correlation with plating and counting techniques, however is specific cases strong temporary variation was observed and could not be validated with other measuring techniques. Therefore, the tool, presuming smooth operation, seems suitable to monitor fecal contamination and can be applied as a first tier assessment that triggers temporal measures or further research. Putting this in perspective of technology readiness levels (TRL) for the specific application in water treatment trains, one can argue that technology for *E.coli* measurements is far developed, but it requires site specific validation to ensure robust and valid results within specific treatment systems. All in all this this corresponds to TRL 8. However, for the detection of microbial activity, in some cases unexplained spikes are observed, additional studies are necessary to explain these patterns at demonstration site 6 before it can be implemented on a larger scale.

The presence of microbial resistant bacteria and genes can be classified as a microbial response to chemical contamination with a specific indirect risk. Antimicrobial resistance is a human health threat, and risks are clear in medical and veterinary settings (WHO 2014). The presence of antimicrobial agents within the water system or its use by humans and livestock can result in the development (selection) of resistant microbes in aqueous waste materials of these users. Both the presence of the antimicrobial agents in the users themselves as well as the emissions of these antimicrobial agents through human and veterinary consumption can lead to the emission of antimicrobial resistance in the water cycle, respectively. However, the health risk of anti-microbial resistance in the water cycle is still unclear, as transfer of these genes from environmental micro-organisms to pathogens and the exposure of humans via this route is largely unknown. Therefore, the WHO advices to keep the number of ARGs in the environment as low as reasonably achievable from a precautionary perspective. A further increase of resistance genes in the urban water cycle is therefore unwanted (Berendonk 2015) (Larsson 2014, Huijbers, Blaak et al. 2015) (WHO 2014). So techniques are required to be able to monitor ARGs in water treatment systems to enable the analysis of the fate of resistant bacteria and their genes in the urban water cycle. The analysis of antibiotic resistant bacteria and antimicrobial resistant genes was tested at demonstration site 12 (Berlin). It was observed that the antibiotic resistant bacteria showed a steeper removal with ozonation than the removal of resistance genes, and that further removal of resistant bacteria was not detectable, as levels dropped below the limit of quantification, while the detection of antimicrobial resistance genes provided sufficient resolution to study their behavior further down the treatment line. This illustrates that the antibiotic resistant bacteria have a different fate in the treatment from their genes, that appear to be more persistent, and that the qPCR technique has a higher resolution in the chosen experimental set up. Considering the uncertainties on the risk of the antimicrobial resistance in water treatment and the aqueous environment. The risk of the observed levels of both bacteria and their genes cannot be determined. Nevertheless, the qPCR tool can compare

treatment steps and efficiency of treatment trains, while the detection of the resistant bacteria requires higher sensitivity to provide sufficient resolution. Therefore, the technology readiness level is still in a validation stage (TRL 5-6). It requires risk based thresholds or guidance values of both the presence of antibiotic resistant bacteria and their genes, as well as further application in treatment systems to build a reference database and correlate the outcome to other indicators of antimicrobial resistance, such as the presence or use of antimicrobial agents and epidemiological evidence on resistance development in communities. So all in all, risk evaluation of the results is required before wide spread application in water treatment and the aqueous environment.

6.2 Recomendations for future application and implementation

AquaNES demonstrates the combination of natural and engineered systems. As these combinations, and especially the natural components are less controllable, water quality monitoring becomes more important. The presented innovative and fast techniques provide additional benefits to classic monitoring tools and regulations. They provide an effect based or more generic (integrated) measure of chemical water quality (CALUX bioassays, non-target screening, respectively), enable faster detection of microbial contamination (BACTcontrol), or measure water quality parameters that have not been regularly monitored before.

The presented tools each have their own benefits and challenges. For CALUX bioassays provided robust results and a framework to interpret the results. In addition, it was illustrated that the combination with non-target chemical screening techniques have great potential by combining a measurement of effects (toxicity) and contamination. However, this technique currently lacks water quality standards in regulatory frameworks. Regulatory adoption is key for wide spread implementation.

The BACT control provides a fast detection of fecal contamination. Its application requires translation from the regulatory accepted indicator organism *E. coli* to its enzymatic activity. This seems feasible as presence of *E. coli* and enzymatic activity correlate. The major challenge lies in the application and smooth operation under different conditions and with different types of water. It is vulnerable for the local conditions and characteristics of the water it encounters, like many other *in situ* applied tools. These issues can be solved with for example filtration or clean-up steps, but require location specific measures and control of operation.

The results of the microbial resistance measurements provide robust data on presence of antimicrobial resistance genes, but defining thresholds of these measurements and relating them to risks requires more research on the covariance with epidemiological data on of antibiotic resistance in human populations. It needs additional research on multiple aspects of antimicrobial resistance within and beyond the urban water cycle. Correlating multiple tools that study various aspects of antimicrobial resistance such as chemical analysis, microbial analysis, effect assays on antimicrobial effects and epidemiological data on presence of resistant bacteria in (human) populations is required to enable future application and implementation in water quality monitoring and risk assessment.

7 Literature

- Alexander, J., G. Knopp, A. Dötsch, A. Wieland and T. Schwartz (2016). "Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts." <u>Science of the Total Environment</u> **559**: 103-112.
- Baken, K. and R. Sjerps (2016). The Threshold of Toxicological Concern (TTC): refinement of the concept and application to drinking water. Nieuwegein, The Netherlands, KWR Watercycle Reserach Institute: 50.
- Barraud, O., C. Baclet, F. Fenis and e. a. 2010. (2010). "Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons." J Antimicrob Chemoth. **65**: 1642-1645.
- Berendonk, T. U., Manaia, C.M., Merlin, C., (...), Baquero, F., Martinez, J.L. (2015). "Tackling antibiotic resistance: The environmental framework." <u>Nature Reviews Microbiology</u> 13(5): 310-317.
- Bibbal, D., V. Dupouy, J. P. Ferre, P. L. Toutain, O. Fayet, M. F. Prere and A. Bousquet-Melou (2007). "Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Entero-bacteriaceae and excretion of blaTEM genes in swine feces." <u>Appl. Environ.</u> <u>Microbiol. 73</u>: 4785-4790.
- Brand, W., C. M. de Jongh, S. C. van der Linden, W. Mennes, L. M. Puijker, C. J. van Leeuwen, A. P. van Wezel, M. Schriks and M. B. Heringa (2013). "Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays." <u>Environment International</u> 55: 109-118.
- Brunner, A. M., M. M. L. Dingemans, K. A. Baken and A. P. van Wezel (2019). "Prioritizing anthropogenic chemicals in drinking water and sources through combined use of mass spectrometry and ToxCast toxicity data." J Hazard Mater **364**: 332-338.

Cho, M., J. Kim, J. Y. Kim, J. Yoon and J. H. Kim (2010). "Mechanisms of Escherichia coli inactivation by several disinfectants." <u>Water Research</u> **44**(11): 3410-3418.

- Commision, E. (2015). Commision Directive (EU) 2015/1787 Amending annexes II and III to Councel Directive 98/83/EC on the quaity of water intended for human consumption. E. Union. Brussels, belgium.
- Commission, E. (2006). Groundwater Directive. <u>2006/118/EC</u>. Brussels Belgium, European Commission: 15.
- Cui, X. and G. A. Churchill (2003). "Statistical tests for differential expression in cDNA microarray experiments." <u>Genome Biol</u> **4**(4): 210.
- Escher, B. I., S. Aït-Aïssa, P. A. Behnisch, W. Brack, F. Brion, A. Brouwer, S. Buchinger, S. E. Crawford, D. Du Pasquier, T. Hamers, K. Hettwer, K. Hilscherová, H. Hollert, R. Kase, C. Kienle, A. J. Tindall, J. Tuerk, R. van der Oost, E. Vermeirssen and P. A. Neale (2018).
 "Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive." Science of the Total Environment 628-629: 748-765.
- European Commission (1991). Urban Waste Water Directive Brussels, Belgium.
- European Commission (1998). The Drinking Water Directive, 98/83/EC. Brussels, Belgium.
- European Commission (2000). EU Water Framework Directive Brussels, Belgium.
- European Commission (2003). Guidance documen on the assessment of the relevance of metabolites in groundwater of substances regulated under council directive 91/414/EEC. <u>Sanco/221/2000 rev.10 final</u>. Brussels, Belgium: 14.
- European Commission (2003). Restriction of Hazardous Substances Directive 2002/95/EC & 2003/11/EC. Brussels, Belgium, European Union: L42/45.

European Commission (2006). Bathing water directive. <u>Directive 2006/7/EC</u>. Brussels, belgium: 15. European Commission (2006). Directive of the European parlaiment and Council: on environmental

quality standards in the field of water policy and amending Directive. Brussels, Belgium: 25. European Commission (2006). Directive on the restriction of the environmentally harmfull PFOS, 2006/122/EC. Strassbough, France, European Union. **2006/122/EC:** 3.

European Commission (2008). Priority Substances Directive, 2008/105/EC. Brussels, Belgium.

European Commission (2010). The Industrial Emissions Directive. Brussels, Belgium.

European Commission (2012). amending Regulation (EC) No 152/2009 as regards the

determination of the levels of dioxins and polychlorinated biphenyls. <u>No 278/2012</u> Brussels. European Commission (2012). laying down methods of sampling and analysis for the official control of levels of dioxins, diox-in- like PCBs and non-dioxin-like PCBs in certain foodstuffs. <u>No</u>

<u>252/2012</u> Brussels.
 Guillén, D., A. Ginebreda, M. Farré, R. M. Darbra, M. Petrovic, M. Gros and D. Barceló (2012).
 "Prioritization of chemicals in the aquatic environment based on risk assessment: Analytical, modeling and regulatory perspective." <u>Science of the Total Environment</u> **440**(0): 236-252.

- Ho, J. (2017). Molekularbiologische Lebend/tot-Untercheidung bei Viren und Bakterien nach Desinfectionsverfahren. PhD, Technical University Munich.
- Hollender, J., E. L. Schymanski, H. P. Singer and P. L. Ferguson (2017). "Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?" <u>Environmental</u> <u>Science & Technology</u> **51**(20): 11505-11512.
- Huijbers, P. M. C., H. Blaak, M. C. M. De Jong, E. A. M. Graat, C. M. J. E. Vandenbroucke-Grauls and A. M. De Roda Husman (2015). "Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review." <u>Environmental Science and Technology</u> 49(20): 11993-12004.
- Jäger, T., J. Alexander, S. Kirchen, A. Dötsch, A. Wieland, C. Hiller and T. Schwartz (2018). "Livedead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants." <u>Environmental Pollution</u> **232**: 571-579.
- Kroes, R., C. Galli, I. Munro, B. Schilter, L. A. Tran, R. Walker and G. Wurtzen (2000). "Threshold of toxicological concern for chemical substances present in the diet: A practical tool for assessing the need for toxicity testing." <u>Food and Chemical Toxicology</u> **38**(2-3): 255-312.
- Lambropoulou, D. A. and L. M. L. Nollet (2014). <u>Transformation Products of Emerging</u> <u>Contaminants in the Environment</u>. Chichester, UK, Wiley.
- Larsson, D. G. J. (2014). "Antibiotics in the environment." <u>Upsala Journal of Medical Sciences</u> **119**(2): 108-112.
- Moermond, C. T. A. and C. E. Smit (2016). "Derivation of water quality standards for carbamazepine, metoprolol, and metformin and comparison with monitoring data." <u>Environmental</u> <u>Toxicology and Chemistry</u> **35**(4): 882-888.
- Mons, M. N., M. B. Heringa, J. van Genderen, L. M. Puijker, W. Brand, C. J. Van Leeuwen, P. Stoks, J. P. van der Hoek and D. van der Kooij (2013). "Use of the Threshold of Toxicological Concern (TTC) approach for deriving target values for drinking water contaminants." <u>Water Research</u> 47(4): 1666-1678.
- Murk, A. J., J. Legler, M. J. Denison, G. J.P., V. D. G. C. and A. Brouwer (1996). "Chemical-Activated Lucif-erase Gene Expression (CALUX): A Novel in Vitro Bioassay for Ah Receptor Active Compounds in Sediments and Pore Water. ." <u>Toxicol. Sci.</u> **33**: 149–160.
- Nürenberg, G., M. Schulz, U. Kunkel and T. A. Ternes (2015). "Development and validation of a generic nontarget method based on liquid chromatography high resolution mass

spectrometry analysis for the evaluation of different wastewater treatment options." <u>Journal</u> <u>of Chromatography A</u> **1426**: 77-90.

- Oulton, R. L., T. Kohn and D. M. Cwiertny (2010). "Pharmaceuticals and personal care products in effluent matrices: A survey of transformation and removal during wastewater treatment and implications for wastewater management." Journal of Environmental Monitoring **12**(11): 1956-1978.
- Parry, E. and T. M. Young (2016). "Comparing targeted and non-targeted high-resolution mass spectrometric approaches for assessing advanced oxidation reactor performance." <u>Water</u> <u>Research</u> **104**(Supplement C): 72-81.
- Pei, R., S.-C. Kim, K. H. Carlson and A. Pruden (2006). "Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). ." <u>Water</u> <u>Research</u> 40(12): 2427–2435.
- Pieterse, P., E. Felzel, R. Winter, B. van der Burg and A. Brouwer (2013). "PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures. ." <u>Environ. Sci.</u> <u>Technol. 47</u>: 11651–11659.
- R Core Team (2017). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.
- Reemtsma, T., U. Berger, H. P. H. Arp, H. Gallard, T. P. Knepper, M. Neumann, J. Benito Quintana and P. Voogt (2016). "Mind the gap: persistent and mobile organic compounds - water contaminants that slip though." <u>Environmental Science & Technology</u> **asap**: asap.
- Rutgers, M., M. Mesman and P. Otte (2004). Triade instrumentarium voor geintegreerde ecotoxicologische beoordeling van bodemverontreiniging. Bilthoven, RIVM: 46.
- Schollée, J. E., E. L. Schymanski and J. Hollender (2016). Statistical Approaches for LC-HRMS Data To Characterize, Prioritize, and Identify Transformation Products from Water Treatment Processes. <u>Assessing Transformation Products of Chemicals by Non-Target and Suspect</u> <u>Screening – Strategies and Workflows Volume 1</u>, American Chemical Society. **1241**: 45-65.
- Schroeder, A. L., G. T. Ankley, K. A. Houck and D. L. Villeneuve (2016). "Environmental surveillance and monitoring--The next frontiers for high-throughput toxicology." <u>Environ Toxicol Chem</u> 35(3): 513-525.
- Sjerps, R. M., D. Vughs, J. A. van Leerdam, T. L. ter Laak and A. P. van Wezel (2016). "Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS." <u>Water</u> <u>Res</u> **93**: 254-264.
- Smeets, P. W. M. H. and G. J. Medema (2006). Combined use of microbiological and nonmicrobiological data to assess treatment efficacy. <u>Water Science and Technology</u>. **54:** 35-40.
- Smeets, P. W. M. H., L. C. Rietveld, J. C. Van Dijk and G. J. Medema (2010). "Practical applications of quantitative microbial risk assessment (QMRA) for water safety plans." <u>Water Science and Technology</u> **61**(6): 1561-1568.
- Smits, T. H. M., C. Devenoges, K. Szynalski, J. Maillard and C. Hollinger (2004). "Development of a real-time PCR method for quantification of the three Dehalobacter, Dehalococcoides, and Desul-fitobacterium in microbial communities. ." Journal of microbiological methods 57: 369–378.
- Sonneveld, E., H. J. Jansen, J. A. C. Riteco, A. Brouwer and B. Van der Burg (2005). "Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid re-sponsive bioassays. ." <u>Toxicol. Sci.</u> **83**: 136-148.

AquaNES

- Stange, C. and A. Tiehm (2015). Verhalten von Antibiotika-Resistenzgenen bei der Aufbereitung <u>Veröffentlichungen aus dem Technologiezentrum Wasser 70</u> Karlsruhe, Germany, Technologiezentrum Wasser: 59-75.
- ter Laak, T. L., R. M. A. Sjerps and S. Kools (2015). Classifying persistent mobile organic compounds, KWR Watercycle Research Institute: 40.
- Van der Burg, B., S. C. Van der Linden, H. Y. Man, R. Winter, L. Jonker, B. Van Vugt-Lussenburg and A. Brouwer (2013). A panel of quantitative CALUX® reporter gene assays for reliable high throughput toxicity screening of chemicals and complex mixtures. <u>High throughput</u> <u>screening methods in toxicity testing</u>. P. Steinberg. New York., John Wiley and Sons, Inc. .
- Van der Linden, S. C., M. Heringa, H.-Y. Man, E. Sonneveld, L. M. Puijker, A. Brouwer and B. Van der Burg (2008). "Detection of Multiple Hormonal Activities in Wastewater Effluents and Surface Water, Using a Panel of Steroid Receptor CALUX Bioassays." <u>Environ. Sci. Technol.</u> 42: 5814–5820.
- Van der Linden, S. C., A. von Bergh, B. Van Vugt-Lussenburg, L. Jonker, A. Brouwer, M. Teunis, C. Krul and B. Van der Burg (2014). "Development of a panel of high throughput reporter gene assays to detect genotoxicity and oxidative stress." <u>Mutation Res.</u> **760**: 23-32.
- Van der Oost, R., G. Sileno, M. Suárez-Muñoz, M. T. Nguyen, H. Besselink and A. Brouwer (2017).
 "SIMONI (smart integrated monitoring) as a novel bioanalytical strategy for water quality assessment: Part i-model design and effect-based trigger values. ." <u>Environ. Toxicol. Chem</u> 36: 2385-2399.
- WHO (2011). Guidelines for drinking-water quality 4th ed. Geneva, Switzerland, World Health Organisation: 568.
- WHO (2014). Antimicrobial resistance: global report on surveillance WHO.
- Wirtz, F. (2009). "Danube, Meuse and Rhine MEMORANDUM 2008." <u>Environmental science and</u> <u>pollution research international</u> **16 Suppl 1**: S112-115.
- Zwart, N., S. L. Nio, C. J. Houtman, J. de Boer, J. Kool, T. Hamers and M. H. Lamoree (2018).
 "High-Throughput Effect-Directed Analysis Using Downscaled in Vitro Reporter Gene Assays To Identify Endocrine Disruptors in Surface Water." <u>Environ Sci Technol</u> 52(7): 4367-4377.

Annex 1 Sampling, storage and shipment of water samples for CALUX bioanalysis

p-aquanes-001

Number of Pages: 104

Sampling, storage and shipment of water samples for CALUX bioanalysis

Compiled by: Harrie Besselink Amended by:

Version No.: A Date: 24 June 2016 Replaced version No.: Date:

Authorised by: Approved by: Supervisor protocol:

(Head of Quality) (Head of Laboratory) (Technical expert)Kees Swart Emiel Felzel Kees Swart

Index

1	General	65
2	Bottles and material for sampling	65
3	Cleaning of materials	65
4	Sampling procedure	65
5	Coding of samples	66
6	Transport of samples	66

1 General

This part describes specific requirements for the sampling with respect to the determination of CALUX activity in water samples.

The amount of water sample to be collected, is at least 1000 ml. Five hundred ml will be used for extraction, the remaining 500 ml of water will be stored and used in case of re-analysis.

2 Bottles and material for sampling

2.1 Use clean glass bottles (borosilicate glass) with polypropylene caps with polytetrafluoroethylene (PTFE) inlays.

2.2 To avoid (photo) degradation of compounds of interest, use amber/green glass bottles.

2.3 If transparent, non-coloured glass bottles are used, wrap the bottles in aluminium foil or store them in a dark container following collection of water.

3 Cleaning of materials

3.1 Rinse brand new glass bottles three times with water before cleaning.

3.2 After rinsing with water, clean the bottles and caps at least one day before sampling by rinsing them three times with acetone or ethyl acetate (3-times 15-25 ml).

3.3 Let the residual acetone/ethyl acetate evaporate overnight at room temperature (e.g. drying oven, fume hood).

3.4 Close the bottles immediately after drying and evaporation.

3.5 Rinse all other glassware, spatulas etc. getting in contact with the sample three times with acetone or ethyl acetate (3-times 5-15 ml). Let the residual acetone/ethyl acetate evaporate.

4 Sampling procedure

4.1 Use Nitrile-gloves during sampling. Do not use any hand cream prior to sampling and avoid skin contact with the sample.

4.2 Avoid using any plastic/rubber material for sampling: tubing, funnels etc. Use material from glass, polytetrafluoroethylen (PTFE), or stainless steel only. In case the use of plastics/rubber cannot be avoided during sampling (e.g. use of pumps with plastic tubing inside), make sure the used equipment is rinsed with water thoroughly, e.g. by running the pump for 10 minutes). Use sampling (frm-aquanes-001.docx) for indicating that the sample has been in contact with plastic/rubber during sampling.

4.3 Fill a 1-liter bottle with 1000 ml of water sample. Do not stabilize the samples with chemicals.

4.4 To avoid oxidative processes, close bottles immediately after filling.

4.5 Label each bottle of water. See §5.1 for the information required on each bottle.

4.6 If transparent glass bottles are used, wrap the bottles in aluminium foil or store them in a dark container (see §2).

4.7 Store samples until shipment at 4 °C. Do not store samples for more than 2 days before shipment of the samples!

5 Coding of samples

5.1 Following sampling, immediately label each individual sample bottle. Indicate:

- Site and location of sampling
- Type of sample (e.g. influent; effluent)
- Unique sample code
- Volume of sample
- Date of sampling
- Person responsible for sampling
- Storage temperature

5.2 In case a single sample has to be divided over several sampling bottles, also indicate this. e.g.: bottle 1 of 2, bottle 2 of 2.

5.3 Fill out the sampling form (frm-aquanes-001.docx)

6 Transport of samples

6.1 Samples should be shipped by courier. Notify the recipient prior to shipment of the samples and send the completed sample form (frm-aquanes-001.docx) by e-mail to the recipient prior to shipment.

6.2 To assure a quick delivery of the samples, please contact the courier and inquire about delivery times. Make sure the delivery is scheduled during the workweek to avoid the shipment is put on hold for the weekend. (BDS is open for deliveries on Monday - Friday, 8:00 to 17:00 pm).

6.3 Transport samples cooled as soon as possible.

6.4 Make sure that bottles are wrapped in paper or in air bubble film to avoid breakage during transport.

6.5 Place bottles in a styrofoam box (or any other box designed for cooled shipment).

6.6 Add pre-cooled cooling element to keep samples as cool as possible during shipment.

6.7 Place a copy of the sampling form (from-aquanes-001.docx) containing the information for the samples to be shipped, inside the styrofoam box.

6.8 Close to styrofoam box

6.9 Samples should be shipped to:

Annex 2 Round 1 sample information

Table 2-1 Round 1 sample information

Constructed wetlands and other natural system	Managed Aquifer Recharge & Soil Aquifer Treatment	River Bank Filtration schemes
13 12 12 11 11 10 10 13 13 12 12 11 11 10 10	1) vo vo vo v v v v v o o o	ອງ -
12517 12517 11712 11712 12091 12468 12468 12468 12468 12468 12468 12468 12468	12263 12263 12265 122662 12562 12562 12472 12472 12472 12472 12472 12472 12472 12541 12541	BDS project no. 12820 11625 11625 11630 11630 11630 11630 11630 11246 11246 11246 113309 13309
27672 25943 25944 26760 28042 28044 28044 28044 28044 28141 28142 28143	27118 277120 28032 28035 28035 28035 28036 28036 28037 28041 28041 28041	BDS sample code – – 25825 25835 25836 25836 25277 25277 25277 25277 25277 25277 25277 25277 25277 25277 25313 229313 29314
No 2 No 3 1724 1732 01 02 02 03 04 813-1 \$13-2 \$13-3	W-coh WF-v WF-n SHAF_CZCAG0 SHAF_OZCAG0 SHAF_OZCAG2 raw water WMTP inlet raw water WMTP outlet (Mare a Sorre) raw water WMTP outlet (Mare a Sorre) sRKWR1 SRKWR2 SRKWR3 SRKWR4 No 1	Clent sample code 2017_11_27_allte 1_beed NF 2017_11_27_site 1_bermeate NF A B RW_Q1_20170307 No 1 Mo 2 Ganga SP1 RBF SP4 A0
10a Thirasia - influent photocalalystic treatment 10a Thirasia - effluent photocalalystic treatment Pikit RSF Rheinbed Inflow Pikit RSF Rheinbed Outflow MWTP Schonefinde, Primary sedimentation WWTP Schonefinde, Primary sedimentation WWTP Schonefinde, Decop-bed filter (sandianthracite) Packington, UK Packington, UK Packington, UK	1 - raw niver Wiese water 2 - pre-treated river Wiese water (rapid sand filter) 3 - after AOP treatment Site 7 - Shafdan Site 7 - Shafdan Site 7 - Shafdan Agon-Coutainville (9.00 hs) Agon-Coutainville (9.00 hs) Agon-Coutainville (10.16 hrs) Agon-Coutainville (10.40 hrs) Nootdorp BASSIN Nootdorp BASSIN Nootdorp DAPPW Nootdorp VLOTTER(KIST) 10n Thirasia - wastewate (rither of WWTD	Site 1. Berlin, water works Tiefwerder Site 1. Berlin, water works Tiefwerder WW Hosterwitz - Elbe water WW Hosterwitz - drink water Baja, raw water above slow filter Baja, RO permeate Baja, RO permeate Mosina treatment station Mosina treatment station
19/09/2017 19/09/2017 27/03/2017 27/03/2017 19/06/2017 09/06/2017 09/06/2017 09/06/2017 23/10/2017 23/10/2017	11/07/2017 11/07/2017 11/07/2017 10/02/2017 10/02/2017 10/02/2017 09/07/2017 09/07/2017 09/07/2017 25/09/2017 25/09/2017 25/09/2017	date of sampling 23011/2017 243066 06/03/2017 06/03/2017 07/03/2017 07/03/2017 19/12/2016 19/12/2016
Grab sampling Grab sampling Grab sampling Grab sampling Grab sampling Grab sampling Grab sampling Grab sampling Grab sampling	Grab sampling Grab sampling	sampling method Grab sampling Grab sampling Grab sampling Grab sampling Grab sampling I taken from tap I taken from tap Grab sampling Grab sampling
1000 1000 1000 1000 1000 1000 1000 100	566 792 794 1000 1000 1000 1000 2000 2000 2000 200	volume (m) 1000 1000 1000 1000 1000 1000 1000 500 5
20/09/2017 20/09/2017 28/03/2017 28/03/2017 20/06/2017 11/09/2017 11/09/2017 11/09/2017 11/09/2017 26/10/2017 26/10/2017	18/07/2017 18/07/2017 18/07/2017 06/10/2017 06/10/2017 12/09/2017 12/09/2017 12/09/2017 12/09/2017 27/09/2017 27/09/2017 27/09/2017 27/09/2017	date of arrival 28/1/2017 28/1/2017 07/03/2017 09/03/2017 09/03/2017 20/12/2016 20/12/2016 13/03/2018 13/03/2018 13/03/2018

Annex 3 Round 2 sample information

Site	BDS	BDS	Sampling	Location	date of	sampling	volume	date of
One	project no	eample code	noint	Location	eampling	mothod	(ml)	arrival
	project no.	Sample Code	point	contraction of a constant	sampling	nieulou	(111)	4.4/00/004.0
4	13320	29329	51	untreated water	12/03/2018	Grab	1000	14/03/2018
4	13320	29330	S2	before high-rate filters	12/03/2018	Grab	1000	14/03/2018
4	13320	29331	S3	after high-rate filters	12/03/2018	Grab	1000	14/03/2018
4	13320	29332	S4	after ozonation	12/03/2018	Grab	1000	14/03/2018
4	13320	29333	S5	after carbon filters	12/03/2018	Grab	1000	14/03/2018
4	13320	29334	S6	after disinfection	12/03/2018	Grab	1000	14/03/2018
4	13958	30703	S1	untreated water	21/08/2018	Grab	1000	24/08/2018
4	13958	30704	S2	before high-rate filters	21/08/2018	Grab	1000	24/08/2018
4	13958	30705	53	after biob-rate filters	21/08/2018	Grab	1000	24/08/2018
4	13058	30706	54	after ozonation	21/08/2018	Grab	1000	24/08/2018
4	12050	20707	66	after earbon filters	21/00/2010	Crab	1000	24/00/2010
4	13930	30707	33	alter carbon litters	21/08/2018	Giab	1000	24/00/2010
4	13958	30708	56	after disinfection	21/08/2018	Grab	1000	24/08/2018
4	14137	30703	S1	Untreated water	08/10/2018	Grab	1000	11/10/2018
4	14137	30704	S2	Before high rate filters	08/10/2018	Grab	1000	11/10/2018
4	14137	30705	S3	after high rate filters, before ozometion	08/10/2018	Grab	1000	11/10/2018
4	14137	30706	S4	after ozometion	08/10/2018	Grab	1000	11/10/2018
4	14137	30707	S5	after carbon filters	08/10/2018	Grab	1000	11/10/2018
4	14137	30708	S6	after disinfection	08/10/2018	Grab	1000	11/10/2018

Table 3-1 Round 2 sample information site 4

Figure 3-1 Schematic representation of water treatment site 4, indicating sampling points for CALUX bioanalyses

AquaNES

Site	BDS project no.	BDS sample code	Sampling point	Location	date of sampling	sampling method	volume (ml)	date of arrival
6	12368	27386	S1	RF-v (before columns, no AOP)	15/08/2017	Grab	991	22/08/2017
6	12368	27387	S2	RF-n (before columns, with AOP)	15/08/2017	Grab	975	22/08/2017
6	12368	27388	S3	RF-v-AK3 (after active carbon, no AOP)	15/08/2017	Grab	912	22/08/2017
6	12368	27389	S4	RF-n-AK3 (after active carbon, with AOP)	15/08/2017	Grab	935	22/08/2017
6	12368	27390	S5	RF-v-B4 (after soil column, no AOP)	15/08/2017	Grab	980	22/08/2017
6	12368	27391	S6	RF-n-B4 (after soil column, with AOP)	15/08/2017	Grab	1017	22/08/2017
6	12368	27392	S7	WF-v (before columns, no AOP)	15/08/2017	Grab	963	22/08/2017
6	12368	27393	S8	WF-n (before columns, with AOP)	15/08/2017	Grab	968	22/08/2017
6	12368	27394	S9	WF-v-AK3 (after active carbon, no AOP)	15/08/2017	Grab	972	22/08/2017
6	12368	27395	S10	WF-n-AK3 (after active carbon, with AOP)	15/08/2017	Grab	945	22/08/2017
	10000	00500						00/11/00/17
6	12828	28526	S1	RF-v (before columns, no AOP)	21/11/2017	Grab	999	28/11/2017
6	12828	28527	S2	RF-n (before columns, with AOP)	21/11/2017	Grab	986	28/11/2017
6	12828	28528	S3	RF-v-AK3 (after active carbon, no AOP)	21/11/2017	Grab	998	28/11/2017
6	12828	28529	S4	RF-n-AK3 (after active carbon, with AOP)	21/11/2017	Grab	975	28/11/2017
6	12828	28530	S5	RF-v-B4 (after soil column, no AOP)	21/11/2017	Grab	973	28/11/2017
6	12828	28531	S6	RF-n-B4 (after soil column, with AOP)	21/11/2017	Grab	986	28/11/2017
6	12828	28532	S7	WF-v (before columns, no AOP)	21/11/2017	Grab	1002	28/11/2017
6	12828	28533	S8	WF-n (before columns, with AOP)	21/11/2017	Grab	994	28/11/2017
6	12828	28534	S9	WF-v-AK3 (after active carbon, no AOP)	21/11/2017	Grab	976	28/11/2017
6	12828	28535	S10	WF-n-AK3 (after active carbon, with AOP)	21/11/2017	Grab	930	28/11/2017
6	13391	29530	S1	RF-v (before columns, no AOP)	19/03/2018	Grab	1026	28/03/2018
6	13391	29531	S2	RF-n (before columns, with AOP)	19/03/2018	Grab	1031	28/03/2018
6	13391	29532	S3	RF-v-AK3 (after active carbon, no AOP)	19/03/2018	Grab	1007	28/03/2018
6	13391	29533	S4	RF-n-AK3 (after active carbon, with AOP)	19/03/2018	Grab	988	28/03/2018
6	13391	29534	S5	RF-v-B4 (after soil column, no AOP)	19/03/2018	Grab	1022	28/03/2018
6	13391	29535	S6	RF-n-B4 (after soil column, with AOP)	19/03/2018	Grab	993	28/03/2018
6	13391	29536	S7	WF-v (before columns, no AOP)	19/03/2018	Grab	1082	28/03/2018
6	13391	29537	S8	WF-n (before columns, with AOP)	19/03/2018	Grab	1038	28/03/2018
6	13391	29538	S9	WF-v-AK3 (after active carbon, no AOP)	19/03/2018	Grab	1038	28/03/2018
6	13391	29539	S10	WF-n-AK3 (after active carbon, with AOP)	19/03/2018	Grab	1011	28/03/2018
6	13391	29540	11 - Blank	FHNW (Lab 5.24)	19/03/2018	Grab	988	28/03/2018

