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Abstract
During disinfection of drinking water, natural organic matter reacts with chlorine to produce harmful disinfection by-products. 
The identification of precursors of disinfection by-products in natural organic matter is challenging because natural organic 
matter is very complex and poorly known. Therefore, scientists have focused on the fractionation of natural organic matter 
with membranes or resins to better understand how and which organic matter fractions react during chlorination. Here, we 
compared the reactivity of various organic fractions with disinfection by-products. For that we did a meta-analysis of 400 
water samples published in 80 publications, with focus on chlorination time and dose,  SUVA254 and the column capacity 
factor used during resin fractionation.  SUVA254 refers to the ultraviolet absorbance at 254 nm divided by the organic matter 
concentration. We found that hydrophobic compounds have 10–20% higher reactivity to both trihalomethane and haloacetic 
acid formation compared to hydrophilic compounds in waters with  SUVA254 above 2L/(mg∙m), while hydrophobic and 
hydrophilic compounds have equal reactivity in waters with low  SUVA254. On the other hand, hydrophilic compounds are 
20–80% more reactive towards emerging disinfection by-products, regardless of  SUVA254. Chlorination time and dose do 
not influence the reactivity ratio between the different fractions. An increase in column capacity factor can shift the reactiv-
ity ratio from hydrophobic to hydrophilic fractions. Dead-end, stirred cell ultrafiltration membrane fractionation might not 
always produce sharply separated fractions, which is mainly due to fouling. Therefore, no clear correlation could be found 
between membrane fractions and all investigated disinfection by-product groups.

Keywords Trihalomethanes · Haloacetic acids · Emerging disinfection by-products · Resin fractionation · Membrane 
fractionation · Chlorination

Introduction

Natural organic matter, ubiquitous in sources of drinking 
water, negatively affects drinking water quality. It can con-
tribute to an undesired taste, odor or color of the drinking 
water and to the formation of biofilms and (pathogenic) 
bacterial regrowth by acting as nutrients in the distribution 
system. Chlorine is the most commonly used disinfectant to 
inactivate waterborne pathogens and to maintain a disinfect-
ant residual in the distribution network. However, chlorine 
reacts with natural organic matter to form various disinfec-
tion by-products and exposure to these by-products has been 
associated with health issues such as bladder cancer (Diana 
et al. 2019). More than 700 disinfection by-products have 
already been identified, where mainly four trihalomethanes 
and five haloacetic acids are regulated in different coun-
tries (Richardson et al. 2007). The USA has set maximum 
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contaminant limits of trihalomethanes and haloacetic acids 
in drinking water to 80 and 60 µg/L, respectively, while 
trihalomethane levels in the EU cannot exceed 100 µg/L. 
Haloacetic acid concentrations were recently limited in the 
EU to 60 µg/L (Council of the European Union 2020; EPA 
2010).

Unregulated disinfection by-products such as haloacetoni-
triles, haloacetamides or haloketones are formed in lower 
concentrations (typically low µg/L to ng/L) (Richardson 
et al. 2007). Nevertheless, the toxicity of these compounds is 
higher than that of the regulated by-products, and thus, these 
compounds may cause greater public health issues. The 
presence of bromide and/or iodide in the water matrix leads 
to the formation of brominated and iodinated disinfection 
by-products (Criquet and Allard 2021). These compounds 
are even more genotoxic and cytotoxic than their chlorinated 
analogues, e.g., iodoacetic acid, which is the most genotoxic 
compound identified to date (Dong et al. 2019; Wagner and 
Plewa 2017).

In the past decades, many research focused on identify-
ing natural organic matter compounds responsible for dis-
infection by-product formation. However, dissolved organic 
carbon, i.e., the fraction that passes through a 0.45 µm filter, 
is a very complex mixture of aromatic and aliphatic hydro-
carbons. The concentration, composition and chemistry are 
highly variable and depend on the natural organic matter 
source, the season, temperature, pH and ionic strength of the 
water (Filella 2009; Leenheer and Croue 2003). Therefore, 
dissolved organic carbon is characterized by bulk param-
eters such as total organic carbon and specific ultraviolet 
absorbance at 254 nm  (SUVA254) or by more in-depth char-
acterization techniques such as nuclear magnetic resonance 
spectroscopy, Fourier transform infrared spectroscopy and 
3D fluorescence excitation emission matrices (Filella 2009; 
Matilainen et al. 2011).

This characterization is however very difficult due to the 
simultaneous presence of hundreds of different molecules. 
Therefore, with fractionation processes, organic matter is 
split beforehand into several fractions with similar physical 
or chemical properties. This can be done analytically by the 
use of chromatographic methods such as high-performance 
size exclusion chromatography or field flow fractionation, 
which both split the organic matter by size and shape (Mat-
ilainen et al. 2011; Pan et al. 2016). Huber et al. (2011) 
developed a method that consists of liquid chromatography 
coupled to both an organic carbon detector and organic nitro-
gen detector. This technique is capable of identifying five 
different fractions of organic matter; (a) biopolymers, (b) 
humic substances, (c) building blocks, (d) low molecular 
weight acids and (e) low molecular weight neutrals.

With analytical fractionation, the different fractions are 
lost after analysis, because they are not readily available as 
separate extracts nor in adequate volumes to conduct further 

experiments. Therefore, preparative fractionation such as 
membrane or resin fractionation is performed to split natu-
ral organic matter into available fractions or extracts with 
similar physical (with membranes) or chemical (with resins) 
properties in sufficient quantities (Matilainen et al. 2011; 
Ratpukdi et al. 2009). Subsequently, researchers seek to cor-
relate these properties to certain water-related issues, such 
as disinfection by-product formation, bacterial regrowth or 
membrane fouling behavior which might be overly expressed 
with a certain fraction. Finally, precise solution strategies 
can be developed targeting this specific fraction (Krzemin-
ski et al. 2019; Pi et al. 2021; Sambo et al. 2020; Yin et al. 
2019).

Membrane and resin fractionation are widely used in an 
attempt to identify disinfection by-product precursors. In 
this respect, fractionation parameters such as membrane and 
resin type, or chlorination parameters such as chlorination 
dose, reaction time, pH and temperature are key factors for 
the outcome and the interpretation of the results. Although 
research already looked into the influence of chlorination 
parameters on bulk samples (Hua and Reckhow 2008; Iri-
arte et al. 2003), no assessments are done so far on how 
individual fractions react on certain changes in chlorination 
parameters.

Therefore, this review will focus for the first time on (i) all 
the different membrane and resin fractionation approaches 
used in the identification of disinfection by-product precur-
sors and assess their advantages and drawbacks and, (ii) 
critically evaluate if certain fractionation and chlorination 
parameters can influence the formation of both regulated and 
unregulated disinfection by-products in these fractions and 
identify their precursors.

Factors controlling fractionation 
and disinfection by‑product formation

Many research has been executed in the past to identify 
the most important precursors for disinfection by-product 
formation. However, several approaches were used in these 
attempts. It is therefore important to identify the parameters 
that are varied among the different papers, because this 
can possibly affect the results and outcome. In this review, 
papers will be separated based on their method and the influ-
ence of different parameters will be assessed to make a clear, 
statistical comparison regarding disinfection by-product 
formation.

For membrane fractionation, both the membrane mate-
rial and the pressure can influence the filtration. Over-
all, regenerated cellulose is used, and the pressure varies 
between 0.2 and 3.5 bar, which is believed not to change 
the fractionation significantly ("Principle of membrane 
fractionation" Section). Furthermore, it appeared that 
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for resin fractionation, not the resin type, but the col-
umn capacity factor (k’) is the only parameter that dif-
fers largely between papers, having a value of 50 or 100 
(Leenheer 1981; Malcolm and Maccarthy 1992). Kitis 
et al. (2002) showed a gradual increase in trihalometh-
ane and haloacetic acid formation in a particular fraction 
when changing the column capacity factor from around 
30 to 105 ("Principle of resin fractionation" Section for 
further discussion).

