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A B S T R A C T   

It is important to develop the integrated flood and landslide modeling system driven by radar and satellite to 
predict these hazards to mitigate their damages. In this study, we investigated the utility of the C-band, one- 
polarization radar quantitative precipitation estimation (QPE) and the Global Satellite Mapping of Precipita-
tion (GSMaP) satellite QPE for the integrated prediction of floods and landslides in two hilly basins of southern 
Shaanxi Province of China. We further developed a dynamic bias correction to reduce uncertainty in radar and 
satellite QPEs using gauge observations and explored the impacts of gauge density and spatial resolution of QPE 
on the effectiveness of bias correction. Our results show that the radar and GSMaP QPEs have respective large 
negative and positive biases. The bias-correction method has significantly improved the quality of both radar and 
GSMaP QPEs and the associated accuracies in the simulated hydrological processes and slope stability. The bias- 
correction method with a correction time interval of 24 h can achieve the optimal results for both radar and 
GSMaP QPEs. Although gauge density and spatial resolution impact the accuracy of the bias-corrected methods 
for both radar and GSMaP, inclusion of the observations from even a small number of rain gauges will be helpful 
for reducing the uncertainty in the radar and satellite QPEs.   

1. Introduction 

Rainfall-induced flood and landslide hazards are destructive and 
harmful to both of human lives and infrastructure (Blöthe et al., 2015; 
Huang et al., 2017; Peruccacci et al., 2012). Globally, economic losses 
caused by floods account for 30–40% of losses due to natural hazards 
during 1974–2003 (Guha-Sapir et al., 2004). With the rapid growth of 
population and economy, flood-induced losses are becoming more and 
more severe ()(Chen et al., 2021; He et al., 2018; Jonkman, 2005). Be-
sides, landslides are responsible for more than 1000 deaths and 
approximately 4 billion US dollars in property losses per year (Pradhan 
and Youssef, 2010). China is also severely affected by natural hazards, 

including floods and landslides (Hong et al., 2015; Petley, 2010; Zhang 
et al., 2019b). The average property losses caused by flood are about 110 
billion CNY per year while the death is more than 5000 in recent years. 
One study reports that landslide hazards have led to about 1100 fatal-
ities and 5–10 billion US dollars since 2000 (Hong et al., 2017). Due to 
the massive fatalities and property losses caused by floods and land-
slides, it is essential to develop the forecasting capacity of these hazards 
to reduce and further avoid the damages (Chen et al., 2015). 

Hydrological models for flood forecasting have developed from 
conceptual models (Burnash et al., 1973; Crawford and Linsley, 1966; 
Sugawara et al., 1984) to semi-distributed models (BEVEN and KIRKBY, 
1979; Duan and Miller, 1997; Zhang et al., 2021) and further to fully 
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distributed models. In the meantime, landslide prediction has evolved 
from heuristic susceptibility approaches (Fookes, 1997; Griffiths, 2002; 
Griffiths and Edwards, 2001; Guzzetti et al., 2000) to empirical rainfall 
threshold models (Bogaard and Greco, 2018; Caine, 1980; Glade et al., 
2000; Guzzetti et al., 2007; Guzzetti et al., 2008) and further to 
physically-based slope stability models (Liao et al., 2010; Montrasio and 
Valentino, 2008; Montrasio and Valentino, 2016a; Montrasio and Val-
entino, 2016b; Van Asch et al., 2007; Wilkinson et al., 2002). Recently, 
coupling the hydrological models with slope stability models (He et al., 
2016; Wang et al., 2020a; Zhang et al., 2016) have been developed to 
predict flood and landside simultaneously because the concept of 
cascading hazards has drawn more and more attention. Hydrological 
models can provide more accurate and realistic estimations of hydro-
logical processes and states for slope stability model, e.g., rainfall infil-
tration and soil moisture, which is proved to improve the predictive 
capability for the landslide hazards and extend the functionality of the 
hydrological models. Rainfall, as a key forcing data of hydrological 
models and landslide models, has a significant impact on flood fore-
casting and simulations of hydrological processes, and hence landslide 
prediction. Therefore, it is important to obtain rainfall data as accurate 
as possible. 

Usually, rainfall data can be observed/estimated by ground gauge 
stations, weather radars, and meteorological satellites. Different rainfall 
data sources have their advantages and disadvantages for representing 
spatiotemporal characteristics of actual rainfall processes. Gauge rain-
fall is usually treated as the ‘true’ value of actual rainfall because it 
measures the rainfall that falls into the ground surface. However, gauge 
rainfall is a point-level observation and has to represent the rainfall 
spatial variability through a network, making its representation 
depending on station density and spatial distribution of stations. 
Moreover, distributed hydrological and land surface models require 
gridded rainfall as forcing, which requires interpolation of gauge rain-
fall, leading to some new errors and uncertainties (Hughes, 2006; 
Renard et al., 2010; Zhang et al., 2021). Radar rainfall can detect the 
spatial distribution of rainfall over a large region and often has a high 
temporal resolution, e.g., 6 min. It is derived by constructing a quanti-
tative relation between rainfall (e.g., rainfall intensity) and reflectivity 
(Krajewski and Smith, 2002; Wilson and Brandes, 1979). Therefore, the 
accuracy of radar rainfall is directly influenced by the precipitation 
retrieval algorithms, which are usually built based on the distribution of 
raindrop size or rainfall rate (Atlas et al., 1990). In addition, the accu-
racy of radar rainfall is also affected by terrain and vegetation cover 
because they can occlude the electromagnetic waves emitted by radar 
(Qi and Zhang, 2013; Smith and Krajewski, 1991). The accuracy of radar 
rainfall may be low if the terrain is complex and vegetation is dense. 
Relative to radar, satellites can cover a much larger area (Hsu et al., 
1997). Similar to radar rainfall, the relation between actual rainfall and 
reflectivity received by satellite is built through different retrieval al-
gorithms (Griffith et al., 1978). So far, the common global satellite 
rainfall datasets include the Tropical Rainfall Measuring Mission 
(TRMM) (Kummerow et al., 1998), Global Satellite Mapping of Precip-
itation (GSMaP) of the Global Precipitation Measurement (GPM) 
mission (Ushio et al., 2003), Climate Prediction Center MORPHing 
(CMORPH) data (Joyce et al., 2004), the Integrated Multi-satellitE Re-
trievals for GPM (IMERG) (Huffman et al., 2019), and Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural 
Networks (PERSIANN) (Hong et al., 2005) among others, which are 
based on different remote sensing sensors and retrieval algorithms. 
However, gauge-corrected satellite rainfall is often substantially time- 
lagged (Shen et al., 2010) while near real-time satellite rainfall has a 
low latency but a relatively high uncertainty. As a result, the above- 
mentioned limitations often limit the utility of satellite rainfall for, in 
particular, real-time flood forecasting of the small and medium-sized 
basins (Wu and Zhai, 2012). Gauge observations with automated qual-
ity control and reporting can overcome this shortcoming but it is usually 
unpractical to build dense gauge network for a large region. In addition, 

similar to near real-time satellite rainfall, gauge rainfall without auto-
mated quality control could be time-lagged if quality control need be 
conducted to correct the potential systematic errors. 