Table 3-2 Round 2 sample information site 6

Figure 3-2 Schematic representation of water treatment site 6, indicating sampling points for CALUX bioanalyses

Table 3-3

Site BDS BDS Sampling Location sampling date of volume date of oject n ampling . metho (ml) arrival ple o 13322 29335 S1 OZA500 (2nd effluent) 13/03/2018 Grab 1000 15/03/2018 S6 S7 OZAITA (after ozonation) OZOOB1 (after ozonation/SAT - observation well R1) 1000 1000 13322 29336 13/03/2018 Grab 15/03/2018 13322 29337 13/03/2018 Grab 15/03/2018 13322 29338 S8 OZOOB3 (after ozonation/SAT - observation well R3) 13/03/2018 Grab 1000 15/03/2018 7 19/12/2018 7 14497 32483 S1 OZA500 (2nd effluents) 17/12/2018 Grab 1000 14497 32484 S4 OZAFTA (after filtration tank – ozonation) 17/12/2018 Grab 1000 19/12/2018 OZATA (accounting and a constraints) OZBACT (ozonation product tank) OZBACT (ozonation after BAC) OZOB1 (after ozonation/SAT- observation well R1) OZTEP (EP filtration product tank) OZPTEP (WADIS EP product tank) 7 14497 32485 S6 17/12/2018 Grab Grab 1000 19/12/2018 S5 S7 1000 1000 19/12/2018 19/12/2018 14497 32486 17/12/2018 14497 32487 17/12/2018 Grab 14497 14497 32488 32489 S2 S3 17/12/2018 17/12/2018 Grab Grab 1000 1000 19/12/2018 19/12/2018 7 33948 S1 OZA500 (2nd effluent) 19/03/2019 21/03/2019 14911 Grab 1000 7 OZAFTA (after filtration tank – ozonation) OZAITA (ozonation product tank) OZBACT (ozonation after BAC) 14911 14911 14911 S4 S6 S5 33949 33950 Grab Grab 1000 1000 7 19/03/2019 21/03/2019 21/03/2019 21/03/2019 19/03/2019 1000 33951 19/03/2019 Grab 14911 33952 S9 OZOAUF (after cUF) 19/03/2019 Grab 1000 21/03/2019 S7 S8 S3 14911 33953 OZOOB1 (after ozonation/SAT - observation well R1) 1000 21/03/2019 7 7 19/03/2019 Grab OZOOB1 (alter ozonation/SA1 - observation well R1) OZOOB3 (after ozonation/SA1 - observation well R3) OZPTEP (WADIS EP product tank) 14911 14911 33954 33955 19/03/2019 19/03/2019 1000 1000 21/03/2019 21/03/2019 Grab Grab EP (WADIS) EP/SAT (510) **S**3 \bullet **S1** 515 514 (52) 400 μm **S**6 • OZONATION • • \$7 \$8 Legen Line 1 Line 2 Line 3 Line 4

Round 2 sample information site 7

Figure 3-3 Schematic representation of water treatment site 7, indicating sampling points for CALUX bioanalyses

(51)

Site	BDS	BDS	Sampling	Location	date of	sampling	volume	date of
	project no.	sample code	point		sampling	method	(ml)	arrival
8	13435	29645	S1	Inlet WWTP	11/04/2018	Grab	1000	13/04/2018
8	13435	29646	S2	Outlet WWTP	11/04/2018	Grab	1000	13/04/2018
8	13435	29643	S5-1	NP1 Agon Aquanes	10/04/2018	Grab	1000	13/04/2018
8	13435	29644	S5-2	NP2 Agon Aquanes	10/04/2018	Grab	1000	13/04/2018
8	13505	29743	S4	Golf pond	30/04/2018	Grab	1000	03/05/2018
8	13505	29745	S5-3	NP3 Agon Aquanes	01/05/2018	Grab	1000	03/05/2018
8	13505	29744	S5-4	FRE 4	30/04/2018	Grab	1000	03/05/2018
8	14195	31293	S2	Outlet WWTP	22/10/2018	Grab	1000	26/10/2018
8	14195	31289	S4	Golf pond	22/10/2018	Grab	1000	26/10/2018
8	14195	31294	S5-1	NP1 Sand Dune Aquifer	22/10/2018	Grab	1000	26/10/2018
8	14195	31290	S5-2	NP2 Sand Dune Aquifer	22/10/2018	Grab	1000	26/10/2018
8	14195	31292	S5-3	NP3 Sand Dune Aquifer	22/10/2018	Grab	1000	26/10/2018
8	14195	31291	S5-4	FRE4 Sand Dune Aquifer	22/10/2018	Grab	1000	26/10/2018
8	14471	32371	S5-1	NP1-T6 (Sand Dune Aquifer)	29/10-26/1/2018	Grab	500	12/12/2018
8	14471	32372	S5-1	NP1-T13 (Sand Dune Aquifer)	29/10-26/1/2018	Grab	500	12/12/2018
8	14471	32373	S5-1	NP1-T20 (Sand Dune Aquifer)	29/10-26/1/2018	Grab	500	12/12/2018
8	14471	32374	S5-1	NP1-T27 (Sand Dune Aquifer)	29/10-26/1/2018	Grab	500	12/12/2018
8	14471	32375	S5-1	NP1-T34 (Sand Dune Aquifer)	29/10-26/1/2018	Grab	500	12/12/2018

Table 3-4 Round 2 sample information site 8

Figure 3-4 Schematic representation of water treatment site 8, indicating sampling points for CALUX bioanalyses

Table 3-5 Round 2 sample information site	11
---	----

Site	BDS project no.	BDS sample code	Sampling point	Location	date of sampling	sampling method	volume (ml)	date of arrival
11	13390	29527	S1	Inflow pilot plant	26/03/2018	grab	1000	28/03/2018
11	13390	29528	S2	Outflow filter 1	26/03/2018	grab	1000	28/03/2018
11	13390	29529	S3	Outflow filter 3	26/03/2018	grab	1000	28/03/2018
11	10500	20767	60		00/05/2018	anah	1000	11/05/2019
11	13523	29707	50		09/05/2016	grab	1000	11/05/2016
11	13523	29768	51	Inflow pilot plant	09/05/2018	grab	1000	11/05/2018
11	13523	29769	52	Outflow filter 1	09/05/2018	grab	1000	11/05/2018
11	13523	29770	\$3	Outflow filter 3	09/05/2018	grab	1000	11/05/2018
	40750	00450	04	heff and with the state	00/00/0040		4000	01/00/0010
11	13750	30156	51	Inflow pilot plant	20/06/2018	grab	1000	21/06/2018
11	13750	30157	S2	Outflow filter 1	20/06/2018	grab	1000	21/06/2018
11	13750	30158	S3	Outflow filter 3	20/06/2018	grab	1000	21/06/2018
11	13968	30734	S1	Inflow pilot plant	28/08/2018	grab	1000	30/08/2018
11	13968	30735	S2	Outflow filter 1	28/08/2018	grab	1000	30/08/2018
11	13968	30736	S3	Outflow filter 3	28/08/2018	grab	1000	30/08/2018
11	14185	31256	S1	Inflow pilot plant	17/10/2018	grab	1000	23/10/2018
11	14185	31257	S2	Outflow filter 1	17/10/2018	grab	1000	23/10/2018
11	14185	31258	S3	Outflow filter 3	17/10/2018	grab	1000	23/10/2018
11	14296	32024	S1	Inflow pilot plant	08/11/2018	grab	1000	13/11/2018
11	14296	32025	S2	Outflow filter 1	08/11/2018	grab	1000	13/11/2018
11	14296	32026	S3	Outflow filter 3	08/11/2018	grab	1000	13/11/2018

Figure 3-5 Schematic representation of water treatment site 11, indicating sampling points for CALUX bioanalyses

Site	BDS project no.	BDS sample code	Sampling point	Location	date of sampling	sampling method	volume (ml)	date of arrival
12	13060	28975	S1	prim. sedimentation effl. (infl. biological treatment of WWTP)	24/01/2018	grab	1000	25/01/2018
12	13060	28970	S2	sec. sedimentation effl. (ozonation infl.)	23/01/2018	grab	1000	25/01/2018
12	13060	28971	S3	ozonation effluent	23/01/2018	grab	1000	25/01/2018
			S4			3		
12	13060	28972	S5	sand/anthracite filter	23/01/2018	arab	1000	25/01/2018
12	13060	28973	56	sand/BAC filter	23/01/2018	grab	1000	25/01/2018
12	13060	28074	57	constructed wetland 1	24/01/2018	grab	1000	25/01/2018
12	13000	20374	07		24/01/2010	grab	1000	23/01/2010
12	13457	29679	S1	Primary sedimentation effluent	17/04/2018	grab	2 * 1000	19/04/2018
12	13457	29673	S2	Ozonation influent	17/04/2018	grab	2 * 1000	19/04/2018
12	13457	29674	S3	Ozonation effluent	17/04/2018	grab	2 * 1000	19/04/2018
12	13457	29677	S4	Post-GAC filter	17/04/2018	grab	1 * 1000	19/04/2018
12	13457	29676	S5	Sand/anthracite filter	17/04/2018	grab	2 * 1000	19/04/2018
12	13457	29675	S6	Sand/BAC filter	17/04/2018	grab	2 * 1000	19/04/2018
12	13457	29678	S7	constructed wetland 1	17/04/2018	grab	2 * 1000	19/04/2018
12	10407	20010	01		11104/2010	giub	2 1000	10/04/2010
12	13815	30275	S1	Primary sedimentation effluent	16/07/2018	grab	2 * 1000	18/07/2018
12	13815	30276	S2	Ozonation influent	16/07/2018	grab	2 * 1000	18/07/2018
12	13815	30277	S3	Ozonation effluent	16/07/2018	grab	2 * 1000	18/07/2018
12	13815	30280	S4	Post-GAC filter	16/07/2018	grab	2 * 1000	18/07/2018
12	13815	30281	S5	Sand/anthracite filter	16/07/2018	grab	2 * 1000	18/07/2018
12	13815	30278	S6	Sand/BAC filter	16/07/2018	arab	2 * 1000	18/07/2018
12	13815	30279	S7	constructed wetland 1	16/07/2018	grab	2 * 1000	18/07/2018
Primary effluent	Secondary effluent S2 Ldaand Pump S. Sampling Dr. Online m	I location ontoring		Fed Effunction Fed Fed Effunction Fed Fed Fed Fed Fed Fed Fed Fed Fed Fed				
Primary effluent	Secondary On effuent			Constructed vetland 1 Fred tank Constructed vetland 2 Constructed vetland 1 ST ST Bichargs				

Table 3-6 Round 2 sample information site 12

Figure 3-6 Schematic representation of water treatment site 12, indicating sampling points for CALUX bioanalyses

⇒

BAC-Filtration

\$5

O Pump

S.. Samp On..

Annex 4 Quantified CALUX bioanalysis results - round 1

Table 4-a CALUX bioanalysis results site 1

BDS no.	client code	Result	Unit	LOQ
Cytotox CALUX				
28515	2017 11 27 site 1 feed NF	LOQ(<0.89)	ug TBT eq./I water	0.89
28516	2017 11 27 site 1 permeate NF	LOQ(<0.91)	ug TBT eq./I water	0.91
	'	(<i>'</i> ,	5	
ERa CALUX				
28515	2017_11_27_ site 1_feed NF	0.22	ng 17b-estradiol eq./l water	0.07
28516	2017_11_27_ site 1_permeate NF	0.15	ng 17b-estradiol eq./l water	0.08
anti-ERa CALUX				
28515	2017_11_27_ site 1_feed NF	LOQ(<1.2)	ug Tamoxifen eq./l water	1.2
28516	2017_11_27_ site 1_permeate NF	LOQ(<1.2)	ug Tamoxifen eq./l water	1.2
AR CALUX				
28515	2017_11_27_ site 1_feed NF	LOQ(<0.96)	ng DHT eq./I water	0.96
28516	2017_11_27_ site 1_permeate NF	LOQ(<0.98)	ng DHT eq./I water	0.98
anti-AR CALUX				
28515	2017_11_27_site 1_teed NF	LOQ(<6.9)	ug Flutamide eq./l water	6.9
28516	2017_11_27_site 1_permeate NF	LOQ(<0.9)	ug Flutamide eq./I water	6.9
GRUALUX			-	
28515	2017_11_27_site 1_teed NF	LOQ(<21)	ng Dexamethason eq./l water	21
28516	2017_11_27_ site 1_permeate NF	LOQ(<21)	ng Dexamethason eq./I water	21
anti-GR CALUX			ur Du406 er luveter	0.075
20010		LOQ(<0.075)	ug Ru486 eg./i water	0.075
28516	2017_11_27_site 1_permeate NF	LOQ(<0.076)	ug Ru486 eq./I water	0.076
20515	2017 11 27 oits 1 food NE	100(-2.4)	ng Org2058 og /luvotor	2.4
20313	2017_11_27_site 1_leed NF 2017_11_27_site 1_permente NE	LOQ(<2.4)	ng Org2058 og /l water	2.4
20310		LOQ(~2.3)	ng Org2036 eq./i water	2.5
anti-DR CALLIX				
28515	2017 11 27 site 1 feed NE		ng Ru/86 eg /lwater	0.88
20515	2017_11_27_site 1_nermeste NE		ng Ru/86 eg /l water	0.00
20010		LOQ(~0.03)	ng ru+00 eq./i water	0.03
PPARa CALUX				
28515	2017 11 27 site 1 feed NF	1 00(<90)	ng GW7647 eg /ll water	90
28516	2017 11 27 site 1 permeate NF	LOQ(<90)	ng GW7647 eq./II water	91
20010				01
PPARd CALUX				
28515	2017 11 27 site 1 feed NF	LOQ(<290)	ng L-165.041 eg./l water	290
28516	2017 11 27 site 1 permeate NF	LOQ(<290)	ng L-165.041 eg./l water	290
	,		0 / 1	
PPARg CALUX				
28515	2017_11_27_ site 1_feed NF	LOQ(<207)	ng Rosiglitazone eq./l water	207
28516	2017 11 27 site 1 permeate NF	LOQ(<210)	ng Rosiglitazone eq./l water	210
	'		0 0 1	
DR CALUX				
28515	2017_11_27_ site 1_feed NF	LOQ(<9.6)	pg 2,3,7,8 TCDD eq./l water	9.6
28516	2017_11_27_ site 1_permeate NF	LOQ(<9.7)	pg 2,3,7,8 TCDD eq./I water	9.7
PAH CALUX				
28515	2017_11_27_ site 1_feed NF	22	ng Benzo[a]pyrene eq./l water	2.5
28516	2017_11_27_ site 1_permeate NF	4.8	ng Benzo[a]pyrene eq./l water	2.5
PXR CALUX				
28515	2017_11_27_ site 1_feed NF	33	ug Nicardipine eq./l water	8.8
28516	2017_11_27_ site 1_permeate NF	LOQ(<9)	ug Nicardipine eq./I water	9
Nrt2 CALUX				
28515	2017_11_27_ site 1_feed NF	LOQ(<35)	ug Curcumine/I water	35
28516	2017_11_27_ site 1_permeate NF	LOQ(<36)	ug Curcumine/I water	36
P53 (-59) CALUX				0.00
28515	2017_11_27_site 1_teed NF	LOQ(<0.03)	ug Actinomycin D/I water	0.03
28516	2017_11_27_ site 1_permeate NF	LOQ(<0.03)	ug Actinomycin D/I water	0.03
DE2 (100) 0 41 11Y				
P33 (+59) CALUX		100(11100)	···· Oradan based it // /	4440.00
20515	2017_11_27_site 1_feed NF 2017_11_27_site 1_permoste NE	LOQ(<1100)	ug Cyclophosphamide/i water	1133.02
20010	LUIT IT LT SILE I PEILIEALE NE		ay o yoophosphannuc/I watel	1100.00

Table 4-b Quantified CALUX bioanalysis results site 2

BDS no.	client code	Result	Unit	LOQ
Cvtotox CALUX				
25825	Drewag Netz -A1 - 06/03/2	LOQ (<0.96)	ug TBT eg./I water	0.96
25827	Drewag Netz -B1 - 06/03/2	100(<0.90)	ug TBT eg /l water	0.9
2002.	21011491102 21 00,00,2	200 (0.00)	ag i bi oqui nator	0.0
ERa CALUX				
25825	Drewag Netz -A1 - 06/03/2	0.095	ng 17b-estradiol eg./l water	0.073
25827	Drewag Netz -B1 - 06/03/2	LOQ (<0.069)	ng 17b-estradiol eg./l water	0.069
	g	()		
anti-ERa CALUX				
25825	Drewag Netz - 41 - 06/03/2		ua Tamovifen ea /l water	0.8
25827	Drewag Netz -B1 - 06/03/2		ug Tamovifen eg // water	0.0
20021	Diewag Neiz -D 1 - 00/00/2	200 (10.10)	ug ramoxicited./ water	0.70
25925	Drowing Nota A1 06/02/2	100(<14)	ng DHT og //water	4.4
20020	Dreway Netz -A1 - 00/03/2		ng DHT eq./i water	4.4
23027	Dreway Netz -BT - 00/03/2	LOQ (~4.1)	ng DHT eq./i water	4.1
				7.0
25825	Drewag Netz -A1 - 06/03/2	LOQ (<7.6)	ug Flutamide eq./l water	7.6
25827	Drewag Netz -B1 - 06/03/2	LUQ (<7.1)	ug Flutamide eq./l water	7.1
GR CALUX				
25825	Drewag Netz -A1 - 06/03/2	LOQ (<25)	ng Dexamethason eq./l water	25
25827	Drewag Netz -B1 - 06/03/2	LOQ (<23)	ng Dexamethason eq./l water	23
anti-GR CALUX				
25825	Drewag Netz -A1 - 06/03/2	38	ug Ru486 eq./I water	35
25827	Drewag Netz -B1 - 06/03/2	LOQ (<33)	ug Ru486 eg./I water	33
	Ū.		0 .	
PR CALUX				
25825	Drewag Netz -A1 - 06/03/2	LOQ (<1.7)	ng Org2058 eg./l water	1.7
25827	Drewag Netz -B1 - 06/03/2	LOQ (<1.5)	ng Org2058 eg./l water	1.5
	5		5 - 5 1	
anti-PR CALUX				
25825	Drewag Netz - 41 - 06/03/2	100(<52)	ng Ru486 eg /l water	52
25827	Drewag Netz -B1 - 06/03/2	LOQ(<4.9)	ng Ru/86 eg // water	10
23021	Diewag Netz -Di - 00/03/2	200 (44.3)	ng ru+00 eq./i water	4.5
25925	Drowing Nota A1 06/02/2	100(<22)	ng CW/7647 og /llywotor	22
20020	Drewag Netz -AT - 06/03/2	LOQ (<33)	ng GW/647 eq./ll water	33
25827	Drewag Netz -B1 - 06/03/2	LOQ (<31)	ng GW7647 eq./ll water	31
				1000
25825	Drewag Netz -A1 - 06/03/2	LOQ (<1300)	ng L-165,041 eq./l water	1300
25827	Drewag Netz-B1 - 06/03/2	LOQ (<1200)	ng L-165,041 eq./I water	1200
PPARg CALUX				
25825	Drewag Netz -A1 - 06/03/2	LOQ (<440)	ng Rosiglitazone eq./l water	440
25827	Drewag Netz -B1 - 06/03/2	LOQ (<410)	ng Rosiglitazone eq./l water	410
DR CALUX				
25825	Drewag Netz -A1 - 06/03/2	19	pg 2,3,7,8 TCDD eq./I water	11
25827	Drewag Netz -B1 - 06/03/2	LOQ (<10)	pg 2,3,7,8 TCDD eq./I water	10
PAH CALUX				
25825	Drewag Netz -A1 - 06/03/2	52	ng Benzo[a]pyrene eq./l water	1.3
25827	Drewag Netz -B1 - 06/03/2	LOQ (<1.3)	ng Benzo[a]pyrene eq./l water	1.3
PXR CALUX				
25825	Drewag Netz -A1 - 06/03/2	23	ug Nicardipine eg./l water	10
25827	Drewag Netz -B1 - 06/03/2	LOQ (<9.4)	ug Nicardipine eg./l water	9.4
			-9	
Nrf2 CALUX				
25825	Drewag Netz -A1 - 06/03/2	120	ug Curcumine/I water	36
25827	Drewag Netz -B1 - 06/03/2	Q2	ug Curcumine/I water	33
20021	Dicitize Di - 00/00/2	32	ag Carcanine/i water	00
P53 (-S9) CALLIX				
25825	Drewag Netz A1 - 06/03/2		ug Actinomycin D/Lwater	0.03
25025	Drewag Netz $-R1 = 00/03/2$		ug Actinomycin D/I water	0.03
20021	DIEWAY NEW -DI - 00/03/2	LUQ (~0.030)	ug Actinomychi D/I water	0.03
DE2 (+00) CALLIX				
F33 (739) CALUX				4000
25825	Drewag Netz -A1 - 06/03/2	LOQ (<1000)	ug Cyclopnosphamide/I water	1000
25827	Drewag Netz -B1 - 06/03/2	LOQ (<970)	ug Cyclopnosphamide/I water	970

Table 4-c Quantified CALUX bioanalysis results site 3

BDS no.	client code	Result	Unit	LOQ
Cytotox CALUX				
25835	RW_Q1_20170307	LOQ (<1.2)	ug TBT eq./l water	1.2
25836	RO_Q2_20170307	LOQ (<1.1)	ug TBT eq./l water	1.1
ERa CALUX				
25835	RW_Q1_20170307	LOQ (<0.10)	ng 17b-estradiol eq./l water	0.1
25836	RO_Q2_20170307	LOQ (<0.097)	ng 17b-estradiol eq./l water	0.097
anti-ERa CALUX				
25835	RW_Q1_20170307	LOQ (<1.2)	ug Tamoxifen eq./l water	1.2
25836	RO_Q2_20170307	LOQ (<1.1)	ug Tamoxiten eq./I water	1.1
	BW 01 20170207		ng DUT og /luveter	E C
20030	RW_QI_201/0307		ng DHT eq./I water	5.0
25650	RO_Q2_20170307	LOQ (<3.2)	ng DHT eq./I water	5.2
anti-AR CALLIX				
25835	RW 01 20170307	1 00 (<8 2)	ua Elutamide ea /l water	82
25836	RO Q2 20170307	100(<76)	ug Flutamide eg /l water	7.6
20000		2000 (1.0)	ag i latarinao oqui nator	110
GR CALUX				
25835	RW Q1 20170307	LOQ (<29)	ng Dexamethason eg./I water	29
25836	RO Q2 20170307	LOQ (<27)	ng Dexamethason eg./I water	27
		()		
anti-GR CALUX				
25835	RW_Q1_20170307	86	ug Ru486 eq./I water	84
25836	RO_Q2_20170307	LOQ (<79)	ug Ru486 eq./I water	79
PR CALUX				
25835	RW_Q1_20170307	LOQ (<1.7)	ng Org2058 eq./l water	1.7
25836	RO_Q2_20170307	LOQ (<1.6)	ng Org2058 eq./I water	1.6
anti-PR CALUX				
25835	RW_Q1_20170307	LOQ (<4.0)	ng Ru486 eq./I water	4
25836	RO_Q2_20170307	LOQ (<3.7)	ng Ru486 eq./l water	3.7
			014/2012	04
25835	RW_Q1_20170307	LOQ (<61)	ng GW/647 eq./II water	61
25836	RO_Q2_20170307	LUQ (<56)	ng GW7647 eq./II water	50
PPARA CALLIX				
25835	PW 01 20170307	100 (<1200)	ng L 165 041 og /water	1200
25836	RO O2 20170307	LOQ(<1200)	ng L-165 041 eg // water	1100
20000		200 (1100)		1100
25835	RW Q1 20170307	LOQ (<720)	ng Rosiglitazone eg./l water	720
25836	RO Q2 20170307	LOQ (<670)	ng Rosiglitazone eg./l water	670
		(
DR CALUX				
25835	RW Q1 20170307	14	pg 2,3,7,8 TCDD eq./l water	13
25836	RO_Q2_20170307	11	pg 2,3,7,8 TCDD eq./l water	12
PAH CALUX				
25835	RW_Q1_20170307	19	ng Benzo[a]pyrene eq./I water	1.3
25836	RO_Q2_20170307	52	ng Benzo[a]pyrene eq./I water	1.3
PXR CALUX				
25835	RW_Q1_20170307	28	ug Nicardipine eq./l water	17
25836	RO_Q2_20170307	LOQ (<16)	ug Nicardipine eq./l water	16
NIIZ GALUA	BW/ 01 20170207	440		10
20000	RVV_Q1_201/030/	110	ug Curcumine/I water	40
20000	RU_QZ_201/030/	IZU	ug Curcumme/i water	40
P53 (-S9) CALLIX				
25835	RW Q1 20170307	1 00 (<0 040)	ug Actinomycin D/Lwater	0.04
25836	RO Q2 20170307	LOO (<0.040)	ug Actinomycin D/I water	0.04
20000		=====(-0.010)		0.01
P53 (+S9) CALUX				
25835	RW Q1 20170307	LOQ (<1300)	ug Cyclophosphamide/I water	1300
25836	RO_Q2_20170307	LOQ (<1200)	ug Cyclophosphamide/I water	1200

Table 4-d Quantified CALUX bioanalysis results site 4

BDS no.	client code	Result	Unit	LOQ
Cytotox CALUX				
25277	Mosina treatment station Mo1	LOQ (<1.1)	ug TBT eq./I water	1.1
25278	Mosina treatment station Mo2	LOQ (<1.1)	ug TBT eq./I water	1.1
ERa CALUX				
25277	Mosina treatment station Mo1	LOQ (<0.070)	ng 17b-estradiol eq./l water	0.07
25278	Mosina treatment station Mo2	LOQ (<0.070)	ng 17b-estradiol eq./l water	0.07
anti-ERa CALUX				
25277	Mosina treatment station Mo1	LOQ (<0.49)	ug Tamoxifen eq./l water	0.49
25278	Mosina treatment station Mo2	LOQ (<0.49)	ug Tamoxifen eq./l water	0.49
AR CALUX				
25277	Mosina treatment station Mo1	LOQ (<0.41)	ng DHT eg./I water	0.41
25278	Mosina treatment station Mo2	LOQ (<0.41)	ng DHT eq./I water	0.41
			0	
anti-AR CALUX				
25277	Mosina treatment station Mo1	4	ug Flutamide eg./l water	2.9
25278	Mosina treatment station Mo2	LOQ (<2.9)	ug Flutamide eg./l water	2.9
			5	
GR CALUX				
25277	Mosina treatment station Mo1	1 00 (<8 7)	ng Dexamethason eg /l water	87
25278	Mosina treatment station Mo2		ng Dexamethason eg /l water	87
20210		200 (10.7)	ng Dexametriason eq.// water	0.7
anti-GR CALUX				
25277	Mosina treatment station Mo1	1 00 (<32)	ug Ru486 eg /l water	32
25278	Mosina treatment station Mo?	LOQ(<32)	ug Ru/86 eg / water	32
23210		EOQ (~52)	ug 10400 eq./i water	52
PRCALIX				
25277	Masina treatment station Mo1	100(<10)	ng Org2058 og //wator	1
25278	Mosina treatment station Mo2	LOQ(<1.0)	ng Org2058 eg /l water	1
23210		200 (11.0)	ng Org2000 eq./i water	1
anti BB CALLIX				
	Maxima tractment station Mad		na Du496 ea luveter	0.07
25277	Mosina treatment station Mo	LOQ (<0.37)	ng Ru486 eq./I water	0.37
25278	Mosina treatment station Moz	LOQ (<0.37)	ng Ru486 eq./i water	0.37
PFARa CALUA	Marsing the star of station Mard			00
25277	Mosina treatment station No1	LOQ (<38)	ng Gvv7647 eq./ll water	38
25278	Mosina treatment station Moz	LOQ (<38)	ng Gvv7647 eq./ll water	38
PPARd CALUX	Marsing the star of station Mard			070
25277	Mosina treatment station Mo	LOQ (<270)	ng L-165,041 eq./i water	270
25278	Mosina treatment station Moz	LOQ (<270)	ng L-165,041 eq./i water	270
PPARg CALUX	Maxima tractment station Mad		na Desialitezana en lluveten	07
25277			ng Rosiglitazone eq./l water	07
25278	Mosina treatment station Mo2	LOQ (<87)	ng Rosiglitazone eq./I water	87
	Marshine the star of station Mard	05		4
25277	Mosina treatment station Mo1	25	pg 2,3,7,8 TCDD eq./I water	1
25278	Mosina treatment station Moz	17	pg 2,3,7,8 1CDD eq./i water	I
		-		
25277	Mosina treatment station Mo1		ng Benzolajpyrene eq./l water	1
25278	Mosina treatment station Moz	LOQ (1.0)	ng Benzolajpyrene eq./I water	1
		10		. –
25277	Mosina treatment station Mo1	13	ug Nicardipine eq./l water	1.7
25278	Mosina treatment station Mo2	3.7	ug Nicardipine eq./l water	1./
NITZ CALUX	•• • • • • • • • • •			
25277	Mosina treatment station Mo1	99	ug Curcumine/I water	14
25278	Mosina treatment station Mo2	22	ug Curcumine/I water	14
P53 (-S9) CALUX				
25277	Mosina treatment station Mo1	LOQ (<0.010)	ug Actinomycin D/I water	0.01
25278	Mosina treatment station Mo2	LOQ (<0.010)	ug Actinomycin D/I water	0.01
P53 (+S9) CALUX				
25277	Mosina treatment station Mo1	1700	ug Cyclophosphamide/I water	900
25278	Mosina treatment station Mo2	LOQ (<900)	ug Cyclophosphamide/I water	900

