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ABSTRACT
The current practice used to evaluate broadleaf weed cover in 
turfgrass is visual assessment, which is time consuming and often 
leads to inconsistencies among evaluators. In this study, we inves
tigated the effectiveness of constructing Random Forest models 
(RF), either pixel-, object-based (OBIA) or a combination of both to 
detect and quantify broadleaf weed cover. High resolution multi
spectral images were captured of 136 turfgrass plots, seeded with 
five species of Festuca L. and overseeded with either clover 
(Trifolium repens L.), daisy (Bellis perennis L.), yarrow (Achillea mill
efolium L.), or a mixture of all three weeds. Ground measurements 
of vegetation cover and bare soil were taken with a point quadrat 
and digital image analysis. Weeds were detected with 99% accuracy 
by OBIA, followed by the combined approach (98%) and Pixel- 
based approach (93%). Accuracy at distinguishing among weed 
species was somewhat lower (89%, 81% and 90%, respectively), 
with yarrow contributing most to the decrease in accuracy. The 
predictions based on ground measurements were further com
pared to field measurements. For both soil and weed classification, 
models that used shape features (OBIA and combined) resulted in 
better agreement with field measurements compared to Pixel- 
based classifications. Our study suggests that broadleaf weed 
cover comprised of species such as clover and daisy can be accu
rately quantified with high resolution multispectral images; how
ever, quantifying yarrow cover remains challenging.
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1. Introduction

The presence of weeds disrupts the playing quality and aesthetic appearance of turfgrass areas 
(Larsen, Kristoffersen, and Fischer 2004; McCarthy and Murphy 1994; McElroy and Martins 
2013). Since the development of selective herbicides such as 2,4-D (2,4-dichlorophenoxyacetic 
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acid) (Marth and Mitchell 1944), herbicides have become the main tool used by managers to 
control weeds in turfgrass (Dahl Jensen et al. 2017; Hatcher and Froud-Williams ; Heap 2014; 
McElroy and Martins 2013).

The European Union actively promotes the use of alternative non-chemical products or 
techniques to control weeds (European Parliament 2009) because of potential health risks 
associated with exposure to herbicides (Kim, Kabir, and Jahan 2017), environmental 
concerns (Aktar, Sengupta, and Chowdhury 2009) and the increasing risk of herbicide 
resistance due to overuse (De Prado and Franco 2004). Turfgrass managers are encour
aged to adopt integrated pest management (IPM) approaches to reduce the input of 
herbicides (Busey 2003). However, a lack of established weed treatment thresholds, and 
the absence of time efficient, low-cost alternative control methods limit the ability of 
turfgrass managers to follow clear IPM protocols (Latimer et al. 1996). Management 
practices such as increasing mowing heights and nitrogen fertilization enhance the 
competitiveness of turfgrass against weeds (Voight, Fermanian, and Haley 2001), but 
full weed suppression generally requires the use of herbicides (Busey 2003).

Remote sensing tools used in precision agriculture could be designed to detect and 
treat localized high weed densities in turfgrass, thereby reducing the overall herbicide 
loads required to control weeds (Zhang and Kovacs 2012). In addition to reducing 
herbicide use on turfgrass areas, automated weed detection systems could also help 
turfgrass breeders accurately assess the competitiveness of grasses against weeds. 
Currently, turfgrass breeders typically use visual scores to assess turfgrass quality or 
weed cover (Bunderson et al. 2009; Kaur et al. 2016; National Turfgrass Evaluation 
Program 2020). However, visual scoring is subjective, time consuming, and can be incon
sistent over time and amongst evaluators. As a result, the reproducibility of such data has 
been questioned (Horst, Engelke, and Meyers 1984; Leinauer et al. 2014; Trenholm, 
Carrow, and Duncan 1999). Regardless, in the absence of high throughput alternatives, 
breeders and turfgrass scientists still rely on visual assessments to quantify weed cover 
and turfgrass quality.

Digital image analysis has been adopted by some turfgrass scientists to quantify 
vegetation cover and turfgrass quality. High values obtained from dark green colour 
index (DGCI) analysis correlate strongly to high chlorophyll content and genetically 
desirable dark green colour of cultivars (Karcher and Richardson 2013). This technology 
can readily distinguish vegetation from soil but cannot discriminate between desirable 
plants and weeds.

In situ strategies to objectively separate vegetation cover includes the use of point- 
based reflectance data collected by hand-held spectroradiometers. This method has been 
successfully used to distinguish two grassy weed species, dallisgrass (Paspalum dilatatum 
Poir.) and southern crabgrass (Digitaria ciliaris (Retz.) Koeler), and two broadleaf weed 
species, namely virginia buttonweed (Diodia virginiana L.) and eclipta (Eclipta prostrata (L.) 
L.), from a variety of warm and cool season turfgrasses (Hutto et al. 2006). However, this 
procedure is labour intensive and requires expensive equipment to collect the hyper
spectral data. An additional disadvantage is that spectroradiometry measurements are 
point observations, which cannot be used to map spatial distribution of weeds. Remotely 
sensed data may offer a solution to these limitations by providing an empirical, cost- 
effective and reliable source of data that could detect and distinguish weeds from 
turfgrass, and map their spatial distribution. In recent years, the development and 
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application of novel algorithms to analyse remotely sensed imagery in combination with 
increased computational power and ease of data acquisition via unmanned aerial vehi
cles, has led to considerable advances in the use of remote sensing techniques (Ma et al. 
2015; Gómez, White, and Wulder 2016; Mulla 2013). Remote sensing is used in a large 
variety of applications at spatial scales ranging from individual plants to fields. 
Examples include the estimation of plant-specific parameters such as leaf area index, 
chlorophyll content, and canopy cover (Roosjen et al. 2018; Yang et al. 2017), and the 
assessment of characteristics such as ground cover, vegetation type, and drought stress, 
to name a few (Gómez, White, and Wulder 2016; Nijp et al. 2019; Olmstead et al. 2004).