Due to the biases in radar and satellite rainfall, it is important to 
develop bias-correction methods to improve the accuracy of radar and 
satellite rainfall data. In recent years, different bias-correction methods 
have been developed. For example, Cheema and Bastiaanssen (2012) 
adopted the regression analysis and geographical differential analysis 
(GDA) methods to calibrate the TRMM rainfall based on gauge rainfall 
data and found that the rainfall calibrated by the GDA method has a high 
accuracy. Chao et al. (2018) proposed a bias-correction method based on 
the mixed geographically weighted regression (MGWR) method for 
merging satellite and gauge rainfall, in which the weights were deter-
mined by four different weighting functions. The MGWR method im-
proves the spatial resolution and quality of satellite rainfall and is 
valuable for hydrological modelling. Ma et al. (2018b) proposed a dy-
namic Bayesian Model Averaging (DBMA) scheme to blend multi- 
satellite precipitation products, providing a new solution for blending 
multi-satellite rainfall data. Although the applicability and evaluation of 
radar and satellite precipitation products for flood simulation and pre-
diction have been widely studied recently, their applicability for land-
slide prediction and the prediction of rainfall-triggered multiple hazards 
such as floods and landslides have not been well studied. How to facil-
itate the integrated forecasting of flood and landslide hazards using the 
multi-source rainfall estimates and how to improve the forecasting ac-
curacy by reducing the uncertainty in the multi-source rainfall estimates 
remain to be addressed. 

Therefore, the objectives of this study are three-fold: (1) to investi-
gate the utility of the C-band quantitative precipitation estimation (QPE) 
from a radar of China New Generation Weather Radar (CINRAD) 
network and the GSMaP satellite QPE of the GPM mission for integrated 
prediction of floods and landslides, (2) to develop a dynamic bias 
correction to reduce uncertainty in radar and satellite QPEs using gauge 
observations, and (3) to explore the impacts of gauge density and spatial 
resolution of QPE on the effectiveness of bias correction. To this end, we 
first compared the radar and satellite QPEs with the gauge observations 
and analyzed the uncertainties in these QPEs. We then developed a 
dynamic geographical differential analysis (DGDA) method to correct 
the biases in the QPEs. Finally, we conducted the hydrological evalua-
tion of the original and bias-corrected QPEs and quantified the impacts 
of different rainfall sources on the integrated flood-landslide prediction/ 
simulation via the integrated Coupled Routing and Excess storage and 
SLope-Infiltration-Distributed Equilibrium (iCRESLIDE v2.0) model (He 
et al., 2016; Wang et al., 2020b). 

2. Study area and datasets 

2.1. Study area 

Our study area is located in the Shaanxi Province of northwest China 
(Fig. 1a), which frequently suffers from flood and landslide hazards. The 
statistical report shows that rainfall-induced landslide hazards occur 
frequently across Shaanxi, with more than 1,000 landslide events during 
2009–2012, because of steep slopes in its many areas and heavy rainfall 
in the monsoon seasons (May to October) (Zhang et al., 2019a). Study 
area in this study is a nested region, with a bigger rectangular area 
shown in Fig. 1a and Fig. 1b ranging from 108◦E to 110◦E in longitude 
and from 31◦N to 33◦N in latitude and two basins (Fig. 1b) within the 
rectangular area. Within the rectangular area, we compared the gauge 
rainfall with the radar and satellite QPEs and analyzed the uncertainty in 
these QPEs. Within the basins, we conducted the iCRESLIDE simulations 
driven by the gauge observations and QPEs to conduct the hydrological 
evaluation of QPEs and evaluate the effectiveness of the dynamic bias 
correction method. 

The two basins are located in southern Shaanxi and include the Ba 
River Basin and Lan River Basin (Fig. 1a). The Ba River Basin is a 
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tributary of the Han River, the largest tributary of the Yangzi River, and 
has an area of 2,069 km2. Its elevation ranges from 222 to 2,473 m 
(Fig. 1b), and has an average slope of 22.8◦ (Fig. 2a). The average 
channel gradient of the Ba River is about 28.6 %. Annual rainfall in this 
basin is about 700–900 mm, of which summer (July to September) 
rainfall contributes for 40–60 %. Soil type is mainly loam in this basin 
(Fig. 2b), while forests cover most of its lands accompanied by a few 
cultivated lands in the plain area (Fig. 2c). The Lan River Basin is also a 
tributary of the Han River with an area of 1845 km2. Elevation decreases 
from southeast to northwest, which is similar to that of the Ba River 
Basin (Fig. 1b). The average slope is 26.5◦ (Fig. 2d), which is steeper 
than that of the Ba River Basin. The Lan River often experiences flash 
floods and has the recorded highest peak flood of 2,220 m3/s. The spatial 
distribution of soil type in the Lan River Basin is similar to that in the Ba 
River Basin, mainly the loam. Some soils classified as clay and sandy 
loam are distributed in the upper stream (Fig. 2e). Forest is also the 
dominant land cover type, while some cultivated lands are located along 
the river and some grasslands are in the upper stream (Fig. 2f). 

Both of the basins are located within the humid climatic zone and the 
Qinling Mountain, making them having abundant rainfall and steep 
terrains. Therefore, floods and landslides often occur across the two 
basins. It is essential and important to develop the prediction capacity of 
these hazards to reduce and further avoid the damages using the radar 
and satellite technologies. 

2.2. Data 

The data used in this study include hourly rainfall rates from the 
gauge stations, a CINRAD weather radar, and GSMaP satellite products, 
potential evapotranspiration (PET), digital elevation model (DEM), soil 

type, land cover type, hourly stream flow records, and landslide in-
ventory. To make data comparable and consistent on the spatial reso-
lution, all gridded data were interpolated or resampled to an identical 
spatial resolution of 1 km × 1 km (30 arcsec). 

