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Abstract: In many places around the globe, groundwater has been threatened by various pressures,
which calls for better management strategies for groundwater sustainability. In this study, we suggest
a novel framework for identifying factors critical to coastal groundwater based on results from City
Blueprint (CB) assessments. By compiling the 5856 indicator results of the City Blueprint Approach
(CBA) from 122 cities and analyzing the correlation between thes indicators, we constructed City
Blueprint networks (CBN) by using a complex network modeling approach for three groups of cities:
all 122 cities, 40 coastal, and 82 non-coastal cities. These networks were then analyzed for their node
centralities to identify major factors that influence coastal groundwater management. Interestingly,
our analysis revealed that groundwater has various indirect but important links with the factors that
are typically unexplored in the literature. We also assessed the CB of the two largest coastal cities in
South Korea. By combining the results of network analysis and CB assessment of the two cities, we
could identify the indicators that are potentially at risk regarding coastal groundwater. We propose
the CBN as a novel approach to unveil underestimated or hidden factors related to the target system
(e.g., groundwater), which allows extensive options for sustainable groundwater management.

Keywords: city blueprint approach; sustainable groundwater management; seawater intrusion (SWI);
complex network; centrality

1. Introduction

Global water use has been increasing primarily by growth in population and economic
activities [1]. While the majority of global water resources are used by the agricultural sector,
large cities (e.g., megacities) form additional drivers that exacerbate the stress on water
resources [2–4]. A large number of cities are located in coastal regions, which implies that,
when it is compounded with their expanding ecological footprint, these cities can contribute
to already diminishing freshwater resources. To meet increasing freshwater demands
along with the diminishing surface water in some regions, the groundwater extraction
has been continuously elevated, causing adverse effects on its quantity and quality, such
as groundwater overexploitation [5] and groundwater contamination [6]. Especially in
coastal regions, salinization by seawater intrusion, which is the landward incursion of
seawater caused by sea-level rise or over-pumping, is often the major contributor that
makes groundwater management more difficult [7–9].

Groundwater often serves as a primary water resource in coastal cities. Therefore, to
cope with increasing demands and diminishing resources in terms of both quantity and
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quality, it is necessary to establish a strategy for coastal groundwater sustainability [5,10].
We follow the definition of groundwater sustainability as the development and use of
groundwater in a manner that can be maintained for an indefinite time without causing
unacceptable environmental, economic, or social consequences [11]. As a part of the
effort, various studies have developed and applied indicators or indices for evaluating
the sustainability of groundwater management; for example, see [12] and Table 1 therein.
However, when multiple indicators were used, generally, those indicators were assessed
independently, assuming that improving a specific indicator would directly affect the
sustainability of groundwater regardless of the inter-dependence on and dynamics of
other indicators. Indeed, factors that contribute to groundwater sustainability tend to
be interrelated in a complex way, often over-emphasizing the role of a specific indicator
while other factors are neglected or under-emphasized. Thus, an indicator analyzed
independently for assessing groundwater management sustainability (e.g., [13,14]) can
provide only a rather limited understanding of the entire system, which includes a complex
network of environmental, economic, and social sustainability aspects [15].

In the Republic of Korea (South Korea hereafter), the groundwater usage of coastal
cities is generally larger than the national average or that of non-coastal cities. For instance,
in Busan and Incheon, two of the largest coastal cities in Korea, 5.9% and 7.0% of freshwater
use is from groundwater, while the figures are only 3% and 1.7% for the national average
and the capital Seoul, respectively. In South Korea, most of the groundwater is used for
domestic (41.4%) and agricultural purposes (51.9%). In Busan and Incheon, domestic
uses are larger than agricultural: 75.3% and 57.8% for domestic whereas agriculture use,
respectively, 14.4% and 38.9% of the supplied groundwater [16,17].

The City Blueprint Approach (CBA) is a diagnosis tool for assessing sustainable urban
water management [18,19]. A city can benchmark other leading cities by comparing indica-
tor scores with those cities [18]. While the CBA incorporates a broad set of indicators to
cover the factors that are both, directly and indirectly, related to urban water management,
the relationships or interactions between those indicators are not well accounted for. Re-
vealing inter-relationships between indicators is important as it enables the identification of
critical factors that play a central role in affecting groundwater systems and thus their man-
agement. By addressing such key factors, various groundwater management aspects can
be addressed simultaneously. To explore the possibility of constructing inter-relationships
between the indicators and identifying critical indicators in a scientific way, we apply a
network analysis approach.

Various systems that have been analyzed by the complex network approach often
consist of physical elements, and the relationships between them are clearly defined. Exam-
ples include the World Wide Web [20], water distribution systems [21], power grids [22,23],
road networks [24], and ecological networks [25]. There are only a few types of a network
that consists of factors (e.g., as non-physical elements) influencing a system and their asso-
ciations. One example is found in psychological studies (i.e., symptom network), in which
mental disorders (e.g., depression, anxiety disorders, and abuse) are defined as nodes, and
interactions between symptoms are defined as edges [26–28]. The main purpose of this
network analysis is to identify major symptoms that have a critical effect on, for example,
HIV infection [29].

