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A B S T R A C T   

This study aimed to provide insights into the risk posed by psychopharmaceuticals and illicit drugs in European 
surface waters, and to identify current knowledge gaps hampering this risk assessment. First, the availability and 
quality of data on the concentrations of psychopharmaceuticals and illicit drugs in surface waters (occurrence) 
and on the toxicity to aquatic organisms (hazard) were reviewed. If both occurrence and ecotoxicity data were 
available, risk quotients (risk) were calculated. Where abundant ecotoxicity data were available, a species 
sensitivity distribution (SSD) was constructed, from which the hazardous concentration for 5% of the species 
(HC5) was derived, allowing to derive integrated multi-species risks. A total of 702 compounds were categorised 
as psychopharmaceuticals and illicit drugs based on a combination of all 502 anatomical therapeutic class (ATC) 
‘N’ pharmaceuticals and a list of illicit drugs according to the Dutch Opium Act. Of these, 343 (49%) returned 
occurrence data, while only 105 (15%) returned ecotoxicity data. Moreover, many ecotoxicity tests used irrel-
evant endpoints for neurologically active compounds, such as mortality, which may underestimate the hazard of 
psychopharmaceuticals. Due to data limitations, risks could only be assessed for 87 (12%) compounds, with 23 
(3.3%) compounds indicating a potential risk, and several highly prescribed drugs returned neither occurrence 
nor ecotoxicity data. Primary bottlenecks in risk calculation included the lack of ecotoxicity data, a lack of di-
versity of test species and ecotoxicological end points, and large disparities between well studied and under-
studied compounds for both occurrence and toxicity data. This study identified which compounds merit concern, 
as well as the many compounds that lack the data for any calculation of risk, driving research priorities. Despite 
the large knowledge gaps, we concluded that the presence of a substantial part (26%) of data-rich psycho-
pharmaceuticals in surface waters present an ecological risk for aquatic non-target organisms.   

1. Introduction 

Psychoactive pharmaceuticals (psychopharmaceuticals) are a class 
of pharmaceuticals primarily used to treat mental disorders and ill-
nesses, as well as other conditions relating to the nervous system, such as 
analgesics (painkillers) and anaesthetics. These psychopharmaceuticals 
are vital for our modern society, and their use has been steeply 
increasing around the world due to a multitude of factors, such as 
growing number of psychopharmaceutical-based treatments, growing 
global access to psychopharmaceuticals, growing global population, an 
ageing population in several regions, loss of social stigma, and increased 
availability of mental health treatment (European Medicines Agency, 

2021; Gao et al., 2013; Massey et al., 2018; Read et al., 2014; World 
Health Organization, 2011). 

Psychopharmaceuticals often alter the neurochemistry of the brain, 
by changing the concentrations and uptake of neurotransmitters such as 
serotonin and dopamine and/or by agonising or antagonising specific 
receptors (Jozwiak-Bebenista and Nowak, 2014; Wrobel, 2007). How-
ever, their activity is not limited to the brain, such as in the case of 
analgesics which work on the nervous system (Ghanem et al., 2016; 
Graham and Scott, 2005; Jozwiak-Bebenista and Nowak, 2014). In 
1976, the WHO created The anatomical therapeutic chemical (ATC) 
classification system, a systematic approach to classify pharmaceuticals 
into therapeutic groupings based on the organ or biological system on 
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which they act, as well as on their pharmacological and chemical 
properties, otherwise known as the mechanism of action (MOA). The 
ATC system distinguishes 14 categories in which psychopharmaceuticals 
are classified, with ATC–N standing for nervous system (WHO Collab-
orating Centre for Drug Statistics Methodology, 2018). Of the over 4000 
pharmaceuticals administered worldwide, 502 belong to the ATC–N 
class (Wishart et al., 2018). In addition to psychopharmaceuticals, illicit 
drugs such as stimulants, dissociatives, hallucinogenics, illicit opioids 
and cannabinoids can have strong effects on the nervous system as well, 
having a similar MOA as psychopharmaceuticals. Yet, studies on illicit 
drugs tend to consider these in isolation (e.g. Deng et al., 2020; Huizer 
et al., 2021; Li et al., 2016; Thomas et al., 2012), even though some illicit 
compounds are screened as candidates for therapeutic uses (e.g. keta-
mine, cannabis, MDMA, Aan Het Rot et al., 2012; Ebbert et al., 2018; 
Krystal et al., 2019; Mathew et al., 2008; Sessa, 2017). Hence, it makes 
sense to jointly assess the presence, hazard, and risks of psycho-
pharmaceuticals and illicit drugs in the aquatic environment. 

Increased use has led to the widespread occurrence of psycho-
pharmaceuticals and their transformation products in the aquatic 
environment (aus der Beek et al., 2016). Pharmaceuticals have been 
reported in the aquatic environment since the 1960s (Stumm-Zollinger 
and Fair, 1965), but specific concern for psychopharmaceuticals was 
only raised in the late 1990s (Daughton and Ternes, 1999; Hal-
ling-Sørensen et al., 1998). Consequently, there has been a significant 
increase in the amount of data on the occurrence of psychopharma-
ceuticals and their transformation products in surface waters, attributed 
also to advancements in analytical techniques such as LC–HRMS 
(Heberer, 2002; Luo et al., 2014; Ort et al., 2014; Richardson, 2007), 
which can detect pharmaceuticals in the ng to pg/l range (e.g. Zrnčić 
et al., 2014). 

Wastewater treatment plants (WWTPs) are a major source of psy-
chopharmaceutical and illicit drug residues entering the environment, to 
such a point that wastewater has become a frequently studied medium to 
reveal drug use trends in the connected populations (Deng et al., 2020; 
Huizer et al., 2021; Ort et al., 2014; ter Laak et al., 2010; van Nuijs et al., 
2011). Currently, up to 60–70% of the consumed pharmaceuticals, illicit 
drugs and the respective transformation products are not removed by 
WWTPs and end up in surface waters, depending on the 
physico-chemical properties of the compounds and the setup of the 
WWTP. Once in the aquatic environment, the fate and persistence of 
psychopharmaceuticals can vary considerably between the different 
compounds, with some degrading very quickly, which are therefore not 
being detected in the environment, while some others have reported 
half-lives (t1/2) that can exceed one year. For example, carbamazepine 
has a t1/2 of 2400–10,000 h, while paracetamol has a t1/2 of 40–350 h 
(Andreozzi et al., 2003; Yamamoto et al., 2009; Zou et al., 2015). This is, 
however, an understudied field (Bu et al., 2016), emphasising the need 
to further study the fate of (psycho)pharmaceuticals in the aquatic 
environment. 