Table 4-e Quantified CALUX bioanalysis results site 5

BDS no.	client code	Result	Unit	LOQ
Cytotox CALUX				
29312	Ganga	LOQ (<1.2)	ug TBT eq./l water	1.2
29313	SP1 RBF	LOQ (<1.2)	ug IBI eq./I water	1.2
23314	51470	LOQ (11.2)	ug ibi equi water	1.2
ERa CALUX				
29312	Ganga	LOQ (<0.12)	ng 17b-estradiol eq./l water	0.12
29313 29314	SP1 RBF SP4 A0	LOQ (<0.12)	ng 17b-estradiol eq./I water	0.12
20011	0. 1710	200(0.1.)	ng no concercient equination	0.11
anti-ERa CALUX				
29312	Ganga	LOQ (<0.92)	ug Tamoxifen eq./l water	0.92
29313	SP4 A0	LOQ (<0.96)	ug Tamoxien eg./l water	1.1
			5	
AR CALUX		100/00/		
29312	Ganga SP1 PBF	LOQ (<0.81)	ng DHT eq./I water	0.81
29314	SP4 A0	LOQ (<0.00)	ng DHT eq./I water	1.9
		. ,		
anti-AR CALUX	0			0.0
29312 29313	SP1 RBF	LOQ (<9.9)	ug Flutamide eq./I water	9.9
29314	SP4 A0	LOQ (<14)	ug Flutamide eq./l water	14
		. ,	-	
GR CALUX	00000		ng Dovomothogon of "to	05
29312	Ganga SP1 RBF	LUQ (<25) LOO (<26)	ng Dexamethason eq./I water	20 26
29314	SP4 A0	LOQ (<32)	ng Dexamethason eq./l water	32
			•	
anti-GR CALUX	Corre		ua Du/96 aa //watar	0.040
29312	SP1 RBF	LOQ (<0.049)	ug Ru486 eg./I water	0.049
29314	SP4 A0	LOQ (<0.059)	ug Ru486 eq./l water	0.059
PR CALUX	Capita	100(<22)	ng Org2058 og //wator	2.2
29312	SP1 RBF	LOQ (<2.3)	ng Org2058 eg./l water	2.3
29314	SP4 A0	LOQ (<2.1)	ng Org2058 eq./l water	2.1
anti-PR CALUX	Capita	100(<62)	ng Pu496 og / water	6.2
29313	SP1 RBF	LOQ (<0.2) LOQ (<6.5)	ng Ru486 eq./l water	6.5
29314	SP4 A0	LOQ (<6.2)	ng Ru486 eq./l water	6.2
20312	Gapta	100(<32)	ng GW/7647 eg /ll water	32
29313	SP1 RBF	LOQ (<34)	ng GW7647 eq./ll water	34
29314	SP4 A0	LOQ (<40)	ng GW7647 eq./ll water	40
29312	Ganga	LOQ (<620)	ng L-165.041 eg./l water	620
29313	SP1 RBF	LOQ (<650)	ng L-165,041 eq./l water	650
29314	SP4 A0	LOQ (<580)	ng L-165,041 eq./l water	580
29312	Ganga	LOQ (<670)	ng Rosiglitazone eg./l water	670
29313	SP1 RBF	LOQ (<700)	ng Rosiglitazone eq./l water	700
29314	SP4 A0	LOQ (<330)	ng Rosiglitazone eq./l water	330
DR CALUX				
29312	Ganga	138	pg 2,3,7,8 TCDD eq./l water	11
29313	SP1 RBF	<loq (11)<="" td=""><td>pg 2,3,7,8 TCDD eq./l water</td><td>11</td></loq>	pg 2,3,7,8 TCDD eq./l water	11
29314	SP4 A0	68	pg 2,3,7,8 TCDD eq./l water	11
PAH CALUX				
29312	Ganga	90	ng Benzo[a]pyrene eq./l water	2.9
29313	SP1 RBF	62	ng Benzo[a]pyrene eq./l water	2.5
29314	3F4 A0	55	ng benzolajpyrene eq./i water	3.1
PXR CALUX				
29312	Ganga	LOQ (<7.0)	ug Nicardipine eq./l water	7
29313	SP1 KBF	LUQ (<7.3)	ug Nicardipine eq./l water	7.3
20014	SF4 AU	J.Z	ug micarulpine eq./I Water	1
Nrf2 CALUX				
29312	Ganga	LOQ (<27)	ug Curcumine/I water	27
29313 29314	SP1 RBF SP4 A0	LOQ (<29) 33	ug Curcumine/I water	29 28
20011	0. ///0	00	ag carcanition water	
P53 (-S9) CALUX	_			
29312	Ganga	LOQ (<0.020)	ug Actinomycin D/I water	0.02
29313 29314	SP1 KBF	LOQ (<0.020) LOC (<0.020)	ug Acunomycin D/I water	0.02
20017		2002 (10.020)	ag / total official D/I water	3.02
P53 (+S9) CALUX	_			
29312	Ganga	LOQ (<800)	ug Cyclophosphamide/I water	800
29313 29314	SP1 KBF SP4 A0	LOQ (<840) LOQ (<810)	ug Cyclophosphamide/i water ug Cyclophosphamide/i water	840 810

Table 4-f Quantified CALUX bioanalysis results site 6

BDS no.	client code	Result	Unit	LOQ
Cytotox CALUX				
27118	1 - raw river Wiese wate	LOQ (<0.98)	ug TBT eq.// water	0.98
27120	3 - after AOP treatment	LOQ (<0.71)	ug TBT eq./I water	0.71
27121	4 - blank	LOQ (<0.74)	ug TBT eq./I water	0.74
ERa CALUX				
27118	1 - raw river Wiese wate	0.15	ng 17b-estradiol eq./l water	0.096
27119	2 - pre-treated river Wie	LOQ (<0.072)	ng 17b-estradiol eq./l water	0.072
27120	3 - after AOP treatment 4 - blank	LOQ (<0.054) LOQ (<0.057)	ng 17b-estradiol eq./I water ng 17b-estradiol eq./I water	0.054
27118	1 - raw river Wiese wate	1.00 (<2.2)	un Tamoxifen en // water	22
27119	2 - pre-treated river Wie	LOQ (<1.6)	ug Tamoxifen eq./l water	1.6
27120	3 - after AOP treatment	LOQ (<0.57)	ug Tamoxifen eq./l water	0.57
2/121	4 - blank	LUQ (<0.60)	ug Tamoxiten eq./I water	0.6
AR CALUX				
27118	1 - raw river Wiese wate	LOQ (<0.44)	ng DHT eq./I water	0.44
27120	3 - after AOP treatment	LOQ (<0.32)	ng DHT eq./I water	0.32
27121	4 - blank	LOQ (<0.27)	ng DHT eq./I water	0.27
anti-AR CALUX				
27118	1 - raw river Wiese wate	13	ug Flutamide eq./l water	12
27119	2 - pre-treated river Wie	17	ug Flutamide eq./I water	8.8
27120	3 - aner AOP treatment 4 - blank	LOQ (<15) LOQ (<16)	ug Flutamide eg./I water	15
		()	-9	
GR CALUX	1 row river Wiece wate	100 (<15)	ng Dovomothoson og // water	15
27118	2 - pre-treated river Wie	LOQ (<13)	ng Dexamethason eq./l water	11
27120	3 - after AOP treatment	LOQ (<12)	ng Dexamethason eq./l water	12
27121	4 - blank	LOQ (<13)	ng Dexamethason eq./l water	13
anti-GR CALUX				
27118	1 - raw river Wiese wate	LOQ (<0.086)	ug Ru486 eq./l water	0.086
27119	2 - pre-treated river Wie	0.18	ug Ru486 eq./l water	0.064
27120	4 - blank	LOQ (<0.044) LOQ (<0.046)	ug Ru486 eq./l water	0.044
27118	1 - raw river Wiese wate	1.00 (<1.1)	ng Org2058 eg /l water	11
27119	2 - pre-treated river Wie	LOQ (<0.82)	ng Org2058 eq./l water	0.82
27120	3 - after AOP treatment	LOQ (<1.4)	ng Org2058 eq./l water	1.4
2/121	4 - blank	LOQ (<1.4)	ng Org2058 eq./I water	1.4
anti-PR CALUX				
27118	1 - raw river Wiese wate	LOQ (<5.2)	ng Ru486 eq./l water	5.2
27120	3 - after AOP treatment	LOQ (<2.4)	ng Ru486 eq./l water	2.4
27121	4 - blank	LOQ (<2.6)	ng Ru486 eq./l water	2.6
PPARa CALUX				
27118	1 - raw river Wiese wate	LOQ (<44)	ng GW7647 eq./ll water	44
27119	2 - pre-treated river Wie	LOQ (<33)	ng GW7647 eq./ll water	33
27120 27121	3 - atter AOP treatment 4 - blank	LOQ (<17)	ng GW7647 eq./II water	17 18
22.	- Diana	2004(110)	ng ottro ir oqsi nator	
PPARd CALUX	1 row river Miego wete	1.00 (<1200)	ng L 165 041 og livestor	1200
27110	2 - pre-treated river Wie	LOQ (<1200)	ng L-165,041 eq./l water	860
27120	3 - after AOP treatment	LOQ (<710)	ng L-165,041 eq./l water	710
27121	4 - blank	LOQ (<750)	ng L-165,041 eq./l water	750
PPARg CALUX				
27118	1 - raw river Wiese wate	LOQ (<190)	ng Rosiglitazone eq./l water	190
27119	2 - pre-treated river Wie 3 - after AOP treatment	LOQ (<140)	ng Rosiglitazone eq./I water	140
27121	4 - blank	LOQ (<120)	ng Rosiglitazone eq./l water	120
27118	1 - raw river Wiese wate	51	pg 2.3.7.8 TCDD eg / water	10
27119	2 - pre-treated river Wie	19	pg 2,3,7,8 TCDD eq./l water	7.6
27120	3 - after AOP treatment	LOQ (<7.6)	pg 2,3,7,8 TCDD eq./l water	7.6
2/121	4 - blank	LOQ (<7.6)	pg 2,3,7,8 TCDD eq./I water	7.6
PAH CALUX				
27118	1 - raw river Wiese wate	79 47	ng Benzo[a]pyrene eq./l water	3.5
27120	3 - after AOP treatment	6	ng Benzo[a]pyrene eq./l water	2.7
27121	4 - blank	LOQ (<2.8)	ng Benzo[a]pyrene eq./l water	2.8
PXR CALUX				
27118	1 - raw river Wiese wate	10	ug Nicardipine eq./l water	8
27119	2 - pre-treated river Wie	LOQ (<6.2)	ug Nicardipine eq./l water	6.2
27120 27121	3 - after AOP treatment 4 - blank	6.2 LOO (<5.6)	ug Nicardipine eq./I water	5.4
			-3	0.0
Nrf2 CALUX 27118	1 - row river Mieso wate		ua Curcumino/I wator	67
27119	2 - pre-treated river Wie	LOQ (<37)	ug Curcumine/I water	42
27120	3 - after AOP treatment	LOQ (<42)	ug Curcumine/I water	42
27121	4 - blank	LOQ (<44)	ug Curcumine/I water	44
P53 (-S9) CALUX				
27118	1 - raw river Wiese wate	LOQ (<0.02)	ug Actinomycin D/I water	0.02
27119	2 - pre-treated river Wie 3 - after AOP treatment	LOQ (<0.01) LOQ (<0.01)	ug Actinomycin D/I water ug Actinomycin D/I water	0.01
27121	4 - blank	LOQ (<0.01)	ug Actinomycin D/I water	0.01
P53 (+S9) CALUX				
27118	1 - raw river Wiese wate	LOQ (<820)	ug Cyclophosphamide/l water	820
27119	2 - pre-treated river Wie	LOQ (<620)	ug Cyclophosphamide/I water	610
27120	3 - atter AOP treatment 4 - blank	LOQ (<600)	ug Cyclophosphamide/I water	630
			5 -)	500

Table 4-g Quantified CALUX bioanalysis results site 7

BDS no.	client code	Result	Unit	LOQ
Cytotox CALUX				
27814	SHAF R1	120	ug TBT eg./I water	1.1
27815	SHAF OZA500	LOQ (<1.1)	ug TBT eg./l water	1.1
27816	SHAF OZOAOZ	LOQ (<1.0)	ug TBT eg./l water	1
			-3	
Ra CALUX				
27814	SHAF_R1	57	ng 17b-estradiol eq./l water	0.11
27815	SHAF OZA500	2	ng 17b-estradiol eg./l water	0.11
27816	SHAF_OZOAOZ	LOQ (<0.14)	ng 17b-estradiol eq./l water	0.14
ti-ERa CALUX				
27814	SHAF_R1	LOQ (<2.7)	ug Tamoxifen eq./l water	2.7
27815	SHAF_OZA500	LOQ (<0.87)	ug Tamoxifen eq./l water	0.87
27816	SHAF_OZOAOZ	LOQ (<0.77)	ug Tamoxifen eq./l water	0.77
R CALUX		100		4.5
2/014	SHAF_RI	100	ng DHT eq./i water	4.5
27815	SHAF_OZA500	LOQ (<4.5)	ng DHT eq./I water	4.5
2/010	SHAF_020A02	LOQ (<2.7)	ng DHT eq./i water	2.1
fi-AR CALLIX				
27814	SHAF R1	130	un Elutamide en // water	10
27815	SHAE OZA500	13	ug Flutamide eg // water	98
27816	SHAF OZOAOZ	100 (<9.6)	ug Flutamide eq.// water	9.0
27010	STAT_OZOAOZ	200 (43.0)	ug i lutamide eq.// water	5.0
CALUX				
27814	SHAF R1	140	ng Dexamethason eg /l water	22
27815	SHAF OZA500	110	ng Dexamethason eg /l water	22
27816	SHAF OZOAOZ	LOQ (<25)	ng Dexamethason eq./l water	25
			5	
ti-GR CALUX				
27814	SHAF R1	LOQ (<0.18)	ug Ru486 eq./l water	0.18
27815	SHAF_OZA500	LOQ (<0.059)	ug Ru486 eq./l water	0.059
27816	SHAF_OZOAOZ	LOQ (<0.022)	ug Ru486 eq./I water	0.022
	—	. ,		
CALUX				
27814	SHAF_R1	LOQ (<6.5)	ng Org2058 eq./l water	6.5
27815	SHAF_OZA500	LOQ (<2.1)	ng Org2058 eq./l water	2.1
27816	SHAF_OZOAOZ	LOQ (<2.9)	ng Org2058 eq./l water	2.9
ti-PR CALUX				
27814	SHAF_R1	170	ng Ru486 eq./l water	7.4
27815	SHAF_OZA500	7.4	ng Ru486 eq./l water	7.3
27816	SHAF_OZOAOZ	LOQ (<5.5)	ng Ru486 eq./l water	5.5
ARa CALUX	0.05 54	510	011/20.42	
2/814	SHAF_R1	540	ng GW/647 eq./II water	16
2/815	SHAF_OZA500	LOQ (<15)	ng GW/647 eq./II water	15
2/010	SHAF_UZUAUZ	LOQ (<23)	ng GW7647 eq./ii water	23
27814	SHAF R1	16000	ng L-165 041 eg /lwater	3700
27815	SHAF OZA500	10000	ng L-165.041 eq./I water	3600
27816	SHAF OZOAOZ	100 (<1400)	ng L -165 041 eg /l water	1400
2/010		200 (11400)	ng E-100,041 eq.1 water	1400
ARa CALUX				
27814	SHAF R1	1800	ng Rosiglitazone eq./l water	180
27815	SHAF_OZA500	LOQ (<170)	ng Rosiglitazone eq./l water	170
27816	SHAF OZOAOZ	LOQ (<160)	ng Rosiglitazone eq./l water	160
		(/	5 5 4	
CALUX				
27814	SHAF_R1	540	pg 2,3,7,8 TCDD eq./l water	12
27815	SHAF_OZA500	440	pg 2,3,7,8 TCDD eq./l water	12
27816	SHAF_OZOAOZ	120	pg 2,3,7,8 TCDD eq./l water	12
HCALUX	_			
27814	SHAF_R1	1200	ng Benzo[a]pyrene eq./l water	1.5
27815	SHAF_OZA500	170	ng Benzo[a]pyrene eq./l water	1.5
27816	SHAF_UZOAOZ	103	ng Benzo[a]pyrene eq./l water	1.4
	0.005 - 1			
27814	SHAF_R1	410	ug Nicardipine eq./l water	10
2/815	SHAF_UZA500	48	ug Nicardipine eq./I water	10
2/816	SHAF_UZUAUZ	11	ug Nicardipine eq./l water	7.6
		100 / 0000		
27814	SHAF_R1	LOQ (<2000)	ug Curcumine/I water	2000
2/815	SHAF_UZA500	160	ug Curcumine/I water	64
2/816	SHAF_UZUAUZ	150	ug Curcumine/I water	64
2 (60) 6 41 119				
3 (-59) CALUX		100/000		~ ~
2/814	SHAF_R1	LOQ (<0.60)	ug Actinomycin D/I water	0.6
2/815	SHAF_UZA500	LOQ (<0.02)	ug Actinomycin D/I water	0.02
2/816	SHAF_UZUAUZ	LOQ (<0.02)	ug Actinomycin D/I water	0.02
2 (+60) C AL UV				
27814	SHAE D1	100 (~26000)	un Cyclophosphomida//wata-	26000
27815			ug Cyclophosphamide/i water	20000
27816	SHAF 070407	EUG (~040) 620	ug Cyclophosphamide/I water	940 940
21010	STAF UZUAUZ	000	GU GVGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	040

Table 4-h Quantified CALUX bioanalysis results site 8

BDC no	aliant as do	Desult	11-14	1.00
Cytotox CALUX	client code	Result	Onic	LOQ
27619	raw water WWTP inlet	15	ug TBT eg / water	11
27620	raw water WWTP outlet (before Mare a Sorre)	3.6	ug TBT eq./l water	1.1
27621	raw water WWTP outlet (Mare a Sorre)	3.6	ug TBT eq./l water	1.1
ERa CALUX				
27619	raw water WWTP inlet	/1	ng 1/b-estradiol eq./l water	0.1
27620	raw water WWTP outlet (before Mare a Sorre)	3.1	ng 17b-estradiol eq./l water	0.12
27621	raw water www iP outlet (Mare a Sorre)	1.1	ng 17b-estradioi eq./i water	0.12
anti-FRa CALUX				
27619	raw water WWTP inlet	LOQ (<2.5)	ug Tamoxifen eg./l water	2.5
27620	raw water WWTP outlet (before Mare a Sorre)	LOQ (<1.3)	ug Tamoxifen eq./l water	1.3
27621	raw water WWTP outlet (Mare a Sorre)	LOQ (<1.3)	ug Tamoxifen eq./l water	1.3
AR CALUX		100	na DIT en llouten	0
27019	remunister WWTD entiet (before More a Serre)	190	ng DHT eq./I water	3
27620	raw water WW/TP outlet (Mare a Sorre)	LOQ(<2.0)	ng DHT eq./I water	2
21021		200 (2.1)	ng bitt eq.t water	2.1
anti-AR CALUX				
27619	raw water WWTP inlet	LOQ (<31)	ug Flutamide eq./l water	31
27620	raw water WWTP outlet (before Mare a Sorre)	21	ug Flutamide eq./l water	10
27621	raw water WWTP outlet (Mare a Sorre)	18	ug Flutamide eq./l water	11
00 0 0 0 0 0				
OR CALUX	row water W/M/TD intet	100 (200)	ng Dovomothoson og Awats-	80
27620	raw water WW/TP Inter	20 20	ng Dexamethacon og // water	0U 29
27621	raw water WWTP outlet (Mare a Sorre)	32	ng Dexamethason eq./I water	29
2.021		52		25
anti-GR CALUX				
27619	raw water WWTP inlet	0.3	ug Ru486 eq./l water	0.024
27620	raw water WWTP outlet (before Mare a Sorre)	0.066	ug Ru486 eq./l water	0.029
27621	raw water WWTP outlet (Mare a Sorre)	0.056	ug Ru486 eq./l water	0.03
27610	raw water W/M/TD inlat		ng Org2058 og Awator	0.5
27620	raw water WM/TP outlet (before Mare a Sorre)		ng Org2058 eg./i water	9.5
27621	raw water WWTP outlet (Mare a Sorre)	LOQ (<4.1)	ng Org2058 eg./l water	4.1
2.021		2004(111)	ng org2000 oqui nator	
anti-PR CALUX				
27619	raw water WWTP inlet	44	ng Ru486 eq./l water	6
27620	raw water WWTP outlet (before Mare a Sorre)	19	ng Ru486 eq./l water	5.9
27621	raw water WWTP outlet (Mare a Sorre)	9.7	ng Ru486 eq./l water	6.1
27610	row water WW/TR inlet	660	ng GW/7647 og /llwator	25
27620	raw water WWTP outlet (before Mare a Sorre)	1.00 (<15)	ng GW7647 eq./liwater	25
27621	raw water WWTP outlet (Mare a Sorre)	LOQ (<15)	ng GW7647 eq./ll water	15
	(, , , , , , , , , , , , , , , , , , ,		5	
PPARd CALUX				
27619	raw water WWTP inlet	6300	ng L-165,041 eq./l water	1500
27620	raw water WWIP outlet (before Mare a Sorre)	LOQ (<16000)	ng L-165,041 eq./I water	16000
27621	raw water WWTP outlet (Mare a Sorre)	LOQ (<16000)	ng L-165,041 eq./I water	16000
PPARa CALLIX				
27619	raw water WWTP inlet	1900	ng Rosiglitazone eg./I water	180
27620	raw water WWTP outlet (before Mare a Sorre)	290	ng Rosiglitazone eg./l water	230
27621	raw water WWTP outlet (Mare a Sorre)	260	ng Rosiglitazone eq./l water	230
	. ,		·	
DR CALUX				
2/619	raw water WWTP inlet	1/00	pg 2,3,7,8 ICDD eq./l water	13
27621	raw water WW/TP outlet (before Mare a Sorre)	200	pg 2,3,7,6 TODD eq./I Water	12
21021	aw water WWWIF Utilet (Widle a SUILe)	211	Pg 2,5,7,0 1000 eq./i water	12
PAH CALUX				
27619	raw water WWTP inlet	14000	ng Benzo[a]pyrene eq./l water	1.3
27620	raw water WWTP outlet (before Mare a Sorre)	113	ng Benzo[a]pyrene eq./l water	2.1
27621	raw water WWTP outlet (Mare a Sorre)	33	ng Benzo[a]pyrene eq./l water	2.1
DIG	row water W/M/TD intet	120	ua Nicordinino og Austor	9.6
27620	raw water WWTP outlet (before Mare a Sorre)	76	ug Nicardipine eg./I water	7
27621	raw water WWTP outlet (Mare a Sorre)	40	ug Nicardipine eg./l water	7.2
			-9 · · · - · · · · · · · · · · · · · · ·	
Nrf2 CALUX				
27619	raw water WWTP inlet	750	ug Curcumine/I water	210
27620	raw water WWTP outlet (before Mare a Sorre)	380	ug Curcumine/I water	67
2/621	raw water vvv/TP outlet (Mare a Sorre)	620	ug Curcumine/I water	200
D53 (-S0) CALLIN				
27619	raw water WWTP inlet	100 (<0.60)	ug Actinomycin D/l water	0.06
27620	raw water WWTP outlet (before Mare a Sorre)	LOQ (<0.02)	ug Actinomycin D/l water	0.02
27621	raw water WWTP outlet (Mare a Sorre)	LOQ (<0.60)	ug Actinomycin D/l water	0.06
	· · · · · · · · · · · · · · · · · · ·	. ,		
P53 (+S9) CALUX				
27619	raw water WWTP inlet	6800	ug Cyclophosphamide/l water	2700
2/620	raw water VVV IP outlet (before Mare a Sorre)	LUQ (<870)	ug Cyclophosphamide/I water	870
2/027	raw water www iP outlet (Mare a Sorre)	LUQ (<2700)	ug Cyclopnosphamide/i water	2700

Table 4-i Quantified CALUX bioanalysis results site 9

RDS no	client code	Pocult	Unit	1.00
Cytotox CALUX	chent code	Result	Unit	LOQ
27751	Nootdorp BASSIN	1.4	ug TBT eq./l water	1
27752	Nootdorp ASR	LOQ (<1.1)	ug TBT eq./I water	1.1
27754	Nootdorp VLOTTER(KIST)	LOQ (<1.0)	ug TBT eq./I water	1
FRa CALUX				
27751	Nootdorp BASSIN	0.2	ng 17b-estradiol eq./l water	0.11
27752	Nootdorp ASR	LOQ (<0.12)	ng 17b-estradiol eq./l water	0.12
27754	Nootdorp VLOTTER(KIST)	LOQ (<0.15)	ng 17b-estradiol eq./l water	0.15
27751	Nootdorp BASSIN	LOQ (<1.5)	ug Tamoxifen eg./l water	1.5
27752	Nootdorp ASR	LOQ (<1.7)	ug Tamoxifen eq./l water	1.7
27753 27754	Nootdorp OPPW Nootdorp VI OTTER(KIST)	LOQ (<1.8)	ug Tamoxiten eq./l water ug Tamoxiten eg./l water	1.8
	·······		-3	
AR CALUX 27751	Nootdorn BASSIN	100(<22)	ng DHT eg () water	22
27752	Nootdorp ASR	LOQ (<2.4)	ng DHT eq./I water	2.4
27753	Nootdorp OPPW	LOQ (<2.4)	ng DHT eq./I water	2.4
27754	NOOLOOP VEOTTER(KIST)	LOQ (<2.4)	ng DHT eq./i water	2.4
anti-AR CALUX	Nestdam BASSIN	1.00 (*11)	us Elutomido os Aurotos	44
27752	Nootdorp ASS	LOQ (<11)	ug Flutarnide eq./I water ug Flutarnide eq./I water	11
27753	Nootdorp OPPW	32	ug Flutamide eq./l water	13
27754	Nootdorp VLOTTER(KIST)	LOQ (<12)	ug Flutamide eq./l water	12
GR CALUX				
27751	Nootdorp BASSIN	LOQ (<16)	ng Dexamethason eq./l water	16
27753	Nootdorp OPPW	LOQ (<17)	ng Dexamethason eq./l water	17
27754	Nootdorp VLOTTER(KIST)	LOQ (<17)	ng Dexamethason eq./l water	17
anti-GR CALUX				
27751	Nootdorp BASSIN	LOQ (<0.028)	ug Ru486 eq./l water	0.028
27752 27753	Nootdorp ASR Nootdorp OPPW	LOQ (<0.030) 0.39	ug Ru486 eq./I water ug Ru486 eg./I water	0.03
27754	Nootdorp VLOTTER(KIST)	LOQ (<0.065)	ug Ru486 eq./l water	0.065
27751	Nootdorp BASSIN	LOQ (<4.0)	ng Org2058 eq./l water	4
27752	Nootdorp ASR	LOQ (<4.4)	ng Org2058 eq./l water	4.4
27754	Nootdorp VLOTTER(KIST)	LOQ (<5.1) LOQ (<4.9)	ng Org2058 eq./l water	4.9
27751	Nootdorp BASSIN	00 (<4.6)	ng Ru486 eg./l water	4.6
27752	Nootdorp ASR	LOQ (<5.0)	ng Ru486 eq./l water	5
27753	Nootdorp OPPW Nootdorp VI OTTER/KIST)	8.4	ng Ru486 eq./I water	5.3
21134		2002(-0.1)	ng runoo eq.n water	0.1
PPARa CALUX	Nootdorp BASSIN	1.00 (<18)	ng CW7647 og /ll water	19
27752	Nootdorp ASR	LOQ (<10)	ng GW7647 eq./ll water	19
27753	Nootdorp OPPW	LOQ (<44)	ng GW7647 eq./ll water	44
27754	Nootdorp VLOTTER(KIST)	LOQ (<42)	ng GW/647 eq./II water	42
PPARd CALUX		100 (1100)		
27752	Nootdorp BASSIN Nootdorp ASR	LOQ (<1100) LOQ (<1200)	ng L-165,041 eq./I water ng L-165,041 eq./I water	1100
27753	Nootdorp OPPW	LOQ (<900)	ng L-165,041 eq./l water	900
27754	Nootdorp VLOTTER(KIST)	LOQ (<870)	ng L-165,041 eq./l water	870
PPARg CALUX				
27751	Nootdorp BASSIN Nootdorp ASB	LOQ (<240)	ng Rosiglitazone eq./I water	240 260
27753	Nootdorp OPPW	LOQ (<260)	ng Rosiglitazone eq./l water	260
27754	Nootdorp VLOTTER(KIST)	LOQ (<250)	ng Rosiglitazone eq./l water	250
DR CALUX				
27751	Nootdorp BASSIN	57	pg 2,3,7,8 TCDD eq./l water	12
27753	Nootdorp OPPW	120	pg 2,3,7,8 TCDD eq./I water pg 2,3,7,8 TCDD eq./I water	13
27754	Nootdorp VLOTTER(KIST)	32	pg 2,3,7,8 TCDD eq./l water	12
PAH CALUX				
27751	Nootdorp BASSIN	44	ng Benzo[a]pyrene eq./l water	1.7
27753	Nootdorp ASR Nootdorp OPPW	54 150	ng Benzo[a]pyrene eq./l water	1.9
27754	Nootdorp VLOTTER(KIST)	54	ng Benzo[a]pyrene eq./l water	1.2
PYP CALLIX				
27751	Nootdorp BASSIN	23	ug Nicardipine eq./l water	8.9
27752	Nootdorp ASR	15	ug Nicardipine eq./I water	10
27754	Nootdorp VLOTTER(KIST)	22	ug Nicardipine eq./I water	7.1
Nrf2 CALLIX				
27751	Nootdorp BASSIN	610	ug Curcumine/I water	67
27752	Nootdorp ASR	LOQ (<74)	ug Curcumine/I water	74
27754	Nootdorp OPPW Nootdorp VLOTTER(KIST)	LUQ (<210) 85	ug Curcumine/I water	210 67
	······			
27751	Nootdorp BASSIN	0.09	ug Actinomycin D/I water	0.02
27752	Nootdorp ASR	LOQ (<0.03)	ug Actinomycin D/l water	0.03
27753 27754	Nootdorp OPPW Nootdorp VI OTTER(KIST)	LOQ (<0.60)	ug Actinomycin D/I water	0.06
21104	HOOLOUP VEOTIEN(NOT)	2002 (~0.02)	ag nouriornyoffi D/I water	0.02
P53 (+S9) CALUX	Nottors BASSIN	2000	us Cuclophoenhamida// unt	800
27752	Nootdorp ASR	LOQ (<960)	ug Cyclophosphamide/I water	960
27753	Nootdorp OPPW	LOQ (<2700)	ug Cyclophosphamide/I water	2700
21134	NUULUUIP VEUTTER(KIST)	LUQ (<880)	ug Cyclopriosphamide/i water	990

