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The ever-increasing production and use of chemicals lead to the occurrence of organic micro-pollutants (OMPs)
in drinking water sources, and consequently the need for their removal during drinking water treatment. Due to
the sheer number of OMPs,monitoring using targeted chemical analyses alone is not sufficient to assess drinking
water quality as well as changes thereof during treatment. High-resolution mass spectrometry (HRMS) based
non-target screening (NTS) as well as effect-based monitoring using bioassays are promising monitoring tools
for a more complete assessment of water quality and treatment performance. Here, we developed a strategy
that integrates data from chemical target analyses, NTS and bioassays. We applied it to the assessment of OMP
related water quality changes at three drinking water treatment pilot installations. These installations included
advanced oxidation processes, ultrafiltration in combinationwith reverse osmosis, and granular activated carbon
filtration. OMPs relevant for the drinking water sector were spiked into the water treated in these installations.
Target analyses, NTS and bioassays were performed on samples from all three installations. The NTS data was
screened for predicted and known transformation products of the spike-in compounds. In parallel, trend profiles
of NTS features were evaluated using multivariate analysis methods. Through integration of the chemical data
xymethyl, hexa; HMMM, melamine; HC, hierarchical clustering; HRMS, high-resolution mass spectrometry; NTS, non-target
osis; TFA, trifluoroacetic acid; TPPO, triphenylphosphine oxide; UF, ultra-filtration.
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with the biological effect-based results potential toxicity was accounted for during prioritization. Together, the
synergy of the three analytical methods allowed the monitoring of OMPs and transformation products, as well
as the integrative biological effects of themixture of chemicals. Through efficient analysis, visualization and inter-
pretation of complex data, the developed strategy enabled to assess water quality and the impact of water treat-
ment frommultiple perspectives. Such information could not be obtained by any of the threemethods alone. The
developed strategy therebyprovides drinkingwater companieswith an integrative tool for comprehensivewater
quality assessment.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Organic micro-pollutants (OMPs) and drinking water

With the production and use of chemicals exponentially on the rise,
the occurrence of organic micro-pollutants (OMPs) in the environment,
and consequently in drinkingwater sources, is increasing. Facilitated by
improved analytical techniques, OMPs have been detected in low con-
centrations (ng/L - μg/L) in a number of drinking water sources, both
in The Netherlands and worldwide (Kolpin et al., 2002; Verliefde et al.,
2007; Mompelat et al., 2009; Houtman et al., 2014). Drinking water
companies are faced with the challenge to adequately remove these
compounds and prevent their presence in drinking water. To gain
more insight into the OMP removal capacity of different drinking
water treatment processes, the Dutch surface water companies assess
OMP removal capacity of processes that are currently operated or
aimed to be implemented in the near future every 5 years with spike-
in pilot-scale experiments. The OMPs spiked into the treatment feeds
are selected based on presence in Dutch surface water, toxicity, avail-
able knowledge on potential effective treatment options, chemical
properties, detectability and availability.

In past pilot-scale experiments as well as in a large number of stud-
ies investigating OMP removal in different treatment processes
(Verliefde et al., 2009; Wols et al., 2013), OMP removal was typically
assessed through target analyses. However, water treatment processes
can potentially result in the formation of transformation products
(TPs) some of which have been shown to pose environmental and
human health risks similar to or greater than the parent compounds
they originate from (Belfroid et al., 1998; Sinclair and Boxall, 2003; de
Jongh et al., 2012). Target analyses of a defined number of regulated pri-
ority substances alone are therefore not sufficient to assess drinking
water quality. In particular, as target analyses do not allow distinction
between removal and transformation of a compound. Instead, compre-
hensive non-target screening (NTS) and effect-based bioassays can be
applied to detect a multitude of chemicals and their effect simulta-
neously. Such methods can support the water sector in realistically
assessing the potential human and environmental health risks of
(emerging) OMPs.

1.2. Non-target screening for comprehensive monitoring

NTS analyses based on high-resolution mass spectrometry com-
bined with liquid chromatography enable the monitoring of OMPs in
water in the ng / L range. However, the structural identification of un-
known compounds from NTS data remains challenging. The presence
of a compound in a database is often the decisive factor in the identifica-
tion of a detected feature (accurate mass – retention time pair), as a da-
tabase entry turns an “unknown unknown” into a “known unknown”
(McEachran et al., 2017; Schymanski and Williams, 2017). Based on
the database information, an accurate mass (MS1) based suspect
screening can be performed, and consecutively a fragmentation (MS2)
based similarity search against a spectral library or in silico predicted
spectra of the compound. However, TPs are only beginning to be listed
in chemical databases (Bayerisches Landesamt für Umwelt, 2018). If
transformation products are lacking in the available databases they
can be predicted on the basis of “metabolic logic” (Schollee et al.,
2015), i.e. the mass shifts indicative of transformation processes are
used to link parent compounds and TPs, and of well-known (bio) trans-
formation rules (Gao et al., 2010; Lee et al., 2017)..

Alternatively, data science methods can be used to interpret NTS
data. Thereby, water quality changes across water treatment steps can
be assessed without identification of the detected features (Schollée
et al., 2016; Schollee et al., 2018). For instance, these strategies can re-
veal shifts in polarity and mass of compounds, as well as newly formed
compounds, i.e. transformation products as a result of a specific process.
Thereby, they expose differences between the treatment steps of the
drinking water treatment, including aspects that remain elusive when
only target compounds are monitored. Furthermore, the NTS in combi-
nationwith hazard based prioritization can facilitate defining risk based
monitoring strategies as demanded by the EuropeanDrinkingWaterDi-
rective (Commision, 2015), and ultimately safeguarding of water re-
sources (Brack et al., 2019b) and drinking water quality (van Wezel
et al., under review).

1.3. Bioassays to monitor the biological effects of mixtures of chemicals

Complementary to chemical analyses, bioassays are increasingly ap-
plied for water quality monitoring to measure the combined effects of
low-level mixtures of chemicals (Brack et al., 2019a). Many biological
test systems, such as isolated receptors, cell models, tissues or small or-
ganisms, have been developed to measure effects of chemicals on ge-
neric to specific biological processes. Several of these are already
applied as bioanalytical tools for water quality (van der Oost et al.,
2017; De Baat et al., 2019), andmanymore are considered as candidate
tests. Although bioassay data cannot be used for comprehensive risk as-
sessments, observed effects can reveal the presence of one or more
chemicals causing effects in biological test systems relevant to human
health and/or the environment. As different chemicals cause different
effects, water quality monitoring requires a relevant and efficient set
of bioassays, based on health effects of water relevant chemicals
(Escher et al., 2014), environmental pressures (Boelee et al., 2019) or
expected emissions (Leclerc et al., 2019). Due to a lack of regulation, dif-
ferent sets can be selected on a case-by-case basis. Themost appropriate
approach to interpret bioassay data also differs per application. The re-
moval of positive responses, or trend analysis of repeated measure-
ments may be sufficient to evaluate the impact of a (additional) water
treatment step. However, not every positive response in a bioassay
is associated with a potential risk to human and/or environmental
health. Therefore, individual effect levels at which potential risks
cannot be excluded, so called effect-based trigger values (EBT),
need to be derived for each bioassay and for potential risks on
human and environmental health (Brand et al., 2013; Escher et al.,
2015; van der Oost et al., 2017).

1.4. Comprehensive monitoring of OMPs in drinking water treatment trains

Together, the chemical and effect based methods can potentially re-
veal the cause of an effect and the effect itself. Consequently, combining

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Schematics of pilot installations.