Whether or not the presence of psychopharmaceuticals and illicit 
drugs in the aquatic environment leads to adverse effects on non-target 
species typically depends on their sensitivity to these compounds. Since 
the neural and nervous architecture of humans is shared across many 
different organisms that deviated in evolutionarily terms eons ago 
(Edsinger and Dölen, 2018; Weiger, 1997), psychopharmaceuticals and 
illicit drugs designed to interact with the human nervous system may 
also successfully interact with the nervous system of non-target organ-
isms, with potential negative ecological impacts (Claessens et al., 2013; 
Schwarz et al., 2021; Wang et al., 2021). For example, antidepressants 
can affect predatory behaviour in bass, impacts tissue metabolic ca-
pacities, and may compromise the adaptive responses in trout when 
accumulated through gills or through the food chain (Best et al., 2014; 
Bisesi et al., 2016, 2014). Adverse effects of illicit drugs have also been 
observed, but are considerably less studied than the effects of conven-
tional pharmaceuticals (Mohan et al., 2021). Outside the aquatic envi-
ronment, acute effects of psychopharmaceuticals such as changes in 

physiology and foraging behaviour have been reported for birds (Bean 
et al., 2014), which are susceptible to exposure through the food chain 
(Bean et al., 2018; Lazarus et al., 2015), as well as through direct 
exposure to sewage sludge (Bean et al., 2014). Beyond ecological effects, 
there is also concern about human safety (Kümmerer, 2010), because of 
the presence of psychopharmaceuticals in drinking water (Baken et al., 
2018; Houtman et al., 2014), and in vegetables grown using recycled 
water (Fu et al., 2019; Goldstein et al., 2014; Kim et al., 2017; Paltiel 
et al., 2016). Both psychopharmaceuticals and illicit drugs have the 
potential to disrupt so-called ‘infochemicals’, which are compounds 
used for intra-species communications (e.g., navigation, predator 
avoidance, mating behaviour, etc.), since psychopharmaceuticals can 
mimic natural infochemicals in structure (Van Donk et al., 2016; 
Vera-Chang et al., 2018). Therefore, endpoints that derive from neuro-
logical and infochemical interactions are more sensitive than the clas-
sical endpoints (i.e., mortality, growth, and reproduction), and are likely 
to be of high ecological relevance for compounds that produce these 
effects. Despite the increasing amount of pharmaceuticals, psycho-
pharmaceuticals, and illicit drugs present in the environment, the 
number of studies on their occurrence, hazards, and risks has been 
relatively stagnant when compared to other drivers of ecological 
changes, such as habitat loss and climate change (Bernhardt et al., 
2017). In addition, the focus is often on the same few psychopharma-
ceuticals and illicit drugs (e.g., carbamazepine, paracetamol, fluoxetine) 
rather than on the newer or more used compounds such as escitalopram 
(Elsevier B.V., 2020a, 2020b). It is therefore of utmost importance to 
determine the contribution of psychopharmaceuticals and illicit drugs to 
the presently ongoing degradation of environmental quality by assessing 
the environmental risk posed by these chemicals, and to put such risks 
into context by using metrics such as prescription data. 

Ecological risk assessments are used to determine which compounds 
merit concern by weighing the concentrations in the environment 
(occurrence) and the effect concentrations (hazard) to produce risk 
quotients (RQs), which informs of the likelihood of effects occurring in 
the environment. Under this system, an RQ of 1 or higher means that the 
concentration of a compound in the environment has surpassed the 
minimum concentration to expect ecotoxic effects. Averaging the 
calculated RQs for all species for which ecotoxicity data are available 
provides a median risk for a specific compound (species-level risk). 
Alternatively, when sufficient ecotoxicity data are available, Species 
Sensitivity Distributions (SSDs) can be generated, which integrate all 
available ecotoxicity data, allowing the derivation of the Hazardous 
Concentration for 5% of the species (HC5), which is then entered into the 
RQ calculations instead of the species-specific effect concentrations. 
Hence, this method can be considered as an integrated M. species risk 
assessment (Posthuma et al., 2001). However, SSDs require extensive 
ecotoxicity data to be considered robust, and multiple taxonomic groups 
to be considered more representative of natural communities (Wheeler 
et al., 2002; European Commission, 2018). Therefore, deriving an SSD 
may only be feasible for a limited number of data-rich compounds. 

Despite the rise in the use of psychopharmaceuticals and illicit drugs, 
scientific attention to the presence in the environment, ecotoxicological 
hazards, and environmental risks of these compounds is still rather 
limited. Currently, reliable environmental risk assessments are 
hampered by a limited insight into the availability of data on the 
occurrence in the aquatic environment and the hazard to non-target 
organisms. Therefore, the aim of the present study was to review the 
data on occurrence and ecotoxicological hazard of psychopharmaceut-
icals and illicit drugs in European surface waters, paying attention to the 
accompanying uncertainties and knowledge gaps. To this end we pro-
vided an ecological risk assessment of psychopharmaceuticals and illicit 
drugs in European surface waters by weighing their occurrence and 
hazard. We contextualised these risks using (Dutch) prescription data. 
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2: Methods 

2.1: Selection and classification of psychopharmaceuticals and illicit drugs 

We based our selection of psychopharmaceuticals on the ATC–N list 
of 502 chemicals (WHO Collaborating Centre for Drug Statistics Meth-
odology, 2018). Illicit drugs, such as stimulants, dissociatives, halluci-
nogenics, illicit opioids and cannabinoids, were added to this list by 
using the Opium Act of the Netherlands, containing 282 illicit com-
pounds. Illicit and recreational drugs such as caffeine, nicotine, cocaine, 
THC, and amphetamines were merged to make a ‘Stimulants & Illicits’ 
class, since the ATC categories of these select compounds (e.g., cocaine 
as an anaesthetic) were deemed inappropriate. Since the ATC–N list 
also includes compounds that are used as illicit drugs (e.g., opioids), 
duplicates were removed. The resulting list totalled to 702 compounds 
(Tables 1, S1). CAS numbers were obtained from DrugBank and Pub-
Chem (Kim et al., 2021; Wishart et al., 2018). 

2.2. Occurrence data retrieval, filtering, and confidence score 

To retrieve data on the occurrence of psychopharmaceuticals and 
illicit drugs in surface waters, the EU’s IPCHEM monitoring platform 
(European Commission, 2021) was used, which contains 18 environ-
mental occurrence databases. Four of these databases contained psy-
chopharmaceuticals and illicit drugs, and data were extracted in July 
2021 (Table S2). These four databases were the German UBA “Phar-
maceuticals in the Environment” database (Eike et al., 2019), the 
NORMAN Network database (NORMAN—Network of reference labora-
tories, 2021), the French Naïades Database (Naïades, 2020), and the EU 
WATERBASE database (EEA, 2021). In addition, we were given access to 
two Dutch databases that were not represented in IPCHEM. These were 
the WKP (Rijkswaterstaat, 2021) and the RIWA databases (“RIWA-Rijn,” 
2021). To maximise the amount of data collected, the top 50 most 
prescribed drugs in the Netherlands from 2015 to 2020 (Zorginstituut 
Nederland, 2021) that did not have data in the aforementioned data-
bases were manually searched for in literature by using the search terms 
‘”<Drug name>”, environmental, environment, occurrence, detection, 
detected, surface water’ in Google Scholar in June 2021. 

Occurrence data were filtered for European surface waters only 
(Table S3), removing values for other water matrices, such as sewage 
effluent, groundwater, etc. False positives, such as nitrophenol being 
confused with phenol by search engines, were also removed. If the 
database flagged any data as ‘questionable’, these data were not used. 
Outliers that were unusual or unrealistically high values (e.g., 1 × 1011 

mg/l) were either verified when the original source agreed with the 
database, corrected when the source disagreed with the database or else 
deleted if the original source was unavailable. Upon merging the data 
from the six databases, any duplicates were removed by inspecting 
sources, monitoring locations, monitoring location codes, and dates. For 
all data below the limit of detection (<LOD), the 90th percentile was 
calculated for all <LOD data per compound (Weltje and Sumpter, 2017), 
which helped to provide enough data to calculate the risk for 

compounds for which all data were <LOD. 
An occurrence data confidence score was created as an indication of 

the amount and range of environmental occurrence data per compound. 
Since not all compounds have the same quantity and diversity of 
occurrence data, this will serve as an indication of data quantity and 
diversity. It should be noted that the occurrence confidence score was 
made before the LOD adjustments, meaning that values below or above 
the LOD are treated equally in the confidence assessment. The total score 
was calculated from 3 sub-scores: the number of entries (measurement 
frequency), countries (spatial distribution), and years (temporal distri-
bution): 

Occurence Score =
# Entries

57
×

# Countries
12

×
# Years

2 

Equation 1: Occurrence data scoring system, with #Entries ≤ 57, 
#Countries ≤ 12, and #Years ≤ 2. These numbers are the median values for 
each of those categories (see Tables S5 and S7). I.e., the median number of 
entries was 57, the median number of countries was 12, and the median 
number of years was 2. 