Using remotely sensed imagery followed by colour modelling, Tang et al. (2016) were 
able to identify weed-covered areas in crop rows of agricultural fields with 92% overall 
accuracy (OA). While we acknowledge that OA provides a limited perspective on classi
fication accuracy, it can be used for approximate comparisons (Alberg et al. 2004). Huang 
et al. (2018) demonstrated how remote sensing tools could provide a time and labour- 
saving alternative to ground collected spectral reflectance data or digital image analysis 
for the assessment of weed density in agricultural settings. In agricultural studies, hyper
spectral radiometry and multispectral aerial imagery have been successfully used to 
quantify johnsongrass (Sorghum halepense (L.) Pers.), which is also a problematic turfgrass 
weed (Thorp and Tian 2004). Yu et al. (2020) tested the performance of deep convolu
tional neural networks to detect a variety of grassy weeds, including crabgrass (Digitaria 
spp.), in a bermudagrass sward, yielding high overall precision (>93% of grassy weed 
species). However, detection performance was dependent on the algorithm used and 
decreased considerably with reduced abundances of weeds likely caused by pixel mixing 
resulting in classification error (Yu et al. 2020; Hsieh, Lee, and Chen 2001).

Other approaches used to separate and map different types of vegetation include 
utilizing contextual information derived from object-based image analysis (OBIA), which 
may improve the accuracy of discerning among vegetation classes of interest beyond 
pixel-based reflectance patterns (Blaschke et al. 2014). One example was the detection of 
bermudagrass (Cynodon dactylon (L.) Pers.) in vineyards using multispectral aerial images 
and OBIA (Jiménez-Brenes et al. 2019). Given that spectral characteristics of weeds and 
grasses differ very little whereas their shapes and texture can vary greatly (Weis et al. 
2009), OBIA shows potential for accurate detection of broadleaf weeds in turfgrass. One 
challenge of detecting broadleaf weeds in turfgrass is the small size of some species, 
depending on their growth stage.

Currently, no reliable, affordable methods based on digital imagery exist to detect, 
quantify and map broadleaf weed cover in turfgrass areas with a high degree of spatial 
resolution. Research is needed to assess the usefulness of OBIA or pixel-based classifica
tion in detecting and quantifying broadleaf weeds in closely mowed turfgrass settings 
wherein differences in shape and spectral characteristics among species are minute. The 
objective of our study was to investigate the effectiveness of OBIA- and pixel-based 
classification derived from multispectral imagery at distinguishing among broadleaf 
weeds, grasses and soil. To that end, we compared the performance of OBIA and pixel- 
based classification methods using high-resolution imagery collected in a controlled field 
experiment that included five species of Festuca and three common European broadleaf 
weed species.

INTERNATIONAL JOURNAL OF REMOTE SENSING 8037



2. Materials and methods

2.1. Field trial

To explore the potential of using remote sensing techniques to distinguish and map 
percentage cover of weeds, grass and soil, we collected remotely sensed imagery data 
from a field experiment conducted at the Barenbrug Turfgrass Research Station in 
Wolfheze, The Netherlands (52°00ʹN, 5°47ʹE). The soil consisted of 79% sand, 12% silt 
and 3% clay, 6.4% organic matter and had a pH of 5 in the upper 15 cm of the soil profile. 
The study area was located within the controlled traffic region (CTR) of Deelen Airport in 
Arnhem, The Netherlands (52°03ʹN, 5°52ʹE). The experiment was initiated to investigate 
the competitiveness of fescue cultivars (sown on 13 July 2018), against three common turf 
weeds that were sown on 27 July 2018.

Treatments included six Festuca cultivars, namely Chewings fescue [Festuca rubra 
L. spp. fallax (Thuill.) Nyman ‘Musica’], hard fescue (Festuca brevipila Tracey ‘Mentor’), 
slender creeping red fescue [Festuca rubra L. ssp. littoralis (G. Mey.) Auquier ‘Samanta’], 
strong creeping red fescue (Festuca rubra L. rubra ‘Barpearl’ and ‘Barisse’), and tall fescue 
[Schedonorus arundinaceus (Schreb.) Dumort., nom. cons. ‘Melyane’]. With the exception 
of grass controls, all plots sown with grass were oversown with weed treatments including 
either clover, daisy, yarrow or a mixture of all three weed species. The experiment 
included six cultivars oversown with weed seeds, six grass controls (grass cultivars only) 
and four weed controls (weed seeds only) All treatments were replicated four times. The 
individual plots measured 1.5 × 1.5 m and were arranged in a randomized complete block 
design.

