
 

 

 Joint Research Programme 

  

Joint Research Programme 
BTO 2022.017 | February 2022 

Improved non-target 

screening-based 

identification through 

MS online 

prioritization 



 

BTO 2022.017 | February 2022 Improved non-target screening based identification through MS online prioritization 1

  



 

 

BTO  2022.017 | February 2022 Improved non-target screening based identification through MS online prioritization 2 

Report 

Improved non-target screening-based identification through MS online prioritization 

BTO 2022.017 | February 2022 

 

This research is part of the Joint Research Programme of KWR, the water utilities and Vewin. 

 

Project number 

402045/096 

Project manager 

Dr. Patrick S. Bäuerlein 

Client 

BTO - Thematical research - Chemical safety 

Author(s) 

Nienke Meekel MSc, Dennis Vughs MSc, Frederic Béen PhD, Dr. Andrea M. Brunner 

The authors who contributed to the scientific publications are listed above the publications. 

Quality Assurance 

Dr. Thomas ter Laak 

Sent to 

This report is distributed to BTO-participants. 

A year after publication it is public. 

 

Keywords 

non-target screening, chemical water quality, mass spectrometry, prioritization 

Year of publishing 
2022 
 

More information 
Nienke Meekel MSc 
T 030-6069622 

E nienke.meekel@kwrwater.nl 

PO Box 1072 
3430 BB Nieuwegein 
The Netherlands 

 
T +31 (0)30 60 69 511 
F +31 (0)30 60 61 165 

E info@kwrwater.nl 
I www.kwrwater.nl 

 

 

February 2022 © 

All rights reserved by KWR. No part of this publication may be 
reproduced, stored in an automatic database, or transmitted in any 
form or by any means, be it electronic, mechanical, by photocopying, 

recording, or otherwise, without the prior written permission of KWR. 



 

 

BTO 2022.017 | February 2022 Improved non-target screening based identification through MS online prioritization 3 

Managementsamenvatting 

Verbeterde prioritering en fragmentatie leiden tot betere identificatie van onbekende 

stoffen met non-target screening  

Auteurs Nienke Meekel MSc, Dennis Vughs MSc, Frederic Béen PhD, Dr. Andrea M. Brunner. 

Er zijn twee verschillende prioriteringsstrategieën ontwikkeld voor de identificatie van onbekende stoffen in 

watermonsters met non-target screening (NTS) met als doel potentieel toxische stoffen te herkennen in 

oppervlaktewater. De prioritering is gericht op het herkennen van substructuren van stoffen die bijdragen aan de 

giftigheid van een stof. Hiervoor is gebruikgemaakt van isotopenpatronen, aanwezigheid in een inclusielijst, 

brutoformule (met behulp van HERMES) en de aanwezigheid van een structuuralert (moleculaire substructuur die 

gelinkt is aan de toxiciteit van een stof). Ook is een nieuwe fragmentatietechniek op basis van fotonen (UVPD) 

toegepast om de identificatie van onbekende stoffen te verbeteren. Deze strategieën (HERMES, UVPD, 

structuuralerts en inclusie- en exclusielijsten) zijn effectief en kunnen al worden toegepast, maar dit proof of 

principle vraagt verdere ontwikkeling om in de toekomst de identificatie van onbekende en relevante stoffen nog 

verder te verbeteren en de strategieën breder toe te kunnen passen.  

 
Workflow van de verbeterde prioriteringsstrategieën in non-target screening voor de identificatie van onbekende stoffen 

 