2.3 Ecotoxicity data retrieval, filtering, and confidence score 

Ecotoxicity data were extracted from the US EPA ECOTOX Knowl-
edgebase (EPA, 2013) and the German UBA ETOX database (Umwelt-
bundesamt, 2008) in July 2021. In all cases, both compound names and 
CAS numbers were used as search criteria. In addition, the top 50 most 
prescribed drugs in the Netherlands in the years 2015 to 2020 (Zor-
ginstituut Nederland, 2021) that did not have data in the aforemen-
tioned databases were manually searched for in literature by using the 
search terms ‘”<Drug Name>”, ecotoxicity, ecotoxicology’ in Google 
Scholar in June 2021. 

Ecotoxicity studies with no results, no stated endpoint, or irrelevant 
endpoints (i.e., bioaccumulation factors) were removed. To maximise 
the usable data, values recorded as below or above lowest or highest test 
concentration were adjusted to the lowest or highest test concentration, 
respectively (e.g., <1 μg became 1 μg, and >1 μg became 1 μg). Outliers 
that were unusual or unrealistic were either verified when the original 
source agreed with the database, corrected when the source disagreed 
with the database or else deleted if the original source was unavailable. 

For studies that reported multiple endpoints per compound, only the 
most sensitive relevant endpoint was used to avoid cases for which 
studies with multiple endpoints held a greater weight than studies with a 
single endpoint. The ecotoxicity data included many different measures 
of toxicity, including ECx (Effective Concentration), LCx (Lethal Con-
centration), LOEC (Lowest Observed Effect Concentration), NOEC (No 
Observed Effect Concentration) and MATC (Maximum Acceptable 
Toxicant Concentration). To maximise the amount of usable data, these 
were extrapolated to either acute EC50 values (Effective Concentration 
for 50% of the exposed organisms) or to chronic NOEC values (No 
Observed Effect Concentration), following the methods for extrapola-
tion described by Posthuma (2019). To this end, the first step was to 
categorise datapoints as either “chronic” or “acute”, following the 
criteria of ECETOC (1993, Table S4), with acute and sub-chronic eco-
toxicity data being merged as “acute” (Table S4). Secondly, all measures 
of toxicity were put into two categories, NOEC or EC50, based on the 
original measure of toxicity (See Posthuma et al., 2019). These two steps 
yielded four categories of data: acute NOEC, chronic NOEC, acute EC50 
and chronic EC50. Acute NOEC values were multiplied by 1/3 to give 
chronic NOEC values, and chronic EC50 values were multiplied by 3 to 
give acute EC50 values. This resulted in two final data categories: the 
(extrapolated) chronic NOEC (denoted as cNOEC) and the (extrapo-
lated) acute EC50 (denoted as aEC50) ecotoxicity data, which were then 
used for all further analyses in the study. 

If enough ecotoxicity data were available, SSDs were generated to 
derive HC5 values, allowing for an integrated multispecies measure of 
the hazard of that specific compound. To avoid that lacking ecotoxicity 

Table 1 
Numbers of ATC–N psychopharmaceuticals and illicit drugs.  

Type (Source) Number of Compounds 

ATC–N (DrugBank) 502 
N01 - Anaesthetics 43 
N02 - Analgesics 75 
N03 – Anti-Epileptics 40 
N04 - Anti-Parkinson’s 34 
N05 – Psycholeptics 166 
N06 - Psychoanaleptics 104 
N07 - Other 41 
Illicit Drugs (NL Opium Act) 282 
Total (Duplicates Removed) 702  
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data hampered our analysis, SSDs were constructed based on a minimum 
number of 5 data points using the US EPA “SSD Generator” (EPA, 2016). 
Different SSDs were produced for cNOEC and aEC50 values. aHC5 
(acute) and cHC5 (chronic HC5) values, defined as the hazardous con-
centration for 5% of species, were derived from the SSD plots of the 
respective compounds. 

In order to assess the quantity and diversity of the ecotoxicity data 
per compound, we assigned a confidence score to each compound’s 
cHC5, aHC5, cNOEC, and aEC50 values based on the TG27 criteria 
(European Commission, 2018). For each compound we scored the 
number of datapoints (out of a maximum of 10) and for taxa (out of a 
maximum of 8). These were then multiplied to create an ecotoxicity data 
score between 0 and 1 (Equation 2). 

Ecotoxicity Score =
# Entries

10∗ ×
# Taxa

8∗

Equation 2: Ecotoxicity data scoring system, with #Entries ≤ 10 and 
#Taxa ≤ 8 

*Based on TG27 criteria 

2.4 Ecological risk assessment and confidence scores 

By weighing the occurrence and ecotoxicity data, the ecological risk 
for each compound was assessed. Two-dimensional matrices of risk 
quotients (RQs) were created where each occurrence value was divided 
by each aEC50, cNOEC, aHC5, or cHC5 value per compound Conse-
quently, each compound could have up to four associated RQ matrices. 
To compare the effect of including the 90th percentile of the <LOD data 
(see 2.2), risk matrices were also made without the <LOD data. 

RQ =
Concentration in the Environment

Effect Concentration 

Equation 3: Calculation of Risk Quotients (RQs), where effect concen-
tration can be aEC50, cNOEC, aHC5, or cHC5 values. 

The calculated RQs were then plotted in a logarithmic boxplot, and 
the percentage of RQ > 1 was determined, indicating a potential risk. A 
risk confidence score was calculated for each type of the four risk 
analysis using the following formula: 

Risk Score = Occurence Score × Ecotoxicity Score 

Equation 4: Calculation of risk confidence score. 
All confidence scores were simplified into 5 categories (Table 2). 

Ecotoxicity data uses an adjusted lower boundary due to the nature of 
the scoring system described in 2.3. All numerical confidence scores can 
be found in the supplementary information (Table S9). 

2.5 Statistical analyses 

Pearson correlations were performed to assess relations between 
(Dutch) prescription data (Zorginstituut Nederland, 2021) and other 
variables, namely occurrence, occurrence data quantity (I.e. raw num-
ber of entries per compound), occurrence data confidence, ecotoxicity, 
ecotoxicity data quantity, ecotoxicity data confidence, and risk. A sec-
ond series of Pearson correlations were performed to assess relations 
between risk (both cNOEC and aEC50) and these same variables. These 
correlations were log-transformed and performed using native Excel 

functions, with formulae embedded in Table S10. T-tests were per-
formed on the cumulative data for occurrence, cNOEC and aEC50 data 
per compound class to test for significance between compound classes 
using native Excel Functions (Table S11). 