Fescue cultivars were sown at a density of 20,150 seeds per m2, following guidelines by 
Beard (1973) and weeds were sown at a density of 6,200 seeds per m2. Granular fertilizer 
(NPK 12–10-18, Arm, Eurosolids, Westmaas, The Netherlands) was applied to the plots 28, 
42, 56 and 72 days after sowing (DAS) the grass seeds at a rate of 200 kg ha−1. The field 
was rolled 21 DAS and mowed for the first time at 20 mm. From 28 DAS onwards, the field 
was mowed twice per week with a Jacobson TR3 reel mower (TR3, Jacobson, Racine, 
United States) at a cutting height of 15 mm, with clippings returned. We achieved uniform 
establishment of grasses and weeds 82 DAS. Before data collection dew and clippings 
were removed with a hand blower.

2.2. Data collection

Percent weed and vegetation cover of 136 experimental plots was measured 84 DAS. 
To determine the percentage of each plot covered by weeds (i.e. weed cover), a point 
quadrat frame was constructed with wires spaced 10 cm apart creating a mesh with 
100 intersections (Laycock 1980). The frame was placed in the middle of each plot and 
presence or absence of weeds underneath each intersection was recorded on 
3 October 2018. Similar methods were used by Gaussoin and Branham (1989) and 
Proctor, Weisenberger, and Reicher (2015). On the same day, total vegetation cover 
(i.e. weeds and grasses) of each plot was determined by photographing them using 
a lightbox. The custom-made lightbox was a 60 × 50 × 50 cm metal box with a hole 
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on the top large enough to insert a digital camera. Four lamps (5000 k colour and 450 
lumen) were arranged inside the lightbox to produce consistent lighting conditions 
during image capturing, similar to methods used by (Karcher and Richardson 2013).

Images were taken with the digital camera (Canon Power shot SX 200 IS, Canon, Tokyo, 
Japan). Manual settings used were ISO 200, Aperture 2.6 and shutter speed 1/60 s, which 
provided the highest image quality in combination with the lightbox. The images were 
processed using the software Turf Analyser (Turf Analyzer 2018), which applies a green 
pixel recognition algorithm to calculate the percentage of green vegetation in images. To 
determine non-vegetation cover (i.e. bare soil) for each plot, we subtracted the green 
pixels computed by Turf Analyser from the total pixels.

Weed cover measurements obtained with the point quadrat method and bare soil 
measurements obtained from the lightbox images and the Turf Analyser methods are 
referred to as ‘observed data.’ The observed data can be considered the quantitative 
industry standard, which are recorded on the ground. The following sections describe 
a new proposed methodology, which will be referred to as ‘predicted data’ using an 
airborne camera system to capture multispectral images and analysis by random 
forest models (RF classification) to determine weed cover and percentage bare soil.

Multispectral images of the field experiment were collected with a Parrot Sequoia+ 
camera (Parrot Sequoia+, Parrot, Paris, France). The camera collected images of 1280 × 960 
pixels at four spectral bands: green (550 nm), red (660 nm), red edge (735 nm), and near 
infrared (NIR, 790 nm). In the field, prior to the image collection, calibration images were 
taken of a grey reference panel (Parrot Sequoia Calibration Target, Parrot, Paris, France) 
with known reflectance values (green: 18.4%, red: 19.7%, red edge: 22.7%, NIR: 27.6%) at 
the same spectral bands as the camera. To accurately geo-reference the images, 30 ground 
control points (GCPs) were placed in the field and their GPS coordinates measured with 
a Real Time Kinematic unit (HiPerV, Topcon, Tokyo, Japan), which has a horizontal and 
vertical accuracy of 5 mm + 0.5 ppm and 10 mm + 0.8 ppm, respectively.

The sequoia camera is designed to be used with an unmanned aerial vehicle (UAV). 
Because our study site was located in CTR of Deelen Airport, permission to fly a UAV was 
not obtained at the time of image acquisition. Therefore, the camera was dismounted 
from a set-up with a UAV and attached to a three-metre pole with the downwelling light 
sensor pointing upward to the sky and the camera towards the ground. Both sensor and 
camera were undisturbed by shade and were positioned parallel to the ground simulating 
the original UAV set-up. The pole itself was attached to a platform four-wheeled vehicle 
which was manually pushed across the research area to take images from 2.5 m above 
ground level (AGL), resulting in a ground sample distance (GSD) of 2.8 mm/pixel. Images 
were collected every two seconds with a forward and sideward overlap of approximately 
95% and 80%, respectively, resulting in a uniform coverage of the study area. The images 
were taken under partially clouded conditions on 3 October, at 10 am (CEST). A total of 
807 images were collected from the experimental area. The internal GPS of the camera 
stored the coordinates from which each image was taken. After data collection, we began 
image processing following the workflow outlined in Figure 1, which will be explained in 
more detail in the following sections.

INTERNATIONAL JOURNAL OF REMOTE SENSING 8039



Figure 1. Project workflow from constructing object-based image analysis (OBIA), pixel based and 
combined models to classify vegetation cover. Rectangles indicate processes and parallelograms show 
products. The figure lists all steps from data collection (field measurements and multispectral image 
collection) to construction of the models and final comparisons between model data and ground 
measurements.
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2.3. Orthomosaic creation

The multispectral images obtained were used to create an orthomosaic, using AgiSoft 
Metashape version 1.5.2 (AgiSoft LLC, St. Petersburg, Russia). An orthomosaic is a large 
image that is created by combining many georeferenced small images (Brown 1992; 
Laganiere 2000). First, pixel values of all four bands were calibrated using the measure
ment of the grey reference panel. The images were subsequently aligned at the highest 
accuracy setting using GPS data of the images and the GCPs. A dense point cloud was 
built at medium quality-setting without depth filtering. From this, an orthomosaic contain
ing the four spectral bands was constructed with a ground pixel size of 3 mm.