3A.M. Brunner et al. / Science of the Total Environment 705 (2020) 135779
these methods has the potential to improve water quality monitoring
(Altenburger et al., 2019). Here, we describe such a combined applica-
tion of target analyses, non-target and effect-based screening to com-
prehensively assess OMP related water quality changes in drinking
water treatment trains at three pilot installations that apply advanced
treatment technologies (Company A advanced oxidation (O3/H2O2-
UV/H2O2); Company B ultrafiltration (UF) followed by reverse osmosis
(RO) and Company B advanced oxidation (UV/H2O2) followed by gran-
ular activated carbon filtration (GAC)). OMP concentrations in the influ-
ent water of these pilot installations are close to their detection limit
(ng/L – μg/L) rendering assessment of removal percentages difficult.
Therefore, OMPswere spiked into the sourcewater at higher concentra-
tions. The removal of these compounds had not previously been
assessed in the running full-scale treatment plant for the separate pro-
cesses. For the NTS data analysis, we built on recent NTS work describ-
ing water quality changes in drinking and waste water treatment
(Schollee et al., 2018; Brunner et al., 2019b), and further developed
the data science tools applied there to also include effect-based bioassay
data.

The combination of target, non-target and effect-based screening
data allowed the monitoring of OMPs and transformation products,
and the comparison of changes in water quality in the different water
treatment trains. Overall, the developed strategy provides the drinking
water companies and other water quality managers with a valuable
new tool to assess novel (drinking) water treatment steps.

2. Material and methods

2.1. Selection of organic micro-pollutants for spike-in

Priority compoundswere selected based on their presence in Associ-
ation of River Water Works (RIWA) databases, research reports, the
Water Framework Directive (WFD) guideline, and substances proposed
by the water utilities. In addition, selection was based on exceedance of
the drinking water standard or target value (0.01 μg / L for genotoxic
compounds, 0.10 μg / L for other biologically active compounds and
1.00 μg / L for other anthropogenic compounds without known specific
biological activity (Mons et al., 2013)) in several years between 2011
and 2015 more than twice a year, or frequent detection in concentra-
tions above 50% of the standard or target value. Selected compounds
were further filtered for toxicity, available knowledge on potential ef-
fective drinking water treatment processes, chemical properties,
reference compounds and practical issues such as detectability
and availability. The following OMPs were selected for the spike-in:
acesulfame-K, aniline, barbital, 1H-benzotriazole, carbamazepine,
carbendazim, diatrozoic acid, diclofenac, demethenamid,
dimethomorph, furosemide, phenobarbital, gabapentin, 2,3,3,3-
tetrafluoro-2-(heptafluoropropoxy)propanoic acid (HFPO-DA = Gen-
X), glyphosate, hexa(methoxymethyl)melamine (HMMM), hydrochlo-
rothiazide, melamine, metformin, methenamine, 4-methyl-1H-benzo-
triazole, 5-methyl-1H-benzotriazole, propranolol, pyrazole, sucralose,
terbuthylazine, tetraglyme, trifluoroacetic acid (TFA), tiamulin,
triphenylphosphine oxide (TPPO), and tramadol. These are mostly in-
dustrial chemicals and pharmaceuticals but also fungicides, herbicides,
sweeteners and a contrast medium are comprised. Safe levels for
chronic oral exposure to these compounds and the resulting health-
based (provisional) guideline values for drinking water were obtained
from Baken et al. (2018) (Baken et al., 2018), and from the open data-
base of the Dutch National Institute for Public Health and the Environ-
ment (RIVM). They are included in the Supplementary Material file
SI_targets.xlsx.

Spike-in concentrations of the selected compounds were based on
the detection limit of the targetmethod, the flow rate of the installation,
dosing time and the maximum removal efficiency. For most com-
pounds, concentrations exceeded 100× the limit of quantification. Ex-
ceptions were barbital (factor 10), phenobarbital (factor 20), HFPO-DA
(factor 50). Detailed information (e.g. target concentration, feed con-
centration in the different pilots, LOQ, InChIKey, SMILES, CAS#,DTXSID)
on the spike-solution is provided in SI_Targets.xlsx.

2.2. Set-up pilot installations

Drinking water company A produces drinking water from surface
water. Water is taken from the “Afgedamde Maas” which is a tributary
of the riverMeuse. This tributary functions as a sedimentation and stor-
age basin. To reduce the phosphate concentration of the river water,
FeSO4 is dosed into the river. In Brakel the water is treated with micro
sieves after which it is transported to Bergambacht. In Bergambacht
the water is further treated with rapid sand filters from where it is
transported to the dune area. In the dune area the water infiltrates
and is abstracted after approximately 2 months. After abstraction from
the dunes, the water is softened and treated with powdered activated
carbon, aeration, and rapid sand filtration. As a final step the water is
treated with slow sand filters.

Drinking water company A considers to expand their treatment
plant with an advanced oxidation process, particularly for the removal
of OMPs. The company intends to implement this process after the
rapid sand filtration process in Bergambacht. Their pilot installation
consisted of O3/H2O2 followed by UV/H2O2. The pilot installation was
fed with rapid sand filtrate from Bergambacht (flow = 5 m3/h) to
which the OMP mixture was continuously added (50 L/h) to obtain
the target concentration (SI_Targets.xlsx). The pilot was operated for
1 h for each experiment. Two experiments were performed, one on Oc-
tober 5, 2017 and a second one on October 7, 2017 (replicates). Grab
samples from the pilot (feed tank, after O3/H2O2 and after UV/H2O2)
were collected after the total volume of the pilot was flushed at least
three times with the feed water. A schematic representation of the
pilot installation and the process conditions under which the experi-
ment was performed are shown in Fig. 1A and SI Table 1, respectively.

Drinking water company B also produces drinking water from sur-
face water, their source is IJsselmeer water. The water is abstracted
from the lake, treated with drum sieves, coagulation/sedimentation,
rapid filters, and activated carbon filters. After this pre-treatment the
water is treated in two lines (1) and (2). Line 1 consists of ultrafiltration
(UF) followed by reverse osmosis (RO). Line 2 consists of UV/H2O2
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followed by granular activated carbon (GAC) filtration from where the
water is transported and infiltrated in the dune area. After abstraction
from the dunes the water is treated with aeration, rapid filters, and UV
post-disinfection or by softening, aeration, rapid filters, and chlorine di-
oxide dosing. Thewater is thenmixedwith theUF-RO treatedwater and
distributed to the customer. To assess the robustness of different treat-
ment processes for OMP removal, two pilot installations UF-RO Fig. 1 B
and UV/H2O2 with subsequent activated carbon filtration Fig. 1C were
selected.

The UF-RO pilot was fed with pre-treated IJsselmeer water (drum
sieves, coagulation/sedimentation and rapid sand filters). The RO pilot
was fed with UF effluent in which the OMPs were dissolved to the
final target concentration. The flow of the pilot containing RO mem-
branes (Hydranautics ESPA 3, 4040, 7.9 m2) was equal to 9.7 m3/h.
The UF-RO pilot (B) was operated from September 18 to 22, 2017.
Grab samples from the pilot (influent RO, effluent RO) were collected
at T = 72 h and T = 96 h (replicates).

Pilot installation C (UV/H2O2 followed by GAC) was fed from a tank
with pre-treated IJsselmeer water (drum sieves, coagulation/sedimen-
tation and rapid sand filters) in which OMPs (target concentration) as
well as H2O2 was dosed (15 mg/L). The flow of the pilot was 18 m3/h.
After mixing the feed tank for 0.5 h, the pilot was operated for 15 min
in total for each experiment. Grab samples were collected after the vol-
ume of the UV reactor was flushed at least 5 times with the feed water.
After passing the UV/H2O2 process, the water was treated with GAC fil-
tration (EBCT = 25–30 min). GAC was obtained from a full-scale filter
that was already operated for 2 years (± 30,000–40,000 BV). Grab sam-
ples of the influent and effluent of the GAC filter were collected after ap-
proximately 9–10 BV. Experiments with pilot-installation C (UV/H2O2

followed byGAC)were performed on 4 and 5October 2017 (replicates).
The average DOC concentration of the feed water of pilot A in 2017 was
3.92 ± 0.27 mg/L (n = 54). For pilot B and C the average DOC concen-
tration in 2017 in the feed water was 3.48 ± 0.29 mg/L (n = 20, see
SI Table 2). As a result of pre-treatment, variations in DOC concentration
for the feed waters were relatively small. Although variations in DOC
can affect OMP removal, these effects were expected to be compara-
tively modest and investigating this effect was beyond the scope of
this study.