Rainfall data used in this study have three sources, including gauge 
observations, radar QPE and satellite QPE. The hourly observed rainfall, 
derived from 334 rain gauges (Fig. 1b), were interpolated into gridded 
data with a spatial resolution of 1 km via the Ordinary Kriging method 
(Krige, 1951). The period of gauge rainfall is from 00:00UTC Sep. 01 to 
23:00UTC Oct. 31, 2017 (i.e., 1464 time steps). Radar QPE was derived 
from the CINRAD C-band, single-polarization Ankang radar with a radial 
resolution of 500 m and a detection range of 400 km, which is located at 
109.043◦ E and 32.693◦ N (Fig. 1a). The radar provided a continuous 
radar QPE product from 00:00UTC Sep. 22 to 23:00UTC Oct. 7, 2017. 
The pre-processing of radar QPE data is described in Section 3.1. Sat-
ellite rainfall data in this study were from the GSMaP Product 
(GSMAP_Gauge) of the GPM mission, which are adjusted by National 
Oceanic and Atmospheric Administration (NOAA) Climate Prediction 
Center (CPC) Unified Gauge-based Analysis of Global Daily Precipita-
tion. The source precipitation data of GSMaP are obtained by the Passive 
Microwave and Infrared radiometers retrieval algorithm based on the 
moving vector with the Kalman filter approach. The temporal resolution 
of the GSMAP_Gauge data is 1 h, which is averaged from sub-hourly 
observations of the specified hour. The data has a spatial resolution of 
0.1 × 0.1◦ grid (approximately 10 km at the equator) with a coverage of 
60◦ N to 60◦ S. To make it comparable to the radar data, these data are 
interpolated into a spatial resolution of 1 km through the bi-linear 
interpolation method. Considering the common data availability, we 
set the time between 00:00UTC Sep. 01, 2017 and 23:00UTC Sep. 21, 
2017 as the calibration period and the rest period until 23:00UTC Oct. 
31, 2017 as the validation period. 

The PET data were retrieved from the hydrological gauge stations 
and also interpolated into the same grid based on the Ordinary Kriging 
method. The DEM data are from the Geospatial Data Cloud with a spatial 
resolution of 90 m. Soil data are from the Harmonized World Soil 
Database (HWSD) v1.2, which has a spatial resolution of 1 km and 
contains 13 soil types based on the United States Department of Agri-
culture (USDA) classification. The land cover type data are from the 
Climate Change Initiative (CCI) land cover project v2.0. The spatial 
resolution of this data is 300 m. Streamflow data are used to calibrate 
the iCRESLIDE model and are from the Hydrological Year Book of the 
Ministry of Water Resources, China. The landslide inventory data are 
from the Geological Survey Office of the Department of Land and Re-
sources of Shaanxi Province, with information on the landslide loca-
tions, occurrence time, and recorded economic losses. 

In this study, the rainfall and PET data are model forcing data, while 
the DEM, soil type, and land cover type are used to derive background 
information and model parameters, such as flow direction, flow accu-
mulation, slope angle, soil water capacity, saturate hydraulic conduc-
tivity, soil cohesion, porosity, and friction angle. Stream flow discharge 
and landslide inventory data are for model evaluation. 

3. Methodology 

3.1. Brief description of the radar QPE algorithm 

The Ankang radar of the CINRAD is a C-band, single-polarization 
Doppler weather radar. We applied a well-studied radar QPE algo-
rithm to retrieve the rainfall rates based on the calibrated relationships 
between the radar echo intensity (Z) and the precipitation rate (R) since 
both Z and R are related to the diameter and number of precipitation 
particles. Based on this, the conversion relationship between Z and R can 
be established through the drop size distribution (DSD) of rainfall par-
ticles (Zhu et al., 2020a; Zhu et al., 2020b), which is referred as the Z-R 
relationship. In this study, the radar QPE product has 360 azimuths, a 
radial resolution of 500 m, and a detection range of 400 km. The 

Fig. 1. (a) Locations of the study area and (b) distribution of the radar station, 
rainfall gauges, and recorded landslides used in this study. 
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temporal resolution of the radar QPE data is 6 min. To generate the radar 
QPE under the Cartesian coordinate, the pre-processing procedures are 
run as follows (Fig. 3): (1) identification of the non-meteorological 
echoes, such as ground clutter, clear-air echo, super refraction echo, 
and electromagnetic wave interference echo; (2) compute hybrid 
elevation angle by considering the occlusion impact of terrain; (3) divide 
the rainfall into different types by applying a convective-stratiform 
segregation method based on the vertically integrated liquid (VIL) 
water (Qi et al., 2013b; Seo et al., 2020; Zhang and Qi, 2010); (4) 
conduct the vertical profile of reflectivity (VPR) correction, which is 
very important to reduce overestimation errors caused by bright band in 
radar QPE (Cao and Qi, 2014; Qi et al., 2013a; Qi et al., 2013b; Qi et al., 
2013c; Zhang and Qi, 2010); (5) retrieve the rainfall via different re-
lations of Z ~ R corresponding to different rainfall types; (6) transact the 
polar coordinate into rectangular coordinate; and (7) accumulate 6 min 
rainfall rate into hourly radar QPE. 

3.2. The iCRESLIDE model 

The iCRESLIDE model is proved to have a good performance in flood 
and landslide prediction not only in basin scale (He et al., 2016) but also 
in a large region (Wang et al., 2020a). It can simulate the hydrological 
processes realistically and assess landslide hazards robustly at the same 
time. Therefore, the iCRESLIDE model was chosen to simulate the flood 
and landslide hazards in our study. 

The iCRESLIDE model contains two parts, the CREST model, which 
simulate the hydrological processes, and the SLIDE model, which 
quantifies the stability of slopes. Specifically, the CREST model is a 
physically based distributed hydrological model that was developed by 
the University of Oklahoma and NASA (National Aeronautics and Space 
Administration) SERVIR project team (Wang et al., 2011; Xue et al., 
2013). It includes many components concerning hydrological processes, 
such as the vegetation interception, the infiltration, the soil moisture, 
and the overland and subsurface flow. Rainfall is intercepted by 

vegetation canopy before it falls into ground surface. After that, rainfall 
is partitioned into surface and subsurface runoff based on the infiltration 
curve, in which the VIC (Variable Infiltration capacity) model is adop-
ted. A routing scheme is proposed to simulate the confluence process 
where the interactions between routing and runoff generation are 
considered. The evapotranspiration is deducted throughout all model 
calculations. The rainfall and PET data with other state parameters are 
used to force the model, simulating the hydrological processes. A 
detailed description can be found in the literature (Shen et al., 2016; 
Wang et al., 2011; Xue et al., 2013; Xue et al., 2016). 

The SLIDE model employs a series of mathematical formulations to 
calculate the slope stability during the time course. The slope stability is 
expressed as a factor of safety (FS), which is defined as the ratio of 
resisting forces over destabilizing forces. Lower FS value represents less 
slope stability. If FS is equal to or less than one, the SLIDE model predicts 
slope failure. The original SLIDE model takes the entire volume of 
rainfall into account, neglecting interception and evapotranspiration, 
which leads to a problem that the rainfall infiltrating into the soil is 
overestimated dramatically. However, the problem can be fixed by 
coupling the SLIDE model with a hydrological model in which the 
vegetation interception and evapotranspiration are included. The 
detailed description of the SLIDE model can be found in the previous 
publications (Montrasio and Valentino, 2008). 