The overarching goal of this study started from acknowledging that existing indicators
for groundwater sustainability often had been analyzed and assessed independently with-
out scrutinizing the relationships between the indicators. The revelation of the relationships
between the indicators is important because it will help decision-makers to prioritize the
improvement of management factors and avoid over-investment and mismanagement. It
also helps to discover the critical but hidden indicators, which were conventionally under-
emphasized because of unclear relationships or geo-physically in a distant location. Since
its first development and application, City Blueprint indicators data have been continuously
accumulated for more than 120 cites, which enabled us to conduct a statistical analysis to
reveal relationships between the indicators. Moreover, we adopted a complex network
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approach that has been extensively used for analyzing the connectivity and topology of
components embedded in a networked system. In sum, the objectives of this study are to (1)
assess the current status of water management of Busan and Incheon, the two major coastal
cities in South Korea, by applying CBA, (2) identify major influencing factors of coastal
groundwater by network analysis through the construction of a factor network based on
the CBA results of 122 cities (40 coastal cities and 82 non-coastal cities), and (3) suggest
strategies for more informed decisions that can improve the sustainability of groundwater
management in cities across the globe and particularly in the cities of Busan and Incheon in
South Korea.

2. Materials and Methods
2.1. Study Area

For the analysis, we selected Busan and Incheon, which are the largest coastal cities
in South Korea (Figure 1). As described earlier, the portions of groundwater use for their
freshwater sources in these two cities are larger than the national average and capital
Seoul. These portions are expected to rise because the recent water management policy
set by the South Korean government requires diversification and expansion of freshwater
sources. Moreover, due to their location close to coasts, the vulnerability of the groundwater
systems that support these two cities is likely to increase by seawater intrusion. These
anticipated increases in both groundwater demand and vulnerability call for the more
proactive management for sustainability, which requires clear identification of factors or
indicators critical to the groundwater system.
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Figure 1. Map of the study areas, Incheon (orange) and Busan (blue).

Busan has a population of 3.4 million [30] and is located on the Southeastern tip
of the Korean Peninsula (Figure 1). Within the city, discharge from groundwater and
contamination have frequently occurred along subway tunnels [31]. On the coastal part,
the groundwater along the Suyeong Bay has been reported as being vulnerable to seawater
intrusion because the area is composed of sand beaches and reclaimed land [32]. Moreover,
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the coastal aquifer of the Nakdong River delta is contaminated by seawater and chemical
components of sediments [33].

Incheon has a population of 3.0 million [30] and is the second-largest coastal city after
Busan. Incheon is located in the northwestern part of South Korea, downstream of the Han
River, and its shoreline faces the Yellow Sea (Figure 1). The shallow groundwater in this city
exhibited a very high level of Electrical Conductivity (EC), which indicates a deterioration
of groundwater quality [34]. Specifically, among 12 seawater intrusion monitoring networks
in Incheon, three measured between 1000 to 3000 µs/cm, which affects vegetation and
agricultural practices and four of them measured over 3000 µs/cm, which requires a
desalinization treatment prior to human consumption [35]. Typically, EC below 1500 µs/cm
is regarded as freshwater, whereas over 2500 µs/cm as being unrecommendable for human
consumption and over 10,000 µs/cm as being unsuitable for human consumption and
irrigation [36]. Moreover, over 7200 small and medium-sized manufacturers in this city
have discharged large amounts of untreated wastewater, which further pollutes the already
vulnerable groundwater [37].

2.2. City Blueprint Approach

A City Blueprint Approach (CBA) is a tool for assessing the sustainability of urban
water management with multiple indicators, which are standardized for Integrated Water
Resources Management (IWRM) on a city level [18,19,38,39]. The CBA reflects the wide
scope and many stakeholders, and it covers a broad range of aspects, such as water security,
water quality, drinking water, sanitation, infrastructure, biodiversity, attractiveness, and
governance [18,40]. The CBA consists of three complimentary frameworks: the Trends and
Pressures Framework (TPF), the City Blueprint Framework (CBF), and the Governance
Capacity Framework (GCF) (Figure 2). The TPF assesses the main challenges among four
categories (social, environmental, financial, and governance) of urban IWRM, the CBF
assesses water management of the city, and the GCF assesses the capacity to govern specific
urban water challenges, such as groundwater management [18]. For our analysis, TPF
and CBF are selectively used because these two frameworks (1) evaluate mostly by using
public data and (2) include indicators of groundwater scarcity (in TPF) and groundwater
quality (in CBF), which are the main focus of this study. The data of TPF and CBF for 122
cities in 52 countries were obtained from previous studies (e.g., [41–44]) and the TPF and
CBF databases.
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The TPF comprises 24 indicators, which are divided into four categories (Table 1).
The 24 TPF indicators are standardized to a scale of 0–10 and expressed as a ‘degree of
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concern’: no concern (0–2), little concern (2–4), medium concern (4–6), concern (6–8), and
great concern (8–10). Typically, national-scale data are available for calculating TPF in most
countries. However, in our two case study cities, city-level data were also used for some
indicators (i.e., urbanization rate, female participation, urban drainage flood, seawater
intrusion, heat risk, air quality, unemployment rate, and poverty rate).