OMP removal efficiency was calculated according to Eq. (1).

R %ð Þ ¼ Cin−Cout

Cin
∙100% ð1Þ

In which: R (%) = OMP removal percentage (%), Cin = OMP influent
concentration (μg/L), Cout = OMP effluent concentration (μg/L)

If the OMP concentrationwas below the detection limit, the removal
percentage was calculated with 0.5 •detection limit (Haas and Scheff,
1990). If the “half detection limit” data were used, this was indicated
in the results (result in italics).

To determine the average OMP removal of the measured replicates,
the single OMP removal percentages need to be transformed to a logit-
scale since it then can be assumed the result follows a normal
distribution.

The transformation to a logit-scale was determined according to
Eq. (2).

R� ¼ ln
R

1−R

� �
ð2Þ

In which: R* = logit transformed value of the OMP removal R ((Cin-
Cout)/Cin).

After determination of the average of the logit transformed removal,
this value is transformed back to a percentage removal.
2.3. Target analyses

A detailed description of the fivemethods thatwere applied tomon-
itor target chemical concentrations can be found in SI 1.3 Target analy-
ses. Performance characteristics are listed in Supplemental information
(SI_targetMethods.xlsx). Target chemical concentrations were deter-
mined in both duplicates from the experimental sampling.

2.4. Non-target screening

2.4.1. Sample preparation
50 mL measuring flasks were pre-rinsed with acetone, petroleum

ether and the sample, prior to addition of internal standards (IS) to a
final concentration of 0.98 μg / L atrazine-d5, 0.85 μg / L bentazone-d6,
and 1 μg / L fenuron, chloroxuron and diuron for quality control. Next,
samples were filtered with a 0.2 μm regenerated cellulose filter. Blank
samples were prepared correspondingly, through spike-in of IS to
ultra-pure water followed by filtering. NTS analyses were performed
on one duplicate of the experimental sampling. Through filtering, each
sample was split into three separate vials which constituted the techni-
cal triplicates in the LC-HRMS analyses. 100 μL of sample were injected
into the LC-HRMS.

2.4.2. Non-target screening based on LC - HRMS
A Tribrid Orbitrap Fusion mass spectrometer (Thermo Fisher Scien-

tific, Bremen, Germany) with a heated electrospray ionization source
was connected to a Vanquish HPLC system (Thermo Fisher Scientific).
An XBridge BEH C18 XP column (150 mm × 2.1 mm I.D., particle size
2.5 μm, Waters, Etten-Leur, The Netherlands) was used in combination
with a 2.0 mm × 2.1 mm I.D. Phenomenex SecurityGuard Ultra column
(Phenomenex, Torrance, USA), at a temperature of 25 °C. The LC gradi-
ent started with 5% acetonitrile, 95% water and 0.05% formic acid (v /
v / v), increased to 100% acetonitrile, 0.05% formic acid in 25 min, and
then remained constant for 4 min. The flow rate was 0.25 mL / min.
Mass calibration was performed with ESI positive and negative ion cal-
ibration solution (Pierce) to ensure a mass error smaller than 2 ppm.
The evaporator and capillary temperature was set at 300 °C. Sheath,
auxiliary and sweep gas were set to arbitrary units of 40, 10 and 5.
The source voltage was 3.0 kV in positive mode, and − 2.5 kV in nega-
tive mode. The RF lens was set to 50%. Full scan high resolution mass
spectra were recorded from m / z 80–1300 with a resolution of
120,000 FWHM. Quadrupole isolation was used for acquisition with a
5 ppmmass window. Data dependent acquisition was performed with
High Collision Dissociation (HCD) energy of 35% and FT resolution of
15,000 FWHM. Samples were measured in triplicate. Blank samples
were run every 5–10 samples to check for carry-over and contamina-
tion, as well as signal stability of the IS compounds. Signal intensity of
the IS atrazine-d5 was used to assess potential matrix effects.

2.4.3. Data processing, analysis and interpretation
The non-target data were processed with Compound Discoverer 3.0

(Beta version, Thermo Fisher) for peak picking, componentization, and
suspect screening. An overview of the Compound Discoverer workflow
and parameters can be found in SI 1.4. The output of this is a feature list,
i.e. a table with accurate mass / retention time pairs (features) and their
intensity. The feature intensity is reported as peak area. Depending on
the statistical analysis, the “Area” (response of each technical triplicate
is reported individually) or the “Group Area” (median response of the
triplicate) output was used. Only features that were 5 times the inten-
sity of the blank were clustered in the treatment train specific heat
maps.

For the spike-in compounds included in the chemical database of the
US EPA, Chemistry Dashboard (McEachran et al., 2017), a suspect
screening was carried out with an in-house curated suspect list that
also included potential transformation products (TP) of the spike-in
compounds with a 5 ppm error tolerance, and in the case of the spike-
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in parent compounds an RT tolerance of 0.5 min. The suspect list
consisted of both known and predicted TPs, a total of 9560 entries
with 1629 unique masses, 1609 of which were within the recorded
mass range (m / z 80–1300). 120 known TPs were retrieved from the
water-relevant database STOFF-IDENT (Bayerisches Landesamt für
Umwelt, 2018) (https://www.lfu.bayern.de/stoffident/#!home) and
from data from the Bayerisches Landesamt für Umwelt, kindly supplied
by Dr. Manfred Sengl. 450 predicted TPs were based on “metabolic
logic” (Schollee, 2015), 184 on biotransformation rules from the
EAWAG BDD database (Fenner et al., 2008) and 8806 TPs were pre-
dicted with the ozonation prediction tool from Lee et al. (Lee et al.,
2017). The suspect list was generated in R based on the packages
RMassScreening (https://github.com/meowcat/RMassScreening/) and
rcdk (https://cran.r-project.org/package=rcdk), and is available in the
SI_suspectlist_TP_allSources_revised.csv. The transformation reactions
used in RMAssScreening are listed in the Supplementary Information
in SI 1.5.

The Compound Discoverer output was imported into R Studio for
further data analysis and visualization. R version 3.4.4 and R-Studio ver-
sion 1.1.463 were used for the data analysis (RStudio Team, 2015; R
Core Team, 2017). Data preprocessing in R included the application of
a retention time cut-off of 2 min, and for the separate analyses of the
three different treatment trains the removal of background features
and a RT cut-off of 2.2 min. Principal Component Analysis (PCA) was
performed on the data scaled to unit variance using the package
factoMineR (https://cran.r-project.org/package=FactoMineR) in combi-
nation with the package factoextra (https://cran.r-project.org/
package=factoextra) for visualization, and the feature “Areas”. The
PCA thus provided an overview of the differences between the samples
and treatment groups (Masia et al., 2014). After normalization of the
data through division of feature “Group Areas” across samples by the
maximum “Group Area” of the respective feature, features were clus-
tered together in a hierarchical clustering (HC) based on Pearson corre-
lations as distance matrices and theWard's minimum variance method
(Ward, 1963; Schollée et al., 2016). Thereby, treatment induced trends
in the featureswere revealed, i.e. clusters of features that decrease in in-
tensity, increase or remain the same. The first two could represent par-
ent substances and transformation products. To investigate this further,
a theoretical number of clusters X per treatment train was calculated
where

X ¼ 3 n−1ð Þ

n … number of samples (group) (Schollee et al., 2018).
Based on the hierarchical clusteringwith Pearson correlations as dis-

tance matrices, X can be used to cut the dendrogram generated by the
clustering, resulting in a table of features per cluster. Clustering results
were visualized in heat maps using the pheatmap package in R (Kolde,
2019).