Table 4-j Quantified CALUX bioanalysis results site 10

BDS no.	client code	Result	Unit	LOQ
27671	No.1	12	un TBT en Awator	0.82
27672	No. 1	13	ug ibieq./iwater	0.02
27673	No. 3	LOO (<0.89)	ug TBT eq.// water	0.79
21010	110.0	200 (10.00)	ug ibi oq.n water	0.00
ERa CALUX				
27671	No. 1	87	ng 17b-estradiol eq./l water	0.058
27672	No. 2	96	ng 17b-estradiol eq./l water	0.062
27673	No. 3	0.4	ng 17b-estradiol eq./l water	0.093
anti-ERa CALUX				
27671	No. 1	LOQ (<4.9)	ug Tamoxiten eq./I water	4.9
27673	No. 3	LOQ(<1.7)	ug Tamovifen eg /l water	0.74
21013	140. 5	200 (10.14)	ug fantoxierreq.// water	0.74
AR CALUX				
27671	No. 1	70	ng DHT eq./l water	1.7
27672	No. 2	100	ng DHT eq./I water	1.8
27673	No. 3	LOQ (<1.9)	ng DHT eq./I water	1.9
anti-AR CALUX		47		10
27671	No. 1	47	ug Flutamide eq./I water	12
27673	No. 2	40U	ug Flutamide eg./I water	13
21013	10. 3		ug mulamilue eq./i waler	13
GR CALUX				
27671	No. 1	280	ng Dexamethason eq./l water	27
27672	No. 2	120	ng Dexamethason eq./l water	28
27673	No. 3	52	ng Dexamethason eq./l water	23
anti-GR CALUX				
27671	No. 1	LOQ (<0.24)	ug Ru486 eq./l water	0.24
2/6/2	No. 2	0.42	ug Ru486 eq./l water	0.086
2/6/3	NO. 3	LUQ (<0.047)	ug Ku486 eq./I water	0.047
PR CALUX				
27671	No. 1	LOQ (<11)	ng Org2058 eg./l water	11
27672	No. 2	LOQ (<3.2)	ng Org2058 eg./l water	3.2
27673	No. 3	LOQ (<2.7)	ng Org2058 eq./l water	2.7
anti-PR CALUX				
27671	No. 1	LOQ (<4.6)	ng Ru486 eq./l water	4.6
27672	No. 2	120	ng Ru486 eq./l water	1.7
27673	No. 3	LOQ (<4.8)	ng Ru486 eq./I water	4.8
PPARa CALLIX				
27671	No 1	510	ng GW7647 eg /ll water	45
27672	No. 2	180	ng GW7647 eg./ll water	48
27673	No. 3	55	ng GW7647 eq./ll water	19
PPARd CALUX				
27671	No. 1	4900	ng L-165,041 eq./l water	1300
27672	No. 2	4400	ng L-165,041 eq./l water	1300
27673	NO. 3	LOQ (<1200)	ng L-165,041 eq./I water	1200
PPARe CALLIX				
27671	No. 1	3100	ng Rosiglitazone eg./I water	220
27672	No. 2	930	ng Rosiglitazone eg./l water	230
27673	No. 3	LOQ (<210)	ng Rosiglitazone eq./l water	210
		· · /		
DR CALUX				
27671	No. 1	390	pg 2,3,7,8 TCDD eq./l water	11
27672	No. 2	360	pg 2,3,7,8 TCDD eq./l water	12
21013	INO. 3	250	pg 2,3,7,8 ICDD eq./I water	11
PAH CALUX				
27671	No. 1	517.8365691	ng Benzo[a]pyrene eɑ./l water	1.2
27672	No. 2	57.83656915	ng Benzo[a]pyrene eq./l water	2.2
27673	No. 3	LOQ (<1.9)	ng Benzo[a]pyrene eq./l water	1.9
PXR CALUX				
27671	No. 1	56	ug Nicardipine eq./I water	4.5
2/6/2	NO. 2	/1	ug Nicardipine eq./l water	4.8 1E
21013	INU. 3	42	ug Nicaruipine eq./i water	10
Nrf2 CALUX				
27671	No. 1	1500	ug Curcumine/I water	60
27672	No. 2	1200	ug Curcumine/I water	64
27673	No. 3	290	ug Curcumine/I water	60
P53 (-S9) CALUX				
27671	No. 1	LOQ (<0.02)	ug Actinomycin D/l water	0.02
27672	No. 2	LOQ (<0.02)	ug Actinomycin D/I water	0.02
210/3	NO. 3	LUQ (<0.02)	ug Acunomycin D/I water	0.02
P53 (+S9) CALUX				
27671	No. 1	21000	ug Cyclophosphamide/I water	1300
27672	No. 2	150000	ug Cyclophosphamide/I water	1400
27673	No. 3	1600	ug Cyclophosphamide/I water	1300

Table 4-k Quantified CALUX bioanalysis results site 11

BDS no.	client code	Result	Unit	LOQ
250/3	Pilot RSE Pheinhed Inflow	100(<10)	ug TBT og / water	1
25943	Pilot RSF Rheinhed Outflow	LOQ (<1.0)	ug TBT eq./i water	1
26780	Inflow WWTP	260	ug TBT eg / water	12
20100		200	ag ibi oqsi nator	
ERa CALUX				
25943	Pilot RSF Rheinbed Inflow	0.57	ng 17b-estradiol eq./l water	0.1
25944	Pilot RSF Rheinbed Outflow	LOQ (<0.10)	ng 17b-estradiol eq./l water	0.1
26780	Inflow WWTP	44	ng 17b-estradiol eq./l water	0.11
SHEED CALLIN				
anti-ERa CALUX	D'ILL DOE DIVINE ALLA	100(1001)	T (6) (6)	0.01
25943	Pilot RSF Rheinbed Inflow	LOQ (<0.91)	ug Tamoxifen eq./I water	0.91
26780	Inflow WW/TP	4 3	ug Tamovifen eg // water	0.05
20100		4.0	ug ramoxierreq.n water	0.0
AR CALUX				
25943	Pilot RSF Rheinbed Inflow	LOQ (<5.9)	ng DHT eq./I water	5.9
25944	Pilot RSF Rheinbed Outflow	LOQ (<5.8)	ng DHT eq./I water	5.8
26780	Inflow WWTP	89	ng DHT eq./I water	1.6
anti-AR CALUX				
25943	Pilot RSF Rheinbed Inflow	1.1	ug Flutamide eq./l water	7.6
25944	Pliot RSF Rheinbed Outflow	LUQ (<7.5)	ug Flutamide eq./i water	7.5
20700	INIOW WWWTP	440	ug Flutarnide eq./i water	12
GR CALLIX				
25943	Pilot RSE Rheinhed Inflow	120	ng Dexamethason eg /l water	35
25944	Pilot RSF Rheinbed Outflow	LOQ (<34)	ng Dexamethason eq.// water	34
26780	Inflow WWTP	LOQ (<59)	ng Dexamethason eq./l water	59
			5	
anti-GR CALUX				
25943	Pilot RSF Rheinbed Inflow	LOQ (<72)	ug Ru486 eq./l water	72
25944	Pilot RSF Rheinbed Outflow	LOQ (<70)	ug Ru486 eq./l water	70
26780	Inflow WWTP	5200	ug Ru486 eq./l water	110
PRCALUX	D'I I DOE DI L'I I I I I	100 (-0.0)	0 0050	
25943	Pliot RSF Rheinbed Inflow	LOQ (<3.6)	ng Org2058 eq./I water	3.6
25944	Pliot RSF Rheinbed Outflow	LOQ (<3.5)	ng Org2058 eq.// water	3.5
20700	INIOW WWW I P	LUQ (<5.5)	ng Org2056 eq./i water	5.5
anti-PR CALUX				
25943	Pilot RSF Rheinbed Inflow	LOQ (<5.7)	ng Ru486 eg /l water	5.7
25944	Pilot RSF Rheinbed Outflow	LOQ (<5.6)	ng Ru486 eg./l water	5.6
26780	Inflow WWTP	320	ng Ru486 eg./l water	2.8
			5	
PPARa CALUX				
25943	Pilot RSF Rheinbed Inflow	LOQ (<28)	ng GW7647 eq./ll water	28
25944	Pilot RSF Rheinbed Outflow	LOQ (<27)	ng GW7647 eq./II water	27
26780	Inflow WWTP	720	ng GW7647 eq./ll water	59
PPARd CALUX	Dilat DCC Desires at lefters	1.00 (*1200)		1200
25945	Pilot RSF Rheinbed Millow	LOQ (<1300)	ng L 165 041 eq.// water	1300
26780	Inflow W/W/TP	1/000	ng L 165 0/1 eg / water	1100
20700	I IIIOW WWWIT	14000	Tig E=100,041 eq./1 water	1100
PPARa CALUX				
25943	Pilot RSF Rheinbed Inflow	LOQ (<610)	ng Rosiglitazone eg./l water	610
25944	Pilot RSF Rheinbed Outflow	LOQ (<600)	ng Rosiglitazone eg./l water	600
26780	Inflow WWTP	LOQ (<1100)	ng Rosiglitazone eq./l water	1100
DR CALUX				
25943	Pilot RSF Rheinbed Inflow	300	pg 2,3,7,8 TCDD eq./l water	12
25944	Pilot RSF Rheinbed Outflow	11	pg 2,3,7,8 TCDD eq./l water	12
26780	Inflow WWTP	380	pg 2,3,7,8 TCDD eq./l water	12
5411 6 41 UV				
PAH CALUX	Dilet BSE Phoinhad Inform	262	ng Ronzololnygono og / water	26
25945	Pilot RSF Rielinbed Innow	202	ng Benzolalpyrene eq.// water	2.0
20944	Inflow WW/TP	2442	ng Benzola)pyrene eg /l water	2.1
20100		2442	ng benzolajpyrene eq./ water	2.1
PXR CALUX				
25943	Pilot RSF Rheinbed Inflow	130	ug Nicardipine eg./l water	11
25944	Pilot RSF Rheinbed Outflow	LOQ (<11)	ug Nicardipine eq./l water	11
26780	Inflow WWTP	360	ug Nicardipine eq./l water	8
			-	
Nrf2 CALUX				
25943	Pilot RSF Rheinbed Inflow	320	ug Curcumine/I water	42
25944	Pilot RSF Rheinbed Outflow	40	ug Curcumine/I water	41
26780	Inflow WWTP	LOQ (<46)	ug Curcumine/I water	46
DE2 (CO) CALLIX				
250/3	Dilot DSE Decished Inform	100/20040	un Actinomycia D/Jurator	0.04
25945	Pilot RSF Rheinhed Outflow		ug Actinomycin D/I water	0.04
20944			ug Actinomycin D/I water	0.04
20100	8 865 VV V V V V I I	LOG (~0.0010)	ag Admoniyon D/I water	0.0010
P53 (+S9) CALUX				
25943	Pilot RSF Rheinbed Inflow	LOQ (<1200)	ug Cyclophosphamide/I water	1200
25944	Pilot RSF Rheinbed Outflow	LOQ (<1200)	ug Cyclophosphamide/I water	1200
26780	Inflow WWTP	LOQ (<770)	ug Cyclophosphamide/l water	770

AquaNES

Table 4-I Quantified CALUX bioanalysis results site 12

one 12				
BDS no.	client code	Result	Unit	LOQ
Cytotox CALUX	MM/TD Schenedinde Drimen and importation	15	un TRT en Auester	10
27612	WWTP Schonerlinde. Primary sedimentation	15	ug TBT eq.// water	1.2
27614	WWTP Schonerlinde. Ozonation	LOQ (<1.0)	ug TBT eq./l water	1
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<1.0)	ug TBT eq./l water	1
27612	WWTP Schonerlinde Primary sedimentation	55	ng 17b-estradiol eg // water	0.1
27613	WWTP Schonerlinde. Secondary sedimentation	0.61	ng 17b-estradiol eq./l water	0.13
27614	WWTP Schonerlinde. Ozonation	LOQ (<0.15)	ng 17b-estradiol eq./l water	0.15
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<0.15)	ng 17b-estradiol eq./l water	0.15
27612	WW/TP Schonerlinde Primary sedimentation	1.00(<4.2)	un Tamovifen en /l water	4.2
27613	WWTP Schonerlinde. Secondary sedimentation	LOQ (<1.4)	ug Tamoxifen eq./l water	1.4
27614	WWTP Schonerlinde. Ozonation	LOQ (<0.98)	ug Tamoxifen eq./l water	0.98
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<1.0)	ug Tamoxifen eq./l water	1
AR CALUX				
27612	WWTP Schonerlinde, Primary sedimentation	240	ng DHT eg./Iwater	2.2
27613	WWTP Schonerlinde. Secondary sedimentation	LOQ (<2.3)	ng DHT eq./l water	2.3
27614	WWTP Schonerlinde. Ozonation	LOQ (<2.5)	ng DHT eq./l water	2.5
2/015	wwwiP Schoneninde. Deeop-Bed filter (sand/anthracite)	LUQ (<2.5)	ng DHT eq./I water	2.5
anti-AR CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	LOQ (<37)	ug Flutamide eq./l water	37
27613	WWTP Schonerlinde. Secondary sedimentation	15	ug Flutamide eq./I water	12
27614	WWIP Schonerlinde. Uzonation WW/TP Schonerlinde. Deeon-bed filter (sand/anthracite)	LOQ (<11)	ug Flutamide eq./I water	11
2/015	www.re-Schoneninde. Deeop-bed likel (sand/andiladite)	2002(<11)	ug i lutarnide eq./ water	
GR CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	180	ng Dexamethason eq./l water	28
27613	WWTP Schonerlinde. Secondary sedimentation	170	ng Dexamethason eq./l water	27
27615	WWIP Schoneninde, Ozonation WW/TP Schonerlinde, Deeon-bed filter (sand/anthracite)	54 54	ng Dexamethason eq./I water	30
21010		34	g Dexamenason eq./i watel	55
anti-GR CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	LOQ (<0.15)	ug Ru486 eq./l water	0.15
27613	WWTP Schonerlinde. Secondary sedimentation	LOQ (<0.050)	ug Ru486 eq./l water	0.05
27614	WWTP Schonerlinde, Deeon-bed filter (sand/anthracite)	LOQ (<0.068)	ug Ru486 eg./I water	0.068
21010	(canalananadilo)	2004(10.070)	ag na ioo oqui nator	0.07
PR CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	LOQ (<12)	ng Org2058 eq./l water	12
27613	WWTP Schonerlinde. Secondary sedimentation WWTP Schonerlinde. Ozonation	LOQ (<4.0)	ng Org2058 eq./I water	4
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<4.2)	ng Org2058 eg./l water	4.2
			5 5 5 1	
anti-PR CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	43	ng Ru486 eq./I water	4
27614	WWTP Schonerlinde. Ozonation	LOQ (<3.3)	ng Ru486 eg./I water	4.1
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<4.2)	ng Ru486 eq./I water	4.2
PPARa CALUX	MM/TD Oshana dinata Drimana dina statian	4000		00
27612	WWTP Schonerlinde. Primary sedimentation WWTP Schonerlinde. Secondary sedimentation	1000	ng GW7647 eq./ll water	29
27614	WWTP Schonerlinde, Ozonation	LOQ (<40)	ng GW7647 eg./ll water	40
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<40)	ng GW7647 eq./ll water	40
PPARd CALUX	MM/TD Sebenarlinde Drimon condimentation	6700	ng L 165 041 og Aurotos	1200
27612	WWTP Schonerlinde. Secondary sedimentation	LOQ (<1200)	ng L-165.041 eq./I water	1200
27614	WWTP Schonerlinde. Ozonation	LOQ (<980)	ng L-165,041 eq./l water	980
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<1000)	ng L-165,041 eq./l water	1000
27612	WWTP Schoperlinde Primary sedimentation	1200	ng Rosiglitazone eg /l water	100
27613	WWTP Schonerlinde. Secondary sedimentation	LOQ (<98)	ng Rosiglitazone eq./l water	98
27614	WWTP Schonerlinde. Ozonation	LOQ (<170)	ng Rosiglitazone eq./l water	170
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<170)	ng Rosiglitazone eq./l water	170
DR CALUX				
27612	WWTP Schonerlinde, Primary sedimentation	780	pg 2.3.7.8 TCDD eg./l water	12
27613	WWTP Schonerlinde. Secondary sedimentation	340	pg 2,3,7,8 TCDD eq./l water	12
27614	WWTP Schonerlinde. Ozonation	100	pg 2,3,7,8 TCDD eq./l water	12
27615	vvvv IP Schonerlinde. Deeop-bed filter (sand/anthracite)	91	pg 2,3,7,8 TCDD eq./l water	12
PAH CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	1400	ng Benzo[a]pyrene eq./l water	0.9
27613	WWTP Schonerlinde. Secondary sedimentation	124	ng Benzo[a]pyrene eq./l water	0.9
27614	WWTP Schonerlinde. Ozonation	LOQ (<0.8)	ng Benzo[a]pyrene eq./l water	0.8
2/015	wwwre Schoneninde. Deeop-bed Inter (sand/anunacite)	12	ng Benzolajpyrene eq./i water	0.0
PXR CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	130	ug Nicardipine eq./l water	8.7
2/613	WWIP Schonerlinde. Secondary sedimentation	39	ug Nicardipine eq./l water	8.4
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	21	ug Nicardipine eq./I water	10
=	,(J	-
Nrf2 CALUX				
27612	WWTP Schonerlinde. Primary sedimentation	1700	ug Curcumine/I water	200
27013	WWTP Schonerlinde Ozonation	280	ug Curcumine/i water	200
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	210	ug Curcumine/I water	68
			.	
P53 (-S9) CALUX	MAATE Ophonestinds D	100/000		0.00
27612	www.iP.Schonerlinde. Primary sedimentation WWTP.Schonerlinde. Secondary sedimentation	LOQ (<0.60)	ug Actinomycin D/l water	0.06
27614	WWTP Schonerlinde. Ozonation	LOQ (<0.02)	ug Actinomycin D/l water	0.02
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<0.02)	ug Actinomycin D/l water	0.02
BF0 (100) 0				
P53 (+S9) CALUX	WM/TD Schonorlindo Drimon condimentation	7500	un Cuclonhoenhamida#wat	2700
27613	WWTP Schonerlinde. Secondary sedimentation	LOQ (<2600)	ug Cyclophosphamide/I water	2600
27614	WWTP Schonerlinde. Ozonation	LOQ (<880)	ug Cyclophosphamide/I water	880
27615	WWTP Schonerlinde. Deeop-bed filter (sand/anthracite)	LOQ (<890)	ug Cyclophosphamide/I water	890

Table 4-m Quantified CALUX bioanalysis results site 13

BDS no.	client code	Result	Unit	LOQ
	C12 1	0.7	us TPT os Auestor	1 1
28141	513-1	9.7	ug TBT eg./I water	1.1
28142	513-2	3.9	ug TBT eq./I water	1.1
28143	513-3	LOQ (<1.1)	ug TBT eq./i water	1.1
Ra CALUX				
28141	S13-1	19	ng 17b-estradiol eg./l water	0.097
28142	S13-2	0.62	ng 17b-estradiol eq./l water	0.007
28143	S13-3	0.02	ng 17b-estradiol eg./l water	0.11
20110	0.00	0.1.7		
ti-ERa CALUX				
28141	S13-1	LOQ (<1.8)	ug Tamoxifen eq./l water	1.8
28142	S13-2	LOQ (<1.7)	ug Tamoxifen eq./l water	1.7
28143	S13-3	LOQ (<1.6)	ug Tamoxifen eq./l water	1.6
CALUX				
28141	S13-1	200	ng DHT eq./l water	2.0
28142	S13-2	LOQ (<1.9)	ng DHT eq./l water	1.9
28143	S13-3	LOQ (<1.6)	ng DHT eq./I water	1.6
II-AR CALUX				
28141	S13-1	120	ug Flutamide eq./l water	9.6
28142	S13-2	35	ug Flutamide eq./l water	9.0
28143	S13-3	LOQ (<9.4)	ug Flutamide eq./I water	9.4
GALUX	642.4	~~~	an Davanatha " '	00
28141	S13-1	360	ng Dexamethason eq./l water	23
20142	S13-2	LOQ (<22)	ng Dexamethason eq./I water	22
28143	813-3	LOQ (<21)	ng Dexamethason eq./I Water	21
201/1	S12 1		ug Du/96 og / wotor	0.064
20141	513-1		ug Ru486 og // Water	0.061
20142	S13-2		ug Ru400 eq./I water	0.058
20143	513-3	LUQ (<0.034)	ug Ku480 eq./I Water	0.034
CALUX				
28141	S13-1	30	ng Org2058 eg // water	35
28142	\$13.2		ng Org2058 eg // water	2.0
28143	S13-3	0.0 (<1.3)	ng Org2058 eg /l water	1.3
	0.00	202(110)		1.0
ti-PR CALUX				
28141	S13-1	20.000	ng Ru486 eq./l water	6.3000
28142	S13-2	6.5	ng Ru486 eq./I water	5.9000
28143	S13-3	LOQ (<3.9)	ng Ru486 eq./l water	3.9
		· · · ·	o 1	
ARa CALUX				
28141	S13-1	970	ng GW7647 eq./ll water	48
28142	S13-2	LOQ (<46)	ng GW7647 eq./ll water	46
28143	S13-3	LOQ (<9.0)	ng GW7647 eq./ll water	9
ARd CALUX				
28141	S13-1	LOQ (<1300)	ng L-165,041 eq./l water	1300
28142	S13-2	LOQ (<1200)	ng L-165,041 eq./l water	1200
28143	S13-3	LOQ (<1400)	ng L-165,041 eq./l water	1400
ARg CALUX				
28141	S13-1	LOQ (<94)	ng Rosiglitazone eq./l water	94
28142	S13-2	LOQ (<90)	ng Rosiglitazone eq./l water	90
28143	S13-3	LOQ (<45)	ng Rosiglitazone eq./l water	45
CALUX	040.5			
20141	513-1	420	pg 2,3,7,8 TCDD eq./I water	13
20142	S13-2	41	μg 2,3,7,8 ICDD eq./I water	13
20143	513-3	110	pg 2,3,7,8 ICDD eq./I water	13
281/1	C12 1	207	na Benzolalovrene og //wator	0.1
28142	S13-1 S12-2	591	ng Benzolalpyrene og //water	2.1 1.6
28143	S13-2	/Q	ng Benzo[a]pyrene eg /l water	2.6
20140	010-0	40		2.0
R CALUX				
28141	S13-1	110	ug Nicardipine eg /l water	84
28142	S13-2	98	ug Nicardipine eg./l water	7.8
28143	S13-3	67	ug Nicardipine eg /l water	10
	0.00	01	ag i tioaraipirio oqiri tidior	10
2 CALUX				
28141	S13-1	730	ug Curcumine/I water	47
28142	S13-2	1 00 (<45)	ug Curcumine/I water	45
28143	S13-3	130	ug Curcumine/I water	45
	0.00		J	
3 (-S9) CALUX				
28141	S13-1	LOQ (<0.030)	ug Actinomycin D/I water	0.030
28142	S13-2	LOQ (<0.030)	ug Actinomycin D/I water	0.030
28143	S13-3	LOQ (<0.030)	ug Actinomycin D/l water	0.030
		(0.000)	5	2.000
3 (+S9) CALUX				
28141	S13-1	21000	ug Cyclophosphamide/I water	2200
28142	S13-2	LOQ (<2100)	ug Cyclophosphamide/I water	2100
28143	S13-3	LOQ (<2100)	ug Cyclophosphamide/I water	2100
		()	3 - J	2.50

Annex 5 Quantified CALUX bioanalysis results - round 2

2 3		21/08/ 08/10/	2018 2018			
12/03/2018	\$1	\$2	S3	S 4	S5	S6
Cytotox CALUX	1.6	0.5	0.5	0.5	0.5	0.5
AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	2.5	2.4	0.5	0.5	0.5	0.5
ERa CALUX	0.5	0.5	1.8	0.5	0.5	0.5
GR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
anti-PR CALUX	18.8	1.3	0.5	0.5	0.5	0.5
PPARa2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PPARg2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PXR CALUX	4.6	3.5	4.0	1.9	1.5	1.7
Nrf2 CALUX	66.7	10.0	0.5	0.5	1.1	1.6
P53 CALUX (+S9)	0.5	0.5	0.5	0.5	0.5	0.5
21/08/2018	\$1	\$2	S3	\$4	S5	S6
Cytotox CALUX	0.5	0.5	0.5	0.5	0.5	0.5
AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
ERa CALUX	14.0	56.0	0.5	0.5	13.0	0.5
GR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
anti-PR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PPARa2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PPARg2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PXR CALUX	3.9	3.5	1.9	0.5	1.2	0.5
Nrf2 CALUX	3	1.9	2.3	2.0	1.2	0.5
P53 CALUX (+S9)	3.9	0.5	3.9	0.5	0.5	0.5
08/10/2018	\$1	52	53	54	S 5	56
Cytotox CALUX	0.5	0.5	0.5	0.5	0.5	0.5
AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
ERa CALUX	1.1	4.2	0.5	3.1	0.5	0.5
GR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
anti-PR CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PPARa2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PPARg2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5
PXR CALUX	4.2	8.8	2.8	1.7	3.2	1.2
Nrf2 CALUX	1	5.9	0.5	1.2	0.5	1.9
P53 CALUX (+S9)						

Table 5-a CALUX bioanalysis results site 4

samplig campaign date of sampling 1 12/03/2018

Sample point	Client sample code	R	esults campai	gn	LC	OQ campag	ign
		1	2	3	1	2	3
Cytotox CALUX (ug TBT	eq./l water)						
S1	uptropted water	1	<1.00	<1.00	0.63	0.66	0.66
\$2	before high rate filters		<1.00	<1.00	0.00	0.00	0.00
63	-feabiat anta fitana	-LOQ	~LOQ	~LOQ	0.0	0.00	0.00
55	after agenetice	<luq< td=""><td><loq< td=""><td><luq< td=""><td>0.0</td><td>0.51</td><td>0.71</td></luq<></td></loq<></td></luq<>	<loq< td=""><td><luq< td=""><td>0.0</td><td>0.51</td><td>0.71</td></luq<></td></loq<>	<luq< td=""><td>0.0</td><td>0.51</td><td>0.71</td></luq<>	0.0	0.51	0.71
54	alter ozonation	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.64</td><td>0.51</td><td>0.71</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.64</td><td>0.51</td><td>0.71</td></loq<></td></loq<>	<loq< td=""><td>0.64</td><td>0.51</td><td>0.71</td></loq<>	0.64	0.51	0.71
S5	after carbon filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.65</td><td>0.5</td><td>0.69</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.65</td><td>0.5</td><td>0.69</td></loq<></td></loq<>	<loq< td=""><td>0.65</td><td>0.5</td><td>0.69</td></loq<>	0.65	0.5	0.69
S6	after disinfection	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.62</td><td>0.49</td><td>0.69</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.62</td><td>0.49</td><td>0.69</td></loq<></td></loq<>	<loq< td=""><td>0.62</td><td>0.49</td><td>0.69</td></loq<>	0.62	0.49	0.69
AR CALUX (ng DHT eq./	water)						
S1	untreated water	<1.00	<1.00	<1.00	0.99	24	07
S2	hefore high-rate filters	<1.00	<1.00	<1.00	0.39	2.4	0.7
53	offer high rate filters	~1.00	~LOQ	~LOQ	0.00	2.4	1.4
54	after ozonation	~LOQ	~LOQ	~LOQ	0.55	2.5	1.4
64 85		<luq< td=""><td></td><td><loq< td=""><td>0.52</td><td>2.3</td><td>1.4</td></loq<></td></luq<>		<loq< td=""><td>0.52</td><td>2.3</td><td>1.4</td></loq<>	0.52	2.3	1.4
35	alter carbon lillers	<luq< td=""><td><luq< td=""><td><loq< td=""><td>0.52</td><td>1.6</td><td>1.3</td></loq<></td></luq<></td></luq<>	<luq< td=""><td><loq< td=""><td>0.52</td><td>1.6</td><td>1.3</td></loq<></td></luq<>	<loq< td=""><td>0.52</td><td>1.6</td><td>1.3</td></loq<>	0.52	1.6	1.3
56	after disinfection	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.48</td><td>1.6</td><td>1.3</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.48</td><td>1.6</td><td>1.3</td></loq<></td></loq<>	<loq< td=""><td>0.48</td><td>1.6</td><td>1.3</td></loq<>	0.48	1.6	1.3
anti-AR CALUX (ug Fluta	imide eq./I water)						
S1	untreated water	18	<loq< td=""><td><loq< td=""><td>7.3</td><td>4.4</td><td>8.8</td></loq<></td></loq<>	<loq< td=""><td>7.3</td><td>4.4</td><td>8.8</td></loq<>	7.3	4.4	8.8
S2	before high-rate filters	13	<loq< td=""><td><loq< td=""><td>5.5</td><td>4.4</td><td>8.8</td></loq<></td></loq<>	<loq< td=""><td>5.5</td><td>4.4</td><td>8.8</td></loq<>	5.5	4.4	8.8
S3	after high-rate filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>5.6</td><td>5.6</td><td>7.8</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>5.6</td><td>5.6</td><td>7.8</td></loq<></td></loq<>	<loq< td=""><td>5.6</td><td>5.6</td><td>7.8</td></loq<>	5.6	5.6	7.8
S4	after ozonation	<1.00	<1.00	<1.00	5.6	5.6	7.8
\$5	after carbon filters		<1.00	<1.00	5.0	5.9	7.6
55	alter carbon lillers	~L0Q	~L0Q	~LOQ	5.7	5.0	7.0
30	after disinfection	<log< td=""><td><loq< td=""><td><loq< td=""><td>5.1</td><td>5.7</td><td>7.6</td></loq<></td></loq<></td></log<>	<loq< td=""><td><loq< td=""><td>5.1</td><td>5.7</td><td>7.6</td></loq<></td></loq<>	<loq< td=""><td>5.1</td><td>5.7</td><td>7.6</td></loq<>	5.1	5.7	7.6
ERa CALUX (ng 17b Est	radiol eq./I water)						
S1	untreated water	<loq< td=""><td>0.77</td><td>0.073</td><td>0.06</td><td>0.057</td><td>0.065</td></loq<>	0.77	0.073	0.06	0.057	0.065
S2	before high-rate filters	<loq< td=""><td>3.2</td><td>0.28</td><td>0.077</td><td>0.057</td><td>0.066</td></loq<>	3.2	0.28	0.077	0.057	0.066
S3	after high-rate filters	0.14	<loq< td=""><td><loq< td=""><td>0.077</td><td>0.057</td><td>0.064</td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>0.057</td><td>0.064</td></loq<>	0.077	0.057	0.064
S4	after ozonation	<1.00	<1.00	0.2	0.072	0.057	0.065
55	after earban filters	~1.00	0.76	<	0.072	0.057	0.000
55	aller carbon illers	<luq< td=""><td>0.70</td><td><loq< td=""><td>0.073</td><td>0.057</td><td>0.074</td></loq<></td></luq<>	0.70	<loq< td=""><td>0.073</td><td>0.057</td><td>0.074</td></loq<>	0.073	0.057	0.074
56	after disinfection	<log< td=""><td><loq< td=""><td><loq< td=""><td>0.044</td><td>0.057</td><td>0.074</td></loq<></td></loq<></td></log<>	<loq< td=""><td><loq< td=""><td>0.044</td><td>0.057</td><td>0.074</td></loq<></td></loq<>	<loq< td=""><td>0.044</td><td>0.057</td><td>0.074</td></loq<>	0.044	0.057	0.074
GR CALUX (ng Dexamet	hasone eq./I water)						
S1	untreated water	<loq< td=""><td><loq< td=""><td><loq< td=""><td>17</td><td>9.1</td><td>9.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>17</td><td>9.1</td><td>9.7</td></loq<></td></loq<>	<loq< td=""><td>17</td><td>9.1</td><td>9.7</td></loq<>	17	9.1	9.7
S2	before high-rate filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>10</td><td>9.2</td><td>9.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>10</td><td>9.2</td><td>9.7</td></loq<></td></loq<>	<loq< td=""><td>10</td><td>9.2</td><td>9.7</td></loq<>	10	9.2	9.7
S3	after high-rate filters	<1.00	<1.00	<1.00	10	9.2	12
S4	after ozonation	< 00	< 00	< 00	14	9.2	12
\$5	ofter earbox filters	~1.00	~LOQ	~LOQ	14	0.5	12
55	alter carbon lillers	<luq< td=""><td><loq< td=""><td><luq< td=""><td>14</td><td>9.5</td><td>12</td></luq<></td></loq<></td></luq<>	<loq< td=""><td><luq< td=""><td>14</td><td>9.5</td><td>12</td></luq<></td></loq<>	<luq< td=""><td>14</td><td>9.5</td><td>12</td></luq<>	14	9.5	12
30	after disinfection	<loq< td=""><td><loq< td=""><td><loq< td=""><td>10</td><td>9.4</td><td>12</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>10</td><td>9.4</td><td>12</td></loq<></td></loq<>	<loq< td=""><td>10</td><td>9.4</td><td>12</td></loq<>	10	9.4	12
anti-PR CALUX (ng Ru48	36 eq./I water)						
S1	untreated water	62	<loq< td=""><td><loq< td=""><td>3.3</td><td>3.5</td><td>2</td></loq<></td></loq<>	<loq< td=""><td>3.3</td><td>3.5</td><td>2</td></loq<>	3.3	3.5	2
S2	before high-rate filters	4.8	<loq< td=""><td><loq< td=""><td>3.8</td><td>3.5</td><td>2</td></loq<></td></loq<>	<loq< td=""><td>3.8</td><td>3.5</td><td>2</td></loq<>	3.8	3.5	2
S3	after high-rate filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>3.8</td><td>3.1</td><td>1.2</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>3.8</td><td>3.1</td><td>1.2</td></loq<></td></loq<>	<loq< td=""><td>3.8</td><td>3.1</td><td>1.2</td></loq<>	3.8	3.1	1.2
S4	after ozonation	<1.00	<1.00	<1.00	32	32	12
85	after carbon filters	<1.00	<1.00	<1.00	3.2	2.6	1.0
55		-LOQ	~LOQ	~LOQ	3.2	2.0	1.5
30	alter disinfection	<loq< td=""><td><luq< td=""><td><luq< td=""><td>3.4</td><td>2.5</td><td>1.9</td></luq<></td></luq<></td></loq<>	<luq< td=""><td><luq< td=""><td>3.4</td><td>2.5</td><td>1.9</td></luq<></td></luq<>	<luq< td=""><td>3.4</td><td>2.5</td><td>1.9</td></luq<>	3.4	2.5	1.9
PPARa CALUX (ng GW7	647 eq./I water)						
S1	untreated water	<loq< td=""><td><loq< td=""><td><loq< td=""><td>21</td><td>21</td><td>15</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>21</td><td>21</td><td>15</td></loq<></td></loq<>	<loq< td=""><td>21</td><td>21</td><td>15</td></loq<>	21	21	15
S2	before high-rate filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>17</td><td>21</td><td>15</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>17</td><td>21</td><td>15</td></loq<></td></loq<>	<loq< td=""><td>17</td><td>21</td><td>15</td></loq<>	17	21	15
S3	after high-rate filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>17</td><td>15</td><td>15</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>17</td><td>15</td><td>15</td></loq<></td></loq<>	<loq< td=""><td>17</td><td>15</td><td>15</td></loq<>	17	15	15
S4	after ozonation	<1.00	<1.00	<1.00	13	15	19
85	after carbon filters	<1.00	<1.00	<1.00	13	22	21
56	after disinfection	~LOQ	<loq< td=""><td><loq< td=""><td>13</td><td>23</td><td>21</td></loq<></td></loq<>	<loq< td=""><td>13</td><td>23</td><td>21</td></loq<>	13	23	21
30	aller disinlection	~LUQ	~L0Q	~LOQ	23	23	21
PPAKG CALUX (ng Rosi	giitazone eq./l water)						
S1	untreated water	<loq< td=""><td><loq< td=""><td><loq< td=""><td>170</td><td>200</td><td>340</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>170</td><td>200</td><td>340</td></loq<></td></loq<>	<loq< td=""><td>170</td><td>200</td><td>340</td></loq<>	170	200	340
S2	before high-rate filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>410</td><td>200</td><td>340</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>410</td><td>200</td><td>340</td></loq<></td></loq<>	<loq< td=""><td>410</td><td>200</td><td>340</td></loq<>	410	200	340
S3	after high-rate filters	<loq< td=""><td><loq< td=""><td><loq< td=""><td>410</td><td>300</td><td>300</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>410</td><td>300</td><td>300</td></loq<></td></loq<>	<loq< td=""><td>410</td><td>300</td><td>300</td></loq<>	410	300	300
S4	after ozonation	<loq< td=""><td><loq< td=""><td><loq< td=""><td>380</td><td>300</td><td>300</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>380</td><td>300</td><td>300</td></loq<></td></loq<>	<loq< td=""><td>380</td><td>300</td><td>300</td></loq<>	380	300	300
S5	after carbon filters	<1.00	<1.00	<1.00	380	210	260
S6	after disinfection			< 00	140	210	260
	and unanieGliUII	~LUQ	~LUQ	~LUQ	140	210	200
DVD CALLY (N	aine es lluvet						
FAR GALOX (ug Nicardi	une eq./i water)				-	_	_
51	untreated water	17	24	23	3.7	6.1	5.5
S2	before high-rate filters	35	22	23	10	6.2	2.6
S3	after high-rate filters	40	16	15	10	8.6	5.3
S4	after ozonation	13	<loq< td=""><td>10</td><td>6.9</td><td>8.8</td><td>6</td></loq<>	10	6.9	8.8	6
S5	after carbon filters	10	6.4	20	6.5	5.4	6.3
S6	after disinfection	8.5	<l00< td=""><td>7.2</td><td>5.1</td><td>8.8</td><td>6.1</td></l00<>	7.2	5.1	8.8	6.1
		2.0			0	2.0	5
Nrf2 CALUX (up Curcum	ine eq /l water)						
OALOA (ug ourcuit	unter starter i	4000		1.00		~~	~~
51	untreated water	1000	/4	<luq< td=""><td>15</td><td>30</td><td>22</td></luq<>	15	30	22
52	betore high-rate filters	140	59	130	14	31	22
S3	after high-rate filters	<loq< td=""><td>70</td><td><loq< td=""><td>15</td><td>30</td><td>22</td></loq<></td></loq<>	70	<loq< td=""><td>15</td><td>30</td><td>22</td></loq<>	15	30	22
S4	after ozonation	<loq< td=""><td>60</td><td>26</td><td>14</td><td>30</td><td>22</td></loq<>	60	26	14	30	22
S5	after carbon filters	15	37	<l00< td=""><td>14</td><td>30</td><td>22</td></l00<>	14	30	22
S6	after disinfection	22	LOQ (<30)	42	14	30	22
-			()			50	
P53 (+S9) CALLIX (up Cu	clophosphamide/lwater)						
	siopnosphannue/i water)	1.00	4000	a a a d'	4000	400.00	
01	untreated water	<loq< td=""><td>1900</td><td>penaing</td><td>1300</td><td>486.98</td><td>pending</td></loq<>	1900	penaing	1300	486.98	pending
S2	betore high-rate filters	<loq< td=""><td><loq< td=""><td>pending</td><td>420</td><td>490.27</td><td>pending</td></loq<></td></loq<>	<loq< td=""><td>pending</td><td>420</td><td>490.27</td><td>pending</td></loq<>	pending	420	490.27	pending
S3	after high-rate filters	<loq< td=""><td>1900</td><td>pending</td><td>420</td><td>482.97</td><td>pending</td></loq<>	1900	pending	420	482.97	pending
S4	after ozonation	<loq< td=""><td><loq< td=""><td>pending</td><td>420</td><td>485.18</td><td>pending</td></loq<></td></loq<>	<loq< td=""><td>pending</td><td>420</td><td>485.18</td><td>pending</td></loq<>	pending	420	485.18	pending
S5	after carbon filters	<loq< td=""><td><loq< td=""><td>pendina</td><td>420</td><td>487.8</td><td>pending</td></loq<></td></loq<>	<loq< td=""><td>pendina</td><td>420</td><td>487.8</td><td>pending</td></loq<>	pendina	420	487.8	pending
S6	after disinfection	<loq< td=""><td><loq< td=""><td>pending</td><td>420</td><td>484.08</td><td>pendina</td></loq<></td></loq<>	<loq< td=""><td>pending</td><td>420</td><td>484.08</td><td>pendina</td></loq<>	pending	420	484.08	pendina