Table 1. Indicators and categories of TPF (left) and CBF (right).

Trends and Pressures Framework City Blueprint Framework

Social

1. Urbanisation rate I.
Basic water

services

1. Access to drinking water
2. Burden of disease 2. Access to sanitation

3. Education rate 3. Drinking water quality
4. Female participation II.

Water quality

4. Secondary WWT

Environmental

5. Urban drainage flooding 5. Tertiary WWT
6. River peak discharge 6. Groundwater quality

7. Sea level rise
III.

Wastewater
treatment

7. Nutrient recovery
8. Land subsidence 8. Energy recovery

9. Freshwater scarcity 9. Sewage sludge recycling
10. Groundwater scarcity 10. WWT energy efficiency

11. Seawater intrusion
IV.

Water
infrastructure

11. Stormwater separation
12. Biodiversity 12. Average age sewer
13. Heat islands 13. Water system leakages
14. Air Quality 14. Operation cost recovery

Financial

15. Economic pressure
V.

Solid waste

15. MSW collected
16. Unemployment rate 16. MSW recycled

17. Poverty rate 17. MSW energy recovered
18. Investment freedom VI.

Climate
adaptation

18. Green space

Governance

19. Voice and accountability 19. Climate adaptation
20. Political stability 20. Climate-robust buildings

21. Government effectiveness
VII.

Plans and
actions

21. Management and action
plans

22. Regulatory quality 22. Water efficiency measures

23. Rule of law 23. Drinking water
consumption

24. Control of corruption 24. Attractiveness

The CBF also comprises 24 indicators, which are divided into seven categories: basic
water services, water quality, wastewater treatment, water infrastructure, solid waste, cli-
mate adaptation, and plans and actions (Table 1). Most of the CBF indicators are calculated
by city-level data and standardized to a scale of 0–10, in which a higher score implies a
good performance and a low score a poor performance.

2.3. Correlation Analysis

The accumulation of City Blueprint data from more than 120 cites since 2012 when
the approach was first developed, was our motivation to build the City Blueprint (CB)
network (see Section 2.4). Although some data may have been outdated, most of the
data were compiled in less than a decade, which seems to be suitable for city-wise or
nation-wise analysis. Before constructing the network, by using the scores of 48 indicators
obtained from 122 cities, correlation analysis was conducted to identify indicators that are
significantly correlated with groundwater. As the scores for each indicator did not follow a
normal distribution, we used Spearman’s rank correlation coefficient (rs) by transforming
the scores into ranks [45]. The rs between variables x and y is calculated as in Equation (1).

rs =

1
n ∑n

i=1

((
R(xi)− R(x)

)
×
(

R(yi)− R(y)
))

√
1
n ∑n

i=1

(
R(xi)− R(x)

)2
×
√

1
n ∑n

i=1

(
R(yi)− R(y)

)2
(1)
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where, R(x) and R(y) are the ranks of x and y, and R(x) and R(y) are the mean ranks.
The correlations between 48 indicators are calculated for three groups of cities: (1) the

total of 122 cities, (2) the subgroup of 40 coastal cities, and (3) a subgroup of 82 non-coastal
cities. Coastal cities are those at the interface or transition areas between land and sea,
including large inland lakes [46].

2.4. Construction of City Blueprint Network

We constructed the so-called City Blueprint (CB) network to identify major influenc-
ing factors of the groundwater. The CB network was composed of groundwater-related
indicators in the City Blueprint framework as nodes, and correlation between the nodes
(see Equation (1)) was used to form edges (see Tables S1–S3 for correlation heatmaps for the
three cases). Node numbers (ID), which were given to all indicators, are shown in Table 2.
While a correlation coefficient reflects the strength of inter-relationship between a pair of
nodes, it does not provide a causal relationship between those nodes. For this reason, the
groundwater-centered CB network is constructed as an undirected weighted network.

Table 2. Node numbers (ID) assigned to indicators.