Belang: prioritering van relevante features in NTS 

Non-target screening (NTS) van watermonsters 

resulteert vaak in een grote hoeveelheid features: 

combinaties van een retentietijd, intensiteit en 

accurate massa, die kunnen worden gebruikt om de 

identiteit van een stof te bepalen. Vanwege die grote 

hoeveelheid features in watermonsters is prioritering 

voor de identificatie noodzakelijk. Bij de gebruikelijke 

NTS data-analyse worden meestal de features met 

de hoogste intensiteit geselecteerd. Dit zijn echter 

niet altijd de meest relevante features vanuit 

toxicologisch oogpunt. Bovendien is de 

fragmentatiescan niet altijd van voldoende kwaliteit 

voor identificatie. Met een betere fragmentatie én 

prioritering van relevante features zal het 

identificatieproces verbeteren en worden 

additionele analyses voor identificatie van 

onbekende stoffen voorkomen.  
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Aanpak: optimalisatie van prioritering en 

fragmentatie 

Een slimme data-acquisitiemethode is ontwikkeld om 

ook features met lage intensiteit te kunnen 

prioriteren op basis van de aanwezigheid van 

bepaalde eigenschappen. Tevens is AcquireX getest: 

een methode om niet-relevante features uit te 

sluiten voor fragmentatie via exclusielijsten waarin 

specifieke features die ook in de blanco voorkomen. 

Ook is een alternatieve fragmentatiemethode op 

basis van fotonen (UVPD) getest om de identificatie 

van (geprioriteerde) features te optimaliseren. 

Resultaten: focus op potentieel toxische stoffen en 

alternatieve fragmentatiemethode 

De toegepaste strategieën bleken succesvol in de 

prioritering van potentieel toxische stoffen. Stoffen 

met specifieke substructuren (structuuralerts) 

konden worden herkend, waarna al tijdens de 

analyse een extra fragmentatiescan kon worden 

gestart om de stof beter te kunnen identificeren. Er 

is een workflow (HERMES) ontwikkeld om op basis 

van brutoformules inclusielijsten te genereren met 

specifieke accurate massa’s die aanleiding geven tot 

een hogere prioritering omdat zij op de 

aanwezigheid van potentieel toxische stoffen duiden. 

Het gebruik van inclusielijsten helpt om meer 

relevante features te selecteren voor een 

fragmentatiescan. De vergelijking tussen UVPD en de 

reguliere (HCD, higher-energy C-trap dissociation) 

fragmentatie laat zien dat UVPD tot betere 

fragmentatie van sommige stoffen kan leiden wat 

identificatie mogelijk kan maken van 

microverontreinigingen die niet goed fragmenteren 

met HCD.  

In dit proof of principle zijn de fundamenten gelegd 

voor verschillende tools om prioritering en 

identificatie van relevante microverontreinigingen in 

non-target screening te verbeteren. De volgende 

stap is het bepalen van parameters die de kwaliteit 

van fragmentatiespectra kunnen weergeven, zodat 

de methode verder kan worden ontwikkeld.  

Implementatie: (delen van) workflows 

projectmatig inzetten 

De prioriteringsstrategie is nog niet volledig 

doorontwikkeld, maar delen kunnen reeds ingezet 

worden in de NTS analyse. Met name exclusie- en 

inclusielijsten, isotopenpatronen (indicatie voor 

antropogene stoffen), bekende structuuralerts en de 

HERMES-strategie kunnen reeds toegepast worden 

mits de acquisitiesoftware van de 

massaspectrometer dit toelaat. Gegenereerde 

inclusielijsten kunnen worden gedeeld met andere 

waterbedrijven en laboratoria.  

Rapport 

Dit onderzoek is beschreven in het rapport Improved 

non-target screening based identification through MS 

online prioritization (BTO-2022.017) dat bestaat uit 

diverse wetenschappelijke artikelen: Ultraviolet 

photodissociation for non-target screening-based 

identification of organic micro-pollutants in water 

samples van Panse et al., gepubliceerd in Molecules 

(http://dx.doi.org/10.3390/molecules25184189); 

HERMES: a molecular formula-oriented method to 

target the metabolome van Giné et al., (gepubliceerd 

in Nature Methods (https://doi.org/10.1038/s41592-

021-01307-z) en Online prioritization of toxic 

compounds in water samples through intelligent 

HRMS data acquisition van Meekel et al., 

gepubliceerd in Analytical Chemistry 

(https://doi.org/10.1021/acs.analchem.0c04473?rel=

cite-as&ref=PDF&jav=VoR). Dit onderzoek is een 

vervolg op het werk in de BTO-rapporten 

Groepsgewijze analyse en beoordeling van stoffen: 

implementatie van ‘structural alerts’ in 

waterkwaliteitsmonitoring (BTO 2013.059), Non-

target screening to identify unknowns: automation 

and increasing confidence (BTO 2019.032) en Nieuwe 

chemische meetmethoden (BTO 2019.029). 
 