3: Results and discussion 

3.1 Data availability for the selected compounds 

For 343 out of 702 (49%) of compounds, occurrence data were re-
ported in European surface waters, but for 194 (28% of the total, or 57% 
of the number of compounds with occurrence data), the concentration in 
the environment was below the LOD, leaving 149 compounds (21%) 
with at least one occurrence datapoint above the LOD. Only for 105 
psychopharmaceuticals (15%) ecotoxicity data were available, imme-
diately highlighting that ecotoxicity data were even less available than 
occurrence data. Only for 87 (12%) compounds both occurrence and 
ecotoxicity data were available, allowing for a risk assessment. An 
overview of occurrence, ecotoxicity and risk data can be found in 
Tables S5, S6 and S7, respectively. The NORMAN database provided 
most of the occurrence data in this study (Table 3), because it includes 
both literature studies and monitoring data. We noticed that there is a 
lack of parity between the multi-national occurrence databases, most 
notably the UBA, NORMAN and WATERBASE databases, which contain 
outdated references to each other. WATERBASE, RIWA, WKP, and 
NAÏADES returned relatively low amounts of data, likely because these 
are general monitoring databases, which focus on other contaminants. 
This highlights the low priority of psychopharmaceuticals compared to 
legacy contaminants such as solvents and persistent organic pollutants. 
The occurrence literature search did not return any additional results for 
the countries included in this study (Table S3). Considering that the EPA 
and UBA databases are both collections of current ecotoxicity literature, 
there was a large lack of parity between the two ecotoxicity databases, 
with the EPA database being far larger than the UBA database. More-
over, additional ecotoxicity data were found during the present litera-
ture search. 

3.2 Occurrence of psychopharmaceuticals and illicit drugs in european 
surface waters 

Over half of all psychopharmaceuticals and illicit drugs did not re-
turn occurrence data (Fig. 1). Of the 343 (49%) psychopharmaceuticals 
occurrence data was available, only 52 (7%) compounds had the highest 
possible occurrence data confidence, while for almost all others (278, 
40%) the confidence was medium or lower (Table S5). For 340 com-
pounds the concentration was below the LOD, and so the 90th percentile 
procedure was used for those datapoints (Fig. 1). Lithium presented by 
far the highest median concentration (0.016 mg/l), likely due to its 
natural occurrence as a mineral. In addition, common solvents such as 
diethyl ether, trichloroethylene, and phenol, were also present in high 
median concentrations due to uses in other applications such as indus-
trial solvents. Common analgesics such as paracetamol, salicylamide, 
salicylic acid, aspirin, and ibuprofen, as well as carbamazepine, were 
also present in high concentrations (Fig. S5). 

The low number of data entries per compound contributed most to 
the generally low occurrence confidence when compared to the number 
of countries and years. This indicates that there is a large disparity be-
tween well studied and understudied compounds in terms of raw data, 
with five compounds (caffeine, carbamazepine, chloroform, trichloro-
ethylene, and ibuprofen) out of 702 compounds accounting for over 
50% of all occurrence data (Table S5), with caffeine alone accounting for 
almost 20% of positive detection data. Importantly, occurrence data 
were missing for common and highly prescribed compounds such as 
betahistine, pyridostigmine, and distigmine (Tables S5, S8). For the 
illicit compounds, 127 out of 199 did not return any occurrence data, 
which were often obscure ‘new psychoactive substances’, or 

Table 2 
Simplified scoring system for all confidence scores.  

Confidence Score 
Category 

Description Range 
(Ecotox) 

Range (Occurrence/ 
Risk) 

VH Very High >0.75 >0.75 
H High 0.5 - <0.75 0.5 - <0.75 
M Medium 0.1 - <0.5 0.1 - <0.5 
L Low 0.015 - <0.1 0.01 - <0.1 
VL Very Low <0.015 <0.01  
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‘smartdrugs’ (Table S5, Castiglioni et al., 2021; Weinstein et al., 2017). 
Other compounds without data included discontinued psychopharma-
ceuticals, such as hexapropymate, metamizole, and iproniazid. 

Mean occurrence concentration, occurrence data quantity, and 
occurrence data confidence all showed a positive relation to Dutch 
prescription data (Conc.: r = 0.207, p = 0.015, Quant.: r = 0.234, p =
0.006, Conf.: r = 0.299, p < 0.001, Table S10). That is to say, the more a 
compound is prescribed, the higher its concentration in the environ-
ment, the higher the amount of data available, and the better its confi-
dence score (data variety). 

When considering the different drug classes (Table 4), Stimulants/ 
Illicits were present in the highest median concentration (8.70 × 10− 5 

mg/l), which can be solely attributed to the data dominance of caffeine 
(Table S5). The lowest median concentration (3.90 × 10− 6 mg/l) was 
presented by the ‘other’ class. However, the highest and lowest median 
concentration per class differed only a factor of 26, whereas the differ-
ence within the Psycholeptics group, for example, was a factor of over 
10,000. The T-tests showed that the median concentrations differed 
significantly between classes, except for the ‘other’ class and all other 
classes (Table S11). The range in the median concentrations within 
classes were much wider, partly attributed to a small number of com-
pounds present in high concentrations, e.g., Lithium in the Psycholeptics 
class, paracetamol in the analgesics class, and carbamazepine in the 
antiepileptics class. This indicates that pharmaceutical class is generally 

not the governing property for environmental occurrence, and other 
properties such as persistence and prescription may better predict the 
concentrations in the environment. 

Table 3 
Summary of databases used, including geographic location, timespan, data type, positive (>LOD) and negative (<LOD) detections.  

Database Location Years Data Type #Compounds After Cleaning/Filtering 
(Positive Detection) 

#Compounds After Cleaning/Filtering 
(Negative Detection) 

UBA ‘Pharmaceuticals in the 
Environment’ 

DE +
Worldwide 

1997–2016 Occurrence (Literature) 82 74 

NORMAN **Europe 2000–2016 Occurrence (Literature +
Monitoring) 

121 330 

WATERBASE EU + EEA 1987–2019 Occurrence (Monitoring) 7 18 
Naïades FR 2015–2020 Occurrence (Monitoring) 17 20 
RIWA NL 2015–2020 Occurrence (Monitoring) 22 22 
WKP NL 1989–2019 Occurrence (Monitoring) 25 30 
Occurrence Literature* **Europe 2012–2019 Occurrence (Literature) 0 – 
EPA ECOTOX – 1939–2021 Ecotoxicity 94 – 
UBA ETOX – 1964–2017 Ecotoxicity 20 – 
Ecotoxicity Literature* – 2008–2020 Ecotoxicity 8 –  

* Only top 50 most prescribed drugs based on yearly average DDD in the Netherlands were searched for in literature. 
** See table S3 for countries and regions incorporated. 

Fig. 1. Breakdown of the occurrence data showing the number of compounds that did not return data, only returned <LOD data, returned both <LOD and positive 
data, and only returned positive data. 

Table 4 
Mean concentration, median concentration, standard deviation (S.D.), and me-
dian occurrence confidence per compound class. Median confidence is reported 
as low (L) or medium (M). Concentrations include values calculated from <LOD 
data as described in 2.2.  