Chlorine is the principal disinfectant used in drinking 
water, an extensively studied reactant for disinfection by-
product formation potential and therefore, the only dis-
infectant reviewed here. Temperature, pH, reaction time 
and chlorine dose are the four main parameters control-
ling disinfection by-product formation kinetics (Hua and 
Reckhow 2008). Ambient temperature and neutral pH 
are reported in all papers collected and will therefore be 
assumed constant ("Identification of membrane fractions 
involved in the formation of disinfection by-products" 
Section and "Resin fractions involved in the formation of 
disinfection by-products" Section). On the other hand, the 
reaction time and chlorine dose is very variable among 
papers. Short reaction times are mostly accompanied with 
low free chlorine residual (~ 1 mg  Cl2/L), while during 
long exposure, chlorine is added in excess to seek reaction 
completion (~ 3–5 mg  Cl2/L chlorine residual), as fol-
lowed by different APHA standard methods for the exam-
ination of water and wastewater such as 5710B ("Identi-
fication of membrane fractions involved in the formation 
of disinfection by-products" Section and "Resin fractions 
involved in the formation of disinfection by-products" 
Section). While the uniform formation condition test with 
short reaction time and low chlorine dose illustrates dis-
tribution system conditions, the formation potential test 
determines a maximal amount of disinfection by-products 
that could be formed through the complete reaction of 
the disinfection by-product precursors with chlorine in a 
sample (Kanan and Karanfil 2020).

Finally, specific ultraviolet absorbance  (SUVA254) is 
one of the most frequently used parameters to character-
ize natural organic matter in a water source.  SUVA254 is 
defined as the absorbance of ultraviolet light at 254 nm 
divided by the organic matter concentration (Ho et al. 
2013). This wavelength is especially absorbed by aro-
matic species (Matilainen et al., 2011). In this review, the 
threshold between high and low  SUVA254 waters is set at 
2 L/(mg∙m). Since resin fractionation is mainly based on 
hydrophobicity, this parameter might have an important 
role and will be included together with the chlorination 
time, dose and column capacity factor when assessing 
the reactivity of different fractions toward disinfection 
by-product formation.

Membrane fractionation

Principle of membrane fractionation

Generally, a series of ultrafiltration membranes with 
decreasing molecular weight cut-offs are used to prepare 
fractions with different size ranges (Fig. 1a). Regenerated 
cellulose membranes in dead-end stirred cell configura-
tion is the most frequently applied method. The molecular 
weight cut-off of the membranes range from 0.5 kDa up 
to 100 kDa or even 500 kDa (Chang et al. 2001; Goslan 
et al. 2004; Hu et al. 2015; Hua and Reckhow 2007b; Hua 
et al. 2015; Özdemr 2014; Wei et al. 2008b; Xu et al. 2007; 
Zhang et al. 2020b; Zhao et al. 2009).

Generated membrane fractions are defined as a molecu-
lar weight range which is based on the molecular weight 
cut-off of the membranes used, e.g., molecules that pass 
a membrane with a molecular weight cut-off of 100 kDa, 
but are rejected by a membrane with one of 30 kDa are 
defined as the 30–100 kDa fraction. This will be further 
called the theoretical molecular weight range of a frac-
tion. However, Goslan et al. (2004) and Zhao et al. (2009) 
characterized their generated membrane fractions with 
size exclusion chromatography coupled to a ultraviolet 
detector at 254 nm. From this, it was concluded that the 
chromatograms of all fractions from the respective paper 
are largely overlapping. Furthermore, Zhao et al. (2009) 
reported that the apparent mean molecular weight values 
of the fractions measured from the chromatography were 
lower than expected from the molecular weight cut-offs.

This observation was also confirmed by other analytical 
techniques such as flow-field flow fractionation (Assemi 
et al. 2004). Here, the minimum, maximum and mean 
molecular weight value from each membrane fraction was 
determined. Figure 2 shows the difference between the 
theoretical molecular weight range (crossed pattern bars) 
and the real molecular weight range of a fraction measured 
with flow-field flow fractionation (solid bars). Apart from 
the prominent overlap between the fractions, it can be seen 
that the 10–30 kDa and > 30 kDa fractions only contain 
molecules which are much smaller than 10 kDa, meaning 
that molecules bigger than 10 kDa were not present in 
the raw water. However, it is contra-intuitive that mol-
ecules smaller than 10 kDa were retained by the 30 kDa 
membrane. For ultrafiltration membrane fractionation, 
most authors use a dead-end stirred cell configuration. 
Here, the water flow is perpendicular to the membrane 
resulting in accumulation of the retained compounds and 
thereby inducing fouling onto the membrane. This foul-
ing layer will act as an extra barrier, possibly retaining 
molecules smaller than the molecular weight cut-off of 
the membrane. Furthermore, the pore sizes of membranes 
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are known not to be uniform, but to have a pore size dis-
tribution (Mulder 1996). Therefore, molecular weight cut-
off is defined as the molecular weight of compounds that 
are retained by the membrane for only 90%, which might 
explain the partial overlap between the fractions (Chow 
et al. 2005; Zhao et al. 2009).

An alternative approach to perform a membrane frac-
tionation was recently developed by Yin et  al. (2019) 
(Fig. 1b). With the use of both a nanofiltration and ultrafil-
tration membrane in spiral wound modules, three distinct 
fractions from seawater were successfully obtained and 
characterized by liquid chromatography, namely (i) a frac-
tion containing 95% biopolymers, (ii) a fraction with 93% 
humic substances and their building blocks and (iii) a 87% 
low molecular weight compound fraction (Yin et al. 2019). 
After pretreating a raw water sample with a 0.2 µm filter 
to remove the particulate matter, nanofiltration was per-
formed to collect the low molecular weight molecules in 
the permeate stream. Humic substances and biopolymers 
are rejected by the nanofiltration membrane and are fed 
to a subsequent ultrafiltration membrane in which humic 

substances and biopolymers are separated on, respectively, 
the permeate and the retentate side. Diafiltration is per-
formed in each step to ensure a higher purity of the frac-
tions (Yin et al. 2019).

Although membrane fractionation is a relatively fast and 
cheap method through the use of commercially available 
membranes, it seems to lack the ability to produce sharply 
separated fractions. The two main causes could be (i) the 
molecular weight cut-off of a membrane is not strict and 
(ii) dead-end cell operation causing fouling can influence 
the retention of all compounds. Therefore, care should be 
taken when interpreting the results of different studies using 
ultrafiltration fractionation, since it is not guaranteed that 
the fractions really contain the molecular weight range as 
defined by the molecular weight cut-offs of the ultrafiltra-
tion membranes. A crossflow filtration seems more reliable, 
since it reduces fouling and has the ability to pass the feed-
water several times over the membrane, allowing the gradual 
removal of the desired compounds with diafiltration. This 
will however dilute the final concentrations in the membrane 
fractions. The relationship between membrane fractions and 

Fig. 1  (a) Dead-end ultrafiltration membrane fractionation of natu-
ral organic matter into five fractions (F1-5). Their molecular weight 
range is based on the molecular weight cut-off of the membrane 
(presented in the upper right corner of the rectangle) (b) Crossflow 
membrane fractionation by Yin et al. (2019) using consecutive nano-
filtration (NF) and ultrafiltration (UF) processes to split organic mat-
ter present in seawater into biopolymers (F.BP), humic substances 

and building blocks (F.HS&BB) and low molecular weight molecules 
(F.LMW). Demineralized (DI) water is added during the process to 
increase the purity of the fractions. Reprinted [Water Research, 159, 
Wenqiang Yin, Xin Li, Stanislaus Raditya Suwarno, Emile R. Cor-
nelissen, Tzyy Haur Chong, Fouling behavior of isolated dissolved 
organic fractions from seawater in reverse osmosis (RO) desalination 
process,385–396, copyright (2019)] with permission from Elsevier
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disinfection by-product formation is extensively studied and 
will be discussed in the next section.