The two models are mainly linked through the state variable, soil 
moisture, which is mainly influenced by rainfall infiltration computed 
by the CREST model. In addition, the CREST model simulation also 
determines the subsurface water table, which can further affect the slope 
stability. The SLIDE model is used to assess whether a slope is stable (as 
the main concern of this study). As the key input of the SLIDE model, soil 
moisture is computed by the CREST model. The coupling strategy is that 
the soil moisture simulated by the CREST model is treated as the input of 
the SLIDE model, which calculates the factor of safety and hence the 
stability of slope can be judged. 

Fig. 2. Spatial maps of slope, soil type, and land cover in the (a-c) Ba River Basin and (d-f) Lan River Basin.  
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3.3. Dynamic correction method for radar and GSMaP satellite QPE 

Due to the different detection methods, radar QPE and GSMaP sat-
ellite QPE have different accuracies compared to the gauge rainfall (e.g., 
the radar rainfall may have a smaller uncertainty than satellite). In order 
to reduce this uncertainty, a suitable correction method should be 
applied. In this study, we adopted the geographical differential analysis 
(GDA) method proposed by Cheema (Cheema and Bastiaanssen, 2012) 
to correct the radar and GSMaP satellite QPEs based on the gauge 
rainfall because the GDA method takes the difference between gauge 
rainfall and gridded rainfall (i.e., radar and GSMaP QPEs in our study) 
into account at a specific location (a gauge station) and hence these 
point-level biases are interpolated into a spatial map. The interpolation 
method used in the original GDA method is inverse distance weight 
(IDW). However, we used the Ordinary Kriging method to do the 
interpolation in this study because the Ordinary Kriging method can 
better consider the geophysical difference through a covariance func-
tion. The Ordinary Kriging method is widely used in geographical sci-
ence and atmospheric science. 

In previous studies, the time step of correction or calibration for 
radar and satellite rainfall data was usually one day or one month 
(Cheema and Bastiaanssen, 2012; Ma et al., 2018b). Considering the 
time step of model simulation and the limitation of radar rainfall data 
that only lasts 16 days, we choose six time intervals, which are 3, 6, 12, 

24, 48, and 96 hrs, to obtain different sets of bias-corrected rainfall data 
and to analyze what time interval will lead to a better bias-correction. 
Here, we named it the Dynamic GDA (DGDA) method. The procedure 
of DGDA method is summarized as follows: 

1. Calculate the bias between radar/satellite QPE and gauge rainfall 
at the specific locations (i.e., locations of gauge stations) at each chosen 
time interval (i.e., 3, 6, 12, 24, 48, or 96 hrs). We calculate the difference 
between gauge rainfall total and radar/satellite QPE rainfall total during 
the specific time interval as the bias (e.g., if the time interval is set to 3 h, 
we calculate the bias at each gauge station for every 3 h): 

ΔPti = Pti − Prti/sti (1) 

where ΔPti is the difference between gauge rainfall total and radar/ 
satellite QPE rainfall total during the tth time interval at the ith station; 
Pti and Prti/sti are the gauge and radar/satellite rainfall totals during the 
tth time interval at the ith station, respectively. 

2. Produce the spatial bias maps (i.e., gridded biases) from the point- 
level biases at gauge stations for each time interval for the whole period 
via the Ordinary Kriging method; 

3. Partition the gridded biases during each time interval into the 
gridded biases at each hour according to the ratios of hourly QPE rainfall 
to QPE rainfall total during each time interval; 

4. Correct the hourly biases of the original radar/satellite rainfall 
data. Considering that the original spatial resolutions of radar and 

Fig. 3. Flowchart of the radar quantitative precipitation estimation.  
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GSMaP QPE are 1 km and 10 km, respectively, we also conduct the 
rainfall bias-correction procedure at the 10 km scale. For GSMaP QPE, 
its native spatial resolution is 10 km, making us able to calculate the 
spatial biases directly. For radar rainfall, we first aggregated it into the 
10 × 10 km resolution and then computed the gridded biases. The rest 
steps are the same as the above. 

3.4. Evaluation metrics of model performance 

In order to analyze the impacts of different sources of rainfall on the 
stream flow simulation, the parameters of the iCRESLIDE model are 
calibrated first using the gauge rainfall. The same calibrated parameter 
values are used in the model simulation that are driven by the radar and 
GSMaP QPEs. The gauge rainfall is as the benchmark in comparison of 
the radar and GSMaP QPEs, while the model simulations driven by 
gauge rainfall are used as the benchmark to compare the simulations 
driven by radar and GSMaP QPEs. 

For rainfall comparison, the commonly used metrics including the 
standard deviation (SD), Pearson correlation coefficient (r), and root 
mean square error (RMSE) are used to evaluate the accuracy. For the 
evaluation of the corresponding hydrological simulations, three 
commonly used metrics, including the relative bias, r, and Nash-Sutcliffe 
efficiency coefficient (NSE), are used as the performance evaluation 
metrics. The NSE quantifies the agreement between the simulated dis-
charges and the observed ones. Its value ranges from negative infinity to 
1, which can be calculated by following equation: 

NSE = 1 −
∑T

t=1

(
Qt

0 − Qt
m

)2

∑T
t=1

(
Qt

0 − Q0

)2 (2)  

where Qt
0 and Qt

m are the observed and simulated discharge at time t, 
respectively; Q0 is the average value of observed discharge. 

The slope stability is assessed by an FS value simulated through the 
iCRESLIDE model, which is essentially a binary classification model for 
landslide assessment. For landslide simulation, the output of the coupled 
model is the FS value, which is compared with a threshold (usually set to 
1) to judge whether a slope is unstable. It is a binary classification, which 
can be evaluated by a receiver operating characteristic (ROC) curve 
(Fawcett, 2006). To obtain the ROC curve, the model prediction results 
are classified into four categories, which are the true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN). TP and FN are 
the number of instances when a recorded landslide event is correctly 
predicted to occur and incorrectly predicted to not occur by the model, 
respectively. TN and FP are the number of instances when no recorded 
landslide event is correctly predicted to not occur and incorrectly pre-
dicted to occur by the model, respectively. Based on the above four 
quantities, we can evaluate the model performance through the true 
positive ratio (TPR), true negative ratio (TNR), accuracy, and error rate 
metrics: 

TPR =
TP

TP + FN
(3)  

TNR =
TN

TN + FP
(4)  

accuracy =
TP + TN

TP + TN + FP + FN
(6)  

errorrate = 1 − accuracy (7) 

By varying the FS threshold, we can compute a series of TPR and TNR 
pairs to form the ROC curve. The model performs well if the ROC curve 
is close to the upper-right corner. The area under the ROC curve (AUC) 
reflects the overall accuracy of the model simulation; a higher AUC 
means a more accurate model simulation. 

