
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

1

Web-based GIS for simulation, and visualisation: EPANET

and data-rich shapefiles

Gareth Lewis1, Brett Snider1, Lydia Vamvakeridou-Lyroudia1,2, Albert S Chen1,

Slobodan Djordjević1 and Dragan A Savić1,2

1 Centre for Water Systems, University of Exeter, Harrison Building, North Park Road,

Exeter, EX4 4QF, UK
2 KWR Water Research Institute, Groningenhaven 7, P.O. Box 1072, 3430 BB

Nieuwegein, the Netherlands

g.lewis2@exeter.ac.uk

Abstract. The management of water resources often involves with spatially and temporally

varied information collected from various providers with different data formats. Although

certain software or applications such as QGIS[1] and EPANET[2] have been developed to

support the analyses and decision making, these solutions do have some critical weaknesses: 1)

it can take users considerable time to become proficient in using a given application, 2)

applications generally assume a level of domain-specific knowledge, 3) applications may

require customisation through plug-ins to provide suitable information and 4) applications are

often tied to specific hardware / operating system configurations. To address these issues, the

aqua3s and Fiware4Water research programmes were developed as ‘cloud first’ projects, using

the cloud/web to deliver functionality. In this work, we developed approaches for integrating

and visualising information to support water management, specifically developing a web-based

EPANET simulation and visualisation for large water networks (c30,000 EPANET nodes and

links), and a web-based visualisation of regional flood data shapefiles for Trieste and

surrounding regions. In both cases, data was processed and balanced between client and server

to minimise client loading and maximise responsiveness.

1. Introduction

For those working with water systems, QGIS [1] and EPANET [2] provide fundamental visualisation

and simulation platforms. QGIS allows users to visualise complex environments using a collection of

layers built on top of vector or XYZ tile sets to view data graphically with map and/or satellite image

contexts. Likewise, the EPANET application enables users to interactively build and simulate water

networks using the EPANET hydrostatic solver to provide accurate simulation results.

Whilst these applications are incredibly useful, they can be criticised for having steep learning

curves and, in the case of EPANET, only providing limited platform (Windows) support. For

developers of water management systems, it is desirable to take core functionality from QGIS (layered

map and data visualisation) and EPANET (water network visualisation and simulation) and present it

to users in a way that can: 1) be used without the need for bespoke computers and 2) be used with little

training or support.

mailto:g.lewis2@exeter.ac.uk

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

2

The aqua3s project had requirements to take typical QGIS and EPANET visualisations and present

them within a browser context, requiring visualisation through a suitable web-based tile-map

visualisation solution.

2. Web-based tile-map visualisation

Web-based tile-maps describe the browser-based implementation of the vector and XYZ tile

approaches of QGIS and describe an approach where geographic maps are split into collections of tiles

allowing users to scroll over a map giving the impression of an endless map surface. Map tiles are

subdivided into increasing levels of detail, to create the effect of zooming into or out of the map and

this is provided for the web with services such as Google Maps, Microsoft Bing and Apple Maps.

For developers of tile-map visualisations there is an array of solutions available, all of which tend

to deliver similar functionalities but often different business models. For our initial work, Google

Maps[3], Mapbox[4], leaflet.js[5] and Maplibre[6] were considered, and programming was undertaken

with all excluding Google Maps, given the credit card requirement of its commercial terms.

The remaining three frameworks were similar in their conceptualisations, which is not surprising

given that Maplibre is an open-source drop-in for Mapbox and Leaflet.js also appears to have had

some involvement with Mapbox. The frameworks work on the concept of a view being a collection of

layers, which are either provided by the map tile server (ground, buildings, roads, labels etc) or

provided by users, with five distinct components, Figure 1, which form the basis for user-defined

visualisations.

Figure 1: Typical user-defined visualisations: default marker[7], GeoJSON geometries[8], animated

images[9], video[10], WMS[11].

The default marker visualisation type can be thought of as the de facto visualisation/interaction

style for web-based tile-maps and consists of a ‘pin’ in the map at a given location. Typically, the pin

can be clicked by a user to reveal pin-specific information.

The GeoJSON geometry visualisation type is a more open-ended approach to

visualisation/interaction and can be considered as a data transport into the tile-map solution.