Table 5-b CALUX bioanalysis results site 6

samplig camp 1 2 3	aign	d	15/08 21/11 19/03	sampli 3/2017 1/2017 3/2018	ng	-				
19/03/2018	\$1	\$2	\$3	\$4	\$5	S6	\$7	S 8	S 9	\$1
Cytotox CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
AR GALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	3.1	0.5	0.5	0.5
ERa CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
GR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
anti-PR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	4.4	0.5	0.5	0.5
PPARa2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PPARg2 CALUX	0.5	0.5	0.5	0.5	8.0	0.5	0.5	0.5	0.5	0.5
PXR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Nrf2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
P53 CALUX (+S9)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
19/03/2018	\$1	\$2	\$3	\$ 4	\$5	S 6	\$ 7	S 8	S 9	\$1
Cylotox CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ERa CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
GR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
anti-PR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PPARa2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PPARg2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PXR CALUX	0.5	0.5	0.5	0.5	0.5	1.1	1.3	0.5	0.5	0.5
Nrf2 CALUX	0.5	2.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
P53 CALUX (+S9)	0.5	0.5	12	0.5	0.5	0.5	2.7	0.5	0.5	0.5
19/03/2018	\$1	\$2	\$3	\$ 4	\$5	\$6	\$7	S 8	\$9	\$1
Cylotox CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
AR GALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ERa CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
GR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
anti-PR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PPARa2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PPARg2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PXR CALUX	0.5	0.5	0.5	0.5	1.1	0.5	1.1	0.5	0.5	0.5
Nrf2 CALUX	19	2.6	0.5	2.6	2.9	1.1	2.4	1.6	0.5	2.3
DE2 CALLIX (JPD)	0.5	0.5		0.5	2.4	0.5	0.5	10	0.5	

Cytotox CALIIX (Inc.	TBT eq./l water)	۲e 1	2	. З	1	2 2	9'9' ¹ 3
S1	RF-v	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.47</th><th>0.53</th><th>0.59</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.47</th><th>0.53</th><th>0.59</th></loq<></th></loq<>	<loq< th=""><th>0.47</th><th>0.53</th><th>0.59</th></loq<>	0.47	0.53	0.59
52 S3	RF-v-AK3	<loq <loo< td=""><td><loq <loo< td=""><td><loq <loo< td=""><td>0.48</td><td>0.53 0.59</td><td>0.59 0.55</td></loo<></loq </td></loo<></loq </td></loo<></loq 	<loq <loo< td=""><td><loq <loo< td=""><td>0.48</td><td>0.53 0.59</td><td>0.59 0.55</td></loo<></loq </td></loo<></loq 	<loq <loo< td=""><td>0.48</td><td>0.53 0.59</td><td>0.59 0.55</td></loo<></loq 	0.48	0.53 0.59	0.59 0.55
S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.5</td><td>0.61</td><td>0.56</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.5</td><td>0.61</td><td>0.56</td></loq<></td></loq<>	<loq< td=""><td>0.5</td><td>0.61</td><td>0.56</td></loq<>	0.5	0.61	0.56
S5	RF-v-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.48</td><td>0.57</td><td>0.8</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.48</td><td>0.57</td><td>0.8</td></loq<></td></loq<>	<loq< td=""><td>0.48</td><td>0.57</td><td>0.8</td></loq<>	0.48	0.57	0.8
S6 S7	KE-n-B4 WF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.46</td><td>0.56 0.44</td><td>0.82</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.46</td><td>0.56 0.44</td><td>0.82</td></loq<></td></loq<>	<loq< td=""><td>0.46</td><td>0.56 0.44</td><td>0.82</td></loq<>	0.46	0.56 0.44	0.82
S8	WF-n	<loq< td=""><td><loq< td=""><td><loq <loq< td=""><td>0.48</td><td>0.44</td><td>0.51</td></loq<></loq </td></loq<></td></loq<>	<loq< td=""><td><loq <loq< td=""><td>0.48</td><td>0.44</td><td>0.51</td></loq<></loq </td></loq<>	<loq <loq< td=""><td>0.48</td><td>0.44</td><td>0.51</td></loq<></loq 	0.48	0.44	0.51
S9 S10	WF-v-AK3 WF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.48</td><td>0.45</td><td>0.57</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.48</td><td>0.45</td><td>0.57</td></loq<></td></loq<>	<loq< td=""><td>0.48</td><td>0.45</td><td>0.57</td></loq<>	0.48	0.45	0.57
AR CALLIX (ng DHT)	en /l water)	LOQ	LOQ	<luq< td=""><td>0.43</td><td>0.47</td><td>0.55</td></luq<>	0.43	0.47	0.55
S1	RF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.61</td><td>1.2</td><td>2.5</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.61</td><td>1.2</td><td>2.5</td></loq<></td></loq<>	<loq< td=""><td>0.61</td><td>1.2</td><td>2.5</td></loq<>	0.61	1.2	2.5
52	RE-n RE-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.62</td><td>1.2</td><td>2.5</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.62</td><td>1.2</td><td>2.5</td></loq<></td></loq<>	<loq< td=""><td>0.62</td><td>1.2</td><td>2.5</td></loq<>	0.62	1.2	2.5
S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.65</td><td>1.8</td><td>3.3</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.65</td><td>1.8</td><td>3.3</td></loq<></td></loq<>	<loq< td=""><td>0.65</td><td>1.8</td><td>3.3</td></loq<>	0.65	1.8	3.3
S5	RF-v-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.62</td><td>2.9</td><td>2.4</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.62</td><td>2.9</td><td>2.4</td></loq<></td></loq<>	<loq< td=""><td>0.62</td><td>2.9</td><td>2.4</td></loq<>	0.62	2.9	2.4
S6	RF-n-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.6</td><td>2.9</td><td>2.5</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.6</td><td>2.9</td><td>2.5</td></loq<></td></loq<>	<loq< td=""><td>0.6</td><td>2.9</td><td>2.5</td></loq<>	0.6	2.9	2.5
57	WF-V WF-n	<loq <1.00</loq 	<loq <1.00</loq 	<loq <1.00</loq 	0.63	11	1.9
S9	WF-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.63</td><td>1.4</td><td>2</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.63</td><td>1.4</td><td>2</td></loq<></td></loq<>	<loq< td=""><td>0.63</td><td>1.4</td><td>2</td></loq<>	0.63	1.4	2
S10	WF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.64</td><td>1.5</td><td>2.1</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.64</td><td>1.5</td><td>2.1</td></loq<></td></loq<>	<loq< td=""><td>0.64</td><td>1.5</td><td>2.1</td></loq<>	0.64	1.5	2.1
S1	RF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.4</td><td>6.4</td><td>1.9</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.4</td><td>6.4</td><td>1.9</td></loq<></td></loq<>	<loq< td=""><td>4.4</td><td>6.4</td><td>1.9</td></loq<>	4.4	6.4	1.9
S2	RF-n PE v AK2	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.4</td><td>6.5</td><td>1.9</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.4</td><td>6.5</td><td>1.9</td></loq<></td></loq<>	<loq< td=""><td>4.4</td><td>6.5</td><td>1.9</td></loq<>	4.4	6.5	1.9
55 S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq <loq< td=""><td>4.6</td><td>6.1</td><td>1.4</td></loq<></loq </td></loq<></td></loq<>	<loq< td=""><td><loq <loq< td=""><td>4.6</td><td>6.1</td><td>1.4</td></loq<></loq </td></loq<>	<loq <loq< td=""><td>4.6</td><td>6.1</td><td>1.4</td></loq<></loq 	4.6	6.1	1.4
S5	RF-v-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.4</td><td>6.4</td><td>1.9</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.4</td><td>6.4</td><td>1.9</td></loq<></td></loq<>	<loq< td=""><td>4.4</td><td>6.4</td><td>1.9</td></loq<>	4.4	6.4	1.9
S6	RF-n-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.3</td><td>6.3</td><td>2</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.3</td><td>6.3</td><td>2</td></loq<></td></loq<>	<loq< td=""><td>4.3</td><td>6.3</td><td>2</td></loq<>	4.3	6.3	2
5/ 58	WF-N WF-n	14	<loq< td=""><td><loq< td=""><td>4.5</td><td>5.3 5.4</td><td>2.3</td></loq<></td></loq<>	<loq< td=""><td>4.5</td><td>5.3 5.4</td><td>2.3</td></loq<>	4.5	5.3 5.4	2.3
S9	WF-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.5</td><td>7.6</td><td>1.6</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.5</td><td>7.6</td><td>1.6</td></loq<></td></loq<>	<loq< td=""><td>4.5</td><td>7.6</td><td>1.6</td></loq<>	4.5	7.6	1.6
S10	W⊢-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.6</td><td>8</td><td>1.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.6</td><td>8</td><td>1.7</td></loq<></td></loq<>	<loq< td=""><td>4.6</td><td>8</td><td>1.7</td></loq<>	4.6	8	1.7
S1	Estradiol eq./l water) RF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.1</td><td>0.064</td><td>0.11</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.1</td><td>0.064</td><td>0.11</td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>0.064</td><td>0.11</td></loq<>	0.1	0.064	0.11
S2 S3	RF-n RF-wAK2	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.1</td><td>0.065</td><td>0.11</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.1</td><td>0.065</td><td>0.11</td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>0.065</td><td>0.11</td></loq<>	0.1	0.065	0.11
55 S4	RF-n-AK3	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>0.11</td><td>0.049</td><td>0.085</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>0.11</td><td>0.049</td><td>0.085</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.11</td><td>0.049</td><td>0.085</td></loq<></loq 	0.11	0.049	0.085
S5	RF-v-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.11</td><td>0.06</td><td>0.075</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.11</td><td>0.06</td><td>0.075</td></loq<></td></loq<>	<loq< td=""><td>0.11</td><td>0.06</td><td>0.075</td></loq<>	0.11	0.06	0.075
S6	RF-n-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.1</td><td>0.059</td><td>0.077</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.1</td><td>0.059</td><td>0.077</td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>0.059</td><td>0.077</td></loq<>	0.1	0.059	0.077
57 S8	WF-n	<loq <loo< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>0.11</td><td>0.044</td><td>0.094</td></loq<></loq </td></loq<></loq </td></loo<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>0.11</td><td>0.044</td><td>0.094</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.11</td><td>0.044</td><td>0.094</td></loq<></loq 	0.11	0.044	0.094
S9	WF-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.11</td><td>0.073</td><td>0.065</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.11</td><td>0.073</td><td>0.065</td></loq<></td></loq<>	<loq< td=""><td>0.11</td><td>0.073</td><td>0.065</td></loq<>	0.11	0.073	0.065
B CALLIX (D		<luq< td=""><td><luq< td=""><td><luq< td=""><td>v.11</td><td>0.076</td><td>0.067</td></luq<></td></luq<></td></luq<>	<luq< td=""><td><luq< td=""><td>v.11</td><td>0.076</td><td>0.067</td></luq<></td></luq<>	<luq< td=""><td>v.11</td><td>0.076</td><td>0.067</td></luq<>	v.11	0.076	0.067
S1 S1	RF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>13.21</td><td>40</td><td>27</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>13.21</td><td>40</td><td>27</td></loq<></td></loq<>	<loq< td=""><td>13.21</td><td>40</td><td>27</td></loq<>	13.21	40	27
52 S3	RF-v-AK3	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>13.43 14.36</td><td>41 22</td><td>32</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>13.43 14.36</td><td>41 22</td><td>32</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>13.43 14.36</td><td>41 22</td><td>32</td></loq<></loq 	13.43 14.36	41 22	32
S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>14</td><td>23</td><td>33</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>14</td><td>23</td><td>33</td></loq<></td></loq<>	<loq< td=""><td>14</td><td>23</td><td>33</td></loq<>	14	23	33
55	RF-V-B4 RF-n-R4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>13.36</td><td>50 50</td><td>30</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>13.36</td><td>50 50</td><td>30</td></loq<></td></loq<>	<loq< td=""><td>13.36</td><td>50 50</td><td>30</td></loq<>	13.36	50 50	30
S7	WF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>13.59</td><td>35</td><td>27</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>13.59</td><td>35</td><td>27</td></loq<></td></loq<>	<loq< td=""><td>13.59</td><td>35</td><td>27</td></loq<>	13.59	35	27
S8	WF-n	<loq< td=""><td><loq< td=""><td><loq< td=""><td>13.52</td><td>35</td><td>28</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>13.52</td><td>35</td><td>28</td></loq<></td></loq<>	<loq< td=""><td>13.52</td><td>35</td><td>28</td></loq<>	13.52	35	28
59 S10	WF-n-AK3 WF-n-AK3	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>13.46 13.85</td><td>57 60</td><td>36 37</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>13.46 13.85</td><td>57 60</td><td>36 37</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>13.46 13.85</td><td>57 60</td><td>36 37</td></loq<></loq 	13.46 13.85	57 60	36 37
anti-PR CALUX (ng F	Ru486 eq./I water)						
S1 S2	RF-v RF-n	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.4 2.4</td><td>3 3</td><td>3.9 3.9</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.4 2.4</td><td>3 3</td><td>3.9 3.9</td></loq<></td></loq<>	<loq< td=""><td>2.4 2.4</td><td>3 3</td><td>3.9 3.9</td></loq<>	2.4 2.4	3 3	3.9 3.9
S3	RF-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.3</td><td>3.1</td><td>3.9</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.3</td><td>3.1</td><td>3.9</td></loq<></td></loq<>	<loq< td=""><td>2.3</td><td>3.1</td><td>3.9</td></loq<>	2.3	3.1	3.9
S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.2</td><td>3.2</td><td>4</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.2</td><td>3.2</td><td>4</td></loq<></td></loq<>	<loq< td=""><td>2.2</td><td>3.2</td><td>4</td></loq<>	2.2	3.2	4
S5	RF-v-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2</td><td>2.9</td><td>3.6</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2</td><td>2.9</td><td>3.6</td></loq<></td></loq<>	<loq< td=""><td>2</td><td>2.9</td><td>3.6</td></loq<>	2	2.9	3.6
50 S7	WF-v	<loq 4.8</loq 	<loq< td=""><td><loq< td=""><td>2</td><td>2.9</td><td>3.7</td></loq<></td></loq<>	<loq< td=""><td>2</td><td>2.9</td><td>3.7</td></loq<>	2	2.9	3.7
S8	WF-n	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.1</td><td>3.3</td><td>3.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.1</td><td>3.3</td><td>3.7</td></loq<></td></loq<>	<loq< td=""><td>1.1</td><td>3.3</td><td>3.7</td></loq<>	1.1	3.3	3.7
59 S10	WF-n-AK3 WF-n-AK3	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>5.1 5.3</td><td>2.8 2.9</td><td>3.4 3.5</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>5.1 5.3</td><td>2.8 2.9</td><td>3.4 3.5</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>5.1 5.3</td><td>2.8 2.9</td><td>3.4 3.5</td></loq<></loq 	5.1 5.3	2.8 2.9	3.4 3.5
PPARa CALUX (ng G	GW7647 eq./l water)						
S1 S2	RF-v RF-n	<loq< td=""><td><loq <1.00</loq </td><td><loq ⊲ ∩0</loq </td><td>57.27 58 24</td><td>13 13</td><td>10 10</td></loq<>	<loq <1.00</loq 	<loq ⊲ ∩0</loq 	57.27 58 24	13 13	10 10
S3	RF-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>62.25</td><td>18</td><td>13</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>62.25</td><td>18</td><td>13</td></loq<></td></loq<>	<loq< td=""><td>62.25</td><td>18</td><td>13</td></loq<>	62.25	18	13
S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>60.72</td><td>18</td><td>13</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>60.72</td><td>18</td><td>13</td></loq<></td></loq<>	<loq< td=""><td>60.72</td><td>18</td><td>13</td></loq<>	60.72	18	13
S5	RF-v-B4	<loq< td=""><td><loq< td=""><td><loq< td=""><td>57.93</td><td>14</td><td>16</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>57.93</td><td>14</td><td>16</td></loq<></td></loq<>	<loq< td=""><td>57.93</td><td>14</td><td>16</td></loq<>	57.93	14	16
50 S7	WF-v	<loq <loo< td=""><td><loq <loo< td=""><td><loq <loo< td=""><td>58.95</td><td>14</td><td>1/</td></loo<></loq </td></loo<></loq </td></loo<></loq 	<loq <loo< td=""><td><loq <loo< td=""><td>58.95</td><td>14</td><td>1/</td></loo<></loq </td></loo<></loq 	<loq <loo< td=""><td>58.95</td><td>14</td><td>1/</td></loo<></loq 	58.95	14	1/
S8	WF-n	<loq< td=""><td><loq< td=""><td><loq< td=""><td>58.62</td><td>17</td><td>11</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>58.62</td><td>17</td><td>11</td></loq<></td></loq<>	<loq< td=""><td>58.62</td><td>17</td><td>11</td></loq<>	58.62	17	11
S9 S10	WF-v-AK3 WF-n-AK3	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>58.39 60.07</td><td>23 24</td><td>12 12</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>58.39 60.07</td><td>23 24</td><td>12 12</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>58.39 60.07</td><td>23 24</td><td>12 12</td></loq<></loq 	58.39 60.07	23 24	12 12
PARg CALUX (ng F	Rosiglitazone eq./I water)						
S1 S2	RF-v RF-n	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>134.29 143.55</td><td>94 95</td><td>460 460</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>134.29 143.55</td><td>94 95</td><td>460 460</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>134.29 143.55</td><td>94 95</td><td>460 460</td></loq<></loq 	134.29 143.55	94 95	460 460
S3	RF-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>140</td><td>110</td><td>350</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>140</td><td>110</td><td>350</td></loq<></td></loq<>	<loq< td=""><td>140</td><td>110</td><td>350</td></loq<>	140	110	350
S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>133.59</td><td>110</td><td>360</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>133.59</td><td>110</td><td>360</td></loq<></td></loq<>	<loq< td=""><td>133.59</td><td>110</td><td>360</td></loq<>	133.59	110	360
55 S6	RF-n-B4	1030	<loq <1.00</loq 	<luq <1.00</luq 	135.92	110	460
S7	WF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>135.18</td><td>94</td><td>660</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>135.18</td><td>94</td><td>660</td></loq<></td></loq<>	<loq< td=""><td>135.18</td><td>94</td><td>660</td></loq<>	135.18	94	660
S8	WF-n	<loq< td=""><td><loq< td=""><td><loq< td=""><td>134.63</td><td>95</td><td>690</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>134.63</td><td>95</td><td>690</td></loq<></td></loq<>	<loq< td=""><td>134.63</td><td>95</td><td>690</td></loq<>	134.63	95	690
59 S10	WF-n-AK3 WF-n-AK3	<loq <loq< td=""><td><luq <loq< td=""><td><luq <loq< td=""><td>138.51 140.24</td><td>110</td><td>780 800</td></loq<></luq </td></loq<></luq </td></loq<></loq 	<luq <loq< td=""><td><luq <loq< td=""><td>138.51 140.24</td><td>110</td><td>780 800</td></loq<></luq </td></loq<></luq 	<luq <loq< td=""><td>138.51 140.24</td><td>110</td><td>780 800</td></loq<></luq 	138.51 140.24	110	780 800
XR CALUX (ug Nica	ardipine eq./l water)						
S1 S2	RF-v	<loq< td=""><td><loq< td=""><td><loq< td=""><td>31.5</td><td>5.4</td><td>5.6 5.F</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>31.5</td><td>5.4</td><td>5.6 5.F</td></loq<></td></loq<>	<loq< td=""><td>31.5</td><td>5.4</td><td>5.6 5.F</td></loq<>	31.5	5.4	5.6 5.F
52 S3	RF-v-AK3	<loq <lod< td=""><td><luq <loo< td=""><td><luq <loo< td=""><td>32 34.2</td><td>5.4 6.3</td><td>5.5 6.5</td></loo<></luq </td></loo<></luq </td></lod<></loq 	<luq <loo< td=""><td><luq <loo< td=""><td>32 34.2</td><td>5.4 6.3</td><td>5.5 6.5</td></loo<></luq </td></loo<></luq 	<luq <loo< td=""><td>32 34.2</td><td>5.4 6.3</td><td>5.5 6.5</td></loo<></luq 	32 34.2	5.4 6.3	5.5 6.5
S4	RF-n-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>33.4</td><td>6.5</td><td>6.6</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>33.4</td><td>6.5</td><td>6.6</td></loq<></td></loq<>	<loq< td=""><td>33.4</td><td>6.5</td><td>6.6</td></loq<>	33.4	6.5	6.6
S5	RF-v-B4	<loq< td=""><td><loq< td=""><td>5.7</td><td>31.9</td><td>5.8</td><td>5</td></loq<></td></loq<>	<loq< td=""><td>5.7</td><td>31.9</td><td>5.8</td><td>5</td></loq<>	5.7	31.9	5.8	5
56 S7	WF-v	<loq <loq< td=""><td>6.2 6.9</td><td><loq 4</loq </td><td>30.7 32.4</td><td>5.7 5.4</td><td>5.2 3.8</td></loq<></loq 	6.2 6.9	<loq 4</loq 	30.7 32.4	5.7 5.4	5.2 3.8
S8	WF-n	<loq< td=""><td><loq< td=""><td>, <loq< td=""><td>32.2</td><td>5.4</td><td>4</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>, <loq< td=""><td>32.2</td><td>5.4</td><td>4</td></loq<></td></loq<>	, <loq< td=""><td>32.2</td><td>5.4</td><td>4</td></loq<>	32.2	5.4	4
89 S10	WF-v-AK3 WF-n-AK3	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>32.1 33</td><td>6 6.3</td><td>5.4 5.5</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>32.1 33</td><td>6 6.3</td><td>5.4 5.5</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>32.1 33</td><td>6 6.3</td><td>5.4 5.5</td></loq<></loq 	32.1 33	6 6.3	5.4 5.5
Irf2 CALUX (ug Cun	cumine eq./l water)						
	RF-v RF-n	<loq <1.00</loq 	<loq 55</loq 	335 46	44 44	22 22	18 18
S1 S2	RF-v-AK3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>44</td><td>22</td><td>19</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>44</td><td>22</td><td>19</td></loq<></td></loq<>	<loq< td=""><td>44</td><td>22</td><td>19</td></loq<>	44	22	19
51 52 53	RF-n-AK3	<loq< td=""><td><loq< td=""><td>50</td><td>46</td><td>22</td><td>19</td></loq<></td></loq<>	<loq< td=""><td>50</td><td>46</td><td>22</td><td>19</td></loq<>	50	46	22	19
S1 S2 S3 S4		<loq< td=""><td><loq< td=""><td>52</td><td>44</td><td>22</td><td>18</td></loq<></td></loq<>	<loq< td=""><td>52</td><td>44</td><td>22</td><td>18</td></loq<>	52	44	22	18
81 82 83 84 85	RF-v-B4		<luq< td=""><td>41</td><td>43 45</td><td>22</td><td>19 17</td></luq<>	41	43 45	22	19 17
S1 S2 S3 S4 S5 S6 S7	RF-v-B4 RF-n-B4 WF-v	<loq <loo< td=""><td><log< td=""><td></td><td></td><td></td><td></td></log<></td></loo<></loq 	<log< td=""><td></td><td></td><td></td><td></td></log<>				
S1 S2 S3 S4 S5 S6 S7 S8 S7	RF-v-B4 RF-n-B4 WF-v WF-n	<loq <loq <loq< td=""><td><loq< td=""><td>29</td><td>45</td><td>22</td><td>18</td></loq<></td></loq<></loq </loq 	<loq< td=""><td>29</td><td>45</td><td>22</td><td>18</td></loq<>	29	45	22	18
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10	RF-v-B4 RF-n-B4 WF-v WF-n WF-n WF-v-AK3 WF-n-AK3	<loq <loq <loq <loq <loq< td=""><td><loq <loq <loq <loq< td=""><td>29 <loq 52</loq </td><td>45 45 46</td><td>22 22 23</td><td>18 18 19</td></loq<></loq </loq </loq </td></loq<></loq </loq </loq </loq 	<loq <loq <loq <loq< td=""><td>29 <loq 52</loq </td><td>45 45 46</td><td>22 22 23</td><td>18 18 19</td></loq<></loq </loq </loq 	29 <loq 52</loq 	45 45 46	22 22 23	18 18 19
51 52 53 54 55 56 57 58 59 510 253 (+S9) CALUX (ug	RF-v-B4 RF-n-B4 WF-v WF-n WF-v-AK3 WF-n-AK3 g Cyclophosphamide/I water	<loq <loq <loq <loq <loq< td=""><td><loq <loq <loq <loq< td=""><td>29 <loq 52</loq </td><td>45 45 46</td><td>22 22 23</td><td>18 18 19</td></loq<></loq </loq </loq </td></loq<></loq </loq </loq </loq 	<loq <loq <loq <loq< td=""><td>29 <loq 52</loq </td><td>45 45 46</td><td>22 22 23</td><td>18 18 19</td></loq<></loq </loq </loq 	29 <loq 52</loq 	45 45 46	22 22 23	18 18 19
S1 S2 S3 S4 S5 S6 S7 S7 S8 S9 S10 P53 (+S9) CALUX (ug S1 S1	RF-v+B4 RF-r+B4 WF-v WF-r WF-vAK3 WF-r+AK3 g Cyclophosphamide/I water RF-v PF r	<loq <loq <loq <loq <loq <loq< td=""><td><loq <loq <loq <loq< td=""><td>29 <loq 52 <loq< td=""><td>45 45 46 620</td><td>22 22 23 410 410</td><td>18 18 19 750 750</td></loq<></loq </td></loq<></loq </loq </loq </td></loq<></loq </loq </loq </loq </loq 	<loq <loq <loq <loq< td=""><td>29 <loq 52 <loq< td=""><td>45 45 46 620</td><td>22 22 23 410 410</td><td>18 18 19 750 750</td></loq<></loq </td></loq<></loq </loq </loq 	29 <loq 52 <loq< td=""><td>45 45 46 620</td><td>22 22 23 410 410</td><td>18 18 19 750 750</td></loq<></loq 	45 45 46 620	22 22 23 410 410	18 18 19 750 750
51 52 53 54 55 57 58 59 510 P53 (+S9) CALUX (ug 51 52 53	RF-v+B4 RF-r>B4 WF-v WF-r WF-v-AK3 WF-r-AK3 g Cyclophosphamide/I water RF-v RF-n RF-r-AK3	<loq <loq <loq <loq <loq <loq <loq <loq< td=""><td><loq <loq <loq <loq <loq <loq 5000</loq </loq </loq </loq </loq </loq </td><td>29 <loq 52 <loq <loq <loq< td=""><td>45 45 46 620 630 680</td><td>22 22 23 410 410 410</td><td>18 19 750 750 760</td></loq<></loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </loq </loq 	<loq <loq <loq <loq <loq <loq 5000</loq </loq </loq </loq </loq </loq 	29 <loq 52 <loq <loq <loq< td=""><td>45 45 46 620 630 680</td><td>22 22 23 410 410 410</td><td>18 19 750 750 760</td></loq<></loq </loq </loq 	45 45 46 620 630 680	22 22 23 410 410 410	18 19 750 750 760
51 53 53 55 56 57 58 59 51 253 (+59) CALUX (ug 51 52 53 54	RF-wB4 RF-rbB4 WF-rv WF-r-AK3 WF-r-AK3 g Cyclophosphamidel/water RF-rv RF-r RF-r-AK3 RF-r-AK3 RF-r-AK3	<loq <loq <loq <loq <loq <loq <loq <loq< td=""><td><loq <loq <loq <loq <loq 5000 <loq< td=""><td>29 <loq 52 <loq <loq <loq <loq <loq< td=""><td>45 45 46 620 630 680 660</td><td>22 22 23 410 410 410 420</td><td>18 19 750 750 760 780</td></loq<></loq </loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </loq </loq 	<loq <loq <loq <loq <loq 5000 <loq< td=""><td>29 <loq 52 <loq <loq <loq <loq <loq< td=""><td>45 45 46 620 630 680 660</td><td>22 22 23 410 410 410 420</td><td>18 19 750 750 760 780</td></loq<></loq </loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq 	29 <loq 52 <loq <loq <loq <loq <loq< td=""><td>45 45 46 620 630 680 660</td><td>22 22 23 410 410 410 420</td><td>18 19 750 750 760 780</td></loq<></loq </loq </loq </loq </loq 	45 45 46 620 630 680 660	22 22 23 410 410 410 420	18 19 750 750 760 780
51 53 54 55 56 57 58 59 510 753 (~S9) CALUX (ug 51 51 52 53 54 55 66	RF-v-B4 RF-n-B4 WF-v WF-n WF-n-AK3 WF-n-AK3 g Cyclophosphamide/I water RF-v RF-n RF-v-AK3 RF-n-AK3 RF-n-AK3 RF-v-B4 PE-E = 0	<pre><00 <00 <00 <00 <00 <00 <00 <00 <00 <00</pre>	<loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>29 <loq 52 <loq <loq <loq <loq <loq 1800 <loc< td=""><td>45 45 46 620 630 680 660 630 630</td><td>22 22 23 410 410 410 420 420 420</td><td>18 18 19 750 750 760 780 750 750 750</td></loc<></loq </loq </loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </loq </loq 	29 <loq 52 <loq <loq <loq <loq <loq 1800 <loc< td=""><td>45 45 46 620 630 680 660 630 630</td><td>22 22 23 410 410 410 420 420 420</td><td>18 18 19 750 750 760 780 750 750 750</td></loc<></loq </loq </loq </loq </loq </loq 	45 45 46 620 630 680 660 630 630	22 22 23 410 410 410 420 420 420	18 18 19 750 750 760 780 750 750 750
51 52 53 55 56 57 58 59 51 51 52 51 52 53 54 55 56 57	RF-wB4 RF-mB4 WF-n WF-n WF-n-AK3 WF-n-AK3 g Cyclophosphamidel water RF-n RF-n-AK3 RF-n-AK3 RF-n-B4 RF-n-B4 RF-n-B4 WF-n	<pre><00 <00 <00 <00 <00 <00 <00 <00 <00 <00</pre>	<loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>29 <loq 52 <loq <loq <loq +LOQ +LOQ +LOQ <loq< td=""><td>45 45 46 620 630 680 660 630 610 640</td><td>22 22 23 410 410 420 420 420 420 410</td><td>18 18 19 750 750 760 780 750 770 710</td></loq<></loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </loq </loq 	29 <loq 52 <loq <loq <loq +LOQ +LOQ +LOQ <loq< td=""><td>45 45 46 620 630 680 660 630 610 640</td><td>22 22 23 410 410 420 420 420 420 410</td><td>18 18 19 750 750 760 780 750 770 710</td></loq<></loq </loq </loq </loq 	45 45 46 620 630 680 660 630 610 640	22 22 23 410 410 420 420 420 420 410	18 18 19 750 750 760 780 750 770 710
51 52 53 54 55 55 57 58 59 51 51 52 53 54 55 55 55 58	RF-wB4 RF-mB4 WF-w WF-m WF-m WF-mAK3 g Cyclophosphamidel water RF-m RF-wAK3 RF-wAK3 RF-wAK3 RF-wB4 WF-w WF-m	 <.00 <li< td=""><td><loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>29 <loq 52 <loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>45 45 46 620 630 680 630 630 610 640 640</td><td>22 22 23 410 410 420 420 420 410 410</td><td>18 18 19 750 750 760 780 750 770 710 740</td></loq<></loq </loq </loq </loq </loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </loq </loq </td></li<>	<loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>29 <loq 52 <loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>45 45 46 620 630 680 630 630 610 640 640</td><td>22 22 23 410 410 420 420 420 410 410</td><td>18 18 19 750 750 760 780 750 770 710 740</td></loq<></loq </loq </loq </loq </loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </loq </loq 	29 <loq 52 <loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>45 45 46 620 630 680 630 630 610 640 640</td><td>22 22 23 410 410 420 420 420 410 410</td><td>18 18 19 750 750 760 780 750 770 710 740</td></loq<></loq </loq </loq </loq </loq </loq </loq </loq 	45 45 46 620 630 680 630 630 610 640 640	22 22 23 410 410 420 420 420 410 410	18 18 19 750 750 760 780 750 770 710 740