4. Results 

4.1. Uncertainty and its correction in the radar and GSMaP QPEs 

In order to analyze the radar and GSMaP QPEs, the cumulated 
rainfall of gauge, radar and GSMaP rainfall were calculated for the 
period of Sep. 22 to Oct. 07, 2017 at each 1-km grid cell containing a 
rain gauge. Fig. 4 shows the scatter density plots of the cumulated radar 
and GSMaP rainfall comparing to the cumulated gauge observations. As 
shown in Fig. 4, both radar QPE and GSMaP QPE have a low accuracy 
comparing to the gauge observations indicated by the low values of r and 
high values of RMSE (Fig. 4). In addition, radar QPE tends to underes-
timate the rainfall with an average bias of − 0.457 mm (Fig. 4a), while 
GSMaP QPE overestimates the rainfall with an average bias of 0.498 mm 
(Fig. 4b). Relatively, the GSMaP QPE has a slightly better accuracy than 
the radar QPE indicated by the r, RMSE, and bias metrics. These results 
clearly demonstrate that considerable uncertainty exists in both radar 
and GSMaP QPEs in this case. Therefore, bias-correction is necessary to 
improve their quality. 

To reduce uncertainty in radar and GSMaP rainfall data, the DGDA 
correction method based on the gauge rainfall data is conducted. Fig. 5 
shows the scatter density plots of the cumulated radar bias-corrected 
rainfall (Fig. 5a-5f) and the cumulated GSMaP bias-corrected rainfall 
(Fig. 5g-5 l) compared to the cumulated gauge rainfall at the site scale. 
Comparing to the original radar and GSMaP QPEs data, the bias- 
corrected radar and GSMaP QPEs are significantly improved and agree 
much better with the gauge observations (Fig. 5). All of the three metrics 
in the bias-corrected QPEs (Fig. 5) are all largely improved relative to 
those in the original QPEs (Fig. 4), indicating that the bias-correction 
method is totally effective. In addition, the effectiveness of the DGDA 
bias-correction method is clearly dependent on the correction time in-
terval. As shown in Fig. 5a-5f, the bias metric of the bias-corrected radar 
QPE is first reduced from 0.133 mm to − 0.012 mm when the correction 
time interval is increased from 3 hrs to 24 hrs and then increased as the 
time interval is increased from 24 hrs to 96 hrs. The RMSE metric of the 
bias-corrected radar QPE also shows a relationship with the time in-
terval similar to the bias-time interval relationship (Fig. 5a-5f): RMSE of 
the bias-corrected radar QPE is first reduced from 50.839 mm to 38.958 
mm as the correction time interval is increased from 3 hrs to 24 hrs and 
then increased as the time interval is increased from 24 hrs to 96 hrs 
(Fig. 5a-5f). In contrast, the r metric of the bias-corrected radar QPE 
increases first and then decreases as the time interval increases, with the 
highest value as time interval is set to 24 hrs (Fig. 5d). These results 
suggest that simply extending the correction time interval does not 
necessarily reduce the error spread in the bias-corrected radar QPE. 
When the correction time interval is set between 12 hrs and 24 hrs, the 
overall performance of the bias-correction for the radar QPE in this case 
reaches the optimal indicated by the three metrics. For the bias- 
correction of the GSMaP QPE, bias metric of the GSMaP bias-corrected 
QPE is reduced first and then increased as the correction time interval 
increases (Fig. 5g-l). The RMSE metric of the GSMaP bias-corrected QPE 
is slightly increased as the time interval is increased from 3 hrs to 12 hrs 
and then gradually reduced as the time interval is increased from 12 hrs 
to 48 hrs (Fig. 5g-5 k). The r metric is first increased as the time interval 
is increased from 3 hrs to 12 hrs and then decreased as the time interval 
is increased, which is similar to the RMSE-time interval relationship 
(Fig. 5g-l). Both of the bias and RMSE statistics reach the lowest value 
when the time interval is set to 48 hrs (Fig. 5k). The overall performance 
of the bias-correction for the GSMaP QPE in this case reaches an optimal 
performance when the correction time interval is set between 12 hrs and 
48 hrs. 

Taylor diagram is usually used in the analysis of meteorology data 
and can compare the SD, RMSE and r metrics at the same time. The 
Taylor diagrams of the cumulated radar bias-corrected rainfall and the 
cumulated GSMaP satellite bias-corrected rainfall using six time in-
tervals comparing to the cumulated gauge rainfall at the site scale are 
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shown in Fig. 6a and Fig. 6b, respectively. In addition, we also compared 
the hourly regional average bias-corrected radar and GSMaP rainfall 
data sets with the hourly station-based regional average rainfall from 
00:00UTC Sep. 22 to 23:00UTC Oct. 7, 2017 (Fig. 6c and 6d). In Fig. 6, A 
is the gauge observation, while B, C, D, E, F, and G presents the bias- 
corrected results using the correction time intervals of 3, 6, 12, 24, 48, 
and 96 hrs, respectively. On the site-level comparison that quantifies the 
agreement of the bias-corrected QPEs with the observations on the 
spatial patterns, the results of both in radar and GSMaP produced by the 
different correction time intervals are generally close to each other. 
Relatively speaking, the results based on the correction time intervals of 
6, 12, and 24 hrs (i.e., C, D, and E in Fig. 6a) for the radar QPE have 
gained a better quality than the results based on the other correction 
intervals. Similar but slightly different the radar results, the results 
based on the correction time intervals of 6, 12, 24, and 48 hrs (i.e., C, D, 
E, and F in Fig. 6b) for the GSMaP QPE have gained a better quality than 
the other results. Since the DGDA bias-correction method is imple-
mented at each gauge station, the bias correction can gain good results 
on different correction time intervals. In contrast, differential bias- 
correction performance appears on the regional-level comparison, 
which measures the agreement of the bias-corrected QPEs with the ob-
servations over the time. The results of bias-corrected radar QPEs using 
the correction time intervals of 12 and 24 hrs (D and E in Fig. 6c) are 
clearly better than the other results. However, bias-correction for 
GSMaP QPE achieves are better performance when the correction time 
intervals are set to 24, 48, and 96 hrs (E, F and G in Fig. 6d). 

To investigate the performance of bias-correction on the correction 
of hourly rainfall data, we further compared the bias-corrected hourly 
radar and GSMaP QPEs with the observations at the site level (Fig. 7). 
The bias metric of the bias-corrected hourly radar QPE is first reduced 
from 21.933 mm to 11.388 mm as the time interval is increased from 3 
hrs to 12 hrs, and is then continuously increased as the time interval is 
increased from 12 hrs to 96 hrs (Fig. 7a-7f). The RMSE metric of the bias- 
corrected hourly radar QPE is also first decreased as the time interval is 
increased from 3 hrs to 24 hrs, and is then increased as the time interval 
is increased from 24 hrs to 96 hrs (Fig. 7a-7f). The r statistic is first 
increased from 0.479 to 0.722 as the time interval is increased from 3 hrs 
to 12 hrs (Fig. 7a-7c), and is then decreased as the time interval is 
increased from 12 hrs to 96 hrs (Fig. 7d-7f). It is obvious that the bias 
correction can achieve the best results for the hourly bias-corrected 
radar QPE when the correction time interval is set between 12 hrs and 
24 hrs. Regarding the GSMaP correction performance, the bias metric of 
the bias-corrected hourly GSMaP QPE is first increased as the time in-
terval is increased from 3 hrs to 12 hrs, and is then decreased from 12 hrs 

to 96 hrs (Fig. 7g-7 l). As the time interval is increased from 3 hrs to 48 
hrs, the RMSE and r statistics are decreased and increased, respectively; 
both of the two metrics reach their best values when time interval is 
equal to 48 hrs (Fig. 7k). It is clear that bias-correction for the GSMaP 
QPE can achieve the best results when the time interval is set between 24 
hrs and 48 hrs (Fig. 7j-7 k). 