Identification of membrane fractions involved 
in the formation of disinfection by‑products 

Figure 3 represents the specific trihalomethane forma-
tion potential after different chlorination times and dif-
ferent specific ultraviolet absorbance  (SUVA254) values 
in several membrane fractions ("Methods" Section). 
 SUVA254 is defined as the absorbance of ultraviolet light 
at 254 nm divided by the organic matter concentration (Ho 
et al. 2013). From this, it appears that the reactivity for 
trihalomethane formation increases when the molecular 
weight of organic material decreases, although the corre-
lation remains weak. After 48 h with low chlorine dose or 
after 7 days with high chlorine dose, there is a clear differ-
ence between the highest and lowest membrane fractions. 
Here, the < 1 kDa fraction has significantly higher specific 
formation potential compared to the > 10 kDa fraction. On 
the other hand, only a small, non-significative discrep-
ancy is seen between the highest (> 10 kDa) and lowest 
(< 1 kDa) membrane fractions after 24 h (low chlorine 

dose) or 72 h (high chlorine dose). It seems that  SUVA254 
has no influence on the results, since fractionated waters 
with either high or low  SUVA254 give a same trend in 
specific trihalomethane formation potential (Fig. 3a, c).

Moreover, di-halogenated acetic acid formation follows 
the same relationship as trihalomethanes between molec-
ular weight and formation potential, since the < 0.5 kDa 
fraction has significantly higher formation potential com-
pared to 3–10 kDa and > 10 kDa fraction (Fig. 4a). This 
trend is not visible at all for tri-halogenated acetic acid 
formation, where all four fractions have the same forma-
tion potential behavior (Fig. 4b). When overall specific 
haloacetic acid formation potential is measured, a small 
increase in reaction potential is seen after 7 days of reac-
tion for lower molecular weight fractions, although it was 
not significant (Fig. 4d). However, after 72 h, an opposite 
trend is noticeable with a maximum formation potential 
in the 5–10 kDa fraction (Fig. 4c). No assessment of the 
effect of  SUVA254 could be made due to a lack of data. 
Table S1 provides the data collected for emerging disin-
fection by-products, but this dataset is too limited to draw 
any conclusion (Ge et al. 2020; Hua et al. 2015, 2020; Lin 
et al. 2014; Zhang et al. 2020b, 2021).

Fig. 2  Visualization of the results from Assemi et  al. (2004) where 
organic matter in water samples from (a) Hope valley and (b) 
Myponga reservoir was fractionated into five fractions by dead-end 
ultrafiltration membrane fractionation and subsequently analyzed 
by flow-field flow fractionation (Flow-FFF). Each fraction is plotted 
on the x-axis, and their theoretical molecular weight (MW)-range is 
determined by the molecular weight cut-off of each membrane. This 
range is visualized by cross-pattern bars plotted on the y-axis. Flow-

field flow fractionation (Flow-FFF) was used to determine the real 
molecular weight range of each fraction, which is shown by solid bars 
plotted on the y-axis. A magnification of (a) and (b) between 0 and 
10 kDa is given on the right side of these graphs. It is clear that the 
real molecular weight range of a fraction can differ substantially from 
its theoretical range. Furthermore, the real molecular weight range of 
the fractions are largely overlapping, meaning that the separation of 
organic matter based on size was unsuccessful
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Fig. 3  Specific trihalomethane 
formation potential (%) in dif-
ferent membrane fractions after 
(a) 24 h, high or not available 
(NA) specific ultraviolet absorb-
ance at 254 nm  (SUVA254), 
low chlorine dose (five water 
samples) (b) 48 h, high and low 
 SUVA254, low chlorine dose 
(six water samples) (c) 72 h, 
low  SUVA254 or not avail-
able, high chlorine dose (five 
water samples) and (d) 7 days, 
 SUVA254 is high, low or not 
available, high chlorine dose 
(29 water samples). * = statisti-
cal difference, ° = outlier. The 
specific trihalomethane forma-
tion potential slightly increases 
toward smaller molecular 
weight fractions.  SUVA254 or 
chlorine dose seem not to have 
an influence on this trend

Fig. 4  Specific haloacetic acid formation potential (%) in differ-
ent membrane fractions after (a) 48  h, di-halogenated acetic acids 
(di-HAA), high and low specific ultraviolet absorbance at 254  nm 
 (SUVA254), low chlorine dose (six water samples) (b) 48  h, tri-hal-
ogenated acetic acids (tri-HAA), high and low  SUVA254, low chlo-
rine dose (six water samples) (c) 72  h, low  SUVA254 or not avail-
able (NA), high chlorine dose (six water samples) and (d) 7  days, 

 SUVA254 is high, low or not available, high chlorine dose (14 water 
samples). * = statistical difference, ° = outlier. Specific di-halogenated 
acetic acid formation is higher toward lower molecular weight frac-
tions, while all fractions have the same formation potential for tri-
halogenated acetic acids. No correlation was established when all 
haloacetic acids are included
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Also in literature, conflicting trends between spe-
cific trihalomethane formation potential and molecular 
weight range are stated. For example, the specific forma-
tion potential is reported to increase when the molecular 
weight of the fractions decreases, while on the other hand, 
authors have reported a peak in specific formation poten-
tial in medium molecular weight fractions. In contradic-
tion to the above findings, increasing formation potential 
with increasing molecular weight have also been reported, 
and some studies show no correlation at all between the 
formation potential and molecular weight. Conflicting 
conclusions exist as well for both specific di-halogenated 
and tri-halogenated acetic acid formation potentials and 
emerging disinfection by-products (An et al. 2017; Avsar 
et al. 2015; Chang et al. 2001; Chiang et al. 2002; Gang 
et al. 2003; Ge et al. 2020; Goslan et al. 2004; Hu et al. 
2015; Hua and Reckhow 2007b; Hua et al. 2015, 2020; 
Karapinar et al. 2014; Kitis et al. 2002; Lin et al. 2014; 
Liu et al. 2011; Özdemr 2014; Pi et al. 2021; Pramanik 
et al. 2015; Wei et al. 2008a, 2008b; Xu et al. 2007, 2011; 
Zhang et al. 2010, 2018, 2020b, 2021; Zhao et al. 2006, 
2009).

In addition, Hua et al. (2020) analyzed waters with both 
high and low  SUVA254 values, including commercial humic 
acid as high  SUVA254 source and a surface water as low 
 SUVA254 source. Here, high molecular weight compounds 
(> 30 kDa) contributed the most to specific regulated and 
unregulated disinfection by-product formation potential. Pre-
cursors from high  SUVA254 waters showed a clear humic-
acid like signal with high molecular weight, while precur-
sors from low  SUVA254 waters showed a high molecular 
weight protein-like signal. On the other hand, both high 
and low molecular weight fractions have been indicated as 
having high regulated and unregulated disinfection forma-
tion potential consisting of humic acid-like and/or soluble 
microbial by-product-like compounds (Hua et al. 2007; 
Zhang et al. 2020b). The latter ones cover a wide range of 
molecular weight (0.5–50 kDa) (Barker and Stuckey 1999). 
Furthermore, Zhang et al. (2016) showed with commercial 
humic acids that the formation of iodinated trihalomethanes 
increases with molecular weight.

The aforementioned  SUVA254 or molecular weight cor-
relations were however not visible when data from all papers 
were taken together. Regarding the previous discussion on 
overlapping fractions in membrane fractionation ("Princi-
ple of membrane fractionation" Section), this could be an 
important drawback in the studies which intended to dis-
criminate disinfection by-product formation on molecular 
weight. It would be beneficial to optimize the membrane 
fractionation approach. A possible starting point for this 
could be the fractionation protocol developed by Yin et al. 
(2019) ("Principle of membrane fractionation" Section). 
Analyzing trihalomethanes and haloacetic acid formation 

potentials on well-defined fractions might clarify the most 
important natural organic matter precursors.

Another observation made in the literature is that the 
lowest molecular weight fractions produce relatively more 
brominated disinfection by-products, and therefore, it has 
been stated that low molecular weight compounds are more 
reactive toward bromine (Hu et al. 2015; Xu et al. 2007). 
Nonetheless, the bromide-to-total organic carbon ratio in the 
different fractions will change depending on the retention 
of both organics and bromide during membrane filtration. 
When the concentration of bromide is adjusted to the initial 
concentration for all fractions, either the previous statement 
is confirmed or no specific trend is seen in bromide incorpo-
ration for the different fractions (Hua and Reckhow 2007b; 
Kitis et al. 2002).

In summary, the relationship between molecular weight 
and disinfection by-product formation appeared to be very 
weak. Alternatively, natural organic matter is split based on 
hydrophobicity instead of size by the usage of resins. These 
different techniques will be elaborated in the next section.