ID City Blueprint Indicator ID City Blueprint Indicator

1 TPF 1 Urbanization rate 25 CBF 1 Access to drinking water

2 TPF 2 Burden of disease 26 CBF 2 Access to sanitation

3 TPF 3 Education rate 27 CBF 3 Drinking water quality

4 TPF 4 Female participation 28 CBF 4 Secondary WWT

5 TPF 5 Urban drainage flood 29 CBF 5 Tertiary WWT

6 TPF 6 River peak discharges 30 CBF 6 Groundwater quality

7 TPF 7 Sea level rise 31 CBF 7 Nutrient recovery

8 TPF 8 Land subsidence 32 CBF 8 Energy recovery

9 TPF 9 Freshwater scarcity 33 CBF 9 Sewage sludge recycling

10 TPF 10 Groundwater scarcity 34 CBF 10 WWT energy efficiency

11 TPF 11 Seawater intrusion 35 CBF 11 Stormwater separation

12 TPF 12 Biodiversity 36 CBF 12 Average age sewer

13 TPF 13 Heat risk 37 CBF 13 Water system leakages

14 TPF 14 Air quality 38 CBF 14 Operation cost recovery

15 TPF 15 Economic pressure 39 CBF 15 Solid waste collected

16 TPF 16 Unemployment rate 40 CBF 16 Solid waste recycled

17 TPF 17 Poverty rate 41 CBF 17 Solid waste energy recovered

18 TPF 18 Investment freedom 42 CBF 18 Green space

19 TPF 19 Voice and accountability 43 CBF 19 Climate adaptation

20 TPF 20 Political stability 44 CBF 20 Climate-robust buildings

21 TPF 21 Government effectiveness 45 CBF 21 Management and action plans

22 TPF 22 Regulatory quality 46 CBF 22 Water efficiency measures

23 TPF 23 Rule of law 47 CBF 23 Drinking water consumption

24 TPF 24 Control of corruption 48 CBF 24 Attractiveness

The weights of edges are assigned based on correlation coefficients of which the
absolute value is equal to or greater than 0.5. Then, groundwater-related indicators were
selected by limiting the indicators to those that had 1st and 2nd-level linkages with the
indicators of groundwater scarcity (ID #10) and quality (ID #30). That is, 1st-level indicators
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are directly linked with either groundwater scarcity or quality, while 2nd-level indicators
are directly linked with 1st-level indicators (Figure 3). Note that a 2nd-level indicator can
be linked with more than one 1st-level indicator. As a result, coastal groundwater scarcity
and quality have a 2nd-level linkage to each other. There were five indicators, including,
for example, urban drainage flood (ID #5) and land subsidence (ID #8), which had 1st-level
linkage with coastal groundwater scarcity (ID #10). Moreover, there were 10 indicators,
including, for example, land subsidence (ID #8) and seawater intrusion (ID #11), which had
1st-level linkage with coastal groundwater quality (ID #30).
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2.5. Metrics for Network Analysis

Identifying a high centrality node is important to find a key component of a net-
work [47,48]. For the case of the CB network, high centrality may indicate which indicator
plays a critical role in affecting the groundwater system and should have a high prior-
ity for managing groundwater sustainability. We calculated three network metrics, node
strength (i.e., weighted degree centrality) [48], weighted closeness centrality (closeness here-
after) [49], and weighted betweenness centrality (betweenness hereafter) [50], for analyzing
the groundwater-centered CB network. Table 3 shows the description of each weighted
metric. The node strength (s(i)) is calculated by multiplying the adjacency matrix (Aij) by
weights between node i and j. For calculating closeness and betweenness, the weighted
shortest path (dw

ij ), which is calculated by the minimum value of the reciprocal sum of
weights, was calculated. The closeness of node i (Cw

C (i)) is calculated by the reciprocal of
the sum of the dw

ij from node i to node number N, and betweenness (Cw
B (i)) is calculated by

the sum of the number of weighted shortest paths between node j and k that go through
node i (gw

jk(i)) divided by those paths (gw
jk).
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Table 3. The description of node strength, betweenness centrality, and closeness centrality.

Netowrk Metrics Node Strength
(s(i))

Closeness Centrality(
Cw

C (i) )
Betweenness Centrality(

Cw
B (i) )

Diagram
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3. Results
3.1. City Blueprint of Busan and Incheon

Figure 4 shows the results of the TPF of Incheon (orange solid line) and Busan (blue
dotted line). The lower the value in the radar chart, the lesser the concern for an indicator.
Note that we drew this TPF diagram in an inverse direction to those typically presented in
other City Blueprint studies to make it consistent with the directions for CBF in Figure 5
and apply it in correlation analysis and interpretation. The overall results of TPF for
Incheon demonstrate that the majority of indicators are at the level of ‘no concern’ or ‘little
concern’. Specifically, 10 out of 24 indicators were at the level of ‘no concern’, and 11
indicators were at the level of ‘little concern’. Among the rest, only one indicator (economic
pressure) showed ‘medium concern’ while two indicators (freshwater scarcity and seawater
intrusion) showed ‘great concern’. The indicator of freshwater scarcity is calculated by the
abstracted freshwater as a percentage of total renewable resources (including surface water
and groundwater sources). The percentage of renewable resource abstract of Korea was
41.9% in 2017 [51]. In addition, the indicator of seawater intrusion is assessed based on
a quick literature check in which seawater intrusion and groundwater salinization were
reported. According to the seawater intrusion monitoring network, seawater intrusion
frequently occurred in Incheon and Busan [35]. In Incheon, five out of the total eight
monitoring stations showed over 10,000 µs/cm of EC, which indicates this groundwater
is not suitable for human consumption and irrigation [36]. In Busan, two out of the total
three monitoring stations showed over 10,000 µs/cm of EC.
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The similarity of the TPF results of the two cities was somewhat expected because
many indicators were assessed by using national-level data due to the lack of city-level data.
Moreover, South Korea is rather a small country geographically in which distanced regions
may have similar environmental, economic, and social characteristics or contexts. However,
given that the focus of this research is on coastal groundwater, it is noteworthy that the
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indicators of ‘freshwater scarcity’ and ‘seawater intrusion’ are at ‘great concern’ whereas
‘groundwater scarcity’ showed ‘little concern’. Although these indicators are assessed as
having a different degree of concern, they are highly correlated or connected such that they
may converge to a similar degree of concern in the coming future (this will be discussed
more in the next section).