GeoJSON[12] supports a range of geometry types (points, lines, and polygons) giving users the

opportunity to create pin-like interactions with point and line types and/or region-based interaction

with the polygon.

The animated images visualisation type can be used in ‘weather map’ style visualisations, where

animated visualisation data is overlayed onto a map. Care should be taken that the pixel size of

animated data may not work well with different map zooms, the Maplibre example[9] is a good case in

point. The image of 640x456 pixels is projected onto an area of about 600 km x 600 km, giving a

resolution of one pixel per km, which results in a good presentation from distance, but detail is lost

when the user zooms into the map.

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

3

The video visualisation type provides a similar solution to animated images, but the use of a video

format rather than a collection of images allows for more frames of animation for a given data

footprint, which may be useful for managing collections of files for fluid animations. Like the

animated images, video visualisation is sensitive to map zooming, the Maplibre example[10] applying

a lot of detail to a relatively small area (the inverse of the animated images example).

The WMS (Web map service) visualisation types provides an interface for visualising external web

maps and requires an external web map server to host content.

For our use cases of visualising shapefiles and visualising EPANET simulations, it would appear

that GeoJSON is likely to be the most suitable solution, given our need to work with large amounts of

geographic data and our need for ‘close up’ detail.

3. Visualising shapefiles

For the aqua3s project, pilot sites were using shapefiles to store a wide range of visual and quantitative

data relating to the operation of their water networks, Figure 2, typically regional flood maps, areas of

commercial importance, sites of wells, regional boundaries and so on.

Figure 2: Typical shapefiles. Flood maps (top left), commercial locations (top right), river flows

(bottom left) and wells (bottom right).

The shapefiles presented for visualisation tended to be large and complex files, typically with file

sizes in the order of 100-200mb and geometry and metadata for up to 150,000 features and associated

metadata per file. The shapefiles covered up to an area of 60km x 80km with a resolution of 3m x 3m.

Typical operation of the application would see all the shapefiles downloaded to the client, with users

having the ability to show and hide different shapefile layers, and to reveal metadata associated with

shapefile features.

As stated previously, shapefiles are not a ‘concrete’ data type for MapLibre, so they would need to

be converted into GeoJSON, a process which could be undertaken on the client or server, depending

on processing requirements. It was expected that the larger shapefiles, c150,000 features, were likely

to have a significant conversion load and were likely to create substantial GeoJSON files which may

not work well with MapLibre, particularly giving the noticeable delays when working with the

shapefiles in QGIS.

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

4

4. Approach

Initially, shapefiles were downloaded to the map-tile browser client and converted to GeoJSON in-

situ, though this tended to be a time-consuming process and made for a poor user experience. It also

proved to be beyond the visualisation capacity of Leaflet.js, resulting in a move to first Mapbox and

then Maplibre given its open-source credentials.

An offline approach was taken to convert shapefile data into GeoJSON using geopandas[13] and to

transform the projection of the resultant geometry into wgs84 format (the default for Mapbox). This

was a very slow process and undertaken infrequently, with the resulting GeoJSON files stored on a file

server. Once downloaded to the client, GeoJSON data was loaded into the framework using

map.addSource[14] and map.addLayer[15], as per the Maplibre sample.

This resulted in a working ‘proof of concept’, i.e., it was possible to convert shapefiles into

GeoJSON and have large GeoJSON files visualised in MapLibre with metadata available through

mouse enter/exit events.

However, the large file size of the GeoJSON files (and number of files downloaded to the client)

resulted in a long wait before all the GeoJSON layers were available to the user.

Visual inspection of the GeoJSON files revealed that around half the files was feature metadata

with the remainder being feature geometry. The entire metadata was not required, as it was only

referenced when the user’s mouse entered a region and a pop-up dialog displayed it. Therefore, the

metadata could be downloaded on demand.

Figure 3: Shapefiles from Figure 2 visualised in aqua3s. Flood maps (top left), commercial locations

(top right), river flows (bottom left) and wells (bottom right).

To further reduce the footprint of the GeoJSON data, the resolution of coordinate data was reduced.