http://dx.doi.org/10.3390/molecules25184189
https://doi.org/10.1038/s41592-021-01307-z
https://doi.org/10.1038/s41592-021-01307-z
https://doi.org/10.1021/acs.analchem.0c04473?rel=cite-as&ref=PDF&jav=VoR
https://doi.org/10.1021/acs.analchem.0c04473?rel=cite-as&ref=PDF&jav=VoR
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1 Nederlandse samenvatting 

Het algemene doel van dit project bestaat uit het aanpakken van de limieten van non-target screening (NTS) en het 

verbeteren van de identificatie van organische microverontreinigingen in water monsters door de ontwikkeling van 

massaspectrometrische acquisitiemethoden. De in dit project ontwikkelde methoden (1) prioriteren vóór 

fragmentatie stoffen die een potentieel risico vormen voor de humane gezondheid en milieu en (2) passen 

alternatieve fragmentatietechnieken toe om de fragmentatie te optimaliseren. Deze innovaties kunnen in de 

toekomst leiden tot betere prioritering van potentieel toxische features, reductie van het aantal analytische 

stappen dat nodig is om bepaalde ionen te fragmenteren en uitbreiding van de toepassingsmogelijkheden (scala 

van chemische stoffen) door verschillende fragmentatietechnieken toe te passen. De toepassing van de 

verschillende innovaties bij de drinkwaterlaboratoria hangt af van de (software)mogelijkheden van de gebruikte Q-

TOF massaspectrometers. De opbrengsten van het project bestaan uit drie peer-reviewed publicaties en een 

masterscriptie, deze samenvatting beschrijft de verschillende publicaties. 

1.1 Uitdagingen in structurele identificatie van onbekende stoffen 

NTS gebaseerd op de combinatie van vloeistofchromatografie gekoppeld aan hoge resolutie massaspectrometrie 

(HRMS) en gegevensanalyse op maat zijn tezamen met target en suspect screening belangrijke methoden om 

stoffen in drinkwater en haar bronnen te identificeren en temporele en ruimtelijke analyses uit te voeren. 

Desalniettemin blijft de identiteit van een groot aantal stoffen onbekend. De huidige NTS aanpak bestaat uit het 

matchen van de accurate massa’s (afkomstig uit de MS1 spectra, de volledige scan) en de fragmentatiespectra 

(MS2) van een onbekende feature met de spectra in één of meerdere databases. Fragmentatiespectra zijn 

onmisbaar voor de identificatie van stoffen, maar vaak van slechte kwaliteit of niet aanwezig omdat slechts een 

beperkt aantal features gefragmenteerd kan worden tijdens de analyse. In het geval van ontbrekende 

fragmentatiespectra of fragmentatiespectra van slechte kwaliteit, kan de stof niet worden geïdentificeerd. Het 

ontbreken van zo’n fragmentatiespectrum kan worden veroorzaakt door een te lage intensiteit van het MS1 

spectrum omdat alleen de n meest intense ionen worden gefragmenteerd in een non-target data-afhankelijke 

acquisitiemethode (DDA, data-dependent analysis). Daarnaast kan de identificatie bemoeilijkt worden door de 

complexiteit van de MS1 spectra en de aanwezigheid van achtergrondionen. Vaak ontstaan meerdere pieken van 

dezelfde stof (i.e. adducten zoals NH4
+ en Na+, in-source fragmenten, dimeren etc.), deze kunnen leiden tot 

overtollige MS2-spectra van dezelfde stof.  Prioritering van relevante stoffen en exclusie van achtergrondionen van 

fragmentatie kan deze problemen verminderen. Suboptimale fragmentatiemethoden kunnen leiden tot informatie 