2.4. Othomosaic segmentation

The orthomosaic image was segmented in GRASS GIS 7.4.4 (GRASS Development Team 
2017). Image segmentation groups adjacent pixels that are similar into segments, which 
are referred to as objects. The segmentation algorithm was driven by two parameters: 1) 
the minimal segment size, which is the minimum number of pixels that each segment can 
comprise and 2) a similarity parameter, which describes how similar pixels should be 
before they are assigned to a segment. For the segmentation process of the orthomosaic, 
we used a minimum segment size of 10 pixels and a similarity threshold of 0.025, 
respectively. After testing several combinations of these parameters, these values gave 
the best segmentation results. After segmentation of the orthomosaic, 1022 segments 
were manually labelled as grass (referred to as ‘grass’), no vegetation cover (referred to as 
‘soil’) or weed species (referred to as either ‘clover,’ or ‘daisy,’ or ‘yarrow’) (Table 1).

2.5. Random forest models to classify vegetation

For our study we used RF classifications to sort vegetation, which are frequently used to 
categorize remotely sensed imagery, and other than the traditional Maximum Likelihood 
classification, do not rely on data distribution assumptions (Brodley and Friedl 1997; Nitze, 
Schulthess, and Asche 2012). Random forest models tend to classify weeds better than 
alternatives and have been used to successfully detect weeds, such as Camomile 
(Chamaemelum nobile L.) and Thistle (Cirsium arvense L.), in aerial images of agricultural 
fields sown with oats (Gašparović et al. 2020). For RF classification, training data are 

Table 1. Number of annotated segments 
and pixels within each segment, sepa
rated by vegetation class. Segments were 
selected from an orthoimage of a field 
trial. Data from annotated segments 
were extracted to create the training 
data for vegetation classification models.

Class Segments Pixels

Clover 295 6964
Daisy 196 4968
Grass 167 502572
Soil 227 39746
Yarrow 137 3975
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randomly selected, followed by a decision tree procedure to make predictions (Belgiu and 
Drăgu 2016; Breiman 2001). Our RF classifications were implemented in the R package 
‘ranger’ (Wright and Ziegler 2017).

Training data for RF classifications were constructed by extracting shape, texture, and 
spectral features from the labelled segments within the orthomosaic (Table 2). The 
training data were used to construct three types of RF classifications to classify vegetation 
including (1) a pixel-based classification (referred to as ‘Pixel classification’), (2) an ‘OBIA’ 
classification and (3) a combination of OBIA and Pixel-based classifications (referred to as 
‘combined classification’). We use ‘RF classifications’ throughout the manuscript as 
a hypernym for the Pixel-, OBIA- and Combined classifications.

For the Pixel-based classifications, pixel values of four spectral bands (i.e. green, red, 
red-edge and NIR of all pixels) within each segment were extracted. Neither textural nor 
shape features were used. For the object-based classifications, shape and texture features 
were calculated within each segment. This resulted in a total of 36 features (8 texture 
features x 4 bands + 4 shape features) for each segment. In the object-based classifica
tions, average spectral characteristics were calculated for each segment. Lastly, the 
combined classifications were developed using the same 36 shape and textural features 
as for the OBIA classifications and the spectral information of the four bands of each pixel 
(following the Pixel classifications) within each segment. Therefore, in the combined 
classifications, all pixels within a segment had identical object features, but had different 
spectral characteristics.

Table 2. Parameters and features used to construct the object based (OBIA), Pixel based, and 
combined model. Training data for the models were generated from labelled segments of an ortho
image of a field trial.

Parameter Feature Description

Shape Area Area of each segment
Compactness Compactness of each segment
Fractal dimension Statistical index, that provides a ratio how segment boundaries change with scale 

(Mandelbrot 1982)
Length Length of each segment

Texture Max Maximum pixel value within each segment per band
Mean of entropy Mean entropy of pixels within each segment per band (Haralick, Dinstein, and 

Shanmugam 1973)
Mean Mean pixel value within each segment per band
Mean SVa Mean sum of variance of pixels within each segment per band (Haralick, Dinstein, 

and Shanmugam 1973)
Min Min pixel value of pixels within each segment per band
SDb of entropy Standard deviation of entropy within each segment per band (Haralick, Dinstein, 

and Shanmugam 1973)
SD Standard deviation of pixels value within each segment per band
SD of the sum of 

variance
Standard deviation of sum of variance within each segment per band (Haralick, 

Dinstein, and Shanmugam 1973)
Spectral 

features
green, red, red- 

edge, NIR
All individual pixel values within each segment per band

The Pixel based model was constructed using spectral features of each pixel within segments, the OBIA model used 
spectral features, texture and shape features within segments and the combined model used spectral features of each 
pixel, spectral features, texture and shape features within segments. 

aAbbreviation: SV, Sum of variance 
bAbbreviation: SD, Standard deviation.
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2.6. Random forest model classification training and validation

For each of the three RF classification methods, we developed two further models 
(referred to as either ‘5-class model’ or ‘3-class model’). The 5-class models were used to 
categorize the percentage of the area covered by clover, daisy, grass, soil and yarrow. For 
the 3-class models we used the sum of clover, daisy, and yarrow to create a simplified 
‘weed’-class.