2.5. Bioassays

To cover various health effects of water relevant chemicals a repre-
sentative set of bioassays was selected (Escher et al., 2014); Effect-
based measurements were performed with the Ames fluctuation test
for mutagenicity (see SI 1.6) as described previously (Heringa et al.,
2011) withminormodificationswith regard to used Salmonella strains,
and culture media, and CALUX tests for anti-androgenic activity (anti-
AR), estrogenic activity (ER), polycyclic aromatic hydrocarbons (PAHs)
and oxidative stress response (Nrf2) according to the supplier's proto-
cols (BioDetection Systems b.v., Amsterdam, The Netherlands) (Murk
et al., 1996; Sonneveld et al., 2005; van der Linden et al., 2008;
Pieterse et al., 2013). In the Ames test, Nrf2-CALUX and PAH-CALUX, re-
active toxicity-related effects can be measured. These are processes on
which many different compounds, including the spike-in target com-
pounds, can have an effect. Consequently, the respective tests can detect
awide range of compounds. The anti-AR CALUX and the ER CALUX tests,
which both measure a form of hormone disruption, were selected as in
earlier studies on the pilot-installations, effects had been found using
these tests.

Duplicates were water samples of two independent spike–in exper-
iments. Duplicates were used for all bioassays. Bioassay responses were
categorized as active and inactive for the Ames tests, CALUX responses
were benchmarked against EBTs for environmental toxicity (van der
Oost et al., 2017) due to this EBT's availability for all selected CALUX bio-
assays. Details on the selection of bioassays, experimental conditions
and data interpretation are presented elsewhere (Dingemans et al. in
preparation). Bioassay responses were determined in both duplicates.
The bioassay output was integrated with the non-target screening
data through visualization in the HC heat maps.

3. Results and discussion

3.1. OMP removal assessed with target analyses

Most OMPs are removed to a large extent (N80%) as illustrated in
Table 1 that provides an overview of the effectiveness of different treat-
ment processes (or combinations) for the dosed OMPs. OMP removal
with the separate processes is provided in the SI, Section 2.1, Table 6.
There seems to be at least one effective treatment process for almost
every OMP, an exception is melamine which shows no removal with
O3/H2O2-UV/H2O2 and relatively low removal with both UF-RO (63%)
and UV/H2O2-GAC (52%).

None of the investigated pilot installations is capable of removing all
dosed OMPs to a large extent. This implies that a combination of pro-
cesses is required for the removal of all OMPs. Drinkingwater treatment
plants in The Netherlands are designed according to the multi barrier
treatment concept, which means that there is always more than one
barrier in place for a contaminant (e.g. OMPs) and the treatment trains
comprise more technologies than those of the pilot installations. Ac-
cordingly, for OMPs that show no or moderate removal in the investi-
gated processes in the different pilots of the current study, removal
efficiency in the remaining processes of the full-scale drinking water
treatment plant should be assessed to prevent their presence in drink-
ing water. OMPs that are poorly removed (b60%) in one of the investi-
gated treatment processes are discussed in the following.

In accordance with previous studies, the benzotriazoles showed
poor removal with pilot-scale RO, but good removal with a pilot-scale
ozonation installation (Weiss et al., 2006; Albergamo et al., 2019).

As reported previously byWols et al. (2013), but in contradiction to
Macerak et al., 2018, metformin showed lower removal with UV/H2O2

(51%). These discrepancies could be caused by the different water qual-
ities used in these studies (e.g. differences in organic matter content
which could result in more/less competition with metformin removal).
Macerak et al., 2018 used deionizedwater andobservedhighmetformin
removal. Wols et al. (2013) used bothMilliQwater and pre-treated sur-
face water (Meuse water, DOC=± 5mg/L) in the experimental set-up
and observed lower metformin degradation for the Meuse water com-
pared to the MilliQ water. The current study also used pre-treated sur-
face water (DOC = 3.92 ± 0.27 mg/L (n = 54)) and thus lower
metformin removal could be expected. When UV/H2O2 was followed
by GACfiltration,metformin could be removed up to 97%. This is contra-
diction to the study of Scheurer et al., 2012who reported ineffective re-
moval of metformin with GAC filtration. However, Scheurer et al., 2012
used sodium azide to suppress biological activity in the filter while in
the current study biological activity was not inactivated. Biological deg-
radationmight thus have been responsible for metformin removal. This
is corroborated by the fact that WWTP sludge can readily remove met-
formin (Oosterhuis et al., 2013; ter Laak et al., 2014). Besides, Scheurer
et al., 2012 used virgin GAC in a small-scale filter test, while the current
study used GAC obtained from a full-scale filter already treated with
30,000–40,000 BV in the pilot experiment. In addition, the current

https://www.lfu.bayern.de/stoffident/#!home
https://github.com/meowcat/RMassScreening/
https://cran.r-project.org/package=rcdk
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=factoextra
https://cran.r-project.org/package=factoextra


Table 1
Average removal (%) with (minimal, maximal) of two replicates for the different pilots.

Average removal (%) (min;max) (n = 2)

Company A (O3/H2O2 - UV/H2O2) Company B (UF-RO) Company B (UV/H2O2-GAC)

Tiamuline 99.7 (99.7; 99.8) 99.6 (99.4; 99.7) 99.2 (99.2; 99.3)
Diatrizoic acid 81.5 (81.0; 82.0) 99.5 (99.4; 99.6) 96.3 (95.9; 96.8)
Dimethenamid 99.6 (99.6; 99.6) 99.4 (99.2; 99.5) 99.5 (99.5; 99.5)
Dimethomorph 98.2 (98.2; 98.2) 99.4 (99.2; 99.5) 99.4 (99.4; 99.4)
TPPO 95.0 (94.6; 95.4) 99.3 (99.2; 99.3) 99.5 (99.5; 99.5)
HFPO-DA 1.3 (0.0; 7.7) 98.9 (98.6; 99.2) 41.9 (40.0; 43.8)
Furosemide 99.1 (99.1; 99.1) 98.9 (98.5; 99.2) 98.4 (98.4; 98.5)
Terbuthylazine 73.9 (73.7; 74.1) 98.8 (98.5; 99.0) 98.9 (98.9; 98.9)
Gabapentine 84.7 (84.4; 85.0) 98.5 (98.5; 98.5) 97.1 (96.7; 97.5)
Acesulfame-K 96.5 (96.5; 96.6) 98.3 (98.1; 98.5) 99.5 (99.5; 99.5)
Methenamine 80.2 (78.3; 82.0) 98.2 (96.4; 99.1) 52.7 (51.9; 53.6)
Trifluoracetic acid (TFA) 1.6 (1.5; 1.6) 97.8 (97.3; 98.2) 15.9 (15.3; 16.7)
Carbamazepine 99.6 (99.6; 99.6) 97.7 (97.1; 98.2) 99.5 (99.5; 99.5)
Tramadol 98.4 (98.3; 98.5) 97.7 (97.0; 98.2) 99.5 (99.4; 99.5)
Fenobarbital 90.5 (90.0; 91.0) 96.7 (96.0; 97.3) 96.9 (96.7; 97.1)
Hydrochloorthiazide 98.0 (97.6; 98.3) 95.0 (92.8; 96.5) 99.4 (99.4; 99.4)
Diclofenac 95.6 (95.5; 95.8) 94.5 (92.9; 95.8) 94.4 (94.4; 94.4)
HMMM 86.9 (85.2; 88.5) 93.5 (93.2; 93.8) 93.3 (93.2; 93.5)
Sucralose 53.8 (53.1; 54.6) 93.4 (91.9; 94.6) 94.0 (93.9; 94.0)
Barbital 73.9 (73.6; 74.2) 93.1 (91.7; 94.3) 94.3 (94.0; 94.6)
Propranolol 99.8 (99.8; 99.8) 90.3 (86.2; 93.3) 99.7 (99.6; 99.7)
Tetraglyme 91.0 (90.8; 91.3) 87.0 (85.2; 88.6) 99.5 (99.5; 99.5)
Metformine 40.3 (40.0; 40.7) 80.3 (74.5; 85.1) 97.5 (97.0; 97.9)
Carbendazim 95.3 (95.1; 95.6) 78.5 (75.0; 81.6) 98.4 (98.3; 98.4)
Melamine 0.0 (0.0; 0.0) 62.9 (55.3; 70.0) 51.9 (51.9; 51.9)
Aniline 99.5 (99.5; 99.5) 59.1 (47.3; 70.0) 99.4 (99.4; 99.4)
4-Methyl-1H-benzotriazole 96.0 (95.8; 96.2) 42.3 (31.3; 54.3) 99.4 (99.4; 99.4)
5-Methyl-1H-benzotriazole 97.6 (97.6; 97.6) 27.3 (14.3; 45.7) 99.6 (99.6; 99.6)
Pyrazole 92.5 (92.3; 92.7) 19.3 (8.8; 37.3) 97.2 (97.2; 97.3)
1H-Benzotriazool 96.6 (96.3; 96.8) 15.6 (8.2; 27.7) 99.6 (99.6; 99.6)
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study showed lowmetformin removal with the O3/H2O2 process (27%).
This is in line with the results presented by Knol et al., 2015 (10–35%
metformin removal), but deviates from the study of Scheurer et al.,
2012 who demonstrated higher metformin removal (50–70%) with
ozone alone (batch tests). Again, these discrepancies could be the result
of different water qualities and/or experimental set-up, as the DOC
might scavenge reactive species formed by the oxidation processes,
resulting in a lower removal using surfacewater instead ofMiliQwater..