Sampling campaign	date of s	ampling							
1	13/03	/2018							
2	17/12	/2018							
3	19/03	/2019							
13/03/2018	S1	S2	S3	S4	S5	S6	S7	S8	S9
Cytotox CALUX	1.3					0.5	0.5	0.5	
AR CALUX	0.5					0.5	0.5	0.5	
anti-AR CALUX	2.1					0.5	0.5	0.5	
ERa CALUX	43.8					0.5	0.5	0.5	
GR CALUX	5.5					3.2	0.5	0.5	
anti-PR CALUX	1.2					0.5	0.5	0.5	
PPARa2 CALUX	0.5					0.5	0.5	0.5	
PPARg2 CALUX	1.2					0.5	0.5	0.5	
PXR CALUX	10.4					3.9	3.4	3.2	
Nrf2 CALUX	6.3					5.6	1.3	0.5	
P53 CALUX (+S9)	0.5					0.5	0.5	0.5	
18/12/2018	S1	S6	S7	S8	S4	S5	S2	S3	S9
Cytotox CALUX	2.1	1.5	1.6	1.1	0.5	0.5	0.5		
AR CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
anti-AR CALUX	3.9	4.0	2.6	3.1	1.3	0.5	1.1		
ERa CALUX	46.0	46.2	39.4	19	0.5	0.5	2.7		
GR CALUX	19.8	13.7	15.2	14	1.4	2.7	0.5		
anti-PR CALUX	5.3	4.7	3.6	3.2	0.5	1.3	0.5		
PPARa2 CALUX	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
PPARg2 CALUX	1.6	1.2	1.0	0.5	0.5	0.5	0.5		
PXR CALUX	10.8	13.1	8.8	13	3.4	3.5	2.6		
Nrf2 CALUX	10.0	8.8	8.8	9.6	2.8	5.9	1.2		
P53 CALUX (+S9)									
19/03/2019	S1	S6	S7	S8	S4	S5	S2	S3	S9
Cytotox CALUX	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5
AR CALUX	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	0.5		1.1	2.1	0.5	0.5	0.5	0.5	0.5
ERa CALUX	32.5		0.5	63	0.5	0.5	0.5	0.5	0.5
GR CALUX	5.6		0.5	5.1	0.5	1.1	0.5	0.5	1.5
anti-PR CALUX	1.7		1.0	3.5	1.2	4.1	0.5	0.5	0.5
PPARa2 CALUX	0.5		0.5	0.5	0.5	2.6	1.4	0.5	0.5
PPARg2 CALUX	1.0		0.5	1.0	0.5	0.5	0.5	0.5	0.5
PXR CALUX	14		1.6	11	2.2	3.1	0.5	1.7	2.7
Nrf2 CALUX	8.0		6.7	9.0	4.5	5.5	2.4	0.5	3.8
P53 CALUX (+S9)									

Table 5-c CALUX bioanalysis results site 7

Sample point	Client sample code	Res 1	ults campa 2	aign 3	LOQ campaign 1 2 3					
Cytotox CALUX (ug	g TBT eq./I water)									
S1 S2	OZA500 OZETEP	0.88	1.0	<loq< td=""><td></td><td>0.34</td><td>0.24</td><td>0.25</td></loq<>		0.34	0.24	0.25		
S3	OZPTEP		0.66	<loq< td=""><td></td><td></td><td>0.21</td><td>0.24</td></loq<>			0.21	0.24		
S4	OZAFTA		0.5	<loq< td=""><td></td><td></td><td>0.23</td><td>0.25</td></loq<>			0.23	0.25		
S5 S6	OZBACI	<loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td></td><td>0.33</td><td>0.21</td><td>0.34</td></loq<></loq </td></loq<></loq </td></loq<>	<loq <loq< td=""><td><loq <loq< td=""><td></td><td>0.33</td><td>0.21</td><td>0.34</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td></td><td>0.33</td><td>0.21</td><td>0.34</td></loq<></loq 		0.33	0.21	0.34		
S7	OZOOB1	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td>0.33</td><td>0.23</td><td>0.25</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td>0.33</td><td>0.23</td><td>0.25</td></loq<></td></loq<>	<loq< td=""><td></td><td>0.33</td><td>0.23</td><td>0.25</td></loq<>		0.33	0.23	0.25		
S8	OZOOB3	<loq< td=""><td></td><td><loq< td=""><td></td><td>0.32</td><td></td><td>0.23</td></loq<></td></loq<>		<loq< td=""><td></td><td>0.32</td><td></td><td>0.23</td></loq<>		0.32		0.23		
05	020701			-200				0.25		
AR CALUX (ng DH	Feq./I water)	-1.00	1.00	-1.00		0.00	0.45	0.00		
S2	OZFTEP	~LOQ	<loq< td=""><td>~LOQ</td><td></td><td>0.20</td><td>0.45</td><td>0.00</td></loq<>	~LOQ		0.20	0.45	0.00		
S3	OZPTEP		<loq< td=""><td><loq< td=""><td></td><td></td><td>0.46</td><td>0.75</td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td>0.46</td><td>0.75</td></loq<>			0.46	0.75		
S4 S5	OZAF IA OZBACT		<loq <loq< td=""><td><loq <loq< td=""><td></td><td></td><td>0.43</td><td>0.60</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td></td><td></td><td>0.43</td><td>0.60</td></loq<></loq 			0.43	0.60		
S6	OZAITA	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td>0.23</td><td>0.50</td><td>0.75</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td>0.23</td><td>0.50</td><td>0.75</td></loq<></td></loq<>	<loq< td=""><td></td><td>0.23</td><td>0.50</td><td>0.75</td></loq<>		0.23	0.50	0.75		
S7 S8	0200B1 0200B3	<loq <loq< td=""><td><loq< td=""><td><loq <loq< td=""><td></td><td>0.23</td><td>0.30</td><td>0.85</td></loq<></loq </td></loq<></td></loq<></loq 	<loq< td=""><td><loq <loq< td=""><td></td><td>0.23</td><td>0.30</td><td>0.85</td></loq<></loq </td></loq<>	<loq <loq< td=""><td></td><td>0.23</td><td>0.30</td><td>0.85</td></loq<></loq 		0.23	0.30	0.85		
S9	OZOAUF			<loq< td=""><td></td><td></td><td></td><td>0.85</td></loq<>				0.85		
anti-AR CALUX (uc	Flutamide eq./l water)									
S1	OZA500	11	29	<loq< td=""><td></td><td>2.6</td><td>3.8</td><td>3.2</td></loq<>		2.6	3.8	3.2		
S2 S3	OZFTEP OZPTEP		27	6.6			3.4	3.0		
S4	OZAFTA		22	14			3.5	3.4		
S5	OZBACT	<1.00	9.4	<loq< td=""><td></td><td>2.0</td><td>3.5</td><td>2.1</td></loq<>		2.0	3.5	2.1		
S7	OZOOB1	<loq< td=""><td>7</td><td><loq< td=""><td></td><td>2.9</td><td>3.3</td><td>1.6</td></loq<></td></loq<>	7	<loq< td=""><td></td><td>2.9</td><td>3.3</td><td>1.6</td></loq<>		2.9	3.3	1.6		
S8	OZOOB3	<loq< td=""><td></td><td><loq< td=""><td></td><td>2.6</td><td></td><td>2.9</td></loq<></td></loq<>		<loq< td=""><td></td><td>2.6</td><td></td><td>2.9</td></loq<>		2.6		2.9		
28	OZUAUF			~LOQ				1.0		
ERa CALUX (ng 17	b Estradiol eq./l water)	24	2.2	25		0.004	0.004	0.000		
S2	OZFTEP	2.1	2.2 1.9	2.5		v.uz4	0.024	0.039		
S3	OZPTEP		1.7	<loq< td=""><td></td><td></td><td>0.022</td><td>0.038</td></loq<>			0.022	0.038		
S4 S5	OZAFTA OZBACT		0.83	5			0.022	0.040		
S6	OZAITA	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td>0.048</td><td>0.029</td><td>0.037</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td>0.048</td><td>0.029</td><td>0.037</td></loq<></td></loq<>	<loq< td=""><td></td><td>0.048</td><td>0.029</td><td>0.037</td></loq<>		0.048	0.029	0.037		
S7 58	0Z00B1 0Z00B3	<loq< td=""><td>0.11</td><td><loq< td=""><td></td><td>0.048</td><td>0.020</td><td>0.034</td></loq<></td></loq<>	0.11	<loq< td=""><td></td><td>0.048</td><td>0.020</td><td>0.034</td></loq<>		0.048	0.020	0.034		
S9	OZOAUF	-100		<loq< td=""><td></td><td>0.024</td><td></td><td>0.030</td></loq<>		0.024		0.030		
GR CALUY (ng Dox	amethasone eq./l.water	•								
S1	OZA500	72	130	73		6.5	3.3	6.5		
S2	OZFTEP		93	<1.00			3.4	7.5		
55 S4	OZAFTA		85	66			3.1	6.5		
S5	OZBACT		8.8	<loq< td=""><td></td><td></td><td>3.1</td><td>14.5</td></loq<>			3.1	14.5		
S6 S7	OZAITA OZOOB1	38 <loq< td=""><td>18 <loq< td=""><td>33 <loq< td=""><td></td><td>6.0 6.0</td><td>3.4 3.4</td><td>14.5 6.5</td></loq<></td></loq<></td></loq<>	18 <loq< td=""><td>33 <loq< td=""><td></td><td>6.0 6.0</td><td>3.4 3.4</td><td>14.5 6.5</td></loq<></td></loq<>	33 <loq< td=""><td></td><td>6.0 6.0</td><td>3.4 3.4</td><td>14.5 6.5</td></loq<>		6.0 6.0	3.4 3.4	14.5 6.5		
S8	OZOOB3	<loq< td=""><td></td><td><loq< td=""><td></td><td>6.0</td><td></td><td>7.0</td></loq<></td></loq<>		<loq< td=""><td></td><td>6.0</td><td></td><td>7.0</td></loq<>		6.0		7.0		
S9	OZOAUF			19				6.5		
anti-PR CALUX (ng	Ru486 eq./I water)									
S1 S2	OZA500 OZETEP	4.6	5.9	2.7		1.9	0.56	0.80		
S3	OZPTEP		3.1	1.4			0.42	0.70		
S4	OZAFTA		3.4	6			0.53	0.85		
S6	OZAITA	<loq< td=""><td>1.9</td><td>3.9</td><td></td><td>1.8</td><td>0.65</td><td>0.48</td></loq<>	1.9	3.9		1.8	0.65	0.48		
S7	OZOOB1	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td>1.8</td><td>0.38</td><td>0.60</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td>1.8</td><td>0.38</td><td>0.60</td></loq<></td></loq<>	<loq< td=""><td></td><td>1.8</td><td>0.38</td><td>0.60</td></loq<>		1.8	0.38	0.60		
58 S9	OZOAUF	<luq< td=""><td></td><td><loq <loq< td=""><td></td><td>1.0</td><td></td><td>0.60</td></loq<></loq </td></luq<>		<loq <loq< td=""><td></td><td>1.0</td><td></td><td>0.60</td></loq<></loq 		1.0		0.60		
PPAPs CALLY (ng	GW7647 og /l water)									
S1	OZA500	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td>13</td><td>4.6</td><td>14</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td>13</td><td>4.6</td><td>14</td></loq<></td></loq<>	<loq< td=""><td></td><td>13</td><td>4.6</td><td>14</td></loq<>		13	4.6	14		
S2	OZFTEP		<loq< td=""><td>1.00</td><td></td><td></td><td>7.5</td><td></td></loq<>	1.00			7.5			
55 S4	OZAFTA		<loq< td=""><td><loq< td=""><td></td><td></td><td>4.3</td><td>14</td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td>4.3</td><td>14</td></loq<>			4.3	14		
S5	OZBACT		<loq< td=""><td><loq< td=""><td></td><td>-</td><td>4.2</td><td>7.0</td></loq<></td></loq<>	<loq< td=""><td></td><td>-</td><td>4.2</td><td>7.0</td></loq<>		-	4.2	7.0		
S6 S7	OZAITA OZOOB1	<loq <loq< td=""><td><loq <loq< td=""><td>37 31</td><td></td><td>7.0</td><td>4.6 7.0</td><td>7.0</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>37 31</td><td></td><td>7.0</td><td>4.6 7.0</td><td>7.0</td></loq<></loq 	37 31		7.0	4.6 7.0	7.0		
S8	OZOOB3	<loq< td=""><td></td><td><loq< td=""><td></td><td>16</td><td></td><td>5.5</td></loq<></td></loq<>		<loq< td=""><td></td><td>16</td><td></td><td>5.5</td></loq<>		16		5.5		
59	OZOAUF			<loq< td=""><td></td><td></td><td></td><td>11</td></loq<>				11		
PPARg CALUX (ng	Rosiglitazone eq./l wate	ər)				-	(-			
S1 S2	OZA500 OZETEP	180	140 84	470		75	45 35	225		
\$3	OZPTEP		52	<loq< td=""><td></td><td></td><td>26</td><td>115</td></loq<>			26	115		
S4 S5	OZAFTA OZBACT		<loq< td=""><td>480</td><td></td><td></td><td>41 29</td><td>235 150</td></loq<>	480			41 29	235 150		
S6	OZAITA	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td>60</td><td>32</td><td>150</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td>60</td><td>32</td><td>150</td></loq<></td></loq<>	<loq< td=""><td></td><td>60</td><td>32</td><td>150</td></loq<>		60	32	150		
S7 58	0Z00B1 0Z00B3	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td>60 240</td><td>35</td><td>155 115</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td>60 240</td><td>35</td><td>155 115</td></loq<></td></loq<>	<loq< td=""><td></td><td>60 240</td><td>35</td><td>155 115</td></loq<>		60 240	35	155 115		
S9	OZOAUF	-100		<loq< td=""><td></td><td>240</td><td></td><td>155</td></loq<>		240		155		
PXR CALLIX (up N	cardipine eq./l.water)									
S1	OZA500	57	36	87		2.8	1.7	3.1		
S2	OZFTEP		44 27	11			1.7	3.5		
S4	OZAFTA		39	70			1.6	3.2		
S5	OZBACT	36	13	13 18		46	1.9	2.9		
S7	OZOOB1	32	8.7	<loq< td=""><td></td><td>4.7</td><td>1.7</td><td>3.3</td></loq<>		4.7	1.7	3.3		
S8	OZOOB3	16		11 17		2.5		3.3		
								5.2		
Nrf2 CALUX (ug Cu	Ircumine eq./I water)	0/1	260	160		75	13	10		
S2	OZFTEP		220	100		1.0	13	10		
S3	OZPTEP		220	140			13	11		
54 S5	OZBACT		240 70	89			13	10		
S6	OZAITA	84	160	110		7.5	14	10		
S7 S8	0200B1 0Z00B3	19 <loq< td=""><td>30</td><td>50 <loq< td=""><td></td><td>7.5 8.0</td><td>13</td><td>11 11</td></loq<></td></loq<>	30	50 <loq< td=""><td></td><td>7.5 8.0</td><td>13</td><td>11 11</td></loq<>		7.5 8.0	13	11 11		
S9	OZOAUF	. –		76		-		10		
P53 (+S9) CALUX (ug Cyclophosphamide/l	water)								
S1	OZA500	<loq< td=""><td>pending</td><td>pending</td><td></td><td>650</td><td>pending</td><td>pending</td></loq<>	pending	pending		650	pending	pending		
52 S3	OZPTEP		pending	pending			pending	pending		
S4	OZAFTA		pending	pending			pending	pending		
S5 S6	OZBACT	<l00< td=""><td>pending pending</td><td>pending pending</td><td></td><td>225</td><td>pending</td><td>pending</td></l00<>	pending pending	pending pending		225	pending	pending		
\$7	OZOOB1	<loq< td=""><td>pending</td><td>pending</td><td></td><td>225</td><td>pending</td><td>pending</td></loq<>	pending	pending		225	pending	pending		
S8 S9	OZOOB3 OZOAUF	<loq< td=""><td></td><td>pending pending</td><td></td><td>225</td><td></td><td>pending pending</td></loq<>		pending pending		225		pending pending		