Class Mean Conc. 
(mg/l) 

Median Conc. 
(mg/l) 

S.D. Median 
Confidence 

Anaesthetic 5.63 × 10− 3 6.00 × 10− 5 8.82 ×
10− 2 

M 

Analgesic 2.12 × 10− 1 2.50 × 10− 5 9.93 L 
Antiepileptic 1.21 × 10− 2 6.10 × 10− 5 7.12 ×

10− 1 
M 

Anti-Parkinson’s 7.53 × 10− 6 5.00 × 10− 6 1.01 ×
10− 5 

L 

Psycholeptics 3.23 × 10− 1 5.40 × 10− 5 3.08 L 
Psychoanaleptics 2.89 × 10− 5 5.90 × 10− 6 1.06 ×

10− 4 
L 

Other 6.63 × 10− 3 3.90 × 10− 6 7.94 ×
10− 2 

L 

Stimulants/ 
Illicits 

1.92 × 10− 4 8.70 × 10− 5 7.45 ×
10− 4 

L  
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To maximise the amount of occurrence data, we utilised all data 
below the LOD by taking the 90th percentile of the collective LODs per 
compound as described by Weltje and Sumpter (2017). While this 
method allows the evaluation of risks for compounds that otherwise 
would have lacked any occurrence data (see 3.4), it may, however, 
overestimate the occurrence for these compounds. Therefore, we also 
included occurrence values for compounds using positive detections 
only to compare the method (Table S5). The median of medians for 
dataset using the <LOD method was 4.85 × 10− 6 mg/l, while the me-
dian of medians for the dataset not using the method was 5.63 × 10− 6 

mg/l, a 16% difference. However, by including the <LOD data, for 21 
additional compounds the risk could be calculated (Table S7), giving 
merit to the method of Weltje and Sumpter (2017). 

3.3 Aquatic ecotoxicity of psychopharmaceuticals and illicit drugs 

105 (15%) psychopharmaceuticals returned ecotoxicity data, with 
none of the compounds achieving the requirements for a maximal eco-
toxicity data confidence score. While there are numerous compounds 
that appear to be quite toxic, the top 10 most toxic compounds all had a 
low or very low data confidence, leaving the hazard assessment quite 
ambiguous (Table S6). Compounds with very high data confidence 
included carbamazepine, chloroform, paracetamol, ibuprofen, fluoxe-
tine, phenol, and trichloroethylene. Carbamazepine demonstrated the 
highest toxicity of all compounds and with a very high data score 
(cNOEC = 0.01 mg/l, S6). For both the cNOEC and the aEC50 datasets, 
the TG27 requires higher plants as one of the species groups to be 
included to provide an ecosystem-wide approach, which were lacking 
for all compounds. Yet, even without higher plants as a mandatory 
category, no compound would have achieved the maximum confidence 
score for either cNOEC or aEC50 (Table S6). Only 10 compounds ach-
ieved a high or very high data confidence, with over half of all com-
pounds having a low or very low confidence (Table S6). As for the 
occurrence data, only a few compounds (phenol, trichloroethylene, 
carbamazepine & chloroform) accounted for over 50% of all ecotoxicity 
data, with phenol accounting for 25%. Therefore, ecotoxicity data were 
also characterised by a large disparity between well studied and 
understudied compounds. Most of the raw ecotoxicity data (61%) were 
extrapolated into an aEC50, which was because older studies tended to 
report acute results rather than chronic. 

Considering inter-class differences in ecotoxicity (Table 5), there was 
no clear indication as to which compound class was more toxic. For 
example, according to the cNOEC data, Stimulants/Illicits were the most 
toxic (0.08 mg/l), while anaesthetics were the least toxic (6.3 mg/l). 
However, according to the aEC50 data, both of these two classes 
exhibited a very similar toxicity (47 and 42 mg/l respectively). The T- 
tests showed that there were only a few statistical differences in toxicity 
between compound classes, with the exception for differences between 
anaesthetics and Psychoanaleptics for both datasets, which is likely due 
to the high cNOEC values for the antidepressants in the Psychoanaleptics 
class (Table S11). Aside from the notable exception of anaesthetics and 
Psychoanaleptics, the broad lack of significant differences in ecotoxicity 
between compound groups could be related to the low confidence scores 
of all compound classes (Table 5), making it difficult to draw firm 

conclusions as to which class is most toxic. Indeed, the top 5 most toxic 
Psychoanaleptics had a low or very low confidence, while 3 out of 5 of 
the most toxic anaesthetics had a high or higher data confidence, which 
could indicate that poor data quality explains why the T-tests showed a 
significant difference between these two classes. Like for the occurrence 
data, the intra-class differences were much larger than the inter-class 
differences, as reflected by the large standard deviations. This high-
lights that each compound needs to be assessed independently, and 
groupings such as therapeutic class obviously do not reflect species- 
specific nor compound-specific sensitivities. 

For only 11 out of 702 compounds enough data were available to 
generate SSDs based on the non-stringent criteria used here (i.e., a 
minimum of five species), with none reaching the TG27 requirements of 
10 diverse species. There was a lack of test species diversity, as fish, 
crustaceans, and algae accounted for almost 75% of all test species and 
data for invertebrates, insects, molluscs, plants, worms and amphibians 
are largely lacking (Fig. 2). This clearly calls for more extensive and 
more diverse ecotoxicity data. To combat this lack in ecotoxicity di-
versity and data, for all psychopharmaceuticals in use ecotoxicity data 
should be generated that follow the protocol in TG27. While it may seem 
counter-intuitive to include higher plants as test species for psychoactive 
compounds, we argue that this creates a level playing field between 
species and chemical classes. In addition, psychopharmaceuticals may 
exert ecotoxic effects on higher plants that we simply do not know about 
due to a total lack of data, which was the case in the past for herbicide 
effects on animals (Perkins et al., 2000; Tsui and Chu, 2003). Including 
such data would help to obtain a better estimation of the hazard of 
psychopharmaceuticals by means of an SSD, aiding a reliable estimation 
of the risk on a M. species level. We do, however, acknowledge that 
testing many different species may be unfeasible, which calls for pri-
oritisation. An additional and alternative approach could be to run more 
in silico tests since there have been strides to move away from animal 
testing in recent years (Scholz et al., 2013). As such, in silico methods, 
like QSARs (Schüürmann et al., 2007), have been improving in recent 
years with the use of machine learning (Lovrić et al., 2021; Wu et al., 
2021). Another in vitro alternative is cellular bioassays (Fent, 2007; 
Lammer et al., 2009), although there are concerns over the ecological 
relevance of such bioassays (Schirmer, 2006). While it is beyond the 
scope of this study to go into detail about in silico/in vitro to in vivo 
extrapolation, it is an interesting topic for future research (Bell et al., 
2018). 

Unlike for occurrence data, for which there is a validated procedure 
for dealing <LOD data (Weltje and Sumpter, 2017), such a procedure is 
lacking for hazard data. Following our pragmatic approach to adjust 
ecotoxicity data recorded as below or above the lowest or highest test 
concentration to the lowest or highest test concentration, we might 
respectively under- or over-estimate ecotoxicity. Exact effect concen-
trations were not established in only a small number (6%) of the data-
points used in this study. However, our approach still maximises the 
number of ecotoxicity data which is relevant given the lack of data. 

Only 13% of the ecotoxicity data considered behavioural end points 
(Fig. 2). Since psychopharmaceuticals are designed to influence 
behaviour, and behavioural effects occur by definition at lower con-
centrations than survival, toxicity may be underestimated when using 

Table 5 
Median ecotoxicity (mg/l), standard deviation (S.D.), and ecotoxicity data confidence score per compound class for both ecotoxicity datasets.  

Class Median cNOEC (mg/l) cNOEC S.D. cNOEC Conf. Median aEC50 (mg/l) aEC50 S.D. aEC50 Conf. 

Anaesthetic 6.3 211 M 42 951 L 
Analgesic 1.0 153 L 102.3 5,173,023 L 
Antiepileptic 0.047 274 L 56.4 426 L 
Anti-Parkinson’s 0.891 – L 58.6 307 L 
Psycholeptics 2.943 83 L 65.5 2249 L 
Psychoanaleptics 0.056 146 L 1.7 327 M 
Other 0.013 6 L 0.242 84 L 
Stimulants/Illicits 0.085 257 L 47.4 1154 L  
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only non-behavioural endpoints. 