Overall, the bias-correction for radar and GSMaP QPEs using the 24 
hrs correction time interval can achieve an optimal result in terms of 
better capturing the both spatial and temporal variability of the obser-
vations. Therefore, the bias-corrected rainfall of radar and GSMaP using 
the 24 hrs time interval are selected to drive the iCRESLIDE model for 
further analysis and hence analyze the impacts of original and corrected 
rainfall on the model simulations. 

4.2. Hydrological evaluation of the original and bias-corrected radar and 
GSMaP QPEs 

To analyze the utility of original radar and GSMaP QPEs and the 
effectiveness of the QPE bias correction, we compared the simulated 
discharge driven by the gauge rainfall, radar QPE, GSMaP QPE, bias- 
corrected radar QPE, and bias-corrected GSMaP QPE with the 
observed discharge at the outlets of the basins. Fig. 8 shows the cumu-
lated stream flow discharge over time for all simulations and the 
observation. The results in the Ba River Basin (Fig. 8a) are similar to 
those in the Lan River Basin (Fig. 8b). First, the original GSMaP QPE- 
driven discharges are apparently overestimated comparing to the ob-
servations in the two basins (green solid lines in Fig. 8a and 8b) due to 
the positive biases in the GSMaP QPE (Fig. 4b), while the original radar 
QPE-driven discharges are clearly underestimated in both of the basins 
(blue solid lines in Fig. 8a and 8b) because of the negative biases in the 
radar QPE (Fig. 8a). In contrast, the simulated discharges driven by the 
bias-corrected radar (blue dashed lines in Fig. 8a and 8b) and GSMaP 
(green dashed lines in Fig. 8a and 8b) rainfall agree very well with the 
observed discharge (black lines in Fig. 8a and 8b) and the simulated 
discharge driven by the gauge observations (red lines in Fig. 8a and 8b) 
in the two basins, indicating that bias correction substantially improves 
the performance of the model, which is critical for flood simulation and 
prediction. The simulated discharges driven by the gauge observations 
(red lines in Fig. 8a and 8b) agree well with the observed ones (black 
lines in Fig. 8a and 8b) in both of the basins, indicated by the NSE values 
of 0.778 and 0.743, respectively. These results suggest that the iCRE-
SLIDE model has a capability of capturing the hydrological processes. 
The NSE values of the iCRESLIDE model driven by the original radar and 
GSMaP QPEs are 0.347 and 0.368 in the Ba River Basin, respectively 

Fig. 4. Scatter density of comparisons of (a) the cumulated gauge rainfall vs. the cumulated radar rainfall and (b) the cumulated gauge rainfall vs. the cumulated 
GSMaP satellite rainfall at the site scale from Sep. 22 to Oct. 7, 2017. 

S. Wang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 603 (2021) 126964

8

(Fig. 8a) and 0.105 and − 0.406 in the Lan River Basin, respectively. 
These results are not satisfactory and demand an improvement to ach-
ieve a better prediction. Once the DGDA bias correction is applied, the 
NSE metrics of the results driven by the bias-corrected radar QPEs reach 
0.718 and 0.676 in the two basins, while the NSE values of those driven 
by the bias-corrected GSMaP QPEs are 0.727 and 0.802 in the two 
basins. 

To further compare the performance of model simulations forced by 
different rainfall data, the NSE, relative bias, and r metrics are calculated 

and summarized in Table 1. The results driven by the uncorrected 
rainfall data apparently have lower qualities, with lower NSE values 
(<0.40) and higher absolute relative biases (up to 65.275% and 
42.784% for the radar and GSMaP results, respectively), indicating that 
the original radar and GSMaP indeed contain considerable uncertainty 
in this region. This region has a complex and steep terrain, which may 
largely impair the accuracy of the radar and satellite rainfall retrieval 
algorithms. However, once the bias-correction is applied, the model 
results driven by the bias-corrected radar and GSMaP rainfall achieved a 
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Fig. 5. Comparisons of (a-f) the cumulated gauge rainfall vs. the six sets of cumulated radar bias-corrected rainfall and (g-l) the cumulated gauge rainfall vs. the six 
sets of cumulated GSMaP satellite bias-corrected rainfall at the site scale from Sep. 22 to Oct. 7, 2017; bias-corrections for radar and GSMaP satellite data were 
conducted six times to produce six sets of bias-corrected data using the correction time intervals of 3 hrs, 6 hrs, 12 hrs, 24 hrs, 48 hrs, and 96 hrs, respectively. 
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much better performance with the NSE values ≥ 0.676, the absolute 
values of the relative bias ≤ 17.126%, and the r values ≥ 0.753 
(Table 1). Relatively, the results driven by the bias-corrected radar 
rainfall are generally better than those driven by bias-corrected GSMaP 
rainfall in the Ba River Basin, indicated by the higher NSE and the lower 
relative bias. In contrast, the model results driven by the bias-corrected 
GSMaP QPE are slightly better than those driven by the bias-corrected 
radar QPE in the Lan River Basin (Table 1). 

4.3. Evaluation of the utility of the original and bias-corrected radar and 
GSMaP QPEs for landslide prediction 

The landslide inventory recorded that three landslide events 
occurred in each of the two basins during the period of Sep. 22 to Oct. 
07, 2017. To evaluate the simulation results driven by different sources 
of rainfall, 30 grid cells without reported landslides were randomly 
selected. Fig. 9 shows the FS values of the model simulations driven by 
gauge, radar, GSMaP, bias-corrected radar, and bias-corrected GSMaP 
rainfall. The red dashed line in Fig. 9 represents the critical value of 
slope stability (i.e., FS = 1). A lower value than 1 (i.e., below the red 
dashed line) indicates an unstable slope (i.e., a modeled landslide event), 
while a higher value than 1 (i.e., above the red dashed line) denotes a 

stable slope (i.e., model predicts no landslide occurring). The vertical 
blue dash line in Fig. 9 separates the six grid cells with reported landslide 
events from these randomly selected grid cells without reported 
landslides. 