Removal of pyrazole with the different treatment technologies was
in line with previously published reports describing low removal with
RO and efficient removal with advanced oxidation and biological degra-
dation (Bertelkamp et al., 2016).

Ozonation poorly removed sucralose (±33% in theO3/H2O2 process)
in accordance with what Hollender et al. (Hollender et al., 2009) ob-
served (±31% sucralose removal) in a full-scale ozonation process of a
waste water treatment. However, this is in contrast to the study of
Bourgin et al., 2017 where O3/H2O2 pilot scale treatment resulted in
20–90% depending on the O3 and H2O2 dose applied. Again, differences
between studies can likely be explained by lower NOM or inorganic ion
content resulting in less competition between sucralose and organic
matter/inorganic ions for OH radicals Xu et al., 2016. Moreover, Lester
et al., 2014 reported that sucralose is not susceptible to direct UV pho-
tolysis and that the reaction with OH radicals is relatively slow. This
could explain the lower removal (±20%) of sucralose with the UV/
H2O2 process (following O3/H2O2) investigated in the current study.

methenamine shows low removal (40–60%) in the UV/H2O2-GAC
process. This is the first study that reports onmethenamine removal ca-
pacity for different drinking water treatment processes.

Aniline removal with the advanced oxidation pilots (O3/H2O2-UV/
H2O2 and UV/H2O2-GAC) was high in the current study (80–99%) con-
sistent with studies of Mestankova et al. (2016) and Benito et al.
(2017) who reported high reactivity of aniline towards UV, O3 and
H2O2 or combinations of the aforementioned found in lab-scale experi-
ments (Mestankova et al., 2016; Benito et al., 2017). Aniline removal
with GAC filtration could not be determined in the current study since
almost complete removal was observed after UV/H2O2 treatment. How-
ever, Suresh et al. (2012, 2013) reported effective removal of aniline
with GAC in batch sorption studies (Suresh et al., 2012; Suresh et al.,
2013). UF-RO was found to be less effective (40–60%) for aniline re-
moval in the current study, in line with the results of Guo et al., 2009
who reported b10% aniline removal with UF (lab-scale) which could
be explained by the much smaller molecular size of aniline compared
to the molecular weight cut off (MWCO) of the UF membrane. In addi-
tion, Gomez et al., 2009 demonstrated that RO (lab-scale set-up) could
bemore effective in aniline removal (79–92%), but this rejectionwill de-
crease in full-scale installations as shown by Verliefde et al. (2009).

Some OMPs show poor removal in several of the pilot installations:
Melamine is not removed well with the advanced oxidation processes,
but shows slightly better removalwhen GAC is added.With UF-ROmel-
amine removal is higher (60–80%), but still a significant percentage re-
mains in thewater. To the best of the authors' knowledge this is the first
study that reports on melamine removal capacity for different drinking
water treatment processes.

HFPO-DA does not seem susceptible to advanced oxidation tech-
niques; however, improvement in removal can be achieved when GAC
is added (pilot B). Hopkins et al., 2018 also reported that GAC/PAC
were moderately effective in HFPO-DA removal, but that desorption
from the carbon could pose a risk. This same study concluded that coag-
ulation, flocculation, sedimentation, filtration, disinfection with free
chlorine, ozonation, biofiltration, and disinfection with medium-
pressure ultraviolet (UV) lamps were ineffective in removing HFPO-
DA from the water. In addition to GAC/PAC, anion exchange also
showedmoderate HFPO-DA removal. Hopkins et al., 2018 hypothesized
that nanofiltration (NF)/reverse osmosis (RO) would be effective in
HFPO-DA removal, as confirmed in the current study (HFPO-DA re-
moval with RO N80%).

TFA does not seem susceptible to either advanced oxidation or GAC.
However, good removal of TFA is observed with RO (N80%) consistent
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with a study of Scheurer et al. (2017) (Scheurer et al., 2017). To the best
of the authors' knowledge, this is the first study that investigated TFA
removal with UV/H2O2 which was shown to be ineffective.

3.2. Non-target screening reveals trend profiles of OMPs and transformation
products

To allow monitoring beyond the spike-in compounds, in particular
of transformation products that are formed during water treatment,
NTS and bioassays were performed in addition to the target analyses.
In the NTS, analyses based on high-resolution mass spectrometry com-
bined with liquid chromatography, a total of 2821 and 1180 features
were detected, across all samples using positive and negative ionization,
respectively (see SI_allFeatures_pos_neg.xlsx for the full list of features,
including information of their monoisotopic mass, RT, signal intensities,
molecular formula and when available score from MS2 mass spectral
matching with the spectral library mzCloud). Application of a retention
time cut-off of 2 min and removal of features that were also present in
the background resulted in 927 and 310 features in positive and nega-
tive ionization mode, respectively (SI Table 7). By means of suspect
screening based on accurate mass and retention time, the non-target
data was searched for the spike-in compounds, i.e. parent compounds.
26 features could be matched to parent compounds, 20 in positive and
6 in negative ionization mode (SI Table 8). 21 of the parent compound
matches could be substantiated by comparison of the experimental
MS2 spectra with mzCloud library spectra (https://www.mzcloud.org/
) with mzCloud identity scores ranging from 73.1 to 99.8. Barbital was
detected both ionization modes. Melamine and dimethomorph had
split peaks, i.e. two features with the same accurate mass but different
RT, potentially due to tautomerism (Klotz and Askounis, 1947). The 26
matched features thus corresponded to 23 detected compounds.
Dimethenamid which is not listed among these was also detected
after manual inspection, however, not using Compound Discoverer.
Supplementary Information SI_Targets.xlsx includes a column specify-
ing the reasons for not detecting the respective spike-in compounds
with the NTS. In SI Table 8 the OMP removal rates calculated from the
NTS analyses are compared to those from the target analyses, showing
correspondence in most cases. Next, the NTS data was screened against
an in-house generated suspect list of 9560 suspects, including known
and predicted TPs of the spike-in parent compounds based on accurate
mass. Thereby, 91 features - 53 in positive and 38 in negative ionization
mode, could tentatively be assigned to one or more TPs of the suspect
list based on their accurate mass. In the positive ionization mode data,
12 features had a single TP suspect match, the other 41 features
matchedmultiple TPs of the samemass from the suspect list. In the neg-
ative ionization mode data, 2 features matched exactly one suspect list
entry while the remaining 36 could bematched tomultiple TPs. Further
confirmation of the suspect candidates was carried out after prioritiza-
tion (see below). The list of TP matches can be found in SI
suspectsMatched.xlsx.