arme fragmentatiespectra. Alternatieve fragmentatietechnieken kunnen fragmentatiespectra informatiever maken 

en daarmee bijdragen aan structuuropheldering. Naast  een fragmentatiespectrum van voldoende kwaliteit is de 

structuuropheldering ook afhankelijk van een bibliotheek waarin het spectrum is opgenomen. Momenteel 

vergroten alternatieve fragmentatiebenaderingen de complexiteit en zijn ze beperkt beschikbaar voor alle 

instrumenten die door (water)laboratoria gebruikt worden. Het is echter mogelijk dat deze technieken in de 

toekomst beter beschikbaar worden. Het is daarom van belang hun potentiële toegevoegde waarde (opnieuw) te 

onderzoeken. 

1.2 Prioritering in non-target screening door fragmentatie van relevante stoffen 

Momenteel vindt prioritering na de dataverwerking plaats. Het resultaat van de prioritering is een lijst met 

potentieel geïdentificeerde stoffen waarvan de identiteit bevestigd moet worden met een nieuwe analyse. Dit 

heeft als gevolg dat er een aanzienlijke tijd kan zitten tussen de meting, (manuele) prioritering en identificatie. In 

data-dependent acquisitie (DDA), worden de meest aanwezige ionen in het volledige scan spectrum (MS1) 
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geselecteerd voor een fragmentatiestap, resulterend in een fragmentatiespectrum (MS2). Omdat deze selectie 

alleen op de intensiteit is gebaseerd, komt het vaak voor dat irrelevante features die in grote hoeveelheden 

voorkomen (bijvoorbeeld in de achtergrond) geselecteerd worden voor fragmentatie. De ionen afkomstig van 

potentieel toxische stoffen die in lagere concentraties voorkomen of een lagere ionisatie efficiëntie hebben worden 

hierdoor niet meegenomen omdat de respons lager is dan de drempelwaarde, terwijl deze wel relevant kunnen 

zijn. Om dit probleem in DDA aan te pakken, hebben we intelligente HRMS-data acquisitie strategieën ontwikkeld. 

Deze strategieën zijn gebaseerd op structuuralerts, isotopenpatronen, bruto formule en de exclusie van 

achtergrondionen (met behulp van de AcquireX software). Deze strategieën zijn beschreven in het artikel ‘Online 

prioritization of toxic compounds in water samples through intelligent HRMS data acquisition’, de scriptie 

‘Improved identification of toxic compounds in drinking water sources through HRMS based intelligent data 

acquisition’, en het artikel ‘HERMES: a molecular formula-oriented method to target the metabolome’. Deze 

studies laten zien dat de strategieën succesvol zijn in het faciliteren van de prioritering van de ionen afkomstig van 

potentieel toxische stoffen en dat ze het percentage van de gefragmenteerde achtergrondionen reduceren. De 

strategieën kunnen worden geoptimaliseerd om op grotere schaal toe te kunnen passen in bijvoorbeeld 

monitoringsstudies, eventuele vervolgprojecten (bv. BTO Screening/NTS) zouden gericht kunnen worden op de 

implementatie van deze strategieën. Als de (software)mogelijkheden van de massaspectrometer het toelaten 

kunnen de inclusie- en exclusielijsten reeds toegepast worden.  

1.3 Alternatieve fragmentatietechnieken voor verbetering van het informatiegehalte van 
fragmentatiespectra 

Nadat de relevante ionen geprioriteerd zijn voor fragmentatie, is het van belang dat dit leidt tot een MS2 spectrum 

met voldoende informatie voor de identificatie. De optimale fragmentatiemethode en -energie resulteren in MS2 

spectra met voldoende karakteristieke fragmenten en weinig ruis, en zijn afhankelijk van de structuur van de stof. 