Resin fractionation

Principle of resin fractionation

In resin fractionation, a liquid sample is fed to a polymeric 
resin adsorbing organic matter which is subsequently eluted 
using a solvent of suitable polarity (Minor et al. 2014). 
Aiken et al. (1979) introduced this technique for the first 
time using commercially available non-polar XAD–resins. 
The resins can be composed of styrene–divinylbenzene or 
methyl-methacrylate polymers (Daignault et al. 1988; Kim 
and Yu 2005). Several modifications have been made over 
the years to optimize this method (Matilainen et al. 2011). 
XAD-8 and XAD-4 are the main resins used in the differ-
ent fractionation methods. Since XAD-8 is no longer com-
mercially available, XAD-7HP, DAX-8 or C18 silica resins 
have been used as alternatives. XAD-8 and DAX-8 show 
very comparable physical and chemical properties and 
their comparability for aquatic use has been proven (Chow 
2006). XAD-7HP has the same chemical structure as XAD-8 
(polymethyl-methacrylate), but XAD-7HP has a larger sur-
face area and is more porous (Pan et al. 2016). XAD-4 is 
composed of non-ionic styrene–divinylbenzene polymer, 
and C18 resins are composed of hydrocarbons bonded to 
a silica matrix and have generally higher recoveries than 
XAD-resins (Minor et al. 2014).

The simplest resin fractionation method generates 
a hydrophobic and hydrophilic fraction using a single 
XAD-8 resin at pH 2 (Fig. 5a). Adsorption onto XAD-
resins occurs through aromatic π-electron and hydrophobic 
interactions (Bond et al. 2009). Therefore, compounds that 
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are not retained are defined as hydrophilic compounds. The 
less hydrophilic compounds are adsorbed on the XAD-8 
resin and defined as the hydrophobic fraction (Aiken et al. 
1979; Jung and Son 2008; Kim and Yu 2005; Kim et al. 
2006b; Kitis et al. 2002; Liang and Singer 2003; Thur-
man and Malcolm 1981). They are eluted with sodium 
hydroxide at pH 11. Increasing the pH will ionize carboxyl 
and phenolic hydroxyl groups and desorb the hydrophobic 
compounds (Aiken et al. 1979).

An additional step has been added to this method by 
passing the hydrophilic fraction over a XAD-4 resin at pH 
2 (Fig. 5b). The fraction that is not retained is the hydro-
philic (non-acid) fraction. The fraction that is retained by 
XAD-4 and eluted at pH 13 with sodium hydroxide or 
acetonitrile is called the transphilic or hydrophilic acid 
fraction (Aiken et al. 1992; Croué 2004; Golea et al. 2017; 
Hu et al. 2015; Hua and Reckhow 2007b; Hua et al. 2015; 
Leenheer et al. 1999; Li et al. 2014; Malcolm and Mac-
carthy 1992; Rho et al. 2019; Song et al. 2009; Tubić et al. 
2013; Xu et al. 2007). The hydrophobic fraction is retained 
in a similar way as in the previous method with XAD-8, 
only the pH used to desorb the fraction is different (pH 
11 vs. 13). A 100% effective elution at pH 13 is obtained 
due to the (complete) ionization of carboxyl and phe-
nolic hydroxyl groups, and a near 100% carbon recovery 
is obtained by co-current elution of a 75/25 acetonitrile/
water mixture (Aiken et al. 1979; Croué 2004).

A very elaborate resin fractionation splits natural organic 
matter into six fractions: hydrophobic acids, bases, neutrals 
and hydrophilic acids, bases and neutrals (Fig. 5c). More 
detailed information on organic species present in the water 
is obtained with this fractionation, which can facilitate sub-
sequent analysis in different research fields, such as disinfec-
tion by-product formation. The most common method is to 
pass the sample through the XAD-8 resin twice. After the 
first run at pH 10 or without pH adjustment, hydrophobic 
bases are recovered by desorption with hydrochloric acid, 
which protonates the basic compounds. The second run is 
performed at pH 2, after which hydrophobic acids are eluted 
with sodium hydroxide. This is the same approach as in the 
previous methods to obtain the overall hydrophobic fraction. 
The hydrophobic neutral fraction is obtained by (freeze-) 
drying the XAD-8 resin and extracting the compounds 
from the resin with methanol. DAX-8 and Bond Elute ENV 
cartridges (styrene–divinylbenzene) are also used for this 
purpose.

Subsequently, the hydrophilic compounds are split into 
acids, bases and neutrals by the use of ion exchange resins. 
The water sample at pH 2 is introduced to a cation exchange 
resin (AG-MP-50/Dowex MSC/Strata X-C) which retains 
the hydrophilic base compounds (Chang et al. 2000, 2001; 
Chen et al. 2008; Goss and Gorczyca 2013; Kanokkantapong 
et al. 2006b; Lamsal et al. 2012; Leenheer 1981; Marhaba 
et al. 2003; Ratpukdi et al. 2009; Zhang et al. 2009, 2008). 

Fig. 5  Resin fractionation schemes to split natural organic matter 
(NOM) based on hydrophobicity. The numbers on the pumps rep-
resent the sequence of adsorption–desorption. HPO = hydrophobic, 
HPI = hydrophilic, TPI = transphilic. A = acid, B = base, N = neu-
tral. Yellow = XAD-8, XAD-7HP or DAX-8 resin; black = XAD-4 

resin; orange = Duolite A7, IRA 93 or WA10 resin; grey = AG-MP-
50, Dowex MSC resin (a) HPO-HPI fractionation, (b) HPO-TPI-HPI 
fractionation. Acetonitrile can also be used as desorbent instead of 
sodium hydroxide, (c) HPO(A + B + N)-HPI(A + B + N) fractionation. 
The water solution is acidified to pH = 2 after the first run
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These are all strong acid, sulfonated resins with different 
backbone structures. AG-MP-50 consists of a polystyrene 
backbone, while Dowex MSC has a styrene–divinylbenzene 
structure (Leenheer 1981; Meyer et al. 2020; Ratpukdi et al. 
2009). A weak anion exchange resin (WA10/Duolite A7/
IRA 93/Strata X-AW) retains the hydrophilic acid fraction 
at pH 2, while the hydrophilic neutral compounds are not 
retained. The anion exchange resins all consist of amine 
functionality (primary, secondary or tertiary) with different 
backbones, going from polystyrene, to acrylic polymers and 
even phenol–formaldehyde condensation matrices. Duolite 
A7 suffers from severe resin bleeding (Kananpanah et al. 
2009; Leenheer 1981; Marhaba et al. 2003; Miyazaki and 
Nakai 2011; Ratpukdi et al. 2009). Ammonium hydrox-
ide or sodium hydroxide are used to desorb both fractions. 
Ammonium hydroxide returns the resins in their hydrogen 
(cation exchange resin) or free-base form (anion exchange 
resin) (Chang et al. 2000, 2001; Chen et al. 2008; Goss and 
Gorczyca 2013; Kanokkantapong et al. 2006b; Lamsal et al. 
2012; Leenheer 1981; Marhaba et al. 2003; Ratpukdi et al. 
2009; Zhang et al. 2008, 2009).

Resin fractionation is a very common, relatively cheap 
and widely applied technique with the use of commercially 
available resins. The method can be either fast (into hydro-
phobic-hydrophilic) or time-consuming (into their respec-
tive acids, bases and neutrals). It simultaneously concen-
trates and fractionates organic matter, but there have been 
some doubts about possible changes in the chemical and/or 
physical nature of the water matrix due to the extreme pH-
alterations (Matilainen et al., 2011; Swietlik et al., 2004). 
Furthermore, different column capacity factors are used 
among different authors. This factor is defined as

and is directly proportional to the volume of water applied 
on a certain resin volume (Leenheer 1981). The higher the 
value, the lower the percentage of hydrophobic compounds 
that is retained on a XAD-8 column for one water sample 
which can influence further assessments (Song et al. 2009). 
Also, flow rate and bed height of the column influence the 
adsorption equilibrium as both parameters change the con-
tact time between adsorbate and adsorbent (Patel 2019). 
These parameters are, however, very often lacking in the 
method sections.