To quantify the balanced predictive accuracy of each trained RF (i.e. the accuracy is 
calculated independently for each class as the fraction of cases correctly classified, and 
these individual accuracy values are then averaged across all classes), a repeated five- 
fold cross-validation scheme was used for a total of 15 evaluations for each type of 
classification. Five-fold cross validation requires that for each evaluation, the dataset is 
randomly split into five subsets (Hastie, Tibshirani, and Friedman 2009). Four of the data 
subsets (i.e. 80% of the data) are used to train the algorithm and the remaining subset 
(20% of the data) is used to test predictions by the RF classifications. In the case of the 
combined classifications, all pixels that belonged to the same segment were sampled 
as indivisible units to avoid having pixels from the same segment in training and 
testing datasets (which would violate the principle of independence of the testing 
dataset, since all pixels within a segment share the same segment information). In all 
cases, the random sampling was stratified across classes to ensure the same relative 
proportions of classes as in the total dataset (i.e. the proportions of each class were 
maintained in each sample as in the total dataset) (Hastie, Tibshirani, and Friedman 
2009). As the number of annotations per class differed (Table 1), each class was 
weighted during training by the inverse of the total number of annotations in that 
class, to avoid the negative effects of class imbalance. Confusion matrices were con
structed to show the producer-, user-, OA of the RF classification predictions (Stehman 
1997). Additionally, average accuracy (AA) and the kappa coefficient (K) were 
calculated.

2.7. Comparison of field- and random forest model classifications

Plot statistics were obtained by first using the trained RF classifications to categorize 
each segment of the whole orthomosaic. We then drew a polygon around each experi
mental plot, labelled the plot number and extracted data for each plot. Total weed 
cover and bare soil quantified by observed field measurements (i.e. point quadrat 
method for weed, clover, daisy and yarrow estimations and lightbox/ Turf Analyser 
method for soil estimation), were compared with values obtained using the predictions 
from all RF classifications (i.e. OBIA, Pixel and combined classifications for each 3-class 
model and 5-class model).

In order to evaluate the accuracy of the predictions for weed cover and bare soil we 
numerically evaluated the agreement between the observed and predicted values. Every 
scatterplot between the observed and predicted values suggested an exponential rela
tionship. Thus, a logarithmic transformation was used to linearize the trend; as a result, 
a simple linear regression model was utilized to evaluate the log-transformed variables 
agreement. The AIC (Akaike Information Criterion) and MAE (Mean Absolute Error) were 
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computed as metrics to summarize model fit and used to determine the best model to 
explain agreement between observed and predicted data (Akaike 1974; Willmott and 
Matsuura 2005).

3. Results

3.1. Data extraction per experimental unit

For each of the 136 experimental plots, we computed vegetation cover plot statistics 
based on the RF predictions following the example shown in Figure 2. The plot shown in 
Figure 2 was sown with Chewings fescue (‘Musica’) and clover. We calculated the surface 
area covered by each vegetation class.

3.2. Pixel classification accuracy

The Pixel classification using the 3-class model resulted in the lowest accuracies of any of 
the 3-class model RF classifications, but was still able to correctly categorize grass, soil and 
weed cover with 90% to 95% OA (Table 3). The worst performing model (K = 83 and 
AA = 81%), based on 15 validation iterations, highlighted the difficulty in correctly 
classifying the weed class due to frequent confusion with grass (i.e. 19.7%, Table 4). We 

Figure 2. Visualization of an object-based- (OBIA), pixel-based and combined model approach to 
classify vegetation cover of field plots consisting of fescue cultivars and broadleaf turfgrass weeds. 
Figures show classification differences between either grass, soil, and weed (3-class model) or 
between clover, daisy, yarrow, grass, and soil (5-class model) and multispectral aerial images from 
the vegetation cover. Images were derived from one experimental plot established with Chewings 
fescue (‘Musica’) and clover.
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present outcomes of the worst performing model in a confusion matrix to highlight where 
misclassification occurred; this information would not be evident by simply presenting 
average classification accuracies of all validation iterations.

The 5-class model highlighted that yarrow was particularly difficult to detect, with 
a low accuracy of 60% (Table 3). The confusion matrix with the worst performing model 
of the Pixel classification (K = 77 and AA = 80.5%) using the 5-class model highlighted 
that the misclassification of plants belonging in the weed class was primarily attributed 
to the difficulties in classifying yarrow. Yarrow was more frequently misclassified as 

Table 3. Accuracy assessment of object-based models (OBIA), Pixel and combined 
models to separate the percentage of area covered by different vegetation classes 
of a field trial. Results are grouped by two subset models with 3-class model (grass, 
soil, and weed) and 5-class model (clover, daisy, grass, soil, and yarrow) for each 
model.

Percentages (%)

OBIA Pixel combined

Grass 98 (± 2) 93 (± 0) 98 (± 3)
3-class model Soil 99 (± 1) 95 (± 0) 98 (± 3)

Weed 99 (± 1) 90 (± 1) 98 (± 3)
Clover 82 (± 2) 77 (± 1) 92 (± 2)
Daisy 88 (± 3) 77 (± 1) 98 (± 2)

5-class model Grass 99 (± 1) 93 (± 0) 97 (± 3)
Soil 100 (± 1) 96 (± 0) 86 (± 6)
Yarrow 77 (± 5) 60 (± 1) 78 (± 6)

Accuracy is shown as averages (of 15 evaluations) and standard deviation is indicated as ‘±.’