Geopandas appeared to default to 15dp for WGS84 coordinate data which accounts for most of the

resulting file size. Through trial and error, it was found that resolution could be reduced to 6dp without

‘noticeable’ issues, though this is entirely dependent on the resolution of data that was being used, the

3m x 3m resolution of flood maps. It should also be noted that WGS84 measures in degrees, so the

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

5

length of a degree is not a consistent measure, therefore, our acceptable results and 34 north may not

be valid for other latitudes.

Finally, the resulting files were zipped, given a footprint reduction from c200mb to around c10Mb.

Whilst this data needs to be unpacked on the browser, it’s a significantly less intensive operation than

building the GeoJSON file on the browser.

5. Results

Figure 3 details the shapefiles from Figure 2 visualised as GeoJSON layers in the aqau3s client

application. In general, MapLibre has proved to be a very capable tile-map platform, easily dealing

with all the data that was downloaded onto it. One significant advantage in moving from Mapbox to

Maplibre was the availability of source code which enabled us to solve a couple of troublesome issues

with layer re-initialisation ‘style.load’ call-back[16].

6. Visualising EPANET simulations

For EPANET simulation, clients of aqua3s wanted to be able to visualise water networks modelled

with EPANET and view the results of hydraulic and quality simulations in a manner like the existing

EPANET application[17], Figure 4.

Figure 4: EPANET application water network visualisation.

6.1. Visualising Topology

On first inspection, EPANET networks appeared to be similar to shapefiles, in that they contain rich

sets of geometry data that could be described as features. However, EPANET simulations give the

network a dynamic quality, in the sense that the values of the network will change over time. The

EPANET application displays this through colours and provides users with numeric data on demand.

So, whilst the topology of the network doesn’t change over time, its representation does. Maplibre

provides functionality to update layers in the setData() function, so an animated solution will need to

build layer data (as GeoJSON), update layer data as the result of simulation data and finally set the

layer data to reflect the changes.

Constructing a GeoJSON representation of an EPANET network was a straightforward task,

notwithstanding the need to spatially convert elements into WGS84, as required for MapLibre

visualisation. The biggest challenge was in determining a suitable structure for the collection of

EPANET components which resulted in building a set of Maplibre layers to represent the pipes,

pumps, valves, junctions, reservoirs, and tanks. Whilst the Maplibre ‘add multiple geometries’

sample[8] does show a single GeoJSON with multiple layers, we found that separating the data made

it conceptually simpler to work with, particularly when dealing with simulation data and mouse

enter/exit calls.

Having worked with large shapefiles of over 100,000 features, the fairly complex (by EPANET

standards) water networks, Figure 5, appeared fairly small in comparison and given the relatively

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

6

small payloads (c1Mb) there seemed to be little need to compress geometry data in the way that we

had for shapefiles.

Figure 5: EPANET water networks of differing complexity.

6.2. Simulation Data

Within the Centre for Water Systems, EPANET simulations are typically run over 7 days with a 15-

minute resolution, creating around 700 data points per component per simulation. Simulations can be

run in the EPANET app and saved as binary files[18] and/or run through the EPANET libraries, either

to completion as per the app, or in a stepwise form. For our use cases, it was decided to run the

simulation once and store the results for visualisation. Whilst the simulation was not massively

computationally expensive, typically taking less than 2 minutes in the biggest case, there seemed to be

little value in re-running the simulation if users were unable to change simulation parameters.

For our large case, the resulting simulation output file was 100Mb. Whilst this could be loaded into

memory using Python and converted into Python data types, it was a slow purpose and echoed back to

the shapefile metadata, in that not all users were going to require all of the data all the time, so an

approach was developed where the binary file was loaded, and data was unpacked on demand using

Python’s struct.unpack_from[19].

6.3. Simulation Process

EPANET divides components into one of two types, nodes, or links, for simulation and organises its

colourisation visualisation around four modes for nodes (supply, head, pressure, and quality) and eight

modes for links (flow, velocity, headloss, quality, status, setting, reaction rate and friction). Therefore,

the simulation visualisation only needs to deal with a small subset of simulation data at any one time.