In general, studies investigating disinfection by-product 
precursors with resin fractionation use one of the abovemen-
tioned resins and fractionation techniques. The only param-
eter that varies substantially is the column capacity factor 
which will therefore be considered in the next section when 
comparing the results of these studies.

Resin fractions involved in the formation 
of disinfection by‑products 

Trihalomethanes

When looking at the simplest fractionation technique, 
namely splitting natural organic matter into a hydrophobic 
and hydrophilic fraction, results are quite consistent (Fig. 6, 
"Methods" Section). The hydrophobic fraction produces the 
highest specific trihalomethane formation potential regard-
less of chlorination time and  SUVA254 (k’ = 0-100 or unde-
fined). Specific ultraviolet absorbance  (SUVA254) is defined 
as the absorbance of ultraviolet light at 254 nm divided by 

k
�
=

mass of solute sorbed on the resin

mass of solute dissolved in water

Fig. 6  Specific trihalomethane formation potential (%) in the 
hydrophobic (HPO) and hydrophilic (HPI) fraction after (a) 
24  h–48  h–72  h, high and low specific ultraviolet absorbance at 
254 nm  (SUVA254), the column capacity factor (k’) is between 0 and 
100, but in most cases 100, low chlorine dose (25 water samples) (b) 

7 days,  SUVA254 and k’ in general not available (NA), high chlorine 
dose  (SUVA254 is 3 × high, 1 × low and k’ is 2 × 50 and 1 × 100) (16 
water samples). * = statistical difference. Hydrophobic compounds 
clearly have a higher specific trihalomethane formation potential 
compared to hydrophilic compounds irrespective of  SUVA254 or k’
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the organic matter concentration (Ho et al., 2013). Up to 
72 h and low chlorine dose, hydrophobic moieties have a 
specific formation potential that is 20 percentage points 
higher compared to the hydrophilic fraction (Fig. 6a). After 
7 days, the difference between the medians even increases 
to 60 percentage points, although the boxplots themselves 
show more variability (Fig. 6b). After 7 days reaction time 
with high chlorine dose, both fast and slow reacting com-
pounds will form trihalomethanes, thereby scattering the 
data (Chang et al. 2001; Chiang et al. 2002, 2009; Galapate 
et al. 2001; Goss et al. 2017; Hyung Kim and Yu 2005; 
Imai et al. 2003; Jung and Son 2008; Kim et al. 2006a; Kim 
and Yu 2005; Kitis et al. 2002; Kueseng et al. 2011; Liang 
and Singer 2003; Musikavong et al. 2013). The hydropho-
bic fraction has previously been implicated as the primary 
source of trihalomethane precursors with some exceptions 
(Chow et al. 2005). The discrepancies have been allocated to 
differences in chlorination methods, but no thorough assess-
ment was made.

When the hydrophilic fraction is passed over the XAD-4 
resin to generate the transphilic (or hydrophilic acid) frac-
tion and the hydrophilic non-acid fraction, the situation 
becomes more complex, because the  SUVA254 value of the 

raw water influences the specific trihalomethane formation 
potential of the different fractions (Fig. 7). When  SUVA254 
of the raw water is high (> 2 L/(mg∙m)), the hydrophobic 
and transphilic fraction have a similar reaction potential 
(~ 30%) to trihalomethane formation at short reaction 
times and low chlorine dose, while hydrophobic com-
pounds have significantly higher specific trihalomethane 
formation potential compared to the transphilic and hydro-
philic fraction at long reaction times with high chlorine 
dosage (Fig. 7a, c). Conversely, when the  SUVA254 level 
is below 2 L/(mg∙m), hydrophilic organics have equally 
important trihalomethane formation potential as hydro-
phobic organics at short reaction times (~ 40%), while 
transphilic organic matter seems slightly more reactive 
after 7 days of reaction and high chlorine dose (Fig. 7b, d) 
(Agbaba et al. 2014; Chowdhury et al. 2008; Fang et al. 
2021; Goslan et al. 2002, 2004; Hanigan et al. 2013; Hu 
et al. 2015; Hua and Reckhow 2007b; Hua et al. 2015; Li 
et al. 2014; Lin and Wang 2011; Lin et al. 2014; Liu et al. 
2011; Molnar et al. 2012a, 2013, 2012b; Musikavong et al. 
2016; Niu et al. 2015; Phetrak et al. 2016; Pi et al. 2021; 
Roccaro et al. 2014; Smith and Al Qabany 2009; Tubić 
et al. 2013; Wang et al. 2013; Wei et al. 2008a, b; Xu et al. 

Fig. 7  Specific trihalomethane formation potential (%) in the hydro-
phobic (HPO), transphilic (TPI) and hydrophilic (HPI) fraction 
after (a) 24  h–48  h, high specific ultraviolet absorbance at 254  nm 
 (SUVA254), the column capacity factor k’ is 50 (1 × 100) or not avail-
able (NA), low chlorine dose (13 water samples) (b) 24 h–48 h, low 
 SUVA254, k’ is 50 or not available, low chlorine dose (seven water 
samples) (c) 7  days, high  SUVA254, k’ is 50 or not available, high 
chlorine dose (39 water samples) and (d) 7  days, low  SUVA254, k’ 

is 50 or not available, high chlorine dose (11 water samples). * = sta-
tistical difference, ° = outlier. When the  SUVA254 of the raw water is 
greater than 2 L/(mg∙m), the HPO fraction contributes the most to tri-
halomethane formation, especially at long chlorination time with high 
chlorine dose. When the  SUVA254 is below 2, the hydrophobic and 
hydrophilic fraction have equal trihalomethane formation potential. 
The contribution of the transphilic fraction is very variable
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2007; Xue et al. 2010; Zhang et al. 2021; Zhao et al. 2013; 
Zhi-sheng et al. 2009).

Overall, the hydrophobic fraction is an important con-
tributor to trihalomethane formation at high  SUVA254, 
especially at long reaction times with high chlorine dosage, 
while both hydrophobic and hydrophilic compounds are 
important at low  SUVA254. This observation could not be 
verified in the previous fractionation, since only five water 
samples were found to have low  SUVA254 values. From these 
five samples, four of them were chlorinated with a low dose 
between 24 and 72 h. Here, the ratio of 60% trihalometh-
ane formation potential from the hydrophobic fraction and 
40% from the hydrophilic fraction was valid, except for one 
sample that had a ratio of 53% versus 47%. The only water 
sample analyzed after 7 days, and high chlorine dose showed 
a ratio of only 37% trihalomethane formation from hydro-
phobic compounds and 63% from hydrophilic compounds 
(Chiang et al. 2009; Hyung Kim and Yu 2005; Imai et al. 
2003; Kim et al. 2006a; Kim and Yu 2005).

Disinfection by-product formation investigated with natu-
ral organic matter surrogates has shown that activated aro-
matic moieties in the presence of an electron-donating and 
ortho-para directing group have high rate constants toward 
chlorine reactivity, because hypochlorous acid (an electro-
phile) preferentially reacts with electron-rich functionalities 
in organic molecules. These moieties will also contribute to 
high  SUVA254 values and reside in the hydrophobic fraction 
(Bond et al. 2012a, 2009). When the  SUVA254 value is low, 
other chemical functionalities with lower reactivities, such 
as amino acids or carbohydrates (hydrophilic compounds), 
will become important especially after longer reaction time 
and high chlorine dose (Bond et al. 2012a).

Nonetheless, the behavior of the transphilic fraction for 
both high and low  SUVA254 conditions is less clear. This 
fraction has been characterized as having greater heter-
oatom and carboxyl content than the hydrophobic fraction, 
but also as having a number of similar properties with the 
hydrophobic fraction (Aiken et al. 1992). The C/O, C/H and 
C/N atomic ratios gradually decrease from hydrophobic to 
transphilic to hydrophilic (Croué 2004). Furthermore, frac-
tionation of surrogates with different polarities could not 
identify molecules having clear transphilic character. Sur-
rogates ending up in the transphilic fraction were evenly 
distributed in either the hydrophobic or hydrophilic frac-
tion (Bond et al. 2009). This implies that depending on the 
natural organic matter composition of the water source, the 
transphilic fraction can have more hydrophobic or hydro-
philic character, which will influence its specific trih-
alomethane formation potential.