Table 4. Confusion matrix of a 3-class model (grass, soil, and weed) object-based image analysis (OBIA) 
models, Pixel based models (Pixel) and a combination of both models (combined). Training data for 
the model was obtained from a segmented orthoimage of a field trial to investigate the competitive
ness of fescue cultivars with broadleaf turfgrass weeds.

Grass Soil Weed Sum User accuracy

OBIA Grass 33 0 0 33 100%
Soil 0 45 0 45 100%
Weed 1 0 125 126 99.2%
Sum 34 45 125 204
Producer accuracy 97.1% 100% 100%
Overall accuracy 99.4%
Average accuracy 45.4%
Kappa x 100 99

Pixel Grass 98331 1270 914 100515 97.8%
Soil 696 7248 6 7950 91.2%
Weed 628 9 2544 3181 80%
Sum 99655 8527 3464 111646
Producer accuracy 98.7% 85% 73.4%
Overall accuracy 87.7%
Average accuracy 81.0%
Kappa x 100 83

Combined Grass 56865 0 24 56889 100%
Soil 1408 11332 0 12740 88.9%
Weed 0 0 3265 3265 100%
Sum 58273 11332 3289 72894
Producer accuracy 97.6% 100% 99.3% 97.6%
Overall accuracy 97.6%
Average accuracy 65.3%
Kappa x 100 94
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clover or grass than it was correctly categorized, resulting in low producer and user 
accuracies of 19.2% and 18.4%, respectively. Additionally, daisy was misclassified as 
clover 27.5% of the time and clover was misclassified as grass 19.4% of the time 
(Table S1).

3.3. OBIA classification accuracy

The accuracy assessment of the OBIA classification using the 3-class model after 15 
evaluation runs resulted in an average accuracy of 98% for grass, 99% for soil, and 99% 
for weed (Table 3). The confusion matrix with the lowest OA (K = 99 and AA = 45.5%) of the 
15 evaluations, showed that weed was confused with grass on one occasion, resulting in 
an OA of 99.4% (Table 4).

Further separating the weed class into species (clover, daisy, and yarrow) by the 
5-class model decreased the OA of detecting weeds to 82.3% (± 3.3) (Table 3), due to 
the difficulty in distinguishing among weeds. The confusion matrix of the evaluation 
with the lowest OA (K = 84 and AA = 21.5%) showed that yarrow was the most difficult 
weed to classify. Yarrow was frequently (33.3%) misclassified as clover (Table S1). 
Nevertheless, using the 5-class model resulted in similar accuracy of classification of 
the soil and grass classes.

3.4. Combined classification accuracy

The combined classification with the 3-class model achieved an OA of 98% (Table 3). Weed 
and grass were detected with 100% user accuracy, while grass was confused with soil 
11.6% of the time in the worst performing confusion matrix (K = 94 and AA = 65.3%) 
(Table 4).

Separating the weed class into clover, daisy and yarrow resulted in a drop of accuracy, 
with yarrow contributing most to any misclassification. Overall classification accuracy for 
yarrow was 78%, and daisy was correctly classified with 98% accuracy (Table 3). In the 
worst performing confusion matrix, yarrow was mainly misclassified as clover by 32.2% of 
the time. Furthermore, daisy was frequently misclassified as yarrow 35.6% of the time 
(Table S1).

3.5. Feature importance of random forest model classifications

Pixel values for each vegetation type indicated that soil in particular showed lower values 
in the NIR and red-edge spectra (Figure S2). Within all bands, clover had similar pixel 
values as daisy, with overall differences most prominent in the red band. Grass showed 
unique pixel values in the NIR and red-edge band, being lower than any of the weeds and 
higher than soil. In the red band, grass showed the lowest mean pixel values of all classes. 
Pixel values of yarrow were similar to those of daisy and clover in particular in all bands.

For the Pixel classification using the 3-class model, the green band was most important 
to detect features closely followed by the red band with 17% less relative importance 
(data not shown). Red edge and NIR were the least important features with 72.9% and 
77% less relative importance compared to the green band. For the 5-class model, Pixel 
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classification differences were more prominent with the red band being most important 
closely followed by the green band (2% less relative importance) and 86% for red edge 
and NIR (data not shown).

For both the 3-class and 5-class models OBIA classifications, mean green pixel 
values for each segment contributed most to the classification of vegetation type 
(Figure 3). In general, the mean pixel values of each band were among the seven 
most important features for both models. Furthermore, the sum of variance (SV) of 
pixels values proved to be an important feature, particularly in the green band of the 
5-class model. Also, the maximum NIR feature was an important feature to classify 
vegetation in both modes. The OBIA-specific shape parameters scored low in impor
tance, and for the 5-class model, all of the shape parameters were the least important 
features.

For the 3-class model combined classification, shape parameters such as fractal dimen
sion and length proved to be the most important features (Figure 4). This was followed by 
the mean pixel values for green, SV for green and red edge. Eight features were of no 
relative importance for classifying vegetation. For the 5-class model combined classifica
tion, there was less of a difference in importance among the features, with only one 
feature (the green band) not contributing to the classification of vegetation.