Figure 5 shows the results of CBF of Incheon (orange solid line) and Busan (blue dotted
line). Although the majority of indicators, including groundwater quality, obtained high
scores for Incheon, there were several indicators that needed attention. For example, the
indicators of energy recovery, operation cost recovery, nutrient recovery, and management
and action plans scored below 5, which indicates that these indicators should be given top
priorities for improving urban water sustainability. A similar trend among the indicators
was also found for Busan.

3.2. The Groundwater-Centered CB Network

Table 4 summarizes the attributes of the groundwater-centered CB networks con-
structed with (1) the group of all cities (GT), which include both non-coastal cities and
coastal cities, (2) only coastal cities (GC), and (3) only non-coastal cities (GNC). The GT was
composed of 28 nodes and 96 edges, while GC was composed of 36 nodes, and 160 edges
and GNC was composed of 31 nodes and 61 edges. That is, the GC had the largest numbers
of both nodes and edges, which implies that groundwater in coastal cities is affected by
more factors than in the case of analyzing all cities and non-coastal cities. Furthermore,
as evidenced by a low number of edges, there was a less complex association between
nodes in the GNC. In other words, the factors in non-coastal cities tend to form simple links,
which may allow tracking the inter-relationship or causal effect relatively easy. Thus, in this
network, a chain of effects cascading through complex associations between nodes is less
expected. According to our analysis, the GC had the highest node strength (<s> = 15.71),
which means that the groundwater influencing factors are strongly connected to each other.
The mean distance (d) of GC was 3.77, whereas it was 2.92 for the GT and 3.04 for the
GNC. This implies that there are more indirectly linked factors that significantly can affect
groundwater in coastal cities. Note that the GT and GNC are composed of two separated
components (i.e., component 1: All nodes except #9 and #10, component 2: #9 and #10),
which make some metric values unrealistic because a distance between nodes in separated
components is assigned as infinite or zero. Thus, only the largest components for GT and
GNC were used for calculating network metrics.

Table 4. Attributes of the groundwater-centered CB networks.

Networks n m <s> d

Entire cities (GT) 28 96 11.22 2.92

Coastal cities (GC) 36 160 15.71 3.77

Non-coastal cities (GNC) 31 61 6.35 3.04
Note: n and m are the numbers of nodes and edges, respectively, <s> is mean node strength, and d is mean
distance. GT is the groundwater-centered network of indicator results from all cities, GC is from coastal cities, and
GNC is from non-coastal cities.

GT and GNC are visualized, as shown in Figure 6. Each node in the network represents
an indicator of TPF (purple circle) or CBF (green circle), which were identified as having first
or second-order linkage with groundwater scarcity (ID #10) or groundwater quality (ID #30).
Blue-colored edges indicate a positive correlation between the nodes, while red-colored
edges indicate a negative correlation. Moreover, the thickness of an edge is proportional to
an edge weight or correlation coefficient. Because closeness and betweenness need positive
values for calculation, the absolute weight values were used for these metrics.
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Figure 6. The example of CB networks for all cities (a) and coastal cities (b). TPF indicators are
marked with a purple circle, while CBF indicators are marked with a green circle. Node #10 is the
‘groundwater scarcity’ indicator, and node #30 is the groundwater quality indicator (marked with a
red circle). Blue-colored edges indicate positive weights while red indicates negative. The thickness
of an edge is proportional to the absolute value of a weight.

3.3. Results of CB Network Analysis

Figure 7 shows node centralities denoted on all three networks (GT, GC, and GNC):
(a, d, and g) node strength, (b, e, and h) closeness centrality, and (c, f, and i) betweenness
centrality. The size of a circle for a node was set to be proportional to centrality (e.g., a
larger node has a larger value). Tables S4–S6 provide numerical values of these centralities
for each network. We assigned the top 20% of nodes of each metric as indicators that have a
major influence on groundwater. Among the results of GT (Figure 7a–c), governance-related
indicators (node #19–24) showed high node strength, closeness, and betweenness (node
#21–24). Excluding these indicators, assess to drinking water (node #25) was one of the
indicators having the highest closeness and betweenness. Moreover, education rate (node
#3) was another non-governance-related indicator that scored high on betweenness.

Similar to GT, the node strength and closeness of governance-related indicators were
high in GC (Figure 7d–f). When excluding these indicators, the poverty rate (node #17) was
the node with the highest node strength, and seawater intrusion (node #11) scored high on
node strength, as well as closeness. In the case of betweenness, energy recovery (node #32),
regulatory quality (node #22), land subsidence (node #8), investment freedom (node #18),
freshwater scarcity (node #9), air quality (node #14), and heat risk (node #13) scored high
on betweenness.