Within the hydrophobic fraction in both resin fractiona-
tion methods, humic acids are the most important precur-
sors. Humic acids precipitate when acidifying the hydropho-
bic fraction to pH = 1, while fulvic acids remain dissolved 

(Agbaba et al. 2014; Goslan et al. 2002, 2004; Jung and Son 
2008; Molnar et al. 2012a, b; Tubić et al. 2013; Zhi-sheng 
et al. 2009).

Limited data were found for specific trihalomethane for-
mation potential after fractionation of natural organic matter 
into hydrophobic and hydrophilic acids, bases and neutrals 
(Fig. S1). At short reaction times, the hydrophobic acid 
fraction seems equivalent to the hydrophilic base fraction, 
although the dataset was too small to find statistical differ-
ences. The  SUVA254 was low, so it confirms the statement 
that both hydrophobic and hydrophilic fractions are impor-
tant in low  SUVA254 waters, and possibly, in more detail, 
the hydrophobic acid and hydrophilic base fraction. At long 
chlorination times, however, it is the hydrophobic and hydro-
philic base fraction and to a lesser extent the hydrophobic 
neutral fraction that have the highest specific trihalometh-
ane formation potential, especially compared to hydrophilic 
neutrals (Chang et al. 2000; Chen et al. 2008; Fan et al. 
2013; Goss and Gorczyca 2013; Lamsal et al. 2012; Lin 
et al. 2010; Marhaba and Van 2000; Panyapinyopol et al. 
2005a, b; Rakruam and Wattanachira 2014; Sharma et al. 
2021; Włodyka-Bergier and Bergier 2011; Yee et al. 2006, 
2009). Bases are defined as electron donors, thereby pro-
moting the reaction with the electron poor hypochlorous 
acid (Bond et al. 2012a). Furthermore, hydrophilic bases 
have been characterized as amide-like compounds, while the 
hydrophilic neutral fraction mainly contains lignin and lipids 
(Wang et al. 2019). From Fig. S1, there is thus an indica-
tion that lignin and lipids are recalcitrant to the formation 
of trihalomethanes, while amide-like compounds might be 
important precursors. The occurrence of the hydrophobic 
acid fraction is less straightforward, however, this is only 
based on three water samples.

The column capacity factor k’ seems to have no influ-
ence on the results. Where the factor k’ is 100 in the hydro-
phobic–hydrophilic fractionation, it is 50 in the hydropho-
bic–transphilic–hydrophilic fractionation. However, in the 
latter resin technique, data were found where both values 
have been used during a 72 h chlorination time with high 
chlorine dose (Fig. S2). Changing k’ from 50 to 100 will 
result in less adsorption of hydrophobic and transphilic com-
pounds on XAD-8 and XAD-4, respectively, and this results 
into a changing trend in specific trihalomethane formation 
potential from the hydrophobic fraction as most impor-
tant precursor (Fig. S2a) to the hydrophilic fraction (Fig. 
S2b) (Liu et al. 2011; Pi et al. 2021; Roccaro et al. 2014; 
Song et al. 2009; Zhang et al. 2021). So, although the col-
umn capacity factor k’ value did not affect the comparison 
between two fractionation techniques, it stays important to 
be aware of this value at all times.

Finally, the hydrophilic fraction seems more sensitive 
to the formation of brominated trihalomethanes (Agbaba 
et al. 2014; Chiang et al. 2009; Goss and Gorczyca 2013; 
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Hu et al. 2015; Hua and Reckhow 2007b; Kitis et al. 2002; 
Li et al. 2014; Liang and Singer 2003; Molnar et al. 2012b, 
2013; Musikavong et al. 2013, 2016; Niu et al. 2015; Pan-
yapinyopol et al. 2005a, b; Tubić et al. 2013; Włodyka-
Bergier and Bergier 2011; Xu et al. 2007). In this regard, 
it is important to keep the same bromide-to-total organic 
carbon ratio in all fractions. XAD-resins are non-ionic res-
ins thereby not retaining ions (Aiken et al. 1979; Daignault 
et al. 1988). Most of the bromide ions will therefore elute 
with the hydrophilic fraction. These bromide ions will com-
pete with organic carbon in the reaction with chlorine (rate 
constant k (HOCl/Br−) = 1550∙1/Ms) to produce bromine, 
which subsequently reacts with the total organic carbon to 
produce brominated disinfection by-products (Criquet and 
Allard 2021). Bromine reactions toward phenolic moieties, 
which are important constituents of natural organic matter, 
are up to three orders of magnitude greater than for chlorine. 
This higher reactivity explains the tendency of brominated 
disinfection by-product formation even for a low bromide 
concentration (Criquet et al. 2015; Heeb et al. 2014). When 
the bromide-to-total organic carbon ratio is adjusted in 
all fractions, hydrophilic moieties are still more reactive 
towards bromine. This implies that bromination occurs with 
aliphatic precursors, while chlorination is more related to 
aromatic precursors (Hua and Reckhow 2007b; Kitis et al. 
2002; Liang and Singer 2003).

In summary, hydrophobic compounds produce the high-
est specific trihalomethane formation potential, regardless 
of  SUVA254 or chlorination time, while hydrophilic com-
pounds cannot be ignored when the  SUVA254 of the raw 
water is low. Finally, base compounds are identified as one 
of the most important precursors for trihalomethane forma-
tion. Haloacetic acids, as the second regulated disinfection 

by-product family, have also been the focal point in research 
with resin fractionation, and results from these studies will 
be discussed in the next section.

Haloacetic acids

Figure 8 shows the results from the hydrophobic–hydrophilic 
fractionation. As for the trihalomethanes, the hydrophobic 
fraction has 60% contribution to the total specific haloacetic 
acid formation potential, while this is 40% for the hydro-
philic fraction at shorter reaction times, low chlorine dose 
and high specific ultraviolet absorbance  (SUVA254) (Fig. 8a, 
"Methods" Section) (Jung and Son 2008; Kitis et al. 2002; 
Liang and Singer 2003).  SUVA254 is defined as the absorb-
ance of ultraviolet light at 254 nm divided by the organic 
matter concentration (Ho et al. 2013). Two water samples 
analyzed after 7 days and high chlorine concentrations also 
showed around 89% specific formation potential from the 
hydrophobic fraction compared to only 11% from the hydro-
philic fraction (Chang et al. 2001; Chiang et al. 2002). On 
the contrary, three water samples with low  SUVA254 showed 
that hydrophilic compounds have by far the highest reac-
tion potential at short reaction times and low chlorine dose 
(Fig. 8b) (Hyung Kim and Yu 2005; Kim et al. 2006a; Kim 
and Yu 2005).

Furthermore, in the hydrophobic–transphilic–hydrophilic 
fractionation, the hydrophobic and hydrophilic fraction are 
significantly different from the transphilic fraction, but not 
significantly different with each other at low  SUVA254, espe-
cially after 7 days of chlorination time with high chlorine 
dose (Fig. 9). Where the hydrophilic fraction has almost 
30 percentage points higher specific haloacetic acid forma-
tion potential compared to the hydrophobic fraction when 

Fig. 8  Specific haloacetic acid formation potential (%) in the hydro-
phobic (HPO) and hydrophilic (HPI) fraction after (a) 24 h-72 h, high 
specific ultraviolet absorbance at 254 nm  (SUVA254), column capac-
ity factor k’ is between 0 and 100, but in most cases 100, low chlo-
rine dose (15 water samples) (b) 48 h–72 h, low  SUVA254, k’ is 100, 

low chlorine dose (three water samples). * = statistical difference. 
The hydrophobic fraction has significantly higher specific haloacetic 
acid formation potential compared to the hydrophilic fraction when 
 SUVA254 is high, while the opposite is seen when  SUVA254 of the 
raw water is low
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organic matter is split into hydrophobic–hydrophilic only 
(Fig. 8b), hydrophobic and hydrophilic compounds con-
tribute both to 30–40% of the total specific haloacetic acid 
formation potential when the fractionation is done into 
hydrophobic–transphilic–hydrophilic (Fig. 9b, d) (Fang 
et al. 2021; Li et al. 2014; Niu et al. 2015). This might be 
explained by the different column capacity factors k’ used 
between the two fractionation techniques (k’ = 100 vs. 
k’ = 50). Limited data after 72 h chlorination time with high 
chlorine dose show that the contribution of the hydrophilic 
fraction becomes higher when this k’-factor changes from 
50 to 100 which is in agreement with the higher reaction 
potential seen for hydrophilic compounds in the hydropho-
bic–hydrophilic fractionation (Fig. S3) (Liu et al. 2011; Pi 
et al. 2021; Roccaro et al. 2014; Zhang et al. 2021).