Figure 3. Feature importance charts of (A) a 3-class model (grass, soil, and weed) object-based image 
analysis (OBIA) model and (B) 5-class model (clover, daisy, grass, soil, and yarrow) OBIA model to 
quantify vegetation cover in a fescue cultivars and broadleaf weed field trial. Importance measure is 
a dimensionless/ relative measurement. Colours indicate the spectral bands green, blue (NIR), red, and 
object- based shape parameters. NIR, near infrared; SV, Sum of variance; SD, Standard deviation.
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3.6. Comparison of observed and predicted data

The least agreement between observed and predicted data (high AIC and MAE) used to 
estimate weed cover were reported in plots sown with grass only (Grass controls) for all RF 
classifications (Table 5). In plots sown with weed treatments, both OBIA and the combined 
classifications showed better agreement with observed data compared to the Pixel 
classifications for both 3-class and 5-class models. Differences between OBIA and com
bined classifications were marginal except for the 3-class models’ detection of weed cover 
in mixtures. In mixtures, OBIA classification using the 3-class model performed worse 
(AIC = 49.4) than the 5-class model (AIC = 28.10). The MAE for OBIA and the combined 
classifications also showed that both classification methods performed equally in detect
ing weed cover, with no clear difference between 3-class and 5-class models.

For soil estimations, we generally observed better agreement between methods, with 
overall lower AIC and MAE compared to estimations of weed cover for all models. 
However, the Pixel classifications again performed worse than the OBIA and combined 
classifications, except in plots sown with yarrow, where there was similar agreement 
between all RF classifications and observed data (AIC between 31.1 and 33.1). The MAE 
between predicted and observed data in plots sown with yarrow were the same (0.26– 
0.27). Overall, combined classification using the 5-class model scored the lowest AIC scores 

Figure 4. Feature importance charts of (A) a 3-class model (grass, soil, and weed) combined- image 
analysis model (OBIA shape parameters and spectral features of Pixles) and (B) 5-class model (clover, 
daisy, grass, soil, and yarrow) combined- image analysis model to quantify vegetation cover in a fescue 
cultivars and broadleaf weed field trial. Importance measure is a unit less/ relative measurement. 
Colours indicate the spectral bands green, blue (NIR), red, and object- based shape parameters. NIR, 
near infrared; SV, Sum of variance; SD, Standard deviation.
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(162.2), closely followed by combined classification using the 3-class model and OBIA 
classification using the 5-class model (164.1 and 164.2 respectively). The MAE for com
bined and OBIA classification using the 3-class and 5-class models were similar.

4. Discussion

Using our RF classifications, we were able to successfully distinguish green vegetation 
cover (grass and weeds) from non-vegetation cover (bare soil). The OBIA classification 
using the 5-class model was able to classify soil with 100% accuracy due to the high 
reflectance of green vegetation in the NIR portion of the electromagnetic spectrum in 
comparison to the lower reflectance of soil. Digital analysis of the green fraction of 
pixels has been used by other researchers to measure cover and quality of turfgrasses 
(Karcher and Richardson 2013). However, the methodology used in their study was not 
able to distinguish between weeds and grasses because both classes have similar 
reflectance values in the green portion of the electromagnetic spectrum. Identifying 
plant species from within a landscape of green vegetation is generally more complex 
and challenging (Lamb and Brown 2001). We encountered these challenges with regard 
to clover, which had similar pixel values at all measured bands (Figure S2). As reported 
by Casapia et al. (2020), we found that the mean green pixel values within segments 
were an important feature for OBIA classifications (Figure 3). The average spectral 
reflectance within segments was used, whereas the shape parameters of the objects 
did not appear to be important features. The OBIA classifications performed much 
better than the Pixel model, indicating that even less important shape parameters led 
to better classification accuracy (Tables 4 & Tables 6). For the combined classification, all 
individual pixels within segments were classified. In that case, we observed that the 
shape parameters such as fractal dimension and length were the most important 
features, particularly for the 3-class model. However, the shift in relative importance of 
shape parameters in OBIA classifications compared to the combined classifications, did 

Table 5. Comparison of remotely sensed total weed cover estimates with field observations using 
Akaike information criterion (AIC) and Mean absolute error (MAE) on log-transformed values. Methods 
to estimate weed cover included ground measurements with a 100-point quadrat and analysis of 
aerial multispectral images using object-based image analysis (OBIA) models, Pixel based models 
(Pixel) and a combination of both models (combined), for 3-class model (grass, soil, and weed) and 
5-class model (clover, daisy, grass, soil, and yarrow).

3-class model 5-class model

Sowed treatment Pixel OBIA Combined Pixel OBIA Combined

AIC* Clover 42.7 27.5 26.2 42.4 27.5 26.6
Daisy 48.6 34.1 34.7 47.5 34.6 34.1
Yarrow 42.8 37.6 37.1 42.1 37.4 37.4
Mixture 54.5 26.4 28.8 52.9 28.1 29.9
Grass c.* 52.2 49.4 50.1 52.1 50.2 50.0

MAE* Clover 0.37 0.27 0.26 0.36 0.27 0.26
Daisy 0.39 0.29 0.29 0.38 0.29 0.29
Yarrow 0.32 0.29 0.29 0.32 0.29 0.29
Mixture 0.43 0.25 0.26 0.42 0.26 0.27
Grass c.* 0.53 0.47 0.49 0.52 0.48 0.49

*MAE = Mean Absolute Error; AIC = Akaike Information Criterion; Grass c. = Grass control.
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not significantly alter the predictive accuracy of the models. Both models showed high 
accuracy when using the 3-class model (98–99%), and while the OBIA 5-class model was 
superior at detecting grass and soil, the combined model scored higher accuracies for 
detecting clover and daisy (10% more accurate for both classes). Hence, if the overall 
goal is to detect general weed cover, the object-based classification approach is 
recommended.