For GNC (Figure 7g–i), rule of law (node #23) and political stability (node #20) ranked
first and second places in node strength, closeness, and betweenness. Moreover, regulatory
quality (node #22) and control corruption (node #24) showed high closeness. Excluding
these governance-related indicators, air quality (node #14), groundwater quality (node
#30), biodiversity (node #12), and education rate (node #3) scored high on node strength.
Furthermore, air quality (node #14) and investment freedom (node #18) were high closeness
indicators, while air quality (node #14), education rate (node #3), female participation (node
#4), and river peak discharge (node #6) were high betweenness indicators. Air quality
(node #14) was the indicator that ranked highest in all three metrics when excluding
governance-related indicators.
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Figure 7. Node centralities of groundwater-centered CB networks. The results for entire cities (GT)
(a–c), coastal cities (GC) (d–f), and non-coastal cities (GNC) (g–i). The first column is the results
of node strength (a,d,g), the second column is closeness centrality (b,e,h), and the third column is
betweenness centrality (c,f,i).

As mentioned above, governance-related indicators were identified as factors that
strongly affect groundwater as these indicators are having the highest node strength and
betweenness centrality in all three networks. This result indicates that governance-related
indicators have an important role in groundwater management, and these must be taken
into account when trying to improve groundwater sustainability [52]. However, given that
effects from improving governance for groundwater management typically need a long
period after implementing new standards, regulations, and practices because of the human
factors involved, this study attempted to identify the factors that can be improved and
that take effect relatively fast. Thus, we reanalyzed the CB network for coastal cities by
excluding governance-related indicators (Figure 8).
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This coastal CB network constructed without governance-related indicators (GC2) is
composed of 29 nodes and 54 edges, while the original network that included governance-
related indicators was composed of 36 nodes and 160 edges. Note that node #12 (biodi-
versity), which was originally within the network by the second-order connection with
groundwater indicator, was removed because it was directly connected only with the
governance-related indicator (node #19). As a result, nodes #11 (seawater intrusion), #5
(urban drainage flood), #17 (poverty rate), #18 (investment freedom), #13 (heat risk), and #8
(land subsidence) became the nodes with the highest node strengths. Moreover, nodes #11
(seawater intrusion), #5 (urban drainage flood), #15 (economic pressure), #8 (land subsi-
dence), #40 (solid waste recycled), and #13 (heat risk) are ranked as nodes with the highest
closeness. The nodes with the highest betweenness were nodes #11 (seawater intrusion),
#5 (urban drainage flood), #18 (investment freedom), #13 (heat risk), #10 (groundwater
scarcity), and #40 (solid waste recycled). Taken together, nodes #11 (seawater intrusion), #5
(urban drainage flood), and #13 (heat risk) were commonly identified as the top-ranking
nodes in terms of all analyzed network centralities. That is, it is highly likely that if nodes
#11, #5, and #13 vary, other influencing factors can also be affected in significant ways.

When looking at both GC and GC2, common indicators found in the top 20% nodes for
each metric were node #17 (poverty rate) for node strength, node #11 (seawater intrusion) for
closeness, and nodes #18 (investment freedom) and #13 (heat risk) for betweenness. These
common indicators found in both networks can be interpreted as major influencing factors
for coastal groundwater management regardless of the existence of governance factors.

Furthermore, we analyzed the correlation of indicator ranks between metrics. In GC,
only node strength and closeness showed a high correlation (r = 0.92), while betweenness
showed almost no correlation with the other two metrics (r = 0.16 with node strength and
r = 0.17 with closeness). On the other hand, in GC2, the combination of all three metrics
was strongly correlated (r = 0.78 between node strength and closeness, r = 0.73 between
closeness and betweenness, and r = 0.90 between node strength and betweenness). Thus,
if one tries to find management priority only with non-governance-related indicators for
coastal groundwater, the use of GC2 will allow identifying major factors in all three aspects
of node strength, closeness, and betweenness.

4. Discussion

In this study, we have constructed networks by compiling City Blueprint results
of 122 cities to identify major factors influencing coastal groundwater. In this network,
edge weights between factors (or nodes) were assigned with correlation coefficients. As a
result, seawater intrusion was identified as one of the major influencing factors on coastal
groundwater, which confirms what previous studies have shown (e.g., [7,8]). Moreover,
governance-related indicators (voice and accountability, political stability, government
effectiveness, regulatory quality, rule of law, and control of corruption), poverty rate, heat
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risk, investment freedom, and urban drainage flood were identified as the major influencing
factors.

While factors such as seawater intrusion were highly expected, several factors that
have not often been mentioned in the literature regarding coastal groundwater management
(e.g., governance-related factors, green space, poverty rate, and economics) were also
revealed as important ones through the approach taken in this study. Table 5 shows the list
of indicators that were highly correlated with groundwater quality or quantity. Moreover,
centrality metrics of which indicator was highly ranked in the networks were also denoted.
By conducting a literature review, we also described the mechanisms that explain high
correlations with our hypotheses when needed.

Table 5. The descriptions of high correlations between indicators and groundwater.

Indicators (ID #) Centralities
Assessed as High

Descriptions of How the Indicator is Correlated with
Groundwater Refs.

Urban drainage flood (5)
s (GC2),

Cw
C (GC2),

Cw
B (GC2)

• Mostly caused by high impervious area, which prohibits or
retards stormwater infiltration resulting in a reduced recharge
of groundwater.

[53]

Land subsidence (8)
Cw

B (GC1)
s (GC2),

Cw
C (GC2)

• A decrease in the groundwater level by overexploiting
groundwater can cause land subsidence.