Despite tailored suspect lists of experimentally detected and pre-
dicted OMP transformation products, over 1000 features remained un-
matched in the non-target data. These features included compounds
that had not been spiked-in, but were present in the source water,
and TPs thereof, as well as TPs of the parent compounds that had not
been included in the suspect list used for screening. The unknown fea-
tures account thus for 90% of the total feature number. However, as SI
Fig. 1 illustrates, the contribution of these features to the overall feature
intensities across samples is only around 15%. A prioritization strategy
based on tailored suspect lists can thus explain 85% of the total intensity
measured in samples, demonstrating that the majority of relevant fea-
tures can be explained. Nevertheless, as the feature intensity does not
necessarily reflect the concentration of a compound in a sample
(Sjerps et al., 2016) or risk potential (Brunner et al., 2019a), it can still
be relevant to consider low intensity features when comprehensively
assessing water quality.
To utilize all information from the NTS data for water quality assess-
ment including these unknown features, data sciencemethodswere ap-
plied to the data set. Principal Component Analysis (PCA) allowed
visualization of sample similarity (see Fig. 2 and SI_PCA_var_contrib.
xlsx for the contributions per variable, i.e. feature, for the PCA dimen-
sions. The spike-in compounds are highlighted in yellow.). The first di-
mension (Dim1) explained 31% (pos) and 25% (neg) of the variation
in the data and seemed to represent the total feature intensity, with
an increase in intensity going from left to right. Blank and UF-RO sam-
ples showing lowest intensities, clustered together on the left, Company
B samples at the x-axis, and Company A samples that had the highest
overall response on the right. The PCA thereby showed that UF-RO re-
moved most compounds, hence the clustering with the ultrapure
water blank. The second dimension (Dim2), which explained 12%
(pos) and 14% (neg) of the variation clearly separated Company A sam-
ples (red tint) from Company B samples (blue-green tint), both in pos-
itive and in negative ionization mode. The source water affected the
clustering more than the spike-in compounds and most treatment
steps, which can be explained by the fact that the spike-in compounds
only account for around 1% of the total feature intensity observed (see
SI Fig. 1).

3.3. Treatment train specific analyses per pilot installation

To assess water quality changes due to a specific drinking water
treatment train in more detail, the non-target data of the 3 different
pilot installationswere analyzed individually. In these analyses, the trip-
licate samples were grouped and a more stringent RT cut-off of 2.2 min
was applied. Only features that exceeded 5 times the intensity of the
blank in a given sample were considered to calculate feature numbers
and summed intensities. The resulting numbers of features detected in
the samples, summed feature intensities and parent compound and TP
matches are listed in Fig. 3.

To reveal trend profiles of features which can expose transformation
product formation related to treatment steps, hierarchical clustering
(HC) based on Pearson correlations was performed separately on the
features of the three datasets. To be used in the HC, a feature needed
to exceed 5 times the blank intensity in at least one of the samples of
the treatment train. The resulting clusters could represent parent com-
pounds and their transformation products and facilitate prioritization
for identification. The HC output is visualized in the heat maps shown
in Fig. 4 for positive ionization mode data. The negative ionization
data is discussed in SI 2.2.2. It showed similar clusters and trend profiles,
and can be found in SI Figs. 4, 5, 7 and 9.

In the heatmaps, samples are columns (listed horizontally), and fea-
tures are rows (clustered vertically). Normalized feature areas are rep-
resented in color ranging from blue (the least intense feature) to red
(the most intense feature). Additional feature information is displayed
in the columns left of the heat map. From left to right the columns indi-
cate: the cluster number of the feature, whether the feature matches a
suspect compound, whether it matches a parent compound, itsmolecu-
lar weight, and retention time. The trend profiles of the feature intensi-
ties, as well as molecular weight and retention time distribution of the
features per cluster are shown in SI Figs. 3, 6 and 8. To account for tox-
icity in the prioritization of features, bioassay readouts of the CALUX as-
says and AMES test were superimposed on the HC heatmaps. The assay
response of the replicate analyzed with NTS was used for the integra-
tion. In the case of differing replicate responses, this could result in over-
estimation of activity. This is of particular importance for the Ames data
where three responses differed between replicates (see SI Fig. 10). Due
to the known occurrence of false positive responses in this test system, a
sample is considered positive only if mutagenicity is observed in two in-
dependent replicates.

The heat map visualization shows that in the data from all pilot in-
stallations features that represent parent compounds (indicated in tur-
quoise in the third column from the left) cluster together in one cluster

https://www.mzcloud.org/


Fig. 2. PCA plot of features detected in (a) positive and (b) negative ionization mode. squared cosine of the observation (COS2) shows the importance of a component for a given
observation.

Fig. 3. Feature intensities (top) and numbers (bottom) after 2.2 min RT cut-off and 5× blank cut-off, with parent compound (black) and tpmatches (striped) per treatment train. positive
ionization mode data. summed feature intensities are added group areas.
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Fig. 4. Hierarchical clustering of features from pilot installation A. Company A, B. Company B ufro and C. Company B UV-GAC detected in positive ionization mode based on pearson
correlation using the ward.d2 method and max normalized feature intensities.
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(Cluster 1, indicated in the leftmost column in red. Note: cluster num-
bers are merely an aid for communication and do not have any signifi-
cance.). This cluster exhibits a substantial decrease in feature intensity
already in the first treatment step of each treatment train. The spike-
in compounds are thus overall well removed during treatment. Because
the parent compounds are also included in the TP suspect list, these are
shown in both columns. Interestingly, this cluster also exhibited many
TP suspect matches (indicated in pink in the second column from the
left). These potential TPs could indicate that the parent compounds
were already transformed in the influent or present in the sourcewater.

3.4. Sequential advanced oxidation processes at pilot installation A

HC analyses of the samples from the sequential O3/H2O2 - UV/H2O2

pilot installation at company A clustered 178 features and resulted in
9 defined clusters for data recorded in positive ionization mode
(shown in Fig. 4). Parent compounds clustered together, predominantly
in cluster 1 (indicated in the leftmost column left of the heatmap in red)
whichwas composed of compounds that were removed or transformed
by the ozone treatment. In contrast, clusters 2 (in blue), 3 (in green),
Fig. 5. Integrated results of target analyses, nts and bioassays per treatment train. omp removal
orange=40–60% removal, and red ≤40% removal.percentage of nts features that decrease in int
(%). highest precentage (blue) and lowest percentage (red) of features that decrease, and lowe
blue = negative result, orange = positive result; calux bioassays light blue = result under the
double border emphasizes differing responses between replicates.
and 6 (yellow) showed an increasing feature intensity profile after
ozonation and thusincluded substances that appeared to be generated
by ozone treatment. In particular, cluster 2 consisted of 13 features, in-
cluding the spike-in compound terbuthylazine despite its signal inten-
sity decrease, as well as 3 TP suspect matches. The suspect matches
were known and predicted TPs of the parent compounds tramadol
and terbuthylazine, and TPs of hydrochlorothiazide or furesomide that
were predicted with the O3 prediction tool (see Supplementary Mate-
rial 2.2.3 Suspect matches per treatment process for full list of suspect
candidates). The suspect matches with the known TPs Tramadol N-
Oxide and Desethylterbuthylazine could be substantiated with MS2
spectral library matches in mzCloud with respective scores of 89.6 and
95.6, resulting in a confidence level 2/3 identification. The 16 features
of cluster 6 included one O3 predicted TP of aniline withmultiple possi-
ble structures, and the spike-in compound melamine. Melamine was
not removed by ozone treatment, corroborating the target analyses.
The seeming increase in signal intensity in the NTS data, however, is
an artefact due to measurement inaccuracy. Cluster 3 consisted of 12
features of which one could be matched to an O3 predicted TP of
tiamulin. For all clusters that showed an increase in intensity there
rates from target analyses are indicated in green ≥80% removal, yellow=60–80% removal,
ensity (features – (%)), stay the same (features= (%), and increase in intensity (features+
st percentage (blue) and highest percentage (red) of features that increase. ames test light
detection limit, dark blue = result above the detection limit, orange = effect above ebt.
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was thus at least one suspect match with a TP that was predicted to be
formed by ozonation, emphasizing the usefulness of process-specific TP
prediction tools. Furthermore, thematched suspects were all TPs of par-
ent compounds that showed removal of N90%, with the exception of
terbuthylazine which had an average removal of 45.2%. This indicates
that indeedmost TPs are formed from (at least some of) the target com-
pounds that are best removed.