In het werk gepresenteerd in ‘Online prioritization of toxic compounds in water samples through intelligent HRMS 

data acquisition’ zijn verschillende acquisitie instellingen (inclusief fragmentatie energie) vergeleken voor de 

fragmentatie van relevante ionen. Het gebruik van verschillende instellingen verhoogt de kans op 

fragmentatiespectra van betere kwaliteit. Voor de stoffen die niet of nauwelijks fragmenteren met HCD (higher-

energy C-trap dissociatie), werd de alternatieve fragmentatietechniek ultraviolet fotodissociatie (UVPD) toegepast 

om informatieve spectra te verkrijgen. UVPD is een relatief nieuwe techniek waarbij gebruik wordt gemaakt van 

een 213 nm UV laser. De publicatie ‘Ultraviolet photodissociation for non-target screening based identification of 

organic micro-pollutants in water samples’ beschrijft de toegevoegde waarde van UVPD voor de identificatie van 

waterrelevante stoffen. Deze studie laat zien dat de methode in staat is om de fragmentatie van specifieke ionen te 

verbeteren (details zijn beschreven in de publicatie). De combinatie van de conventionele HCD fragmentatie en de 

UVPD techniek zorgt ervoor dat fragmentatiespectra van hoge kwaliteit verkregen kunnen worden voor een 

grotere set van stoffen (ook stoffen die met de klassieke methode niet of beperkt fragmenteren), en daarmee de 

identificatie van geprioriteerde features verbeterd kan worden. Echter is de UVPD techniek relatief nieuw en 

bestaan er nog geen uitgebreide databases (fragmentatiebibliotheken). Daardoor is toepassing van deze techniek in 

monitoringsstudies een lange-termijn traject. UVPD wordt ook in andere instrumenten, met name ion mobility 

massaspectrometrie, toegepast. De verwachting is dan ook dat het een algemeen gebruikte, aanvullende techniek 

kan worden. De volgende stap zou kunnen bestaan uit het onderzoeken van de beschikbaarheid van databanken 

en/of het opzetten van samenwerkingsstudies met laboratoria die UVPD beschikbaar hebben zodat gegevens 

gedeeld kunnen worden en de kwaliteit en deelbaarheid hiervan geëvalueerd kan worden. 

1.4 Conclusies 

De verschillende strategieën blijken veelbelovend te zijn voor wateronderzoek en -monitoring. Delen van de data 

acquisitiestrategie zijn reeds geïmplementeerd bij KWR. Exclusie van achtergrondionen met behulp van AcquireX is 

succesvol in het verminderen van het percentage gefragmenteerde achtergrondionen. Indien AcquireX niet 
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beschikbaar is op het gebruikte instrument (bijvoorbeeld QTOF instrumenten) dan kunnen exclusielijsten met 

achtergrondionen ook handmatig gegenereerd worden maar indien er vergelijkbare software beschikbaar is voor 

QTOF massaspectrometers, dan is de verwachting dat dit nauwkeurigere resultaten oplevert. Indien gewenst 

kunnen inclusielijsten eenvoudig toegepast worden met als enige vereiste dat de acquisitiesoftware van de 

massaspectrometer is uitgerust met deze mogelijkheid. HERMES is nog niet toegepast binnen het laboratorium van 

KWR maar aangezien deze software vrij toegankelijk is kan het ook door de drinkwaterbedrijven gebruikt worden. 

Echter is deze techniek zeer arbeidsintensief m.b.t. meettijd en dataverwerking. Dit is dus ongeschikt voor 

regelmatige screening, maar kan van toegevoegde waarde zijn voor een uitgebreide analyse van een monster. De 

alternatieve fragmentatiemethode, UVPD, kan een verbetering zijn van de identificatie van waterrelevante stoffen 

maar is nog niet klaar voor implementatie. Slechts een paar massaspectrometers zijn uitgerust met UVPD en er zijn 

nauwelijks referentiespectra beschikbaar, de verwachting is dat dit in de toekomst een meer commercieel 

beschikbare techniek zal worden.  