[54,55]

Freshwater scarcity (9) Cw
B (GC1)

• Reliable groundwater resources mitigate freshwater stress.
• Both surface water scarcity and poor quality increases the

pressure on groundwater.
[56–58]

Seawater intrusion (11)

Cw
C (GC1)
s(GC2),

Cw
C (GC2),

Cw
B (GC2)

• Contraction of groundwater causes the landward intrusion of
groundwater.

• Seawater intrusion degrades freshwater into brackish or
saltwater in an aquifer.

[59,60]

Heat risk (13)

Cw
B (GC1)

s (GC2),
Cw

C (GC2),
Cw

B (GC2)

• Typically caused by the expansion of the impervious area,
which reduces stormwater infiltration and groundwater
recharge.

• Hot temperature increases evapotranspiration and changes local
climate.

[61]

Air quality (14) Cw
B (GC1)

• Both wet and dry depositions of air pollutants (e.g.,
water-soluble metal components) can infiltrate into
groundwater.

[62,63]

Economic pressure (15) Cw
C (GC2)

• A better economy enables improved water efficiency and
wastewater and solid waste management that reduce the impact
on the quantity and quality of groundwater resources.

[64,65]

Poverty rate (17) s (GC1),
s (GC2)

• Groundwater scarcity and poor quality can cause the depletion
of agricultural water that increases the poverty rate.

• Poor cities tend to lack high-quality water services, which leads
to many private boreholes that deplete groundwater. They also
pollute groundwater due to the lack of wastewater treatment
services (e.g., through pit latrines).

• Poorer cities cannot often afford proper treatment of solid
wastes leading to uncollected and, if collected, poor landfilling
with leachate containing hazardous substances to the
groundwater.

[65–68]
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Table 5. Cont.

Indicators (ID #) Centralities
Assessed as High

Descriptions of How the Indicator is Correlated with
Groundwater Refs.

Investment freedom (18)
Cw

B (GC1),
s (GC2),

Cw
B (GC2)

• Government investment and bank programs promote
groundwater markets.

[69]

Voice and accountability
(19)

s (GC1),
Cw

C (GC1)

• Freedom of speech leads to better groundwater management by,
for example, encouraging citizens to get interested in
groundwater management and preservation.

• Increasing public participation leads to the establishment of
governance on groundwater management.

[70,71]

Political instability (20) s (GC1),
Cw

C (GC1)

• Groundwater dependence on freshwater resources increases
when politically instable.

• Water scarcity acts as a catalyst for social unrest and regional
conflicts.

[72–74]

Government
effectiveness (21)

s (GC1),
Cw

C (GC1)
• Better quality of governance and policy lead to preservation of

groundwater resources.
[75,76]

Regulatory quality (22)
s (GC1),

Cw
C (GC1)

Cw
B (GC1)

• Establishment of regulations on groundwater abstraction and
effluent control of used water improves groundwater resources.

[77,78]

Rule of law (23) s (GC1),
Cw

C (GC1)

• A strong government authority prevents illegal groundwater
withdrawal and discharge of contaminants that potentially
degrade groundwater quality.

[79]

Control of corruption
(24)

s (GC1),
Cw

C (GC1)

• Corruption contributes to poor delivery of groundwater
development projects and is a factor in which 14–30% of newly
constructed wells fail within one year of construction.

[80–82]

Energy recovery (32) Cw
B (GC1)

• Energy production (e.g., biofuel crops) requires a large amount
of (ground)water resources by Water–Food–Energy nexus.
Enhancement of energy recovery will reduce water
requirements.

[83,84]

Solid waste recycled (40) Cw
C (GC2),

Cw
B (GC2)

• The more solid waste is recycled, the less of the waste is
landfilled. Landfill leachate causes groundwater contamination.

[85]

Note: s is node strength, Cw
C is closeness, and Cw

B is betweenness, respectively. Further, GC1 is a coastal
groundwater-centered network, and GC2 is a coastal groundwater-centered network without governance-related
indicators.

This result indicates that, when seeking sustainable groundwater management of
coastal cities, these newly identified factors should also be considered. In previous studies
on City Blueprint, sustainable water management as a broad theme was evaluated through-
out CB scores. In addition to this, our study shows the possibility of identifying major
factors by selecting a specific component of urban water management (e.g., groundwater)
by adopting a network analysis technique and putting this component in the center of the
network.

The results of the City Blueprint assessment of Busan and Incheon for the indicators
that have been revealed as important factors by the CB network were as follows: TPF 19 to
24 (governance-related indicators) and TPF 8 (land subsidence) were at the level of ‘little
concern’; TPF 13 (heat risk) in Busan was at the level of ‘medium concern’ while in Incheon
was ‘little concern’; in both cities, TPF 5 (urban drainage flood) was at the level of ‘no
concern’ while TPFs 11 (seawater intrusion) and 9 (freshwater scarcity) were ‘very concern’.
Moreover, the CBF 8 (energy recovery) of both cities was around zero. It is obvious from
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this result that seawater intrusion, freshwater scarcity, and energy recovery should be
placed as high management priorities. Although the current status of groundwater quality
in both cities was evaluated to be good (e.g., CBA scores are above 9 points), this does
not imply that the groundwater will perpetually remain of this quality. As revealed by
network analysis, seawater intrusion not only directly affects groundwater scarcity and
quality but, due to its high network centralities, can also disturb other various factors that
have (in)direct effects on these groundwater indicators. In sum, our approach provides a
way to prioritize the management actions not only on the factors already evaluated to be at
risk but also on those that are apparently safe but have a high possibility of change in their
status in the future by the connectivity with factors at risk. This allows the consideration
of the long-term perspectives in groundwater management in addition to the snapshot of
CBF results.