Waters fractionated into hydrophobic–transphilic–hydro-
philic moieties with high  SUVA254 shows that the hydro-
phobic fraction has a higher formation potential to some 
degree when comparing the medians, although not signifi-
cant (Fig. 9a, c). The transphilic fraction is in general the 
least important fraction to specific haloacetic acid formation 
potential (Chowdhury et al. 2008; Fang et al. 2021; Hanigan 
et al. 2013; Karapinar et al. 2014; Li et al. 2014; Molnar 

et al. 2012a; Qadafi et al. 2021; Roccaro et al. 2014; Tubić 
et al. 2013; Wang et al. 2013; Zhao et al. 2013).

Data for the fractionation of the hydrophobic and hydro-
philic fraction into their acids, bases and neutrals is limited 
to 72 h and 7 days of chlorination, high chlorine dose and 
seven water samples (Fig. S4). The bases seem to have a 
slightly higher influence in specific haloacetic acid forma-
tion potential compared to the other fractions which is in 
agreement with the preference of the electrophilic hypochlo-
rous acid to react with bases (Bond et al. 2012a; Chen et al. 
2008; Fan et al. 2013; Kanokkantapong et al. 2006a, b, c; 
Lamsal et al. 2012; Marhaba and Van 2000).

Some research evaluated the formation of di-halogenated 
and tri-halogenated acetic acids separately (Fig. S5). The 
formation potential of the hydrophobic fraction for tri-
halogenated acetic acids is significantly higher (difference 
of ~ 20 percentage points) compared to the hydrophilic and 
transphilic fraction independent from the column capacity 
value (Fig. S5c, d). On the other hand, di-halogenated acetic 
acid formation potential is 20 percentage points higher in the 
hydrophobic fraction at high  SUVA254 and column capacity 
factor k’ of 100, while the hydrophilic fraction has the high-
est reaction potential at high and low  SUVA254 and k’-factor 

Fig. 9  Specific haloacetic acid formation potential (%) in the hydro-
phobic (HPO), transphilic (TPI) and hydrophilic (HPI) fraction after 
(a) 24 h, high specific ultraviolet absorbance at 254 nm  (SUVA254), 
column capacity factor k’ is 50 (1 × 100) or not available (NA), low 
chlorine dose (five water samples) (b) 24 h, low  SUVA254, k’ is 50 or 
not available, low chlorine dose (five water samples) (c) 7 days, high 
 SUVA254, k’ is 50 or not available, high chlorine dose (12 water sam-
ples) and (d) 7 days, low  SUVA254, k’ is not available, high chlorine 

dose (five water samples). * = statistical difference, ° = outlier. Data 
from (c) suggest that hydrophobic moieties have slightly higher ten-
dency to form haloacetic acids when the  SUVA254 of the raw water 
is high (> 2 L/(mg∙m)). Conversely, at low  SUVA254 values, both 
hydrophobic and hydrophilic moieties have equal and consistently 
higher specific haloacetic acid formation potential compared to the 
transphilic fraction
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of 50 (Fig. S5a, b). It has been stated that dichloroacetic acid 
and trichloroacetic acid follow a different reaction pathway 
and that trichloroacetic acid and trihalomethanes are gener-
ated by common intermediates. This has been concluded 
by surrogate analysis, where trichloroacetic acid precursors 
tend to be more hydrophobic and dichloroacetic acid pre-
cursors have more aliphatic structures (Bond et al. 2012a). 
These statements could not be completely confirmed with 
the collected data. However, it should be noted that these 
data were drawn from three different papers only and more 
research should be done to clarify these assumptions (Hua 
and Reckhow 2007b; Hua et al. 2015; Liang and Singer 
2003).

Furthermore, some data on bromide incorporation show 
a higher reactivity of hydrophilic fractions to produce bro-
minated haloacetic acids (Hua and Reckhow 2007b; Kitis 
et al. 2002; Li et al. 2014; Liang and Singer 2003; Molnar 
et al. 2012a; Niu et al. 2015; Qadafi et al. 2021; Tubić et al. 
2013; Włodyka-Bergier and Bergier 2011).

To summarize, the precursors of haloacetic acids are 
found to be very similar to the precursors of trihalometh-
anes. They have hydrophobic character when  SUVA254 is 
high, although less pronounced than for the trihalomethanes, 
but have both hydrophobic and hydrophilic origin when 
 SUVA254 is low. While chlorination time does not affect the 
outcome, there is an indication that the column capacity fac-
tor does change the formation potential behavior in the dif-
ferent fractions. Besides the studies on regulated disinfection 
by-products, more attention arose in the last years to assess 

the precursors of emerging disinfection by-products, and the 
results of these studies will be presented in the final section.

Emerging disinfection by‑products

Emerging or unregulated disinfection by-products, such as 
haloacetamides, haloacetonitriles, nitrosamines or halok-
etones, have received increased attention due to their higher 
toxicity compared to regulated disinfection by-products 
(Wagner and Plewa 2017). However, studies on the forma-
tion of these by-products in different membrane or resin 
fractions with chlorine are nowadays still limited. Most 
research focused on the formation of emerging disinfection 
by-products after chloramination. Chloramine can signifi-
cantly reduce the formation of trihalomethanes and tri-hal-
ogenated acetic acids, but will greatly increase the formation 
of emerging nitrogenous disinfection by-products such as 
N-nitrosodimethylamine (Chu et al. 2010; Hua and Reckhow 
2007a; Lin et al. 2014; Wang et al. 2013).

A small number of studies focused on the formation of 
emerging disinfection by-products in resin fractions disin-
fected with chlorine, i.e., haloacetamides, haloacetonitriles, 
halonitromethanes, halo-aldehydes and haloketones. Insuf-
ficient data were collected for the last family to discuss a 
trend. Studies on emerging disinfection by-products are most 
often executed with high chlorine dose even at short reaction 
times, possibly because they are formed in very low con-
centrations during drinking water disinfection (Richardson 
et al. 2007).

Fig. 10  Specific disinfection 
by-product formation poten-
tial (%) in the hydrophobic 
(HPO), transphilic (TPI) and 
hydrophilic (HPI) fraction after 
24 h and both high and low 
specific ultraviolet absorbance 
at 254 nm  (SUVA254) values 
of (a) halo-aldehydes (HAL), 
column capacity factor k’ is not 
available (NA), low chlorine 
dose (five water samples) 
(b) haloacetonitriles (HAN), 
k’ is not available (1 × 100), 
low chlorine dose (six water 
samples) and (c) halonitrometh-
anes (HNM), k’ is not available 
(2 × 15), low chlorine dose 
(seven water samples). * = sta-
tistical difference. From the 
data, it is clear that all families 
are preferentially formed in the 
hydrophilic fraction, although 
this was not statistically signifi-
cant for the halonitromethanes
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Despite chlorination time, dose or specific ultraviolet 
absorbance  (SUVA254), hydrophilic compounds clearly have 
a higher tendency to form emerging disinfection by-products 
("Methods" Section).  SUVA254 is calculated by dividing 
the ultraviolet absorbance at 254 nm by the organic matter 
concentration (Ho et al. 2013). Figures 10 and S6 show a 
relative specific formation potential that is 20-80 percent-
age points higher for the hydrophilic fraction compared to 
the hydrophobic or transphilic fraction for most families 
included (Fang et al. 2021; Ge et al. 2020; Hu et al. 2015, 
2010; Hua et al. 2015; Lin et al. 2014; Molnar et al. 2013, 
2012b; Roccaro et al. 2014; Tan et al. 2017; Zhang et al. 
2020a, 2021). Halonitromethanes show no significant differ-
ence between the formation potentials of all three fractions, 
despite the aspect of the graph (Fig. 10c). This is supported 
by studies performing disinfection by-product formation 
tests on surrogates. Proteinaceous material together with 
amino acids have been identified as haloacetonitrile precur-
sors, while haloacetamides can also be formed through the 
hydrolysis of haloacetonitriles. However, studies on hydro-
philic surrogates showed very low yields for trichloroni-
tromethane, except for glycine (Bond et al. 2012b).