The simulation driven by the gauge observations correctly predicts 
four of the six landslide events (Fig. 9) with a true positive ratio (TPR) of 
66.7% and a true negative ratio (TNR) of 83.3% (Table 2), indicating 
that the iCRESLIDE model has an overall predictive capability for the 
slope stability when it is forced by the observed rainfall. It is not surprise 
that the simulations driven by the original radar and GSMaP QPEs have 
downgraded performances than the simulation driven by the observed 
rainfall (Fig. 9 and Table 2). The TPR values for the simulations driven 
by the original radar and GSMaP QPEs are 33.3% and 50%, respectively, 
while the TNR values are 83.3% and 76.7%, respectively. Both of the 
simulations driven by the original radar and GSMaP QPEs have high 
error rates that are 25–27.8% (Table 2). The rainfall bias correction has 
substantially improved the landslide prediction, increased the TPRs of 
the radar and GSMaP based results by 16.7% and 16.7%, respectively 
(Table 2), and reduced the error rates of the radar and GSMaP based 
results by 11.1% and 13.9%, respectively (Table 2). These results sug-
gest that accuracy in the rainfall forcings is critical for the accurate 
prediction of landslides and the bias-correction improves the accuracy of 
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Fig. 6. Taylor diagrams of (a) the cumulated radar bias-corrected rainfall and (b) the cumulated GSMaP satellite bias-corrected rainfall using six correction time 
intervals comparing to the cumulated gauge rainfall at the site scale and (c) the regional average hourly radar bias-corrected rainfall and (d) the regional average 
hourly GSMaP satellite bias-corrected rainfall using six correction time intervals comparing to the observations. 
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radar and satellite rainfall, leading to better performance of model 
simulation and improving the predictive capability of the iCRESLIDE 
model for landslides. 

To further analyze the accuracy of landslide prediction, the ROC 
curves of the simulations driven by the five sets of rainfall data are also 
derived (Fig. 10). It is clear that the ROC curves of the simulations driven 
by the bias-corrected rainfall data are closer to the upper-right corner 
than those of the uncorrected rainfall. The rainfall bias correction makes 
the AUC value of the ROC curve increase from 0.633 to 0.767 and from 
0.619 to 0.803 for the radar case and GSMaP case, respectively. More 
important, the results driven by the bias-corrected rainfall are close to 
these driven by the gauge observations. The AUC values for the bias- 

corrected radar and bias-corrected GSMaP driven cases, (0.767 and 
0.803, respectively) are even higher than that for the gauge driven case 
(AUC = 0.738). 

4.4. The impacts of gauge density and spatial resolution of QPEs on the 
effectiveness of bias correction 

Considering that the application of the DGDA method would be 
dependent on the gauge density and spatial resolution, we further 
analyzed the impacts of gauge density and spatial resolution of QPEs on 
the effectiveness of bias correction. In this study, the total number of 
gauge stations is 334 with a station density of 1.242 stations per 100 
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Fig. 7. Comparisons of (a-f) the regional 
average gauge rainfall vs. the six sets of 
regional average radar bias-corrected rain-
fall and (g-l) the regional average gauge 
rainfall vs. the six sets of regional average 
GSMaP satellite bias-corrected rainfall at 
the hourly scale from Sep. 22 to Oct. 7, 
2017; bias-corrections for radar and GSMaP 
satellite data were conducted six times to 
produce six sets of bias-corrected data using 
the correction time intervals of 3 hrs, 6 hrs, 
12 hrs, 24 hrs, 48 hrs, and 96 hrs, 
respectively.   
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km2. To further analyze the impact of the station density on the rainfall 
correction performance, we conducted the rainfall correction procedure 
by randomly excluding 25%, 50%, 75% and 90% of the total stations, 
which resulted in a station density of 0.930, 0.621, 0.309 and 0.123 
stations per 100 km2, respectively. The threshold of gauge density rec-
ommended by the World Meteorological Organization (WMO) is one 
gauge per 575 km2 (Gadelha et al., 2019), i.e., 0.174 stations per 100 
km2. The station densities by randomly excluding 25%, 50%, and 75% of 
the total stations in this study can result in a higher gauge density than 
the WMO recommended gauge density, while the resultant station 
density by randomly excluding 90% of the total are lower than the WMO 

recommended gauge density. These results suggest that our experiments 
on the impacts of different station densities cover a wide range of station 
density and are sufficient to analyze the relationship between bias 
correction and gauge density. To reduce the uncertainty in the random 
station-excluding procedure, we conducted 10 repeated trials each time 
and calculated their average value to quantify the performance of the 
bias-correction method. The statistical metrics used to quantify the 
performance of bias correction include the relative bias (i.e., the ratio of 
the absolute bias with some stations excluded to the absolute bias with 
all gauge stations included), relative RMSE (i.e., the ratio of the RMSE 
with some stations excluded to the RMSE with all gauge stations 
included), and r. As the number of stations, or the station density, de-
creases, the RMSE and r metrics are downgraded gradually for both 
radar (Fig. 11a) and GSMaP (Fig. 11b) cases. However, the relative bias 
metric does not show a monotonic relationship with the station density 
(Fig. 11a and 11b). These results highlight the importance of station 
density or station representativeness on achieving good bias correction, 
which agree with the findings by Tang et al. (2018) and Gadelha et al. 
(2019) that the performance of gauge observation-based radar/satellite 
bias correction is dependent on the gauge density. Although the station 
density is important for the bias correction, observations from even a 
small number of stations will be helpful for improving the quality and 
GSMaP QPEs. 

To detect the impacts of different spatial resolutions on the rainfall 
bias correction, we further conducted the rainfall correction at the 
spatial resolution of 10 km × 10 km, which is the same spatial resolution 

Fig. 8. Cumulated discharges forced by gauge, radar, GSMaP satellite, radar bias-corrected and GSMaP satellite bias-corrected rainfall data in the (a) Ba River Basin 
and (b) Lan River Basin. 

Table 1 
Performance summary of the iCRESLIDE simulated discharges during the Sept 
22-Oct 7, 2017 period in the study basins.  

Basins Rainfall forcings NSE Relative bias (%) r 

Ba River Gauge  0.778 − 5.205  0.928 
Radar  0.347 − 45.956  0.858 
GSMaP  0.368 15.069  0.884 
Bias-corrected radar  0.727 − 2.493  0.817 
Bias-corrected GSMaP  0.719 − 17.126  0.890 

Lan River Gauge  0.743 8.541  0.903 
Radar  0.105 − 65.275  0.891 
GSMaP  − 0.406 42.784  0.758 
Bias-corrected radar  0.676 − 10.760  0.753 
Bias-corrected GSMaP  0.802 7.235  0.919  
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of the original GSMaP QPE. To match with the 10 km × 10 km spatial 
resolution, we aggregated the 1-km radar QPE to 10 km. It is clear that 
the r-values for the results with a finer resolution are higher than those 
with a coarser resolution and the RMSE values for the results with a finer 
resolution are lower than those with a coarser resolution (Fig. 12), 
indicating that the spatial resolution matters for the bias correction. 
However, the biases for the results with a finer resolution are slightly 
higher than those with a coarser resolution (Fig. 12). 