When comparing cover estimations based on industry-standard in-field measurements 
(observed) and the RF classifications (predicted), we found that agreement between 
observed and predicted estimates of weed cover was particularly good in plots sown 
with daisy and mixtures for both OBIA and combined classifications (Table 5). This could 
be due to the fact that daisy growth flat on the surface with sharp leaf edges. Compared 
to the other tested weed species daisy clearly stood out. A weed species that can be easily 
separated visually is also easier to detect in an image analysis approach. The highest 
discrepancy between observed and predicted estimates for both OBIA and the combined 
classifications occurred in plots sown without weeds (grass controls). For estimates of soil 
cover we found the opposite to be true, with the best agreement between observed and 
predicted values found in plots sown with grass only and the highest discrepancy found 
in plots sown with daisy, for OBIA and combined classifications. Some of the weed species 
such as yarrow do not have a solid leaf blade but a feather type of blade. Because of the 
segmentation process an object like a yarrow leaf could potentially be classified as soil if 
the reflectance of the soil through the yarrow leaf blade overrides the reflectance of the 
yarrow leaf blade itself. Grasses such as fescues have an upright growth habit and because 
the camera was pointed vertically at the plot, it is likely that in grass control plots the clear 
edges between soil and grass patches were visible, leading to high classification accuracy 
of soil in grass control plots.

Table 6. Akaike information criterion (AIC) and Mean absolute error (MAE) for log transformed values 
of two methods for estimating bare soil in between vegetation cover using aerial image analysis of 
a field trial. Ground measurements included, single picture analysis of 136 plots captured with a RGB 
camera and subsequent analysis with Turf Analyser software. Aerial multispectral images were 
analysed using object-based models, Pixel-based models (Pixel) and a combined model (combined) 
for a 3-class model (grass, soil, and weed) and a 5-class model (clover, daisy, grass, soil, and yarrow). 
Data was log transformed.

3-class model 5-class model

Sowed treatment Pixel OBIA Combined Pixel OBIA Combined

AIC* Clover 45.6 35.7 32.3 45.2 34.5 31.7
Daisy 62.5 47.6 45.8 62.6 42.6 44.1
Yarrow 33.1 33.0 31.9 32.4 32.8 31.1
Mixture 43.0 29.4 32.1 41.7 29.5 32.6
Grass c.* 31.9 26.3 22.0 30.1 24.8 22.7

MAE* Clover 0.33 0.30 0.26 0.33 0.29 0.26
Daisy 0.49 0.40 0.38 0.49 0.36 0.36
Yarrow 0.26 0.26 0.27 0.26 0.26 0.27
Mixture 0.35 0.27 0.28 0.34 0.26 0.28
Grass c.* 0.31 0.26 0.23 0.30 0.25 0.23

*MAE = Mean Absolute Error; AIC = Akaike Information Criterion; Grass c. = Grass control.

8050 D. S. HAHN ET AL.



Using remote sensing to detect weeds in regularly mowed turfgrass is generally 
challenging because of the small size of individual weed plants, which requires high 
resolution imagery. In our study, we found yarrow to be a particularly problematic weed 
to detect, which was most likely due to its similarity in leaf shape and spectral features to 
grasses (Fig. S2). Compared to natural grasslands, where vegetation cover and character
istics show strong seasonality (Zillmann et al. 2014), cover of turfgrass is much less 
dynamic due to the intense management regimes. This consistent and uniform cover is 
better suited to classification models such as those developed in this study and result in 
improved classification accuracy. Due to the mowing regime of turfgrass, we expect 
spectral and shape characteristics to be more seasonally uniform and suggest that our 
results could be applicable throughout the entire season. More research is needed to 
confirm this suggestion.

In this study we focused on three weed species that commonly occur on golf courses, 
however there are many more. Future research efforts should focus on examining the 
influence of different weed species on the predictive accuracy of image analysis 
approaches. For the purposes of identifying weed cover, our results are highly encoura
ging, given the high accuracy (98–99%) of the object-based classification that grouped all 
weeds into a single class (3-class model). Apparently, the three contrasting weed species 
used in this study share common characteristics that can be successfully captured by our 
method and are considerably different from grass characteristics. The spectral reflectance 
of all features used to construct the models (Fig. S2) suggests that main differences 
between weeds and grass are in mean red entropy, shape parameters and mean green. 
Accordingly, we anticipate that our method may also be successful in identifying weed 
species that have a growth form similar to clover, daisy, and to a lesser degree, yarrow. To 
what extent our results can be generalized to other weed species is an open question that 
is of interest for future research.

In conclusion, our research demonstrated that object-based classification is a useful tool 
for weed detection, especially when compared to the currently employed time consuming 
in-field measurement with a point quadrat and lightbox. Our study showed that using 
texture features (OBIA- and combined model), the 3-class models classified soil, weed, and 
grass with 98–99% accuracy, and the 5-class models discriminated between soil, grass, and 
the three weed cover types with 81–80% accuracy. Agreement between predicted estimates 
of vegetation type and bare soil and observed estimates obtained using point quadrat and 
Turf analyser methods varied depending on the grass/weed seeding treatment.
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