3.4: Risks of psychopharmaceuticals in european surface waters 

Only for 87 out of 702 (12%) compounds enough occurrence and 
ecotoxicity data were available to calculate indicative environmental 
risks, for which the chronic results are visualised in Figs. 3 and 4, where 
data above an RQ of 1 (red line) are indicative of risk (Table S7). Table 6 
shows the 20 out of 87 compounds that demonstrated a potential risk 

based on the% of RQs above 1 from the cNOEC analyses, while an 
additional 3 compounds indicated a potential risk based on the aEC50 
results (Table S7) resulting in 23 compounds carrying a potential (at 
least 1 RQ>1) risk. The five riskiest compounds in this analysis were 
risperidone, carbamazepine, paracetamol, cocaine, and ibuprofen, for 
which at least 10% of the RQs above 1. In addition, the cHC5 results 
showed that fluoxetine also carried a high risk (35%, Fig. 4, Table 6). 
However, only for carbamazepine, paracetamol, fluoxetine, and 
ibuprofen the confidence of this risk assessment was high or very high. 

Fig. 2. Proportion of taxa within the ecotoxicity data (a) and breakdown of the studied ecotoxicity endpoints (b) showing the proportion of non-behavioural to 
behavioural endpoints, and the breakdown of behavioural endpoints. 

Fig. 3. Risk quotient boxplot based on occurrence and (extrapolated) chronic NOEC ecotoxicity data. Whiskers represent upper and lower quartiles, while the box 
represents middle upper and middle lower. The central line indicates the median value. Compounds have been grouped and colour-coded based on therapeutic class. 
Confidence level is indicated in the floating text by each box. (LV=Very Low, L=Low, M=Medium, H=High, VH=Very High). 
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Carbamazepine stands out as the only compound in any analysis to have 
both a median risk above one, and very high confidence (Fig. 4). 
Moreover, for many of the compounds for which a risk could be assessed 

(56 out of 87 compounds) the confidence scores were below 1% 
(Table S9), and thus are labelled as having very low confidence. 

For only 11 out of 702 compounds sufficient ecotoxicity data were 

Fig. 4. Risk quotient boxplot based on occurrence and cHC5 values calculated from (extrapolated) chronic NOEC ecotoxicity data. Whiskers represent upper and 
lower quartiles, while the box represents middle upper and middle lower. The central line indicates the median value. Compounds have been colour-coded based on 
therapeutic class. Confidence level is indicated in the floating text by each box (LV=Very Low, L=Low, M=Medium, H=High, VH=Very High). 

Table 6 
Compounds that demonstrated a potential risk based on the cNOEC dataset, along with confidence. Where applicable, the cHC5 results are also included, as are the 
whole drug classes for reference.  

Drug/Class cNOEC Risk (Mean) cNOEC Risk (Median) cNOEC Risk (%) cHC5Risk (Mean) c HC5 Risk (Median) cHC5 Risk (%) Data Confidence 

Anaesthetics 1.38 £ 10þ1 6.04 £ 10¡6 0.22% – – – M 
Chloroform 7.57 × 10+1 5.68 × 10− 6 0.25% 1.99 1.59 × 10− 4 1.85% H 
Phenol 3.12 6.80 × 10− 5 0.14% 4.59 × 10− 1 5.53 × 10− 3 0.23% M 
Trichloroethylene 4.18 7.36 × 10− 6 0.18% 2.21 × 10− 2 5.19 × 10− 4 0.00% H 
Analgesics 7.85 £ 10þ5 1.38 £ 10¡5 6.69% – – – L 
Ibuprofen 2.52 × 10+6 4.00 × 10− 4 6.53% 1.52 × 10+5 6.35 × 10− 1 33.35% VH 
Paracetamol 5.33 × 10+6 5.30 × 10− 4 16.92% 8.16 × 10+5 4.41 × 10− 1 40.22% H 
Salicylic acid 1.03 2.52 × 10− 6 0.18% 1.65 1.03 × 10− 4 0.74% M 
Tramadol 3.57 × 10+1 1.23 × 10− 4 0.09% – – – L 
Psycholeptics 7.60 £ 10þ3 3.76 £ 10¡6 4.79% – – – VL 
Diazepam 2.55 × 10− 1 2.26 × 10− 6 0.11% – – – M 
Oxazepam 1.03 × 10+5 1.75 × 10− 1 9.20% – – – L 
Pentobarbital 1.18 × 10+2 2.57 × 10− 6 4.00% 5.58 × 10− 2 2.09 × 10− 2 0.00% L 
Temazepam 3.39 × 10+4 5.65 × 10− 3 1.42% – – – L 
Clozapine 1.92 × 10+2 5.59 × 10− 4 7.71% – – – L 
Risperidone 2.58 × 10+1 6.67 100.0% – – – L 
Lithium 2.75 × 10− 1 1.95 × 10− 4 0.07% – – – VL 
Psychoanaleptics 3.05 £ 10þ3 4.29 £ 10¡5 2.16% – – – L 
Citalopram 3.00 × 10− 1 4.03 × 10− 5 0.71% – – – M 
Fluoxetine 4.27 × 10+4 3.80 × 10− 4 3.40% 6.51 4.41 × 10− 1 35.57% VH 
Fluvoxamine 2.30 × 10− 1 1.98 × 10− 5 1.39% – – – L 
Antiepileptics 1.39 £ 10þ6 2.16 £ 10¡5 9.65% – – – L 
Carbamazepine 1.11 × 10+7 4.90 × 10− 3 9.74% 5.60 × 10+5 2.61 85.37% VH 
Stimulants/Illicits 2.62 £ 10þ1 1.99 £ 10¡5 16.46%    L 
Caffeine 1.76 × 10+2 2.00 × 10− 3 16.48% – – – M 
Cocaine 7.45 2.35 × 10− 1 10.17% – – – L 
Anti-Parkinson’s 1.40 £ 10¡6 1.40 £ 10¡6 0.00% – – – VL 
Other 2.32 £ 10¡4 5.13 £ 10¡5 0.00% – – – VL  
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available to generate SSDs and, therefore, to calculate integrated multi 
species risks. However, none of these SSDs met the TG 27 criteria, so 
these results should be interpreted with caution (Figs. 4, S7b, Table S7). 
Comparing the results of Figs. 3 and 4 reveals that the risk for com-
pounds based on the cHC5 are higher than those based on the individual 
ecotoxicity data (see e.g., carbamazepine). Since SSDs provide an esti-
mation of a multi-species hazard that is closer to being ecosystem wide, 
and therefore provide a more robust estimation of the actual hazard, our 
results indicate that ecosystems are indeed vulnerable to 
psychopharmaceuticals. 

The most prescribed compounds are also the most well studied, e.g., 
carbamazepine, paracetamol, ibuprofen, and fluoxetine collectively 
accounted for 23% of the ecotoxicity data and 28% of the occurrence 
data. When comparing the Dutch prescription data in defined daily 
doses to the calculated risks, the compounds that carry the highest risk 
are often also the most used and prescribed (Table S8). Nonetheless, 
Pearson correlations (Table S10) did not indicate that prescription 
correlated to risk. 

The amount of occurrence data positively correlated with a higher 
observed risk (cNOEC: r = 0.656, p < 0.001, aEC50: r = 0.659, p <
0.001), as did the amount of cNOEC data (r = 0.590, p < 0.001), and 
aEC50 data (r = 0.556, p < 0.001). Confidence in both ecotoxicity 
datasets also correlate to risk (cNOEC: r = 0.487, p = 0.001, aEC50: r =
0.460, p = 0.006) (Table S10). Hence, the better a compound is studied, 
the higher the resulting calculated risk. This is worrisome, since this may 
indicate that many poorly studied compounds may carry hidden risks 
and that more research is needed into the occurrence and hazards of 
psychopharmaceuticals to elucidate if these hidden risks are present. 