 

1.5 Uitdagingen en vooruitzichten 

De ontwikkelde prioriteringsstrategieën en alternatieve fragmentatiemethode dragen bij aan de reguliere NTS 

workflows door de identificatie van onbekende stoffen in watermonsters te verbeteren. De uitkomsten van dit 

onderzoek geven het belang van verder onderzoek naar en verdere ontwikkeling en implementatie van intelligente 

acquisitie software. De alternatieve fragmentatietechniek UVPD kan indien gewenst verder verkend worden door 

een samenwerking op te zetten waarbij meetresultaten uitgewisseld en vergeleken kunnen worden om zo de 

toegevoegde waarde voor drinkwaterlaboratoria te bepalen. Vervolgonderzoek kan zich ook richten op de 

implementatie van de, in dit verkennende onderzoek, ontwikkelde online prioriteringsstrategie in 

drinkwaterlaboratoria. De potentie van online prioriteringsstrategieën kan alleen volledig tot zijn recht komen 

wanneer de beoordeling van de kwaliteit van fragmentatiespectra gedurende de acquisitie kan plaatsvinden. Indien 

een MS2 onvoldoende spectrale informatie bevat, kan een intelligente acquisitiemethode een extra 

fragmentatiestap activeren met alternatieve parameters om zo de kwaliteit van het spectrum te verbeteren. Echter 

zijn er momenteel nog geen parameters om de kwaliteit van fragmentatiespectra te bepalen. Een spectrum is een 

goed spectrum wanneer het voldoende karakteristieke fragmenten bevat om een stof ondubbelzinnig te kunnen 

identificeren. Parameters voor spectrale kwaliteit kunnen ervoor zorgen dat de MS tijdens de acquisitie kan 

bepalen of een fragmentatiespectrum van voldoende kwaliteit is of dat er alternatieve fragmentatie instellingen 

vereist zijn. Deze parameters zouden bepaald kunnen worden met behulp van machine learning en dan worden 

geïmplementeerd in intelligente data acquisitie methoden. Vervolgens kan real-time herkenning van spectrale 

kwaliteit geïmplementeerd worden in de MS acquisitiesoftware.  
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2 English summary 

The main goal of this project was to address the limitations of non-target screening (NTS) and to improve structural 

identification of organic micropollutants in water samples by developing mass spectrometric (MS) acquisition 

methods that (1) target compounds that potentially pose a risk to human health and the environment for 

fragmentation and (2) apply alternative fragmentation techniques to optimize fragmentation for a broader range of 

chemicals. These innovations can in future lead to a better prioritization of  ions originating from potentially toxic 

compounds, shorten the number of analytical steps to fragment selected ions and broaden the window of 

application (the range of chemicals) by applying multiple fragmentation techniques. The extent to which the 

various innovations can be applied in drinking water laboratories depends on the (software) capabilities of the Q-

TOF mass spectrometers used. The result of the project consists of three peer-reviewed publications and one MSc 

thesis, which are all included in this document. 

2.1 Challenges in structural identification of unknown compounds 

NTS based on the combination of liquid chromatography coupled to high-resolution mass spectrometry (HRMS) 

and tailored data analyses, together with suspect- and target screening have become important methods to 

identify and monitor compounds present in drinking water and its sources. However, a high number of compounds 

still remains unidentified with the current NTS approaches that rely on matching of the accurate mass (provided in 

the MS1 spectra, the full scan) and the fragmentation spectra (MS2) of a given unknown peak with those of 

database entries. Often fragmentation spectra, that are essential for the identification of substances, are of poor 

quality or are absent as only a limited number of ions can be fragmented during analysis. In the case of poor or a 

complete lack of MS2 fragmentation spectra, the compound can consequently not be identified. A lack of 

fragmentation can be due to low signal intensities of the compound, as only the n most intense peaks are 

fragmented in a non-target data dependent acquisition method. Moreover, the high complexity of MS1 spectra and 

background signals can hinder identification, e.g. due to peaks belonging to the same compound, in source 

fragments, adducts (NH4
+, Na+), dimers, and redundancy in MS2 spectra from the same (background) compound. 

Prioritizing compounds of interest for and excluding background compounds from fragmentation could alleviate 

this complexity. Suboptimal fragmentation methods can lead to poor fragmentation spectra. In that case, 

alternative fragmentation techniques can aid structural elucidation. Currently, alternative fragmentation 

approaches enhance the complexity and are not largely available for all instruments used by (water)laboratories. 