Compounds in clusters 3, and 8 were removed or transformed by
UV/H2O2 in the second treatment step. Cluster 8 grouped com-
pounds that were present in the influent already, and persistent
against ozonation, but removed or transformed with UV treatment,
while compounds in cluster 3 were generated by ozonation. Cluster
4 and 7 consisted of 5 and 16 features, respectively, representing
compounds that were formed by UV/H2O2 treatment. One of these
features could be matched to an O3 predicted TP of diclofenac. Clus-
ter 2 and 6 contained compounds that were generated by ozone
treatment and persistent against UV/H2O2 treatment. Clusters 5
and 9 included compounds that decreased by ozone treatment. Clus-
ter 9 increased again after UV/H2O2 treatment. The 3 features of this
cluster could not be matched to a TP suspect.

Furthermore, the addition of the bioassay responses to the non-
target screening data showed that anti-AR CALUX response seemed
to correlate with the feature intensity profiles of cluster 1. For none of
the spiked-in compounds, effects in the anti-AR CALUX have
been published. Carbendazim (0.43μg/L), dimethenamid (1.2 μg/L),
dimethomorph (1.1μg/L), terbuthylazine (0.58μg/L), and tiamulin
(2μg/L) give responses in analogous ToxCast in vitro test, however, not
at the measured spike-in concentrations (see SI Table 9). Other cluster
1 features but the spike-in OMPs are thus more likely be responsible
for the observed anti-AR response. Oxidative stress was observed across
samples from all treatment steps. This could be related to persistent
spiked or background OMPs, but also to residual oxidants from the
UV/H2O2 and or O3/H2O2 treatment. PAHs activity and mutagenicity
were no longer observed after the O3/H2O2 treatment step, but
reappeared after UV/H2O2 treatment. The features that were formed
during this treatment step could thus be responsible for the active bio-
assay responses. Based on their NTS trend profiles, i.e. present after the
second treatment step of the pilot installation, and the positive Ames
and PAH bioassay read-out, the features of clusters 4, 7 and 9 were
therefore categorized as potentially harmful transformation products
and therefore prioritized for identification (n=24). Thismeant a 6× re-
duction in the number of features that needed to be identified. Only one
of these features had a TP suspect match, namely an O3 predicted TP of
diclofenac. Due to a lack of an MS2 spectrum, the feature could not be
confirmed any further. The prioritized features are likelyUVTPs of back-
ground OMPs and/or of ozonation TPs of the spike-in compounds,
which we did not expect to find in chemical compound databases. As
the spectral quality of the MS2 spectra of these features was low, iden-
tification of sub-structures based on spectral similarity with known
compounds was not successful either. Prediction tools for UV induced
processes could potentially improve the identification of these un-
knowns in the future.

3.5. Combination of UF and RO removes most compounds at plant B

For the UF-RO pilot installation at company B, visual inspection
revealed that 2 clusters (rather than the theoretically expected 2) de-
scribed the trend profiles of the 131 and 68 features detected in pos-
itive and negative ionization mode, respectively (see Fig. 3B and SI
Figs. 4, 6 and 7). Again, parent compounds clustered together, in
cluster 1, together with the majority of features which all were re-
moved or transformed by the RO treatment. The second cluster
contained merely 6 features that increased through RO treatment
likely as a result of the increased salt concentration and conse-
quently signal suppression (SI Fig. 6). One of these 6 features could
be matched to three suspects of the same mass. These were
generated by the O3 prediction software. Interestingly, features in
this cluster had smaller molecular weight but higher retention
times than those of cluster 1 (SI Fig. 6). None of the cluster 2 com-
pounds resulted in an active response in any of the bioassays tested.
A further identification of these compounds might thus not be criti-
cal, presuming that the selected bioassays cover the relevant toxico-
logical endpoints.
3.6. Advanced oxidation followed by granular activated carbon treatment
at plant B

The second pilot installation at company B combined UV/H2O2 and
GAC and resulted in 176 features after RT cut-off and blank subtraction.
Themultiple treatment steps and resulting samples lead to a theoretical
maximum of 27 clusters which upon visual inspection of the trend pro-
files of each cluster could be reduced to 6 bigger clusters for a clearer
picture (Fig. 3C and SI Fig. 8). Cluster 1 contained parent compounds
and other compounds that decreased due to the treatment. The 15 fea-
tures of cluster 6 showed an increase in intensity after UV/H2O2 and are
thus likely to be UV/H2O2 transformation products. Two of the features
could bematched to O3 predicted TPs of Hydrochlorothiazide or Furose-
mide (see Supplementary Material 2.2.3.4), which are both target com-
pounds that showed good removal (N95%) in the target analyses.
Clusters 2 and 5 consisted of 10 and 17 features, respectively, which
based on their intensity profiles are likely transformation products
that originated in the buffer tank before the GAC and during the GAC.
None of these features had a TP suspect match, emphasizing the need
for better prediction of the biotic transformation processes that occur
during drinking water treatment. Cluster 3 consisted of 23 features
that were persistent or increased in the UV/H2O2 treatment, but
removed by GAC. Among these were 3 TP suspect matches, namely
O3 predicted TPs of aniline, diclofenac and terbuthylazine, which
are spike-in target compounds that showed average removal rates
of 99.4%, 94.4 and 87.8%, respectively. Based on a spectral match
with mzCloud, the latter feature could be identified as
desethylterbuthylazine. Cluster 4 contained substances that increased
continuously during the treatment steps, but were removed by GAC.
Similar clusters could be distinguished in the negative ionization data,
with parent compounds detected in cluster 3. Interestingly, the features
that were removed most, i.e. cluster 1 (pos) and cluster 3 (neg) exhib-
ited later retention times than the other features, including those of
the respective clusters, suggesting that the polarity of a compound af-
fects the UV removal rates in line with Kusic et al. (SI Fig. 8, (Kušić
et al., 2009)).

Regarding potential toxicity indicated by the bioassays, positive re-
sponses in the Ames testwere observed across all treatment steps albeit
not in both replicates. As two positive responses are needed for a posi-
tive result, activated carbon treatment does seem to remove mutagenic
compounds. PAH activity was persistent through UV treatment, but
seemed to be removed by the storage step prior to GAC filtration. Nrf2
activity was induced by UV treatment and removed by GAC. The Nrf2
profile thus matched the features of cluster 3, consisting of UV-
treatment induced TPs that are removed by GAC (see above).

Integration of the NTS feature intensity trend profiles and the bioas-
say data, i.e. the positive response in the AMES test, thus resulted in the
prioritization of the features detected in clusters 2 and 5 (n = 27).
Thereby, a 4× reduction of features that need to be identified could be
achieved. Identified OMPs / TPs could then be assessed regarding their
potential to account for the effect-based responses. The prioritized fea-
tures are likely TPs formed through biotic processes and might be re-
sponsible for the mutagenicity observed in the AMES test. The lack of
TP suspect matches in combination with the fact that these features
might still be TPs and consequently missing from chemical compound
databases, prevented the identification of these unknowns within the
scope of the project.
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3.7. Assessment of treatment performance through integration of target
analyses, NTS and bioassays

To investigate whether integration of results from the three analysis
techniques affected treatment performance assessment, the results of
target analyses, NTS and bioassays were combined in Fig. 5. Despite
few substances (the benzotriazoles, pyrazole and aniline) that exhibited
removal b20% - 60%, UF-RO showed high average OMP removal. This
corresponded to the NTS results, which showed that N95% of the de-
tected features decreased in intensity following UF-RO. Accordingly,
effect-based methods showed no measured effects above the EBT for
all CALUX bioassay investigated and no mutagenic activity. However,
roughly 5% of the features increased in intensity. This would possibly
be caused by the salt concentration, which is higher in UF-RO influent
than in effluent. As a result of the matrix effect a number of substances
may not be detectable in the influent, but can be detected in the effluent
due to the lower salt concentration. Though, based on the IS signal in-
tensities, no matrix effects were observed.