For managing seawater intrusion in Korea, various long-term prevention measures
have been carried out. For example, seawater intrusion monitoring wells were installed
in various places along the coast, the quantity of water intake standards for drinking
water and domestic water were set, and the number of fields for artificially groundwater
replenishment has been growing. Despite these efforts, the risk of seawater intrusion is
escalating. For example, in 2017 in Incheon, three out of eight monitoring wells were at the
level of ‘caution’, meaning that the groundwater can only be used for rice paddies. In 2019,
however, six out of 11 monitoring wells were at the level of ‘serious’, which means that
this groundwater cannot be used for agriculture. Moreover, three of the monitoring wells
(2 ‘serious’ and 1 ‘caution’) were directly affected by seawater intrusion [86].

This implies that more aggressive and sophisticated measures will be required to
cope with impending risks of seawater intrusion. For example, research and development
programs for predicting the pathways of seawater intrusion and the effects of future climate
change should be actively established. Although some of these studies have been conducted,
the target area of most of those studies was limited to Jeju Island, where groundwater
is the major source of freshwater resources. However, as shown by our analysis, coastal
groundwater systems in the mainland are also at risk. Moreover, the recent enactment of
the Water Management Act in 2019 in Korea requires diversification of water resources
in a watershed, which suggests that there will be more development of groundwater for
anthropogenic uses.

Another way to mitigate and adapt to this growing risk of seawater intrusion is to learn
from and benchmark other cities or countries where aggressive measures are proactively
implemented (e.g., marsh restoration and the installation of seawater intrusion barrier in
the USA, and the installation of a subsurface dam in Japan). However, the efficacy of these
strategies and measures should also be carefully evaluated before implementation because
environmental, social, economic, geographical contexts, and conditions for seawater intru-
sion will vary by city or country. An exhaustive review of current and possible technologies
and strategies [87,88], and their case studies in implementation and effectiveness, especially
regarding the target areas, should follow.

Our approach was presented by using the two largest coastal cities in South Korea as
case study areas. In fact, our approach aims to be applied to any other cities on the globe be-
cause it uses the CBN centered on a specific management factor (e.g., groundwater), which
was built upon globally compiled CB indicator data. The two cities in South Korea were
selected as case studies to show how the CBN and CB assessment results in combination
can be used to assess a specific city. In other words, if one wants to assess a city regarding
water management, he/she may select a target indicator (e.g., groundwater) among CB
indicators and build a CBN centered on that targeted indicator using globally compiled
data. Then, after conducting the CB assessment of the city, this result can be interpreted,
by using CBN results, to reveal hidden indicators that may be important in managing the
specific factor.
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5. Conclusions

The objective of this study was to identify factors that are critical to the sustainable
management of coastal groundwater. To this end, we propose a novel approach, which is
called the City Blueprint network, to support establishing and prioritizing strategies among
various options for coastal groundwater management. Specifically, we have constructed a
groundwater-centered network based on City Blueprint scores from 122 cities and identified
major influence indicators by analyzing the network. As a result, not only seawater
intrusion but also governance indicators, economic pressure, poverty rate, urban drainage
flood (impermeable area), and heat risk were identified as major indicators affecting coastal
groundwater. Clearly, our approach can identify the factors that are often underestimated
or regarded as irrelevant to coastal groundwater management.

According to our City Blueprint analysis, currently, the water in Incheon and Busan
is relatively well managed given that there are several high external pressures existing.
However, when combining this with the result of City Blueprint network analysis, it seems
that Incheon and Busan are at high risk for seawater intrusion. Especially, the groundwater
in Incheon has been already deteriorated by seawater intrusion. Since the City Blueprint
Approach has already been applied to 122 cities and this number continues to increase,
it will be possible to identify the leading coastal cities in which the groundwater is well
managed against seawater intrusion. Moreover, by combining with the City Blueprint
network approach, strategies for direct management of groundwater, as well as the factors
that are seemingly weakly connected to but substantially affect groundwater, can also be
identified. In this way, a city at risk may find a novel and more integrated engineering
solution for adapting to and mitigating seawater intrusion. Since this requires a deeper
understanding of a nation’s or city’s current and future plans, applied strategies and
technologies, legislations, and governance, it will be another topic for our following study.

Our approach is important, especially because of challenges arising from climate
change and thus sea-level rise that countries or cities, such as Busan and Incheon, have to
cope with. Many coastal places at risk of seawater intrusion try to resolve these challenges
by adopting direct measures that often involve the construction of hard infrastructure,
which may not always work because of uncertainties. The best way to cope with uncertain-
ties is diversifying strategies, and our approach may provide alternative or complementary
measures that involve more societal, political, or indirect management actions.
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