The influence of the column capacity factor k’ stays 
inconclusive, because either a k’-factor of 50 is used or 
the value is missing in the studied papers. There is a small 
indication that the value is less important in the analysis of 
emerging disinfection by-products, since hydrophilic com-
pounds also had the highest contribution in a water sample 
with a k’ of 100 for haloacetonitriles and two water samples 
with a k’ of 15 for halonitromethane (Hu et al. 2010; Roc-
caro et al. 2014). Furthermore, elaborate resin fractionation 

in acids, bases and neutrals is hardly executed for emerging 
disinfection by-products. The results for haloacetonitrile, 
halo-aldehyde and trichloronitromethane are shown in Fig. 
S7, but no statistical differences or trends could be high-
lighted (Chu et al. 2010; Fan et al. 2013; Włodyka-Bergier 
and Bergier 2011). In synopsis, emerging disinfection by-
products clearly have hydrophilic precursors regardless of 
 SUVA254, chlorination time or dose.

This meta-analysis determined the parameters affect-
ing the identification of disinfection by-product precursors, 
because no assessments were done so far in the past. This 
review identified hydrophobic compounds as having high 
trihalomethane and haloacetic acid formation potential espe-
cially for high  SUVA254 and low k’- factor values. Hydro-
philic moieties are overall the most important precursors 
for the formation of emerging disinfection by-products, but 
can also not be neglected as trihalomethane and haloacetic 
acid precursor when  SUVA254 of the raw water is low and 
high column capacity factors are used. Furthermore, this 
study could not identify the disinfection by-product precur-
sors based on molecular weight, which might be explained 
by an unsharp separation of natural organic matter during 
membrane fractionation. A graphical summary of all results 
is shown in Fig. 11.

Conclusion

This review critically evaluated different natural organic 
matter fractionation techniques with regard to disinfection 
by-product formation. The formation of trihalomethanes, 

Fig. 11  Conclusions drawn in 
this meta-analysis. Ultrafiltra-
tion membrane fractionation 
cannot produce sharply sepa-
rated fractions. Therefore, no 
correlation was found between 
disinfection by-product forma-
tion and molecular weight. 
During resin fractionation, chlo-
rination time and dose do not 
affect the ratio of disinfection 
by-product formation between 
the different fractions, while 
the specific ultraviolet absorb-
ance at 254 nm  (SUVA254) 
and the column capacity factor 
k’ do have an effect on this 
ratio. NOM = natural organic 
matter. 
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haloacetic acids and emerging disinfection by-products from 
the different fractions obtained by both membrane and resin 
fractionation after chlorination was assessed. The general 
conclusions are:

• Dead-end, ultrafiltration, membrane fractionation allows 
the production of fractions in large volumes, but there is 
an indication that it lacks the ability to perform a sharp 
separation of the different fractions. Therefore, no rela-
tionship was found between molecular weight and disin-
fection by-product formation potentials.

• Resin fractionation splits natural organic matter based 
on polarity. Despite being a generally accepted method 
of fractionation, the potential of changing the organic 
matter composition due to the pH changes is often under-
estimated. The most important observations of this study 
are:

o Chlorination time and dose do not influence the 
reactivity ratio of specific disinfection by-product 
formation potential between different fractions.

o Hydrophobic compounds are the most important 
contributors with 10-20 percentage points higher 
reactivity to both trihalomethane and haloacetic 
acid formation in waters with high specific ultra-
violet absorbance  (SUVA254), while hydrophobic 
and hydrophilic compounds are equally important 
in water with low  SUVA254. However, hydrophilic 
compounds have a higher reactivity toward emerg-
ing disinfection by-products (difference of 20 to 80 
percentage points), regardless of  SUVA254.

o Increasing the column capacity factor k’, i.e., the 
amount of hydrophobic compounds retained on 
XAD-resins can shift the highest specific formation 
potential from hydrophobic to hydrophilic fractions.

Future research should focus on the development of an 
alternative membrane fractionation method to have sharply, 
defined and separated size-based fractions. This allows to 
clearly mark the effect of a certain physical property to disin-
fection by-product formation. Furthermore, it is important to 
report the k’ value used in resin fractionation, because it can 
influence the disinfection by-product formation in the differ-
ent fractions. In addition, fraction analysis for disinfection 
by-product formation with chlorine is currently limited to 
regulated disinfection by-products, with only minor research 
done in this field for emerging disinfection by-products. 
These groups of disinfection by-product are formed in lower 
concentrations, but could exhibit a higher toxicity, and there-
fore, may cause greater public health problems. Therefore, 
further research should focus on the formation of a broader 
group of disinfection by-products in different membrane 
and resin fractions to increase knowledge on natural organic 

matter precursors and therefore provide safer drinking water 
now and in the future.

Methods

Data collection

The Scopus library was used to collect papers from the last 
two decades as a continuation of the review paper of Chow 
et al. (2005) which was at that time only focused on trih-
alomethanes. The criteria for selecting a paper were water 
source (i.e., fresh water), disinfectant (i.e., chlorine) and 
the use of preparative fractionation. Natural waters were 
selected from all over the world, since it is believed that this 
natural organic matter pool is universal due to the natural 
processes of synthesis and degradation (Zark and Dittmar 
2018). Since treatment processes can influence the organic 
matter composition, e.g., leakage of soluble microbial 
products from biological activated carbon, only raw water 
sources were included (Hong et al. 2018). With all these 
criteria, 83 papers were selected, resulting in data collec-
tion from 396 water samples from all over the world with a 
high number of publications in the USA and Asia (Fig. S8).

Data processing

The data were uniformized to be able to compare all papers 
with each other. First, the specific disinfection by-product 
formation potential from each fraction was collected or 
calculated, if not readily available. This is a normalization 
parameter defined as the amount of a certain by-product 
compound or family formed per unit dissolved organic car-
bon (generally expressed as µg/mgC). In some cases, espe-
cially for membrane fractionation, the specific formation 
potential of different fractions were merged to one single 
value to obtain a better comparison, e.g., < 0.5 kDa and 
0.5–1 kDa fraction were merged to < 1 kDa. This was done 
using the following formula (Kitis et al. 2002):

With n the number of fractions to merge in one water 
sample, mi the mass of fraction i and sDBPFP the specific 
disinfection by-product formation potential.

These values were converted into percentages for each 
fraction in the following way:
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where n is the number of fractions collected from a certain 
water sample and sDBPFP is the specific disinfection by-
product formation potential.

With this conversion, the relative difference in the spe-
cific reaction potential of different fractions toward disin-
fection by-product formation can be visualized. Therefore, 
these data were plotted into boxplots to examine the overall 
relative difference between distinct fractions to a certain 
disinfection by-product formation deduced from all studied 
papers. The box itself is ranged within the first and third 
quartile (25th and 75th percentile) with a horizontal line 
for the second quartile (median). This is also called the 
interquartile range. The whiskers represent the data that lie 
within 1.5 times the interquartile range above and below the 
box. Data exceeding this range were identified as outliers 
and are represented as dots. The outliers were not removed 
from the dataset before the statistical analysis.

A two-tailed t test (two datasets) or a one-way ANOVA 
(> two datasets) were executed when the assumptions for 
normality and equal variances were valid. The Shapiro–Wilk 
test was used to see if the data was normally distributed. 
The F-test (two datasets) or the Bartlett test (> two data-
sets) were used to check if all datasets had equal variances. 
Non-normally distributed data were first transformed in an 
attempt to make them normally distributed. If these transfor-
mations were not successful, nonparametric tests such as the 
Mann–Whitney U test (two datasets) or the Kruskal–Wallis 
test (> two datasets) were executed. For all tests included, 
the null hypothesis was rejected when the p value was 
smaller than 0.05.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10311- 022- 01478-x.
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