5. Conclusions and discussion 

In this study, we investigated the utility of the C-band, one- 
polarization radar QPE and the GSMaP satellite QPE of the GPM 
mission for the integrated prediction of floods and landslides, developed 
a dynamic bias correction to reduce uncertainty in radar and satellite 

Fig. 9. Simulated FSs of the grid cells with reported landslides and randomly selected non-slide grid cells driven by (a) gauge, radar, and radar bias-corrected rainfall, 
and (b) gauge, GSMaP satellite, and GSMaP satellite bias-corrected rainfall in the two basins. 

Table 2 
Evaluation metrics of the landslide predictions driven by the five rainfall data.  

Metrics Gauge 
driven 

Radar 
driven 

GSMaP 
driven 

Bias-corrected 
Radar driven 

Bias-corrected 
GSMaP driven 

TPR  66.7% 33.3% 50% 50% 66.7% 
TNR  83.3% 83.3% 76.7% 93.3% 90% 
Accuracy  80.6% 75% 72.2% 86.1% 86.1% 
Error 

rate  
19.4% 25% 27.8% 13.9% 13.9%  

Fig. 10. The ROC curve forced by gauge, radar, GSMaP satellite, radar bias- 
corrected and GSMaP satellite bias-corrected rainfall data. 
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QPEs using gauge observations, and explored the impacts of gauge 
density and spatial resolution of QPE on the effectiveness of bias 
correction in two hilly basins of southern Shaanxi Province of China. 
This study highlights several valuable findings. First, both the C-band, 
one-polarization radar QPE and GSMaP satellite QPE provide valuable 
real-time or quasi real-time rainfall data for this region that can be used 
by the model to predict the flood and landslide hazards, although these 
QPEs have considerable uncertainty that need be reduced. Second, the 
developed dynamic bias correction method is effective to reduce the 
uncertainty in the radar and satellite QPEs and further largely improves 
the accuracy of near real-time rainfall monitoring and hence predictive 
accuracy of the iCRESLIDE model for predicting both flood and landslide 

hazards. Finally, although the station density and spatial resolution 
matters for the bias correction, inclusion of the observations from even a 
small number of rain gauges will be helpful for reducing the uncertainty 
in the radar and satellite QPEs. The bias correction method developed in 
this study and the findings will be useful for the similar studies and 
provide valuable guidance for further developing the QPE algorithms 
and multi-source precipitation merging methods. 

In addition, several findings in our study need be paid more atten-
tion. Our results find that the original radar QPE in this region is not very 
accurate and even has a slightly lower accuracy than the GSMaP QPE. 
Several factors can contribute to the relatively low accuracy of the radar 
QPE. First, this region has a complex terrain and dense vegetation, 
which may affect the rainfall detection of the radar. In addition, this 
radar is one-polarization radar, which limits its ability to gain better 
QPE. However, with the aid of sufficient gauge stations, we can sub-
stantially reduce the uncertainty in the radar and GSMaP QPEs. Multi- 
source precipitation merging method will be important way to 
improve the precipitation quality (Chao et al., 2018; Ma et al., 2018a; 
Sivasubramaniam et al., 2019). Although gauge station density is a 
critical factor on the accuracy of multi-source precipitation merging, 
however, it is difficult or infeasible in reality to build a large amount 
gauge stations everywhere, especially in the mountainous areas, due to 
the limitation of construction and finance. An effective way to solve this 
problem is to develop new techniques and approaches to quantify the 
spatiotemporal uncertainty in the radar and GSMaP QPEs and/or jointly 
utilize different observational or sensing platforms (Chen et al., 2019; Le 
et al., 2020; Tavakol-Davani et al., 2013). The improvement of the radar 
and GSMaP QPEs will not only provide higher accuracy rainfall data, but 
also improve the performance of integrated prediction of flood and 
landslide hazards. 

As a critical forcing data of the hydrological models, rainfall signif-
icantly affects the accuracy of the simulated discharge (Chao et al., 
2018). Overestimation (underestimation) of rainfall usually leads to 
overestimated (underestimated) flood and landslide hazards. In this 
study, the Ankang radar QPE and GSMaP satellite QPE tends to under-
estimate and overestimate the rainfall storm in our study area during the 
Sept. 22-Oct. 7, 2017 period, respectively. As a result, they caused 
underestimated and overestimated hydrological processes, respectively. 
However, with the aid of the DGDA bias correction method, the per-
formance of discharge simulation is largely improved, confirming the 
effectiveness of the rainfall correction method. On the other hand, the 
flood simulation result of radar bias-corrected rainfall is slightly better 
than that of satellite bias-corrected rainfall, illustrating that radar 
rainfall with a higher native spatial resolution and can better represent 
the spatial patterns of rainfall. In addition, the bias-corrected radar 
rainfall obtained higher NSE and r values and a lower bias value on flood 
simulation than the bias-corrected GSMaP rainfall in Ba River Basin, but 
the simulations driven by the bias-corrected GSMaP rainfall gains a 
slightly better result than those driven by the bias-corrected radar 
rainfall in the Lan River Basin. Relative to the Ba River Basins, the Lan 
River Basin has a more complex terrain. This illustrates that although 
the DGDA method can improve the accuracy of radar and GSMaP sat-
ellite rainfall data, the representativeness of the gauge data matters for 
the effectiveness of bias correction. 

Another issue is that our study period is relatively short (16 days in 
autumn) due to the limited availability of radar QPE. The results 
concluded from this short-period study may be biased and different from 
the rainfall correction results for a longer period, because the short- 
period rainfall events could be caused by a specific storm system (e.g., 
typhoon). The bias-correction method should be further validated in the 
other seasons (e.g., spring and winter), on a longer time period, and in 
the other places to assess the robustness of the DGDA method. We 
believe that the above-mentioned continuing studies will certainly draw 
a more solid conclusion on the performance and reliability of this 
developed bias-correction method. 

Fig. 11. Normalized-Bias, normalized-RMSE and r values of (a) radar bias- 
corrected and (b) GSMaP satellite bias-corrected rainfall using the bias 
correction procedure with a fraction of gauge stations randomly excluded (e.g., 
25% refers to randomly excluding 25% of the total gauge stations) compared 
with the gauge rainfall. 
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Fig. 12. Metric values of radar bias-corrected and GSMaP satellite bias- 
corrected rainfall compared with the gauge rainfall at spatial resolutions of 1 
km and 10 km (R1km is the radar bias-corrected rainfall at 1 km spatial reso-
lution while R10km is at 10 km spatial resolution; the same abbreviations for 
satellite bias-corrected rainfall). 
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