In contrast to the general observations discussed above, not for all 
commonly prescribed compounds reliable data were available (Fig. 5). 
Evaluating the data plotted in Fig. 5 in more detail reveals that risper-
idone (37th most prescribed in NL, Table S8) demonstrated the highest 
median risk of all compounds, but with a confidence on the cusp of ‘low’ 

and ‘very low’ (Table S9) and therefore its calculated risk cannot be 
considered reliable. Similarly, risk could not be calculated for betahis-
tine (7th most prescribed in NL, Table S8) due to a lack of both eco-
toxicity and occurrence data. For the sedative tramadol, numerous 
occurrence data entries were obtained, resulting in a maximum occur-
rence data score, yet only one ecotoxicity datapoint was found. Even for 
the most prescribed psychopharmaceutical, paroxetine, the risk was 
calculated with only a medium confidence, owing to a lack of ecotoxicity 
data. Since illicit drugs do not have prescription data, we were not able 
to perform a similar comparison. However, it is notable that some illicit 
stimulants demonstrated some risk, e.g., cocaine (Table 6). The stimu-
lants group, which consists of many illicit and recreational drugs 
(caffeine, nicotine, etc.), included multiple compounds with very high 
occurrence confidence, but low or no ecotoxicity confidence (Table S9). 

The present study differs from other risk assessments, in that we did 
not include additional assessment factors. This was done because we did 
not intend to derive environmental quality standards, but rather aimed 
to calculate the risk of adverse effects on non-target organisms based on 
measured concentrations of psychopharmaceuticals in European surface 
waters and measured effect concentrations. This approach, therefore, 
leads to a data-driven quantification of the risks of psychopharmaceut-
icals in surface waters, which is less stringent than other assessments 
that do incorporate these assessment factors. 

3.5 General discussion 

The present study demonstrated that for psychopharmaceuticals, 
inter-class differences were smaller than intra-class differences, 
emphasising that each psychopharmaceutical should be assessed indi-
vidually and that making assumptions based on related drugs (‘cross 
reading’) could be problematic in a regulatory setting. When consid-
ering the chemical structures of psychopharmaceuticals of a certain 
class, there can be very major differences. The SSRI class of 

Fig. 5. Scatter plot showing the distributions of ecotoxicity (right) and occurrence (Left) data scores vs (Dutch) prescription rank (Centre Axis) for the top 100 
prescribed psychopharmaceuticals. Both cNOEC and aEC50 are shown on the ecotoxicity side (Right). 
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antidepressants highlights this very well (See Table 1 in Silva et al., 
2012), since compounds within this class have a high degree of vari-
ability in chemical structure, even though this group has a common 
pharmacological MOA. As an alternative to class categorization, 
groupings based on chemical structure may therefore be further 
explored. 

We found that only for 15% of the psychopharmaceuticals ecotox-
icity data were available. This appears to be about 19% for human 
pharmaceuticals in general (Gunnarsson et al., 2019), indicating that the 
lack of data is not just limited to psychopharmaceuticals. As highlighted 
by Gunnarsson et al. (2019), this stems from mandatory ecotoxicity 
testing during clinical trials only starting in 2006 in the EU and not at all 
in the US, indicating that data are missing for legacy (prior to 2006) 
pharmaceuticals. Comparing psychopharmaceuticals in general to other 
anthropogenic compounds revealed that they have lower cumulative 
chronic NOECs than other industrial chemicals, but higher when 
compared to biocides, pesticides and general pharmaceuticals. This was 
still the case when common solvents were removed from the psycho-
pharmaceutical series (Fig. 6, van Dijk et al., 2021). This outcome likely 
stems from the fact that biocides and pesticides are designed to be toxic, 
and as Gunnarson (2019) points out, pharmaceuticals that disrupt the 
endocrine system tend to be the most toxic. In addition, as shown in 
Fig. 2, the ecotoxicity data in this study was lacking behavioural end-
points, which may suggest that the cumulative NOECs presented in 
Fig. 6 may be lower with better ecotoxcity data. Nonetheless, in the EU, 
psychopharmaceuticals, along with pharmaceuticals, are regulated by 
the European Medicines Agency (EMA), and the EU Pharmaceutical 
legislation does not provide environmental protection goals, unlike 
legislation for industrial chemicals. Greater regulatory harmonisation of 
(psycho)pharmaceuticals with other industrially produced compounds 
can help to alleviate both the lack of data presented in the current study, 
as well as the risk through a more coherent regulatory framework. 
Indeed, the need for a ‘one substance – one assessment’ approach, pro-
poses an assessment that does not differentiate between use class, but 
rather on the individual chemical (van Dijk et al., 2021). 

A 2022 study on pharmaceutical occurrence in global rivers yielded 
somewhat comparable results to the occurrence data presented here 

(Wilkinson et al., 2022). Interestingly, the concentrations of most 
compounds werehigher in the global rivers than in European surface 
waters (median concentrations of e.g. paracetamol were 296 vs 148 ng/l 
in the present study, gabapentin 272 vs 200 ng/l, caffeine 500 vs 98 
ng/l, nicotine 128 vs 40 ng/l), with the notable exeption of carbamaz-
epine, which showed higher concentrations in the present study (29 vs 
73 ng/l). This, however, is in line with the study of Wilkinson et al. 
(2022), since they noted that anticonvulsant concentrations vary heavily 
depending geographic region. 

A 2014 risk assessment of pharmaceuticals in French waters using a 
PNEC-based risk assessment found paracetamol, ibuprofen, oxazepam 
and carbamazepine to present a “likely” risk (Bouissou-Schurtz et al., 
2014). This broadly agrees with the results presented here (Table 6, 
Figs. 3 and 4), although Bouissou-Schurtz et al. (2014) considered a 
much smaller geographical area and only seven psychopharmaceuticals. 
It is interesting to note that Bouissou-Schurtz et al. (2014) identified five 
pharmaceuticals to pose a risk, four of which being psychopharma-
ceuticals. In contrast, a case study of two WWTPs in Italy found that the 
three psychopharmacuticals included in the study (propyphenazone, 
carbamazepine and diazepam) were less of a risk than other pharma-
cuetical groups, such as antibiotics (Al Aukidy et al., 2012). A review on 
the risks of antidepressants to fish yielded comparable results as those 
shown by the cHC5 results of the present study (Fig. 3). Gould et al. 
(2021) reported a median RQ of 0.41 for Fluoxetine, compared to 0.44 in 
the present study. Sertraline differered by a factor of 10 (0.01 vs 0.001 in 
the present study). The most notable difference was for Venlafaxine, for 
which Gould et al. (2021) reported a median RQ of 0.66, the highest in 
the study, while we reported 3.1 × 10− 4. However, we did not create an 
SSD for venlafaxine due to inssuficient ecotoxicity data, and Gould et al. 
(2021) only perform risk assesments for fish, which may account for the 
differences observed between the two studies. Nonetheless, the present 
study, along with some of the aformentioned studies, indeed reports 
risks for some psychopharmacueticals in the aquatic environment. 