However, unlike shapefile visualisation where only user selected metadata is downloaded, simulation

visualisation requires all the node and link data to be downloaded for the given simulation frame and

relevant modes. However, displaying this information visually, rather than quantitatively, requires

colour information to be sent to the client which occupies a smaller data footprint, even more so when

the visualisation uses EPANET’s five colour lookup, Figure 4, effectively just requiring a map of

indices to colour values and a colour index for each component. On the client, the simulation data was

parsed and used to update the colour value of each feature in each layer of the model. On completion,

setData was called and the visualisation is updated, Figure 6.

7. Conclusions

In general, using MapLibre as a tile-map for the aqua3s project has worked exceptionally well. The

library is generally easy to use and has a good level of visualisation performance which has provide

suitable for the size and complexity of data we have been working with for both the EPANET and

shapefile domains. The open-source nature of the library enabled us to look into the underlying code

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

7

when things were not working quite as expected and this did allow us to solve a particularly annoying

issue with refreshing visualisations after style.load.

Figure 6: EPANET simulation visualization in aqua3s, showing colourised water network and

simulation details.

To a large degree, choosing a suitable technology stack for the project was a bit of a beauty

pageant, in that it is a time and resource-limited activity, so there is a tendency to go with whatever

works, rather than the absolute best possible solution. There is also the scope to re-engineer existing

technologies to meet performance needs, particularly in the case of dismantling GeoJSON data to

make it ‘fit’ our needs and although GeoJSON felt like a ‘fat’ format, it compresses well and keeps

readability, which moving to a binary format would not allow so easily.

Currently, the biggest issue with the overall project is the time taken for the Python-based

conversion of Shapefiles to GeoJSON, though this may be addressed by moving a different conversion

library.

Acknowledgements

The work presented in this paper was funded by the ongoing EC H2020 aqua3S (GA 832876),

Fiware4Water (GA 821036) and LOTUS (GA 820881) projects.

References

[1] QGIS Home Page https://qgis.org/en/site/ (accessed Jul. 12, 2021)

[2] Aqua3s project homepage https://aqua3s.eu/ (accessed Jul. 12, 2021)

[3] Google maps homepage https://cloud.google.com/maps-platform/pricing/sheet (accessed Jul.

12, 2021)

[4] Mapbox Homepage https://www.mapbox.com/ (accessed Jul. 12, 2021)

[5] Leaflet.js Homepage https://leafletjs.com/ (accessed Jul. 12, 2021)

[6] MapLibre Homepage https://maplibre.org/ (accessed Apr. 01, 2022)

[7] Add a default marker https://maplibre.org/maplibre-gl-js-docs/example/add-a-marker/ (accessed

Apr. 01, 2022)

[8] Add multiple geometries from one GeoJSON source https://maplibre.org/maplibre-gl-js-

docs/example/multiple-geometries/ (accessed Apr. 01, 2022)

[9] Animate a series of images https://maplibre.org/maplibre-gl-js-docs/example/animate-images/

(accessed Apr. 01, 2022)

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1136/1/012007

8

[10] Add a video https://maplibre.org/maplibre-gl-js-docs/example/video-on-a-map/ (accessed Apr.

01, 2022)

[11] Add a WMS Source https://maplibre.org/maplibre-gl-js-docs/example/wms/ (accessed Apr. 01,

2022)

[12] GeoJSON Homepage https://geojson.org/ (accessed Apr. 01, 2022)

[13] Geopandas Homepage https://geopandas.org/en/stable/ (accessed Apr. 01, 2022)

[14] MapLibre.AddSource https://maplibre.org/maplibre-gl-js-docs/api/map/#map#addsource

(accessed Apr. 01, 2022)

[15] Maplibre Map.AddLayer https://maplibre.org/maplibre-gl-js-docs/api/map/#map#addlayer

(accessed Apr. 01, 2022)

[16] MapLibre.map.on https://maplibre.org/maplibre-gl-js-docs/api/map/#map#on (accessed Apr. 01,

2022)

[17] EPANET Application https://www.epa.gov/water-research/epanet (accessed Apr. 01, 2022)

[18] OWA EPANET outfile format http://wateranalytics.org/EPANET/_out_file.html (accessed Apr.

01, 2022)

[19] Python struct https://docs.python.org/3/library/struct.html (accessed Apr. 01, 2022).