The O3/H2O2-UV/H2O2 process had an average OMP removal of 95%.
This process combination resulted in a lower percentage of features that
decreased in intensity (61.6%) than the UV/H2O2-GAC process. 18.5% of
the feature intensities remained the same and 19.7% increased. For this
process combination, an effect above the EBT could also be observed for
Nrf2 activity and the AMES test was positive. As in practice the O3/H2O2

- UV/H2O2 process is often followed by activated carbon filtration and
dune infiltration, it is expected that these processes remove (part of)
the OMPs and/or transformation products that cause the bioassay re-
sponse, as seen with UV/H2O2 followed by GAC in pilot installation C.

UV/H2O2-GAC removed around 65% of features, 17% of the feature
intensities remained the same and 15% increased. No effects above the
EBT were observed for the samples collected after UV/H2O2-GAC.

4. Conclusions and outlook

4.1. Conclusions for the drinking water treatments studied

In the studied pilot installations at Company A and B, most OMPs are
removed to a large extent (N80%). Moreover, there seems to be at least
one effective treatment process for almost every OMP exceptmelamine.
None of the investigated pilot installations is capable of removing all
dosed OMPs to a large extent which implies that always a combination
of processes is required. To the best of the authors' knowledge, removal
for some OMPs (e.g. methenamine, melamine, TFA) was described for
the first time in this study.

In drinking water treatment, high OMP removal rates in combina-
tion with minimal transformation product formation and absence of
positive bioassay responses are sought after. Yet, the formation of trans-
formation products does not necessarily have to be problematic, as long
as these are not harmful to human health. In theory, if the selected bio-
assays cover the complete range of human health risks and no positive
response is measured above the EBT, the effect of detected transforma-
tion products can be presumednegligible. However, to date EBTs are not
available for all bioassays. Furthermore, the selected bioassays do not
cover all relevant biological effects in humans, nor correct for processes
associatedwith the exposure in a human body (Dingemans et al., 2019).
Prioritizing the treatment processes is therefore challenging, in particu-
lar as the conditions investigated in this study were limited to one type
of water and one experiment per year for each process. In addition,
more polar substances may not have been monitored in the NTS and
bioassays (see below). Nevertheless, based on the integrated results
from the target analyses, NTS and bioassays it could be concluded that
all three pilot installations performed well. In the next 5-year cycle of
the assessment of drinkingwater treatment processes by the Dutch sur-
facewater companies, it will be interesting to further investigate the ef-
fect of the source water quality on the OMP removal and TP formation
capacity of the studied treatment processes, as well as the causes of
certain bioassay responses, which might first require laboratory exper-
iments under controlled conditions.

4.2. Synergy of the three methods

To investigate the complementarity of the three analysis techniques,
the output was compared for the different treatment lines. The three
techniquesmeasure different parameters, so a strict (linear) correlation
might not be expected. Nevertheless the following aspects were
correlated.

First, the reduction of the summed feature intensities from the NTS
data (Fig. 3) was compared to the average removal of the target com-
pounds (Table 1 and Fig. 5). The comparison showed that the removal
of the spike-in compounds (95–98.4% depending on the pilot installa-
tion) is much greater than the decrease in NTS feature intensities (2 to
5-fold). Despite the fact that the ion count MS response is not directly
linked to the concentration, this suggested that the persistence of
other OMPs from the sourcewater and/or the formation of TPs were re-
sponsible for the higher response compared to the removal of spike-in
parents quantified with the target approach. This is especially evident
for the pilot installations using advanced oxidation processes. These
are known to result in the formation of TPs. The comparison of target
and NTS analyses thus indicates that with a better quantification and
identification of the NTS results, the combination of techniques is better
capable to define the chemical water composition as awhole andmakes
the differentiation of physical separation and chemical oxidation tech-
niques more pronounced in the favor of physical techniques.

Second, a comparison of the target analysis and bioassay results (SI
Fig. 10) showed a similar picture. The strong removal of the spike-in
compounds was only reflected in the loss of the anti-AR CALUX test re-
sponse, however, the other bioassay response patterns did not correlate
to what was seen with the target analyses. Corresponding to what was
seen with the NTS analyses, other persistent background OMPs and/or
TPs that are formed by the different treatment steps seemed to be re-
sponsible for the bioassay results.

Third, a comparison of the bioassay and the NTS results showed that
the correlation between these two techniques is stronger than for the
spike-in target compounds, indicating that a NTS gives a better repre-
sentation of the water quality than a series of spiked target compounds.

Furthermore, a prioritization approach was developed in which in-
formation from the feature intensity trend profiles across the treatment
steps was combined with the bioassay readouts to select features that
needed to be identified. Thereby, focus was on features that were rele-
vant to human and environmental health, and the number of features
that needed to be identified could be decreased significantly, saving
time and labor.

Overall, we have tested three different analytical representations of
water quality and measured it along 3 different treatment trains using
quantitative target analysis, comprehensive NTS to cover a wider
range of compounds and effect-based bioassays that can also detect
mixture-toxicity of unknown compounds. The results show that there
is correlation between the different approaches, but that there are also
differences observed. Target screening is quantitative, but does not nec-
essarily reflect the total chemical load nor the effects. NTS gives a better,
butmerely semi-quantitative representation of thewater quality, while
the bioassays reflect the combined biological activity of the mixtures of
chemicals in water samples, which is lacking in the case of target anal-
yses and NTS, but cannot be directly linked to individual or groups of
chemicals. Bioassays can thus be used to evaluate the potential of
water treatments to remove chemical hazards. The comparative assess-
ment of treatments with bioassay readouts can indicate a risk to envi-
ronmental or human health, and/or water treatment problems and
support prioritization. In the absence of a positive bioassay readout, fur-
ther identification of unknowns can be renounced, thereby
circumventing the challenges in identifying unknown unknowns.
Looking at water quality and changes due to treatment using these



Table 2
Complementation of performances of target analyses, nts and bioassays.

Target analyses Non-target screening Bioassays
Quantitative analyses of chemicals Yes No No
Quantitative analyses of effects No No Yes
Very polar substances Yes Not possible with RP C18 (optimization needed) Not possible with SPE extraction (optimization needed)
TP No Yes Yes
Risk of unknowns No No Yes
Identification of unknowns No Yes No
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methods, enables us to gain more insight in what is actually happening
to water quality during the different treatment steps.

Despite the additional information that NTS and bioassays provide,
target analysis is still required for quantitative monitoring of regulated
compounds (European Commission, 1998), as well as for the analysis
of specific compounds such as persistent and mobile organic chemicals
(PMOCs). NTS is typically based on RP chromatography and thus not
suitable for detecting very polar substances (see Table 2). Hydrophilic
interaction liquid chromatography (HILIC) can alleviate the problem.
However, analysis time and costs double when RP and HILIC are both
performed on the same samples. Similarly, sample pre-treatment used
for effect-based monitoring that consists of a solid phase extraction
(SPE) can result in loss of highly polar compounds. Vacuum assisted
evaporative concentration seems a promising alternative concentration
method (Schollee et al., 2018; Mechelke et al., 2019).

Overall, none of the methods alone can provide a complete picture.
Their synergistic integration supports the choice of using them in com-
bination. Eventually, the more comprehensive the analytics the more
comprehensive will be our view of the chemical water quality and the
better the assessment of drinking water treatment performance.
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