Table 5-d CALUX bioanalysis results site 8

Table 5-e CALUX bioanalysis results site 11

samplig cam	paign	date o	fsampling	Sample point	Client sample code			Results	campaign					LOQ ca	mpaign	1	
1		26/	03/2018			1	2	3	4	5	6	1	2	3	4	5	6
2		09/	05/2018	Cytotox CALUX (u	g TBT eq./l water)		20						0.69				
3		20/	06/2018 08/2018	SU S1	Inflow pilot plant	<1.00	39	17	5.6	<1.00	<1.00	0.87	0.68	0.46	0.49	0.48	07
5		17/	10/2018	S2	Outflow filter 1	<1.00	<1.00	6	2	<1.00	<1.00	0.86	0.59	0.46	0.5	0.5	0.7
6		08/	11/2018	\$3	Outflow filter 3	<loq< td=""><td><loq< td=""><td>6.3</td><td>1.2</td><td><loq< td=""><td><loq< td=""><td>0.76</td><td>0.6</td><td>0.39</td><td>0.49</td><td>0.49</td><td>0.72</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>6.3</td><td>1.2</td><td><loq< td=""><td><loq< td=""><td>0.76</td><td>0.6</td><td>0.39</td><td>0.49</td><td>0.49</td><td>0.72</td></loq<></td></loq<></td></loq<>	6.3	1.2	<loq< td=""><td><loq< td=""><td>0.76</td><td>0.6</td><td>0.39</td><td>0.49</td><td>0.49</td><td>0.72</td></loq<></td></loq<>	<loq< td=""><td>0.76</td><td>0.6</td><td>0.39</td><td>0.49</td><td>0.49</td><td>0.72</td></loq<>	0.76	0.6	0.39	0.49	0.49	0.72
26/03/2018	S 0	S1 S2	\$3	AR CALUX (ng DH	T eq./I water)												
Cytotox CALUK		0.5 0.5	0.5	SO	WWTP Inflow		260						1.7				
AR CALUX		0.5 0.5	0.5	S1	Inflow pilot plant	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.5</td><td>1.9</td><td>1.6</td><td>3.8</td><td>2</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.5</td><td>1.9</td><td>1.6</td><td>3.8</td><td>2</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.5</td><td>1.9</td><td>1.6</td><td>3.8</td><td>2</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.5</td><td>1.9</td><td>1.6</td><td>3.8</td><td>2</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>3.5</td><td>1.5</td><td>1.9</td><td>1.6</td><td>3.8</td><td>2</td></loq<></td></loq<>	<loq< td=""><td>3.5</td><td>1.5</td><td>1.9</td><td>1.6</td><td>3.8</td><td>2</td></loq<>	3.5	1.5	1.9	1.6	3.8	2
anti-AR CALUK		0.5 0.5	0.5	52	Outflow filter 3	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.0</td><td>1.9</td><td>2.7</td><td>4 21</td><td>21</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.0</td><td>1.9</td><td>2.7</td><td>4 21</td><td>21</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.0</td><td>1.9</td><td>2.7</td><td>4 21</td><td>21</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>3.5</td><td>1.0</td><td>1.9</td><td>2.7</td><td>4 21</td><td>21</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>3.5</td><td>1.0</td><td>1.9</td><td>2.7</td><td>4 21</td><td>21</td></loq<></td></loq<>	<loq< td=""><td>3.5</td><td>1.0</td><td>1.9</td><td>2.7</td><td>4 21</td><td>21</td></loq<>	3.5	1.0	1.9	2.7	4 21	21
ERa CALUX		8.4 2.2	0.5	65	Outlow litter 5	4LUQ	4LUQ	4LUQ	NLOQ	4LUQ	<loq< td=""><td>0.0</td><td>1.0</td><td>1.4</td><td>2.7</td><td>2.1</td><td>2.1</td></loq<>	0.0	1.0	1.4	2.7	2.1	2.1
GR CALUK		1.8 0.5	0.5	anti-AR CALUX (u	g Flutamide eg./l water)												
anti-PR CALUK		0.5 1.2	0.5	SO	WWTP Inflow		120						25				
PPARa2 CALUK		0.5 0.5	0.5	S1	Inflow pilot plant	<loq< td=""><td><loq< td=""><td>25</td><td>20</td><td>11</td><td><loq< td=""><td>2.9</td><td>10</td><td>7.1</td><td>5.9</td><td>2.2</td><td>4.6</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>25</td><td>20</td><td>11</td><td><loq< td=""><td>2.9</td><td>10</td><td>7.1</td><td>5.9</td><td>2.2</td><td>4.6</td></loq<></td></loq<>	25	20	11	<loq< td=""><td>2.9</td><td>10</td><td>7.1</td><td>5.9</td><td>2.2</td><td>4.6</td></loq<>	2.9	10	7.1	5.9	2.2	4.6
PPARg2 CALUK		2.4 0.5	0.5	S2	Outflow filter 1	<loq< td=""><td><loq< td=""><td>13</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.9</td><td>5.3</td><td>7.5</td><td>6</td><td>2.2</td><td>4.7</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>13</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.9</td><td>5.3</td><td>7.5</td><td>6</td><td>2.2</td><td>4.7</td></loq<></td></loq<></td></loq<></td></loq<>	13	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.9</td><td>5.3</td><td>7.5</td><td>6</td><td>2.2</td><td>4.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.9</td><td>5.3</td><td>7.5</td><td>6</td><td>2.2</td><td>4.7</td></loq<></td></loq<>	<loq< td=""><td>2.9</td><td>5.3</td><td>7.5</td><td>6</td><td>2.2</td><td>4.7</td></loq<>	2.9	5.3	7.5	6	2.2	4.7
PXRCALUX		5.3 4.2	3.6	\$3	Outflow filter 3	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.6</td><td>5.3</td><td>5.9</td><td>5.2</td><td>1.2</td><td>3.6</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.6</td><td>5.3</td><td>5.9</td><td>5.2</td><td>1.2</td><td>3.6</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.6</td><td>5.3</td><td>5.9</td><td>5.2</td><td>1.2</td><td>3.6</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.6</td><td>5.3</td><td>5.9</td><td>5.2</td><td>1.2</td><td>3.6</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.6</td><td>5.3</td><td>5.9</td><td>5.2</td><td>1.2</td><td>3.6</td></loq<></td></loq<>	<loq< td=""><td>2.6</td><td>5.3</td><td>5.9</td><td>5.2</td><td>1.2</td><td>3.6</td></loq<>	2.6	5.3	5.9	5.2	1.2	3.6
Nrf2 CALUK		5.5 7.4	2.8														
P53 CALUK (+S9)		0.5 0.5	0.5	ERa CALUX (ng 1	b Estradiol eq./l water)		64						0.06				
				50	VVV IP Innow	2.4	61	0.07	0.00	0.22	0.02	0.05	0.061	0.024	0.05	0.04	0.040
09/05/2018	S 0	S1 S2	S3	51	Outflow filter 1	2.1	0.4	0.97	0.23	0.33	0.23	0.25	0.061	0.031	0.05	0.04	0.049
Cytotox CALUK	57	0.5 0.5	0.5	53	Outflow filter 3	<1.00	<1.00	0.11	<1.00	<1.00	<1.00	0.14	0.058	0.032	0.045	0.040	0.066
AR CALUX	150	0.5 0.5	0.5		odalow more	~LOQ	~LOQ	0.11	~LOQ	~L0Q	~L0Q	0.11	0.000	0.002	0.010	0.011	0.000
anti-AR CALUK	4.8	0.5 0.5	0.5	GR CALUX (ng De	xamethasone eq./l water)												
ERa CALUX	1000	6.6 1.9	0.5	SO	WWTP Inflow		<loq< td=""><td></td><td></td><td></td><td></td><td></td><td>56</td><td></td><td></td><td></td><td></td></loq<>						56				
GR CALUK	0.5	2.4 1.2	0.5	S1	Inflow pilot plant	140	70	69	48	65	26	76	29	11	7.5	12	8.5
anti-PR CALUK	28	0.5 0.5	0.5	S2	Outflow filter 1	<loq< td=""><td>33</td><td>14</td><td>12</td><td>21</td><td>40</td><td>74</td><td>27</td><td>11</td><td>7.6</td><td>13</td><td>8.6</td></loq<>	33	14	12	21	40	74	27	11	7.6	13	8.6
PPARa2 CALUK	50	0.5 0.5	0.5	S3	Outflow filter 3	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>31</td><td>28</td><td>13</td><td>8.5</td><td>40</td><td>9.1</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>31</td><td>28</td><td>13</td><td>8.5</td><td>40</td><td>9.1</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>31</td><td>28</td><td>13</td><td>8.5</td><td>40</td><td>9.1</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>31</td><td>28</td><td>13</td><td>8.5</td><td>40</td><td>9.1</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>31</td><td>28</td><td>13</td><td>8.5</td><td>40</td><td>9.1</td></loq<></td></loq<>	<loq< td=""><td>31</td><td>28</td><td>13</td><td>8.5</td><td>40</td><td>9.1</td></loq<>	31	28	13	8.5	40	9.1
PPAR02 CALUK	13	0.5 0.5	0.5														
PXRCALUX	11	9.6 5.1	0.5	anti-PR CALUX (n	g Ru486 eq./l water)		100						4.2				
N#2 CALUK	1	4.5 5.8	0.5	SU 81	WWWIP Inflow	4 00	120	F 7	4 00	1.00	1.00	2.0	4.3	12	2	0.72	10
P53 CALUK (+S9)	0.5	0.5 0.5	0.5	S2	Outflow filter 1	3.4	<1.00	97	<1.00		<1.00	2.0	2.9	4.2	2	0.75	1.9
				S3	Outflow filter 3	<1.00	< 00	<1.00	< 00	< 00	<1.00	4.5	2.2	5.3	2.9	0.74	2.6
20/06/2018	S 0	S1 S2	S 3			-204	-204	-200	204	-2004	-204						
Cytotox CALUK		3.7 13.0	16.2	PPARa CALUX (ng	g GW7647 eq./l water)												
AR CALUX		0.5 0.5	0.5	SO	WWTP Inflow		530						11				
anti-AR CALUK		3.5 1.7	0.5	S1	Inflow pilot plant	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>9.5</td><td>25</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>9.5</td><td>25</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>9.5</td><td>25</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>9.5</td><td>25</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>16</td><td>9.5</td><td>25</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<>	<loq< td=""><td>16</td><td>9.5</td><td>25</td><td>18</td><td>12</td><td>18</td></loq<>	16	9.5	25	18	12	18
ERa CALUX		31.3 7.0	3.4	S2	Outflow filter 1	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>23</td><td>26</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>23</td><td>26</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>23</td><td>26</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>16</td><td>23</td><td>26</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>16</td><td>23</td><td>26</td><td>18</td><td>12</td><td>18</td></loq<></td></loq<>	<loq< td=""><td>16</td><td>23</td><td>26</td><td>18</td><td>12</td><td>18</td></loq<>	16	23	26	18	12	18
GR CALLK		63 13	0.5	S3	Outflow filter 3	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>19</td><td>24</td><td>7.3</td><td>17</td><td>21</td><td>17</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>19</td><td>24</td><td>7.3</td><td>17</td><td>21</td><td>17</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>19</td><td>24</td><td>7.3</td><td>17</td><td>21</td><td>17</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>19</td><td>24</td><td>7.3</td><td>17</td><td>21</td><td>17</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>19</td><td>24</td><td>7.3</td><td>17</td><td>21</td><td>17</td></loq<></td></loq<>	<loq< td=""><td>19</td><td>24</td><td>7.3</td><td>17</td><td>21</td><td>17</td></loq<>	19	24	7.3	17	21	17
anti-PR CALUK		1.4 2.3	0.5	PPAPa CALUX (n	Bosiglitazono og // water)												
PPARa2 CALLIX		05 05	0.5	SO SO	WW/TP bfow		3400						260				
PPARt2 CALLK		05 05	0.5	S1	Inflow pilot plant	5100	<1.00	<1.00	<1.00	<1.00	<1.00	2100	230	200	200	290	230
PXR CALLX		69 63	47	S2	Outflow filter 1	< 00	< 00	<1.00	< 00	< 00	<1.00	2100	200	200	210	300	230
N#2 CALLIK		11 10.5	10.0	\$3	Outflow filter 3	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1700</td><td>200</td><td>200</td><td>220</td><td>410</td><td>260</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1700</td><td>200</td><td>200</td><td>220</td><td>410</td><td>260</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1700</td><td>200</td><td>200</td><td>220</td><td>410</td><td>260</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1700</td><td>200</td><td>200</td><td>220</td><td>410</td><td>260</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1700</td><td>200</td><td>200</td><td>220</td><td>410</td><td>260</td></loq<></td></loq<>	<loq< td=""><td>1700</td><td>200</td><td>200</td><td>220</td><td>410</td><td>260</td></loq<>	1700	200	200	220	410	260
P53 CALUK (+S9)		05 05	1														
				PXR CALUX (ug N	icardipine eq./l water)												
28/08/2018	S 0	\$1 S2	S 3	SO	WWTP Inflow		28						2.6				
Cutatox CALLIK		110 40	24	S1	Inflow pilot plant	52	23	31	79	16	24	9.8	2.4	4.5	7.3	16	4.1
AR CALUX		05 05	0.5	52	Outflow filter 1	42	26	29	42	20	22	9.9	5.1	4.0	7.4	20	4.2
anti-AR CALUK		34 0.5	0.5		Outlow litter 5	20	<loq< td=""><td>20</td><td>24</td><td><loq< td=""><td><loq< td=""><td>7.0</td><td>0.2</td><td>5.5</td><td>0.2</td><td>5.0</td><td>4.9</td></loq<></td></loq<></td></loq<>	20	24	<loq< td=""><td><loq< td=""><td>7.0</td><td>0.2</td><td>5.5</td><td>0.2</td><td>5.0</td><td>4.9</td></loq<></td></loq<>	<loq< td=""><td>7.0</td><td>0.2</td><td>5.5</td><td>0.2</td><td>5.0</td><td>4.9</td></loq<>	7.0	0.2	5.5	0.2	5.0	4.9
ERa CALUX		4.6 0.5	0.5	Nrf2 CALUX (ug C	urcumine eq./I water)												
GR CALLK		64 16	0.5	SO	WWTP Inflow		< 00						23				
anti-PR CALLIX		05 05	0.5	S1	Inflow pilot plant	220	95	220	370	pending	102	40	21	20	30	pending	19
PPARa2 CALLIX		05 05	0.5	S2	Outflow filter 1	290	120	210	310	pending	115	39	21	20	31	pending	19
PPARe2 CALLIN		0.5 0.5	0.5	S3	Outflow filter 3	110	<loq< td=""><td>200</td><td>130</td><td>pending</td><td>19</td><td>40</td><td>22</td><td>20</td><td>31</td><td>pending</td><td>19</td></loq<>	200	130	pending	19	40	22	20	31	pending	19
PXRCALLX		110 57	39														
N#2 CALLIK		12 10.0	41	P53 (+S9) CALUX	(ug Cyclophosphamide/l water	r)							500				
P53 CALLIX (+S9)		05 05	0.5	50	VVV IP Innow		<loq< td=""><td></td><td></td><td></td><td></td><td>010</td><td>530</td><td>2700</td><td>1200</td><td></td><td></td></loq<>					010	530	2700	1200		
10001201(100)	-	0.0 0.0	0.0	51	Outflow filter 1	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>pending</td><td>pending</td><td>910</td><td>470</td><td>2700</td><td>1200</td><td>pending</td><td>pending</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>pending</td><td>pending</td><td>910</td><td>470</td><td>2700</td><td>1200</td><td>pending</td><td>pending</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>pending</td><td>pending</td><td>910</td><td>470</td><td>2700</td><td>1200</td><td>pending</td><td>pending</td></loq<></td></loq<>	<loq< td=""><td>pending</td><td>pending</td><td>910</td><td>470</td><td>2700</td><td>1200</td><td>pending</td><td>pending</td></loq<>	pending	pending	910	470	2700	1200	pending	pending
17/10/2018	S 0	S1 S2	\$3	52 S3	Outflow filter 3	<1.00	<loq< td=""><td><1.00</td><td><1.00</td><td>pending</td><td>pending</td><td>920</td><td>490</td><td>810</td><td>1200</td><td>pending</td><td>pending</td></loq<>	<1.00	<1.00	pending	pending	920	490	810	1200	pending	pending
Cytotox CALUK		0.5 0.5	0.5					.200		P 9	· - · · · · · · · · · · · · · · · · · ·					,	
AR CALLIX		0.5 0.5	0.5														
anti-AR CALUK		50 0.5	0.5														
ERa CALUX		8.3 3.5	0.5														
GRCALUK		54 16	0.5														
anti-PR CALLIN		05 05	0.5														
PPARa2 CALLIN		0.5 0.5	0.5														
PPARo2 CALLIN		0.5 0.5	0.5														
PXRCALUK	📁	1.0 1.0	0.5														
	. –																

NH2 CALUK P53 CALUK (+S9)				
08/11/2018	S 0	S1	S 2	S 3
Cytotox CALUK		0.5	0.5	0.5
AR CALUX		0.5	0.5	0.5
anti-AR CALUK		0.5	0.5	0.5
ERa CALUX		4.7	2.6	0.5
GR CALUK		3.1	4.7	0.5
anti-PR CALUK		0.5	0.5	0.5
PPARa2 CALUK		0.5	0.5	0.5
PPARg2 CALUK		0.5	0.5	0.5
PXRCALUX		5.9	5.2	0.5
NH2 CALUK		5	6.1	1.0
P53 CALUK (+S9)				

Table 5-f CALUX bioanalysis results site 12

samplig camp	aign	d					
1							
2			17/04	1/2018			
3			16/07	/2018			
23/01/2018	\$1	\$2	S 3	S 4	\$ 5	S 6	S 7
Cytotox CALUX	0.5	3.8	0.5		0.5	0.5	0.5
AR CALUX	120.0	0.5	0.5		0.5	0.5	0.5
anti-AR CALUX	0.5	1.2	0.5		0.5	0.5	0.5
ERa CALUX	5.0	50.0	3.5		16.3	11.9	1.5
GR CALUX	8.5	17.5	6.5		9.3	2.3	4.2
anti-PR CALUX	16.0	0.5	0.5		0.5	0.5	0.5
PPARa2 CALUX	40.0	0.5	0.5		0.5	0.5	0.5
PPARg2 CALUX	4.3	0.5	0.5		0.5	0.5	0.5
PXR CALUX	0.5	4.2	2.2		3.7	0.5	1.2
Nrf2 CALUX	19.0	9.0	5.8		4.1	4.2	2.7
P53 CALUX (+S9)	0.5	21.3	0.5		0.5	0.5	0.5
17/04/2018	\$1	\$2	S3	S 4	S5	S6	\$7
Cytotox CALUX	86.9	0.5	0.5	0.5	0.5	0.5	0.5
AR CALUX	215.0	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	0.5	1.0	1.9	0.5	0.5	1.1	0.5
ERa CALUX	1153.8	3.8	0.5	0.5	0.5	0.5	0.5
GR CALUX	1.4	7.6	0.5	0.5	1.6	0.5	1.4
anti-PR CALUX	18.6	0.5	0.5	0.5	1.5	0.5	0.5
PPARa2 CALUX	12.7	0.5	0.5	0.5	0.5	0.5	0.5
PPARg2 CALUX	0.5	1.2	0.5	0.5	0.5	0.5	0.5
PXR CALUX	14.0	5.9	4.0	0.5	4.9	4.0	2.3
Nrf2 CALUX	20.8	8.6	2.5	0.5	4.3	2.1	3.8
P53 CALUX (+S9)	4.3	1.2	0.5	0.5	0.5	0.5	0.5
16/07/2018	\$1	\$2	\$3	\$4	\$5	S6	\$7
Cytotox CALUX	35.0	4.0	1.0	0.5	0.5	0.5	0.5
AR CALUX	87.0	0.5	0.5	0.5	0.5	0.5	0.5
anti-AR CALUX	5.1	0.5	0.5	0.5	0.5	0.5	0.5
ERa CALUX	1200.0	22.0	1.5	0.5	0.5	0.5	0.5
GR CALUX	15.0	12.0	4.8	0.5	2.6	2.4	1.8
anti-PR CALUX	15.0	0.5	0.5	0.5	0.5	0.5	0.5
PPARa2 CALUX	26.0	0.5	1.3	0.5	0.5	0.5	0.5
PPARg2 CALUX	3.8	0.5	0.5	0.5	0.5	0.5	0.5
PXR CALUX	20.0	14.0	5.5	1.0	4.5	3.7	3.7
Nrf2 CALUX	20	5.6	4.7	0.5	5.0	2.3	3.1
P53 CALUX (+S9)	30.0	0.5	0.5	0.5	2	0.5	0.5

Sample point	Client sample code	Re	sults campai	gn	LOQ campaign				
Cytotox CALUX (g TBT eq./I water)	1	2	3	1	2	3		
S1	Primary sedimentation effluent	< 00	53	25	9.2	0.61	0.72		
S2	Ozonation influent	1.8	<loq< td=""><td>2.8</td><td>0.47</td><td>0.65</td><td>0.7</td></loq<>	2.8	0.47	0.65	0.7		
S3	Ozonation effluent	<loq< td=""><td><loq< td=""><td>0.67</td><td>0.47</td><td>0.91</td><td>0.67</td></loq<></td></loq<>	<loq< td=""><td>0.67</td><td>0.47</td><td>0.91</td><td>0.67</td></loq<>	0.67	0.47	0.91	0.67		
S4	Post-GAC filter		<loq< td=""><td><loq< td=""><td></td><td>0.79</td><td>0.7</td></loq<></td></loq<>	<loq< td=""><td></td><td>0.79</td><td>0.7</td></loq<>		0.79	0.7		
S5	Post-sand/anthracite filter	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.47</td><td>0.84</td><td>0.69</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.47</td><td>0.84</td><td>0.69</td></loq<></td></loq<>	<loq< td=""><td>0.47</td><td>0.84</td><td>0.69</td></loq<>	0.47	0.84	0.69		
S6	Post- sand/BAC filter	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.46</td><td>0.98</td><td>0.67</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.46</td><td>0.98</td><td>0.67</td></loq<></td></loq<>	<loq< td=""><td>0.46</td><td>0.98</td><td>0.67</td></loq<>	0.46	0.98	0.67		
S7	Post-constructed wetland	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.44</td><td>0.64</td><td>0.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.44</td><td>0.64</td><td>0.7</td></loq<></td></loq<>	<loq< td=""><td>0.44</td><td>0.64</td><td>0.7</td></loq<>	0.44	0.64	0.7		
AR CALUX (ng DH	T eq./l water)								
S1	Primary sedimentation effluent	155	430	130	1.3	2	1.5		
S2	Ozonation influent	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.81</td><td>3</td><td>1.4</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.81</td><td>3</td><td>1.4</td></loq<></td></loq<>	<loq< td=""><td>0.81</td><td>3</td><td>1.4</td></loq<>	0.81	3	1.4		
S3	Ozonation effluent	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.79</td><td>4.2</td><td>1.8</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.79</td><td>4.2</td><td>1.8</td></loq<></td></loq<>	<loq< td=""><td>0.79</td><td>4.2</td><td>1.8</td></loq<>	0.79	4.2	1.8		
S4	Post-GAC filter		<loq< td=""><td><loq< td=""><td></td><td>3.3</td><td>1.9</td></loq<></td></loq<>	<loq< td=""><td></td><td>3.3</td><td>1.9</td></loq<>		3.3	1.9		
55	Post-sand/anthracite filter	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.52</td><td>3</td><td>1.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.52</td><td>3</td><td>1.7</td></loq<></td></loq<>	<loq< td=""><td>0.52</td><td>3</td><td>1.7</td></loq<>	0.52	3	1.7		
S7	Post-constructed wetland	<loq <loq< td=""><td><loq <loq< td=""><td><loq <loq< td=""><td>0.62</td><td>2.7</td><td>2</td></loq<></loq </td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td><loq <loq< td=""><td>0.62</td><td>2.7</td><td>2</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.62</td><td>2.7</td><td>2</td></loq<></loq 	0.62	2.7	2		
		200	200	204					
anti-AR CALUX (ug	g Flutamide eq./l water)								
S1	Primary sedimentation effluent	<loq< td=""><td><loq< td=""><td>21</td><td>28</td><td>37</td><td>4.1</td></loq<></td></loq<>	<loq< td=""><td>21</td><td>28</td><td>37</td><td>4.1</td></loq<>	21	28	37	4.1		
52	Ozonation influent	4.6	1.1	<loq< td=""><td>3.9</td><td>1.1</td><td>4</td></loq<>	3.9	1.1	4		
53	Post-GAC filter	<loq< td=""><td>2.0</td><td><loq< td=""><td>3.8</td><td>1.4</td><td>5.1</td></loq<></td></loq<>	2.0	<loq< td=""><td>3.8</td><td>1.4</td><td>5.1</td></loq<>	3.8	1.4	5.1		
85	Post-sand/anthracite filter	<1.00		<1.00	3.8	1.5	5.6		
S6	Post- sand/BAC filter	<1.00	1.8	<1.00	3.7	1.7	5.2		
S7	Post-constructed wetland	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.5</td><td>4.7</td><td>5.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.5</td><td>4.7</td><td>5.7</td></loq<></td></loq<>	<loq< td=""><td>4.5</td><td>4.7</td><td>5.7</td></loq<>	4.5	4.7	5.7		
ERa CALUX (ng 17	/b Estradiol eq./l water)								
S1	Primary sedimentation effluent	0.36	1	51	0.072	0.26	0.042		
32	Ozonation offluent	0.13	40	0.90	0.030	0.039	0.043		
54 S4	Post-GAC filter	0.15		<1.009	0.037	0.002	0.040		
S5	Post-sand/anthracite filter	0.44	<1.00	<100	0.027	0.086	0.041		
S6	Post- sand/BAC filter	0.32	< 00	<1.00	0.027	0.1	0.046		
S7	Post-constructed wetland	0.052	<loq< td=""><td><loq< td=""><td>0.034</td><td>0.076</td><td>0.064</td></loq<></td></loq<>	<loq< td=""><td>0.034</td><td>0.076</td><td>0.064</td></loq<>	0.034	0.076	0.064		
GR CALUX (ng De	xamethasone eq./I water)		100	100					
51	Primary sedimentation effluent	110	160	130	13	21	8.7		
32		210	10	48	12	20	9 10		
53 S4	Post-GAC filter	/ 1	<1.00	<1.00		43	12		
S5	Post-sand/anthracite filter	87	42	41	9.4	27	16		
S6	Post- sand/BAC filter	21	<loq< td=""><td>24</td><td>9.2</td><td>31</td><td>10</td></loq<>	24	9.2	31	10		
S7	Post-constructed wetland	25	50	22	5.9	36	12		
	5 400 5 4 5								
anti-PR CALUX (ng	Primary sedimentation offluent	40	54	40	2.5	20	2.6		
51	Ozonation influent	40	<1.00	40	19	2.5	2.0		
\$3	Ozonation effluent	<1.00	<1.00	<100	1.9	3.1	2		
S4	Post-GAC filter		<loq< td=""><td><loq< td=""><td></td><td>3.5</td><td>1.2</td></loq<></td></loq<>	<loq< td=""><td></td><td>3.5</td><td>1.2</td></loq<>		3.5	1.2		
S5	Post-sand/anthracite filter	<loq< td=""><td>4.1</td><td><loq< td=""><td>2</td><td>2.7</td><td>1.2</td></loq<></td></loq<>	4.1	<loq< td=""><td>2</td><td>2.7</td><td>1.2</td></loq<>	2	2.7	1.2		
S6	Post- sand/BAC filter	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2</td><td>3.1</td><td>2</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2</td><td>3.1</td><td>2</td></loq<></td></loq<>	<loq< td=""><td>2</td><td>3.1</td><td>2</td></loq<>	2	3.1	2		
S7	Post-constructed wetland	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2</td><td>2.9</td><td>1.2</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.2</td><td>2.9</td><td>1.2</td></loq<></td></loq<>	<loq< td=""><td>1.2</td><td>2.9</td><td>1.2</td></loq<>	1.2	2.9	1.2		
PPARa CALUX (no	GW7647 eq./l.water)								
S1	Primary sedimentation effluent	400	140	420	10	11	16		
S2	Ozonation influent	<loq< td=""><td><loq< td=""><td><loq< td=""><td>8.2</td><td>16</td><td>15</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>8.2</td><td>16</td><td>15</td></loq<></td></loq<>	<loq< td=""><td>8.2</td><td>16</td><td>15</td></loq<>	8.2	16	15		
S3	Ozonation effluent	<loq< td=""><td><loq< td=""><td>20</td><td>8</td><td>23</td><td>15</td></loq<></td></loq<>	<loq< td=""><td>20</td><td>8</td><td>23</td><td>15</td></loq<>	20	8	23	15		
S4	Post-GAC filter		<loq< td=""><td><loq< td=""><td></td><td>26</td><td>21</td></loq<></td></loq<>	<loq< td=""><td></td><td>26</td><td>21</td></loq<>		26	21		
S5	Post-sand/anthracite filter	<loq< td=""><td><loq< td=""><td><loq< td=""><td>29</td><td>15</td><td>25</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>29</td><td>15</td><td>25</td></loq<></td></loq<>	<loq< td=""><td>29</td><td>15</td><td>25</td></loq<>	29	15	25		
S6	Post- sand/BAC filter	<loq< td=""><td><loq< td=""><td><loq< td=""><td>28</td><td>18</td><td>15</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>28</td><td>18</td><td>15</td></loq<></td></loq<>	<loq< td=""><td>28</td><td>18</td><td>15</td></loq<>	28	18	15		
57	Post-constructed wetland	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.9</td><td>22</td><td>21</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.9</td><td>22</td><td>21</td></loq<></td></loq<>	<loq< td=""><td>4.9</td><td>22</td><td>21</td></loq<>	4.9	22	21		
PPARg CALUX (ng	g Rosiglitazone eq./I water)								
S1	Primary sedimentation effluent	1300	<loq< td=""><td>1100</td><td>300</td><td>100</td><td>290</td></loq<>	1100	300	100	290		
S2	Ozonation influent	<loq< td=""><td>81</td><td><loq< td=""><td>120</td><td>65</td><td>270</td></loq<></td></loq<>	81	<loq< td=""><td>120</td><td>65</td><td>270</td></loq<>	120	65	270		
S3	Ozonation effluent	<loq< td=""><td><loq< td=""><td><loq< td=""><td>120</td><td>91</td><td>260</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>120</td><td>91</td><td>260</td></loq<></td></loq<>	<loq< td=""><td>120</td><td>91</td><td>260</td></loq<>	120	91	260		
S4	Post-GAC filter		<loq< td=""><td><loq< td=""><td>400</td><td>110</td><td>310</td></loq<></td></loq<>	<loq< td=""><td>400</td><td>110</td><td>310</td></loq<>	400	110	310		
66 82	Post-sand/anthracite filter	<luq< td=""><td><luq< td=""><td><luq< td=""><td>130</td><td>150</td><td>32U 260</td></luq<></td></luq<></td></luq<>	<luq< td=""><td><luq< td=""><td>130</td><td>150</td><td>32U 260</td></luq<></td></luq<>	<luq< td=""><td>130</td><td>150</td><td>32U 260</td></luq<>	130	150	32U 260		
S7	Post-constructed wetland	<1.00	<1.00		150	91	310		
		_0 at	200	-0 a					
PXR CALUX (ug N	icardipine eq./l water)								
S1	Primary sedimentation effluent	<loq< td=""><td>80</td><td>100</td><td>41</td><td>5.7</td><td>5.1</td></loq<>	80	100	41	5.7	5.1		
S2	Ozonation influent	25	100	72	5.9	17	5.2		
53	Ozonation effluent	12	93	48	5.5	23	8.8		
S5	Post-sand/anthracite filter	19	<luq 37</luq 	30	52	7.5	67		
S6	Post- sand/BAC filter	<loq< td=""><td>35</td><td>33</td><td>5.1</td><td>8.7</td><td>8.9</td></loq<>	35	33	5.1	8.7	8.9		
S7	Post-constructed wetland	8.1	11	31	6.6	4.8	8.3		
N-60 C									
Nrt2 CALUX (ug C	urcumine eq./I water)	760	910	740	40	20	27		
51 52	Constion influent	180	810 320	740 200	40 20	39 37	36		
\$3	Ozonation effluent	110	130	170	19	52	36		
S4	Post-GAC filter		<loq< td=""><td><loq< td=""><td></td><td>45</td><td>36</td></loq<></td></loq<>	<loq< td=""><td></td><td>45</td><td>36</td></loq<>		45	36		
S5	Post-sand/anthracite filter	77	190	190	19	44	38		
S6	Post- sand/BAC filter	79	110	82	19	52	36		
S7	Post-constructed wetland	51	140	110	19	37	36		
P53 (+S9) CALLE	ug Cyclophosphamide/l water)								
\$1	Primary sedimentation effluent	<1.00	570	25000	940	490	830		
S2	Ozonation influent	10000	2200	<100	470	510	800		
S3	Ozonation effluent	<loq< td=""><td><loq< td=""><td><loq< td=""><td>450</td><td>680</td><td>800</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>450</td><td>680</td><td>800</td></loq<></td></loq<>	<loq< td=""><td>450</td><td>680</td><td>800</td></loq<>	450	680	800		
S4	Post-GAC filter		<loq< td=""><td><loq< td=""><td></td><td>600</td><td>800</td></loq<></td></loq<>	<loq< td=""><td></td><td>600</td><td>800</td></loq<>		600	800		
S5	Post-sand/anthracite filter	<loq< td=""><td><loq< td=""><td>1500</td><td>460</td><td>590</td><td>850</td></loq<></td></loq<>	<loq< td=""><td>1500</td><td>460</td><td>590</td><td>850</td></loq<>	1500	460	590	850		
S6	Post- sand/BAC filter	<loq< td=""><td><loq< td=""><td><loq< td=""><td>440</td><td>690</td><td>800</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>440</td><td>690</td><td>800</td></loq<></td></loq<>	<loq< td=""><td>440</td><td>690</td><td>800</td></loq<>	440	690	800		
31	F'OSI-CONSTRUCTED WETIAND	<luq< td=""><td><loq< td=""><td><luq< td=""><td>400</td><td>490</td><td>010</td></luq<></td></loq<></td></luq<>	<loq< td=""><td><luq< td=""><td>400</td><td>490</td><td>010</td></luq<></td></loq<>	<luq< td=""><td>400</td><td>490</td><td>010</td></luq<>	400	490	010		

Annex 6 Heat-map of quantified CALUX bioanalysis results – round 2

Table 6-aCALUX bioanalysis results site 4 and 6

Site 4							Site 6										
12/03/2018	S1	\$2	S 3	\$ 4	S5	S6	15/08/2017	\$1	\$2	\$3	S 4	S5	S6	\$ 7	S 8	S 9	\$10
Cytotox CALUX	1	LOQ	LOQ	LOQ	LOQ	LOQ	Cytotox CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOG
AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
anti-AR CALUX	18	13	LOQ	LOQ	LOQ	LOQ	anti-AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	14	LOQ	LOQ	LOG
ERa CALUX	LOQ	LOQ	0.1	LOQ	LOQ	LOQ	ERa CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOG
anti-PR CALUX	62	4.8	LOQ	LOQ	LOQ	LOQ	anti-PR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	4.8	LOQ	LOQ	LOC
PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	1030	LOQ	LOQ	LOQ	LOQ	LOC
PXR CALUX	17	35	40	13	10	8.5	PXR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
Nrf2 CALUX	1000	140	LOQ	LOQ	15	22	Nrf2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
P53 CALUX (+S9)	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	P53 CALUX (+S9)	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
21/08/2018	\$1	S2	S3	\$4	S5	S6	21/11/2017	\$1	S2	S3	S4	S5	S6	S 7	S 8	S9	S10
Cytotox CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	Cytotox CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOG
AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
anti-AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	anti-AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
ERa CALUX	0.8	3.2	LOQ	LOQ	0.8	LOQ	ERa CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
anti-PR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	anti-PR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
PXR CALUX	24	22	16	LOQ	6.4	LOQ	PXR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	6.2	6.9	LOQ	LOQ	LOC
Nrf2 CALUX	74	59	70	60	37	LOQ	Nrf2 CALUX	LOQ	55	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
P53 CALUX (+S9)	1900	LOQ	1900	LOQ	LOQ	LOQ	P53 CALUX (+S9)	LOQ	LOQ	5000	LOQ	LOQ	LOQ	1100	LOQ	LOQ	LOC
08/10/2018	\$1	\$2	S 3	\$ 4	S5	S6	19/03/2018	\$1	\$2	S 3	S4	S5	S6	\$ 7	S 8	S 9	\$10
Cytotox CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	Cytotox CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
anti-AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	anti-AR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
ERa CALUX	0.1	0.3	LOQ	0.2	LOQ	LOQ	ERa CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	GR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
anti-PR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	anti-PR CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	PPARa2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	PPARg2 CALUX	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOC
PXR CALUX	23.0	23.0	15.0	10.0	20.0	7.2	PXR CALUX	LOQ	LOQ	LOQ	LOQ	5.7	LOQ	4.0	LOQ	LOQ	LOC
Nrf2 CALUX	LOQ	130	LOQ	26	LOQ	42	Nrf2 CALUX	335	46	LOQ	50	52	21	41	29	LOQ	52.0
P53 CALUX (+S9)	-						P53 CALUX (+S9)	LOQ	LOQ	LOQ	LOQ	1800	LOQ	LOQ	7400	LOQ	LOG

CALUX result < 1*EBT (or LOQ)
1*EBT < CALUX result < 3*EBT
3*EBT < CALUX result < 10*EBT
10*EBT < CALUX result < 100*EBT
100*EBT < CALUX result

CALUX bioanalysis results site 7 and 8 Table 6-b

Site 7

Bioassay	S1	S6	S7	S8	S4	S 5	S2	\$3	S9
Cytotax CALUX	0.88					LOQ	LOQ	LOQ	
AR CALUX	юa					LOQ	LOQ	LOQ	
anti-AR CALUX	11					LOQ	LOQ	LOQ	
ERa CALUX	2.1					LOQ	LOQ	LOQ	
GR CALUX	72					38	LOQ	LOQ	
anti-PR CALUX	4.6					LOQ	LOQ	LOQ	
PPARs2 CALUX	LDQ					LOQ	LOQ	LOQ	
PPARg2 CALUX	180					LOQ	LOQ	LOQ	
PXR CALUX	57					36	32	16	
Nrf2 CALUX	94					84	19	LOQ	
P53 CALUX (+S9)	юa					LOQ	LOQ	LOQ	
Shipment 2	18/12	2018							
Bioassay	S1	S6	S7	S8	S4	S5	S2	S 3	S9
Cytotax CALUX	1	0.69	0.68	0.5	LOQ	LOQ	LOQ		
AR CALUX	LDQ	юa	LOQ	LOQ	LOQ	LOQ	LOQ		
anti-AR CALUX	29	27	11	22	9.4	LOQ	7.0		
ERa CALUX	2.2	1.9	1.7	0.8	LOQ	LOQ	0.1		
GR CALUX	130	93	98	85	8.8	18	LOQ		
anti-PR CALUX	5.9	3.5	3.1	3.4	LOQ	1.9	LOQ		
PPARs2 CALUX	юa	юa	LOQ	LOQ	LOQ	LOQ	LOQ		
PPARg2 CALUX	140	84	52	LOQ	LOQ	LOQ	LOQ		
PXR CALUX	38	44	27	39	13	15	8.7		
N#2 CALUX	260	220	220	240	70	160	30		
P58 CALUX (+S9)									
Shipment 3	19/03	/2019							
Bioassay	S1	S6	S7	S8	\$4	S5	S2	S 3	S 9
Cytotax CALUX	ЮQ		LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
AR CALUX	гоd		LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-AR CALUX	юa		6.6	14	LOQ	LOQ	LOQ	LOQ	LOQ
ERa CALUX	2.5		LOQ	5.0	LOQ	LOQ	LOQ	LOQ	LOQ
GR CALUX	73		LOQ	68	LOQ	33.0	LOQ	LOQ	19.0
anti-PR CALUX	2.7		1.4	6.0	1.1	3.9	LOQ	LOQ	LOQ
PPARs2 CALUX	ĿОQ		LOQ	LOQ	LOQ	37	31	LOQ	LOQ
PPARg2 CALUX	470		LOQ	480	LOQ	LOQ	LOQ	LOQ	LOQ
PXR CALUX	87		11	70	13	18	LOQ	11	17.0
N#2 CALUX	160		140	190	89	110	50.0	LOQ	78
P58 CALUX (+S9)									