Beyond surface waters, risks have also been reported for psycho-
pharmaceuticals in terrestrial environments, namley soils that have 
been treated with sewage sludge (Aydın et al., 2022; Camotti Bastos 
et al., 2020; Martín et al., 2012; Mejías et al., 2021). Such studies tend to 

Fig. 6. Comparison of cNOEC values for various groups of anthropogenic compound classes. Psychopharmaceutical and Psychopharmaceutical)(W/O) series are 
from the present study, other series were taken from Gunnarsson et al., 2019; Gustavsson et al., 2017; van Dijk et al., 2021. Note that assessment factors were not 
included in this plot. 
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focus on other pharmacueticals, such as antibiotics and endocrine dis-
ruptors, since these have a higher risk than psychopharmacuticals. 
Soil-based studies also show that the risk posed by psychopharmaceut-
icals appears to be less than those presented in the current study, which 
may indicate that the aquatic environment is the more sensitive 
ecosystem. However, carbamazepine, sertraline, ibuprofen, and fluox-
etine have demonstrated risks in soils in some studies (Martín et al., 
2012; Mejías et al., 2021) which demonstrate that wastewater effluent is 
not the only source of environmental psychopharmaceutical risk, and 
that our arguments for more data also extends to other ecosystems. 

3.6 Study limitations and future research 

This study did not focus on specific locations or situations, though 
site specific risk assessment can be of relevance, since prescription, 
consumption, and removal of psychopharmaceuticals may depend on 
local factors. Temporal variation can also be relevant, as prescriptions 
can vary depending on the time of the year (Heald et al., 2021; Winkler 
et al., 2019). Furthermore, population densities in different WWTP 
catchment areas, WWTP removal efficiencies, and drought conditions 
(Sjerps et al., 2017) influence occurrence. Events such as natural di-
sasters and the COVID-19 pandemic can influence prescription and 
consumption patterns of psychopharmaceuticals (Andalo, 2020; 
Boehnke et al., 2021; Palmer and Seoudi, 2021; Robinson, 2021; Usher 
et al., 2012). Despite using European occurrence data, we only used 
prescription data from the Netherlands, as finding prescription data 
from all European countries was not feasible. Yet, this does mean that 
conclusions based on prescription data may not be fully generalisable. 
As such, as a follow up and refinement of the present study, site specific 
risk assessments may also investigate local cases, such as a single nation 
or region, accounting for specific and temporal differences. We also 
could not verify every datapoint (both ecotoxicity and occurrence) due 
to the large amount of data points, and only focused verification efforts 
on outliers. 

We defined psychopharmaceuticals as the ATC–N class plus illicit 
drugs according to the Dutch Opium Act. The ATC system gives an ATC 
code to a compound based on its uses in past and present treatments but 
overlooks a drug’s MOA when that MOA is not specifically employed in a 
medical treatment. For example, the muscle relaxant phenprobamate is 
in the ATC-M class (Muscular system), and has no ATC–N number 
associated to it, yet it has displayed sedative effects (Demir et al., 2015). 
Other examples include illicit compounds that are being screened for 
various therapeutic uses (Aan Het Rot et al., 2012; Mathew et al., 2008; 
Sessa, 2017). Therefore, many of the non-ATC–N pharmaceuticals can 
in principle exert relevant MOAs, which may affect relevant behavioural 
endpoints. However, due to the infeasibility of checking all compounds 
for these MOAs, these were not included. This also lends itself in favour 
of a ‘one substance – one assessment’ style approach, where 
non-psychopharmaceuticals (in the strict sense) should be screened for 
behavioural ecotoxicological endpoints alongside pharmaceuticals. In 
addition, this will need to be performed not only for new chemicals, but 
also for (highly used) legacy chemicals. However, we do acknowledge 
that this is a costly recommendation, and thus could be supplemented 
with other types of ecotoxicity testing, as discussed in 3.3. 

Transformation products can be found in higher concentrations than 
parent compounds in the environment (Buser et al., 1999; Langford and 
Thomas, 2011; Zhang et al., 2008), and are generally more mobile and 
harder to remove by WWTPs (Rivera-Utrilla et al., 2013). The toxicity of 
transformation products is of concern, since many transformation 
products may still be biologically active, and thus exert a specific 
toxicity above baseline toxicity through a viable MOA (Celiz et al., 2009; 
Escher and Fenner, 2011; Neuwoehner et al., 2009). The lack of quan-
titative occurrence data on transformation products is often a practical 
issue since detection by techniques such as LCMS requires standards for 
these transformation products. In the case of transformation products, 
these standards are often more expensive compared to the parent 

compound, or might not exist at all as an analytical standard and 
therefore must be synthesised de novo at large financial costs (Hernán-
dez et al., 2011; Wong and MacLeod, 2009). The lack of availability, or 
the large investments involved, often deter researchers from detecting 
transformation products, unless the study is specifically focussed on 
transformation products for reasons such as calculating consumption of 
illicit drugs (Ort et al., 2014; Thomas et al., 2012), or utilises parent: 
metabolite ratios to predict metabolite concentrations (de Jongh et al., 
2012; ter Laak et al., 2014). The transformation product challenge also 
extends to ecotoxicity data, even more so, since ecotoxicity experiments 
require higher volumes. Hence, transformation products are often 
overlooked in both pharmaceutical occurrence and ecotoxicity studies 
(Celiz et al., 2009; Charuaud et al., 2019; Cleuvers, 2003; Fram and 
Belitz, 2011; Frédéric and Yves, 2014; Kar and Roy, 2012; Mompelat 
et al., 2009; Vestel et al., 2016). 

This study did not incorporate mixture toxicity into the hazard 
assessment. For psychopharmaceutical mixture toxicity only a limited 
number of studies are available. For example, additive mixture effects 
have been demonstrated for SSRIs (Christensen et al., 2007), and for a 
mixture of carbamazepine and ibuprofen (Cleuvers, 2004). These 
mixture toxicity experiments represent realistic scenarios, since the 
compounds present in these mixtures have indeed been demonstrated to 
be jointly present in surface water samples, as listed in the data bases 
used in this study (Patrolecco et al., 2013). Moreover, in the occurrence 
databases (Table 3) many other examples of jointly present psycho-
pharmaceuticals can be found. This should thus be considered in future, 
more focused, risk assessments. Future studies should also screen for 
transformation products in environmental monitoring and investigate 
their ecotoxicological impact, alongside other parent drugs and trans-
formation products in mixture toxicity tests. Focus should be given to 
compounds that are highly used, present a risk, or have low data con-
fidence, as defined in the present study. 

4. Conclusions 

Our findings revealed a lack of both occurrence and ecotoxicity data, 
hampering a reliable environmental risk assessment of most psycho-
pharmaceuticals, with ecotoxicity data being the scarcest. Moreover, the 
limited data were also not spread uniformly, with a handful of well 
researched compounds dominating both occurrence and ecotoxicity 
data. Non-behavioural endpoints and only a few test species were 
dominating the ecotoxicity data. Thus, many compounds may present a 
risk that cannot be estimated due to missing or skewed data. This is 
alarming, since we showed that better studied compounds carried 
higher risks. 

We found that the most prescribed compounds in the Netherlands 
were the most studied and occurred most frequently. However, many of 
the highly prescribed psychopharmaceuticals still lack proper data. 
Common illicit drugs also demonstrated risks, and generally provided 
good occurrence data, but lacked ecotoxicity data. Furthermore, intra- 
class differences were larger than inter-class differences, emphasising 
that therapeutic grouping may not be an appropriate way to categorise 
compounds and that each compound should rather be individually 
assessed for risk 

Despite the presently identified large knowledge gaps, we conclude 
that the presence of a substantial part of data-rich psychopharmaceut-
icals in surface waters present an ecological risk for aquatic non-target 
organisms. 
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