Site 8

GR CALUX anti-PR CALUX

NH2 CALUX

P53 CALUX (+S9)

PPARa2 CALUX PPARg2 CALUX PXR CALUX

11/04/2018	S1	S2	S 4	S5-1	S5-2	S5-3	\$54	S5-1	S5-1	S5-1	S5-1	S5-1
Cytotax CALUX	3	LOQ		LOQ	LOQ							
AR CALUX	190.0	LOQ		LOQ	LOQ							
anti-AR CALUX	LOQ	LOQ		LOQ	LOQ							
ERa CALUX	31.0	1.0		0.3	0.1							
GR CALUX	58	53.0		LOQ	LOQ							
anti-PR CALUX	28.0	LOQ		LOQ	LOQ							
PPARs2 CALUX	21.0	27.0		LOQ	LOQ							
PPARg2 CALUX	500	LOQ		LOQ	LOQ							
PXR CALUX	32	42		15	24							
NH2 CALUX	440	202		103	89							
P53 CALUX (+S9)	1100.0	LOQ		LOQ	LOQ							
30/04/2018	S1	S2	S 4	S5-1	S5-2	S5-3	S54	S5-1	S5-1	S5-1	S5-1	S5-1
Cytotax CALUX			LOQ			LOQ	LOQ					
AR CALUX			LOQ			LOQ	LOQ					
anti-AR CALUX			5.8			LOQ	LOQ					
ERa CALUX			0.3			0.1	LOQ					
GR CALUX			LOQ			LOQ	LOQ					
anti-PR CALUX			LOQ			LOQ	LOQ					
PPARs2 CALUX			LOQ			LOQ	LOQ					
PPARg2 CALUX			LOQ			LOQ	LOQ					
PXR CALUX			34			27	16					
NH2 CALUX			200			110	99					
P53 CALUX (+S9)			LOQ			LOQ	LOQ					
22/10/2018	S1	S2	S 4	S5-1	S5-2	S5-3	S5-4	S5-1	S5-1	S5-1	S5-1	S5-1
Cytotax CALUX		LOQ	LOQ	LOQ	LOQ	LOQ	LOQ					
AR CALUX		LOQ	LOQ	LOQ	LOQ	LOQ	LOQ					
anti-AR CALUX		LOQ	9.0	LOQ	LOQ	LOQ	LOQ					
ERa CALUX		0.9	0.3	LOQ	0.1	0.1	0.1					
GR CALUX		12.0	LOQ	LOQ	LOQ	LOQ	LOQ					
anti-PR CALUX		LOQ	LOQ	LOQ	3.7	LOQ	LOQ					
PPARs2 CALUX		LOQ	LOQ	LOQ	LOQ	LOQ	LOQ					
PPARg2 CALUX		LOQ	LOQ	LOQ	LOQ	LOQ	LOQ					
PXR CALUX		27	38	8.6	9.2	22	25					
NH2 CALUX		200	256	LOQ	LOQ	108	335					
P53 CALUX (+S9)												
19/10-26/11/2018	\$1	S2	S4	S5-1	S5-2	S5-3	\$54	S5-1	S5-1	S5-1	S5-1	S5-1
Cytotax CALUX	_		_	_	_			<loq< td=""><td><loq< td=""><td><loq< td=""><td><100</td><td>⊲.00</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><100</td><td>⊲.00</td></loq<></td></loq<>	<loq< td=""><td><100</td><td>⊲.00</td></loq<>	<100	⊲.00
AR CALUX								LOQ	LOQ	LOQ	LOQ	LOQ
anti-AR CALUX								LOQ	LOQ	LOQ	LOQ	LOQ
ERa CALUX								LOQ	LOQ	LOQ	0.1	0.1

CALUX result < 1*EBT (or LOQ) ⁻ 1*EBT < CALUX result < 3*EBT 3*EBT < CALUX result < 10*EBT 10*EBT < CALUX result < 100*EBT 100*EBT < CALUX result

LOG LOG LOG LOG LOG LOG LOG LOG LOG

LOQ LOQ LOQ 55 LOQ LOQ LOQ LOQ LOQ LOQ 9.8 19 13 14 12

LOQ LOQ LOQ 108

12 53

Table 6-cCALUX bioanalysis results site 11 and 12

Site 11

Site 12

26/03/2018	S0	S1	S2	\$3
Cytotox CALLIX		100	1.00	10
AR CALLIX		100	100	100
anti-AR CALLIN		100	100	100
FRaCALUX		21	0.6	10
GR CALLK		140	100	100
anti-PR CALLIX		100	3	100
PPARa2 CALLIX		100	100	100
PPARt2 CALLK		5100	100	100
PXRCALLN		52	42	28
NH2 CALLIN		220	200	110
P53 CALLIN (+S0)		100	100	100
F55 CALOA (+55)		LUUR	1004	- 000
09/05/2018	S0	S1	S2	\$3
Odotox CALLIN	30	100	100	100
AR CALLIX	260	100	100	100
anti-AR CALLIX	120	100	100	100
ERa CALUX	61	0.4	01	100
GR CALLK	100	70	33	LOC
anti-PR CALLIX	120	100	1.00	LOC
PPARe2 CALLX	530	100	1.00	1.00
PPARt2 CALLIN	3400	100	100	100
PYRCALLK	28	23.0	26.0	100
NH2 CALLIN	100	05	120	100
P53 CALLIN (#S0)	100	100	100	100
1 33 GALGA (*33)	LUU	LUX	LUNA	-
20/06/2018	S0	S1	S 2	\$3
Odday CALLIN		17	6.0	6.2
AR CALLIN		100	100	100
AR CALOA		26	12	100
ERO CALLIX		10	0.2	0.1
CROALIN		60	14	1.00
GRUALUK GRUALUK		6.7	0.7	100
		1.00	3.7	100
PPARez CALUK		LOQ	LOQ	100
PPARg2 CALUK		LOQ	LOQ	100
PXRCALUK		31.0	29.0	20.0
NT2 CALUK		220	210	200
				100
P53 CALUK (+39)		LUU	LUQ	
2010012040	50	£002	52	63
28/08/2018	\$0	<u>\$1</u>	s2	\$3
28/08/2018 Cytotax CALUX	\$0	\$1 5.6	S2 20	\$3 1.2
28/08/2018 Cytotox CALUX AR CALUX	50	5.6 LOQ	52 2.0 LOQ	\$3 1.2 LOC
28/08/2018 Cytotox CALUX AR CALUX anti-AR CALUX	<u>\$0</u>	\$1 5.6 LOQ 20	52 2.0 LOQ LOQ	\$3 1.2 LOC LOC
28/08/2018 Cytotox CALUX AR CALUX ant-AR CALUX ERA CALUX	50	5.6 LOQ 20 0.2	52 2.0 L.00 L.00 L.00	53 1.2 LOC LOC
28108/2018 Cytotox CALUX AR CALUX anti-AR CALUX ERa CALUX GR CALUX	50	\$1 5.6 LOQ 20 0.2 48	\$2 2.0 LOQ LOQ LOQ 12	\$3 1.2 LOC LOC LOC
28/08/2018 Cytotox CALLK AR CALLX anti-AR CALLX GR CALLX GR CALLX anti-FR CALLK	50	5.6 LOQ 20 0.2 48 LOQ	52 20 L00 L00 L00 12 L00	53 1.2 LOC LOC LOC
28/08/2018 Cytotox CALLK AR CALLX anti-AR CALLX ERa CALLX GR CALLX GR CALLX anti-FR CALLK PPARa2 CALLX	50	5.6 LOQ 20 0.2 48 LOQ LOQ	52 20 LOQ LOQ LOQ 12 LOQ LOQ	\$3 1.2 LOC LOC LOC LOC
28/08/2018 Cytotox CALUX AR CALUX anii-AR CALUX BRa CALUX GR CALUX GR CALUX PPARg2 CALUX PPARg2 CALUX	50	5.6 LOQ 20 0.2 48 LOQ LOQ LOQ	S2 20 LOQ LOQ LOQ 12 LOQ LOQ LOQ	53 12 L00 L00 L00 L00 L00
2908/2018 Cytotor CALLIX AR CALLIX anti-AR CALLIX ERa CALLIX GR CALLIX GR CALLIX GR CALLIX PPARa2 CALLIX PPARa2 CALLIX PXR CALLIX	50	5.6 LOQ 20 0.2 48 LOQ LOQ 20 0.2 79.0	S2 20 LOQ LOQ LOQ 12 LOQ LOQ LOQ 420	53 1.2 LOC LOC LOC LOC LOC 24.0
2808/2018 Cytotox CALLX AR CALLX anti-AR CALLX ERa CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PYR CALLX NT2 CALLX	50	5.6 LOQ 20 0.2 48 LOQ LOQ LOQ 20 79.0 370	S2 20 L00 L00 L00 12 L00 L00 L00 420 310	53 1.2 LOX LOX LOX LOX LOX LOX LOX 240 130
2809/2018 Ortox CALLX AR CALLX anti-AR CALLX ERa CALLX GR CALLX ERa CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX NT2 CALLX NT2 CALLX P53 CALLX (+59)	50	56 LOQ 20 0.2 48 LOQ LOQ 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 0.2 48 20 20 0.2 48 20 20 0.2 48 20 20 20 20 20 20 20 20 20 20 20 20 20	52 20 LOQ LOQ LOQ 12 LOQ LOQ LOQ 420 310 LOQ	\$3 1.2 L00 L00 L00 L00 L00 L00 L00 24.0 130 L00
2809/2018 Cytox CALUX AR CALUX ant-AR CALUX ERa CALUX ERa CALUX GR CALUX PPAR2 CALUX PPAR2 CALUX PPAR2 CALUX PXRCALUX PS3 CALUX (+S9)	50	56 LOQ 20 0.2 48 LOQ LOQ LOQ 370 LOQ	52 20 LOQ LOQ LOQ 12 LOQ LOQ LOQ 420 310 LOQ	\$3 1.2 L00 L00 L00 L00 L00 L00 L00 L00 L00 L0
2808/2018 Optox CALUX AR CALUX AR CALUX ERa CALUX GR CALUX GR CALUX GR CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX PXR CALUX PS3 CALUX (+S9) 17/10/2018	<u>50</u> 50	S1 5.6 LOQ 20 0.2 48 LOQ 48 LOQ 79.0 370 LOQ S1	S2 2.0 LOQ LOQ LOQ LOQ LOQ LOQ 12 LOQ S2	\$3 1.2 LOC LOC LOC LOC LOC LOC LOC 240 130 S3
2809/2018 Cytotox CALLX AR CALLX anti-AR CALLX ERa CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PS3 CALLX P53 CALLX P53 CALLX P53 CALLX P53 CALLX P53 CALLX	<u>50</u> <u>50</u>	S1 5.6 LOQ 20 0.2 48 LOQ 48 LOQ 79.0 370 LOQ S1	S2 2.0 LOQ S10 LOQ S2 LOQ	53 1.2 1.00 1.00 1.00 1.00 1.00 24.0 130 1.00 53 1.00
2808/2018 Cytotox CALLX AR CALLX anti-AR CALLX anti-AR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX NT2 CALLX NT2 CALLX P53 CALLX (~S9) 17/10/2018 Cytotox CALLX AR CALLX	<u>50</u> <u>50</u>	S1 5.6 LOQ 20 0.2 48 LOQ LOQ 79.0 370 LOQ S1 LOQ	S2 20 LOQ LOQ LOQ LOQ 12 LOQ LOQ 12 LOQ 10 LOQ 310 LOQ S2 LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	533 1.2 LOX LOX LOX LOX LOX LOX LOX S3 LOX
2809/2018 Cytotox CALLX AR CALLX anti-AR CALLX anti-AR CALLX ERa CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX NT2 CALLX NT2 CALLX PS3 CALLX (+S9) 17/10/2018 Cytotox CALLX AR CALLX anti-AR CALLX	<u>50</u> <u>50</u>	S1 56 LOQ 20 0.2 48 LOQ LOQ 79.0 370 LOQ S1 LOQ 1LOQ	S2 20 LOQ LOQ LOQ LOQ 12 LOQ LOQ 310 LOQ S2 LOQ	533 1.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2808/2018 Opticix CALUX AR CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX GR CALUX PAR92 CALUX PPAR92 CALUX PPAR92 CALUX PYR CALUX PYR CALUX PYR CALUX PYR CALUX PYR CALUX AR CALUX AR CALUX ERa CALUX ERa CALUX	<u>50</u> 50	S1 5.6 LOQ 20 0.2 48 LOQ LOQ 79.0 370 LOQ S1 LOQ 11.0 0.3	s2 20 L00 L00 L00 12 L00 L00 420 310 L00 L00 L00 420 310 L00	53 1.2 1.0 1.00 1.00 1.00 1.00 1.00 5.3 1.00
2808/2018 Cytoto: CALLX AR CALLX aff-AR CALLX aff-AR CALLX ERa CALLX GR CALLX GR CALLX PAR22 CALX PAR22 CALLX PAR22 CALX PAR22 CALX PAR2	50	S1 56 LOQ 20 02 48 LOQ LOQ 79.0 370 LOQ S1 LOQ 11.0 0.3 65	52 20 20 20 20 20 20 20 20 20 21 20 20 20 20 20 20 20 21	S3 1.2 LOX
2808/2018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PSI CALLX PSI CALLX AR CALLX AR CALLX AR CALLX anti-FR CALLX anti-FR CALLX	50	S1 5.6 LOQ 0.2 48 LOQ LOQ JOD JOD S1 LOQ S1 LOQ JOD	S2 20 L00 L00 L00 L00 12 L00	533 122 100 100 100 100 100 100 100 100 100
2809/2018 Cytotox CALLX AR CALLX anti-AR CALLX anti-AR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX NT2 CALLX PT10/2018 Cytotox CALLX AR CALLX AR CALLX anti-AR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX	50	S1 5.6 LOQ 0.2 48 LOQ LOQ 79.0 370 LOQ S1 LOQ 10.0 0.3 65 LOQ LOQ 11.0 0.3 65 LOQ LOQ	S2 20 LOQ S2 LOQ	53 12 100 100 100 100 100 100 100
2808/2018 Opticix CALUX AR CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX PPARg2 CALUX PPARg2 CALUX PYR CALUX PYR CALUX AR CALUX AR CALUX ERa CALUX	50	s1 5.6 LOQ 0.2 48 LOQ 20 0.2 48 LOQ 79.0 370 LOQ 81 LOQ 100 S1 LOQ 100 65 LOQ LOQ 10.0 0.3 65 LOQ LOQ LOQ 10.0 0.3 65 LOQ	S2 20 LOQ LOQ LOQ LOQ 12 LOQ 12 LOQ 12 LOQ 310 LOQ S2 LOQ	53 12 12 12 12 12 12 12 12 12 12
2808/2018 Cytoto: CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX PPARg2 CALUX PPARg2 CALUX PYR CALUX NT2 CALUX Cytoto: CALUX AR CALUX ERa CALUX	50	S1 56 LOQ 20 0.2 48 LOQ LOQ 79.0 370 LOQ S1 LOQ 100 0.3 65 LOQ LOQ 11.0 0.3 65 LOQ LOQ 10.0 1.00 1.00 1.00 1.00 1.00 LOQ LOQ 1.00 1.00 1.00	100 20 200 1000 1000 100 12 100 12 100 12 100 420 310 100	53 12 12 12 12 12 12 12 12 12 12
28092018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PYARQ2 CALLX PT02018 Cytotox CALLX AR CALLX Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX anti-AR CALLX GR CALLX anti-PR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX	50	S1 56 LOQ 20 0.2 48 LOQ LOQ 79.0 370 LOQ S1 LOQ 11.0 0.3 65 LOQ LOQ LOQ LOQ 1.0 1.10	S2 20 LOQ 21 LOQ LOQ 221 LOQ LOQ 20	53 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
2808/2018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PSI CALLX PSI CALLX AR CALLX AR CALLX AR CALLX AR CALLX AR CALLX PPARg2 CALLX PPA	50	S1 56 LOQ 20 48 LOQ LOQ LOQ S1 LOQ LOQ S1 LOQ 110 0.3 65 LOQ LOQ 16	s2 20 L00	53 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
2808/2018 Opticix CALUX AR CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX PYR CALUX AR CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERA CALUX ERA CALUX ERA CALUX PPARg2	50	S1 56 LOQ 20 48 LOQ LOQ LOQ DO JOO S1 LOQ S1 LOQ S1 LOQ S1 LOQ S1 LOQ LOQ LOQ LOQ LOQ 110 0.3 65 LOQ LOQ 100 110 0.3 65 LOQ LOQ 16	S2 20 LOQ LOQ <t< td=""><td>53 12 10 10 10 10 10 10 10 10 10 10</td></t<>	53 12 10 10 10 10 10 10 10 10 10 10
2806/2018 Cytotox CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERA CALUX PARg2 CALUX PARg2 CALUX PARg2 CALUX PARg2 CALUX PARg2 CALUX PARg2 CALUX Cytotox CALUX ERa CALUX PARg2 CALUX	50 50 50 50	S1 5.6 LOQ 20 48 LOQ LOQ S1 5.6 LOQ S1 LOQ S1 LOQ S1 LOQ S1 LOQ 11.0 0.3 65 LOQ LOQ 10.0 11.0 0.3 65 LOQ LOQ 1.00 1.00 1.00 1.00 1.00 1.00 LOQ 1.00 LOQ 1.00 S1	S2 20 L00 L00 L00 L00 L00 L00 L00 S2 L00 L00 L00 S0 S10 L00	53 12 10 10 10 10 10 10 10 10 10 10
2809/2018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PS3 CALLX (+S9) 17/10/2018 Cytotox CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg	50 50 50	S1 56 LOQ 20 48 LOQ 48 LOQ 790 370 LOQ 51 LOQ 100 370 LOQ 51 LOQ S1 LOQ 16 S1 LOQ	S2 20 LOQ LOQ LOQ 12 LOQ 420 310 LOQ 310 LOQ 310 LOQ 20 12 LOQ 310 LOQ 100 20 20 S2 LOQ S2 LOQ S2 LOQ LOQ LOQ LOQ S2 LOQ S2 LOQ	S3 12 LOC
2808/2018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PSI CALLX AR CALLX AR CALLX AR CALLX AR CALLX PPARg2 CAL	50 50 50 50	S1 5.6 LOQ 20 48 LOQ 78.0 370 LOQ 370 LOQ 370 LOQ 100 370 LOQ 51 LOQ 16 S1 LOQ	S2 20 LOQ LOQ 12 LOQ 420 <tr< td=""><td>S3 12 L00 L00</td></tr<>	S3 12 L00
2808/2018 Cytotox CALUX AR CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERA CALUX PAR92 CALUX PPAR92 CALUX PYR CALUX PYR CALUX AR CALUX AR CALUX ERa CALUX ERA CALUX ERA CALUX PYR CALUX CYTON CALUX AR CALUX anti-AR CALUX	50 50 50 50	S1 56 LOQ 20	S2 20 L00 L00 L00 12 L00 12 L00 12 L00 12 L00 12 L00 420 310 L00 100	S3 12 Loc Lo Loc
2808/2018 Cytotox CALLX AR CALLX ERa CALLX ERa CALLX ERa CALLX ERa CALLX ERa CALLX ERA CALLX ERA CALLX PARg2 CALLX PARg2 CALLX PARg2 CALLX PARg2 CALLX PARg2 CALLX Cytotox CALLX ERA CALLX ERA CALLX ERA CALLX PARg2 CALLX	50 50 50 50	S1 56 LOQ 02 48 LOQ 48 LOQ 790 370 LOQ 51 LOQ 51 LOQ 51 LOQ 51 LOQ 0.3 65 LOQ 100 0.3 65 LOQ 100 0.3 65 LOQ 100 0.3 65 LOQ 16 S1 LOQ LOQ 100 100 LOQ LOQ <t< td=""><td>S2 20 L00 L00 L00 12 L00 L00 12 L00 12 L00 12 L00 420 310 L00 L00</td><td>S3 12 Loc Lo Loc Loc</td></t<>	S2 20 L00 L00 L00 12 L00 L00 12 L00 12 L00 12 L00 420 310 L00	S3 12 Loc Lo Loc
2808/2018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PTO CALLX AR CALLX AR CALLX CALLX AR CALLX CR CALLX PPARg2	50 50 50	S1 56 LOQ 20 02 48 LOQ LOQ 790 370 LOQ 370 LOQ 370 LOQ 51 LOQ 100 0.3 65 LOQ LOQ 100 103 65 LOQ LOQ 100 0.3 65 LOQ 100 0.3 65 LOQ LOQ 16 S1 LOQ LOQ 0.2 26	S2 20 LOQ LOQ LOQ 12 LOQ 420 310 LOQ 310 LOQ 310 LOQ 310 LOQ 22 LOQ 02 21 LOQ 20 21 LOQ 20 S2 LOQ LOQ 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11	S3 12 L00
28092018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PYARg2 CALLX PYARg2 CALLX AR CALLX Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX AR CALLX ST CALLX PPARg2 CALLX PPAR	50	S1 5.6 LOQ 20 48 LOQ 48 LOQ 79.0 370 LOQ 370 LOQ 370 LOQ 51 LOQ 100 03 65 LOQ	S2 20 LOQ LOQ 12 LOQ 12 LOQ 420 310 LOQ 310 LOQ 12 LOQ 420 310 LOQ 100 LOQ LOQ L	S3 12 L00
2808/2018 Cytotox CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX PYR CALUX PT/10/2018 Cytotox CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERA CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX ERA CALUX anti-RR CALUX ERA CALUX anti-RR CALUX ERA CALUX anti-RR CALUX ERA CALUX AR CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX	50 50 50	S1 56 LOQ 02 48 LOQ 20 48 LOQ 780 370 LOQ 780 370 LOQ 100 101 LOQ 102 LOQ 103 65 LOQ	S2 20 L00 L00 L00 12 L00 12 L00 12 L00 12 L00 420 310 L00 100	S3 12 Loo Lo
2808/2018 Cytotox CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERA CALUX PARg2 CALUX PYARg2 CALUX PYARg2 CALUX Cytotox CALUX ERA CALUX ERA CALUX ERA CALUX ERA CALUX ERA CALUX PARg2 CALUX PYARg2 CALUX PYARg2 CALUX PYARg2 CALUX ERA CAL	50 50 50 50	S1 56 LOQ 02 48 LOQ 48 LOQ 790 370 LOQ 51 LOQ 100 370 LOQ 51 LOQ 100 0.3 65 LOQ 100 100 100 100 100 100 100 100 100 100 100 100 100	S2 20 L00 L00 L00 12 L00 L00 12 L00 12 L00 12 L00 12 L00 12 L00 12 L00 100 <td></td>	
2808/2018 Cytotox CALLX AR CALLX anti-AR CALLX GR CALLX GR CALLX GR CALLX GR CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PPARg2 CALLX PTO/2018 Cytotox CALLX AR CALLX CALLX CR CALLX CR CALLX PPARg2 CALLX	50	S1 56 LOQ 20 21 20 21 22 23 24	S2 20 L00 L00 12 L00 12 L00 420 310 L00 12 L00 420 310 L00 10 L00 10 L00 100 100 100 20 21 L00 20 21 L00 20 S2 L00	S3 S3 I2 LOX
2808/2018 Cytotic CALUX AR CALUX AR CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX ERa CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX PPARg2 CALUX ERa CALUX anti-AR CALUX ERa CALUX anti-AR CALUX PPARg2 CALUX PPARg2 CALUX AR CALUX anti-AR CALUX PPARg2 CALUX AR CALUX anti-AR CALUX PPARg2 CALUX AR CALUX anti-AR CALUX ERa CALUX anti-AR CALUX ERA CALUX AR CALUX	50	S1 5.6 LOQ 20 20 20 48 LOQ 79.0 370 LOQ 370 LOQ 370 LOQ 51 LOQ 100 365 LOQ LOQ L	S2 20 LOQ LOQ LOQ 12 LOQ 12 LOQ 420 310 LOQ 12 LOQ 420 310 LOQ 100 20 21 LOQ 20 20 20 S2 LOQ	S3 S3 I2 LOX

23/01/2018	\$1	S2	S3	S 4	S5	S6	S 7
Cytotox CALUX	LOQ	1.8	LOQ		LOQ	LOQ	LOQ
AR CALUX	155	LOQ	LOQ		LOQ	LOQ	LOQ
anti-AR CALUX	LOQ	4.6	LOQ		LOQ	LOQ	LOQ
ERa CALUX	0.4	1.8	0.1		0.4	0.3	0.1
GR CALUX	110	210	71		87	21	25
anti-PR CALUX	40.0	LOQ	LOQ		LOQ	LOQ	LOQ
PPARa2 CALUX	400.0	LOQ	LOQ		LOQ	LOQ	LOQ
PPARg2 CALUX	1300	LOQ	LOQ		LOQ	LOQ	LOQ
PXR CALUX	LOQ	25	12		19	LOQ	8
Nrf2 CALUX	760	180	110		77	79	51
P53 CALUX (+S9)	LOQ	****	LOQ		LOQ	LOQ	LOQ
17/04/2018	\$1	S2	S3	S4	S5	S6	S7
Cytotox CALUX	53.0	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
AR CALUX	430	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-AR CALUX	LOQ	1.1	2.6	LOQ	LOQ	1.8	LOQ
ERa CALUX	1.0	45	LOQ	LOQ	LOQ	LOQ	LOQ
GR CALUX	160	15.0	LOQ	LOQ	42.0	LOQ	50.0
anti-PR CALUX	54	LOQ	LOQ	LOQ	4.1	LOQ	LOQ
PPARa2 CALUX	140	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PPARg2 CALUX	LOQ	81	LOQ	LOQ	LOQ	LOQ	LOQ
PXR CALUX	80	100	93	LOQ	37	35	11
Nrf2 CALUX	810	320	130	LOQ	190	110	140
P53 CALUX (+S9)	570	2200	LOQ	LOQ	LOQ	LOQ	LOQ
16/07/2018	\$1	\$2	S3	\$4	S5	S6	S 7
Cytotox CALUX	25	2.8	0.7	LOQ	LOQ	LOQ	LOQ
AR CALUX	130	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
anti-AR CALUX	21	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
ERa CALUX	51	1.0	0.1	LOQ	LOQ	LOQ	LOQ
GR CALUX	130	110	48	LOQ	41	24	22
anti-PR CALUX	40	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PPARa2 CALUX	420	LOQ	20	LOQ	LOQ	LOQ	LOQ
PPARg2 CALUX	1100	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ
PXR CALUX	100	72	48	8.3	30.0	33.0	31.0
Nrf2 CALUX	740	200	170	LOQ	190	82	110
P53 CALUX (+S9)	25000	LOQ	LOQ	LOQ	1500	LOQ	LOQ

CALUX result < 1*EBT (or LOQ) 1*EBT < CALUX result < 3*EBT 3*EBT < CALUX result < 10*EBT 10*EBT < CALUX result < 100*EBT 100*EBT < CALUX result

Annex 7. LC-HRMS based non-target screening: Material, methods and results

Chemicals

Acetonitrile (ACN, HPLC grade) was purchased from Avantor Performance Materials B.V. (Deventer, NL), formic acid (FA) from Fluka Analytical (Sigma-Aldrich, Steinheim, D), the internal standards atrazine-d5 and bentazon-d6 from CDN isotopes (Pointe-Claire, Canada) and LGC Standards (Wesen, Germany), respectively. The ultrapure water used as a blank reference was produced with an Elga Purelab Chorus ultrapure water system through purification of demineralized water in (High Wycombe, UK).

7.1.1 LC-HRMS experiments

LC-HRMS/MS experiments were performed using a Vanquish HPLC system (ThermoFisher Scientific) coupled to a Tribrid Orbitrap Fusion mass spectrometer (ThermoFisher Scientific, Bremen, Germany) with an electrospray ionization source. Chromatographic separation was performed using an XBridge BEH C18 XP column (150 mm × 2.1 mm I.D., particle size 2.5 μ m) (Waters, Etten-Leur, The Netherlands) preceded by a 2.0 mm × 2.1 mm I.D. Phenomenex SecurityGuard Ultra column (Phenomenex, Torrance, USA) maintained at a temperature of 25 °C. The LC gradient went from 5% acetonitrile, 95% water and 0.05% formic acid (v/v/v) to 100% acetonitrile with 0.05% formic acid in 25 min, after which it was held constant for 4 min at a flow rate of 0.25 mL/min.

Prior to LC-HRMS analysis, the SPE extracted water samples (6667x concentrated compared to the not extracted original water samples) were diluted 100x, resulting in 66.7x concentrated samples. The internal standards bentazone-d6, atrazine-d5 and benzotriazole-d4 were added to the water samples to a final concentration of 1ug/L. Subsequently, samples were filtered using Phenex[™]-RC 15mm Syringe Filters 0.2u (Phenomenex, Torrance, USA). 100 µL of each filtered sample was analysed in triplicate. Mass calibration was performed using Pierce ESI positive and negative ion calibration solution. The vaporizer and capillary temperature were set to 300 °C, sheath, auxiliary and sweep gas to arbitrary units of 40, 10 and 5, respectively. The source voltage was 3.0 kV in the positive mode, and - 2.5kV in the negative mode respectively. The RF lens was set to 50 %. Full scan high accuracy mass spectra were acquired in the range of 50-1000 m/z with 120,000 FWHM resolution. Quadruple isolation was used for acquisition. Data dependent MS/MS acquisition was performed for the eight most intense ions detected in the full scan, using a High Collision Dissociation (HCD) energy at 35% and 15,000 FWHM resolution.

7.1.2 Data analysis

LC-HRMS raw data files were processed using Compound Discoverer 3.0 (Thermo Scientific, San Jose, USA) for peak picking and suspect screening. Suspect screening was performed using the SusDat database of the European Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances (NORMAN, <u>https://www.norman-network.com/?q=node/236</u>) consists of more than 40000 chemicals relevant for environmental monitoring, as well as the Water Framework Directive (WFD) list of priority substances (<u>http://ec.europa.eu/environment/water/water-dangersub/pri_substances.htm</u>). Searches were performed with 5 ppm mass tolerance. The processed data was exported and imported into R Studio as a .csv file for further data analysis and visualisation (R Core Team 2017). To group and characterize samples and

features, the two multivariate analysis techniques principal component analysis (PCA) and hierarchical clustering (HC) were applied. PCA was performed using the R package FactoMineR, and results visualized in graph of individuals plots using the R package factoextra. Prior to HC, data was normalized through division of feature intensities across samples by the maximum intensity of the respective feature. Both samples and features were clustered based on Euclidean distances and visualized in a heat map using the pheat-map package in R. To show differences in features induced by treatment steps, features were clustered based on their Pearson correlation using the ward D2 method. In addition, changes in features between two corresponding before and after treatment samples were illustrated in so called Volcano plots displaying the change in intensity as the log 2 fold change (log2FC) and its significance, i.e. the negative log 10-transformed p-values of features (Cui and Churchill 2003).

Results LC-HRMS NTS

Two thirds of the variance in the NTS data could be explained by the first two principal components as shown in the Scree plot.