However, it is possible that these techniques become available at a larger scale in the future, therefore it is 

necessary to keep up with time and evaluate (again) their potential added value. 

2.2 Prioritization in non-target screening through fragmentation of relevant compounds  

To date, prioritization takes place after data processing. The result of the prioritization is often a list of potentially 

identified chemicals which need be confirmed by sample re-analysis. Consequently, a considerable amount of time 

can pass between measurement, (manual) prioritization and identification. In data-dependent acquisition (DDA), 

the most abundant ions detected in the full scan spectrum (MS1) are selected for a fragmentation event resulting 

in a fragmentation spectrum (MS2). Since this selection is based on intensity, it often occurs that highly abundant 

but irrelevant ions such as background ions are selected for fragmentation. Ions related to potentially toxic 

compounds that are present at lower concentrations and/or have a lower ionization efficiency are disregarded as 

their responses do not meet the threshold. To overcome this issue in DDA, we developed intelligent HRMS data 

acquisition strategies. These strategies are based on structural alerts, isotopic patterns, molecular formula and 

exclusion of background ions (the latter using the AcquireX software). The strategies are described in the paper 
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‘Online prioritization of toxic compounds in water samples through intelligent HRMS data acquisition’, the thesis 

‘Improved identification of toxic compounds in drinking water sources through HRMS based intelligent data 

acquisition’, and the paper ‘HERMES: a molecular formula-oriented method to target the metabolome’. These 

studies show that the strategies successfully aid prioritization of ions related to potentially toxic compounds, 

decrease the percentage of fragmented background ions and that these can be optimized for usage on a larger 

scale in for example monitoring studies, potential follow-up projects (e.g. BTO Screening/NTS) could be directed 

towards implementation of these strategies.  It does however require a predefined list of structural alerts and their 

fragments and deltas, and inclusion lists that indicate that the ion is originating from a potentially toxic compound 

and thereby relevant to prioritize for fragmentation and further identification. If the (software) capabilities of the 

mass spectrometer allow, the inclusion and exclusion lists can already be applied. 

2.3 Alternative fragmentation techniques to improve the information content of 
fragmentation spectra 

After prioritising relevant ions for fragmentation, the triggered fragmentation event needs to result in a MS2 

spectrum with sufficient information for subsequent identification. The optimal fragmentation method and 

fragmentation energy produce in MS2 spectra with enough characteristic fragments and little noise, and depend on 

the structure of the fragmented compound. In the work presented in ‘Online prioritization of toxic compounds in 

water samples through intelligent HRMS data acquisition’ different acquisition settings including fragmentation 

energy were compared for the fragmentation of relevant ions. Using different settings increased the chance of high 

quality fragmentation spectra. For those compounds that fragment poorly – or not at all – using HCD (higher-

energy C-trap dissociation), the alternative fragmentation technique Ultraviolet Photodissociation (UVPD) was 

applied to obtain informative spectra. UVPD is a relatively new fragmentation technique relying on a 213 nm UV 

laser. The publication ‘Ultraviolet photodissociation for non-target screening based identification of organic micro-

pollutants in water samples’ describes the added value of UVPD for the identification of water relevant compounds. 

This study showed that the method was able to improve fragmentation for specific ions (details are described in the 

publication). Thereby, the combination of the conventional HCD fragmentation and UVPD technique enables high 

quality fragmentation spectra for a broader set of chemicals (including chemicals which fragment hardly or poorly 

using classical fragmentation techniques) and thereby improving the potential for identification of prioritized 

features. However, UVPD is a relatively new technique and thus far no extended databases (involving 

fragmentation spectra) exist, yet. So usage of this technique in monitoring studies will be a long-term trajectory. 

UVPD is also applied in other mass spectrometry instruments, mainly in ion mobility mass spectrometry. It is 

therefore expected that it will become a more common technique. The next step could consist of the examination 

of the availability of databases and/or the set-up of collaborative studies with labs having an UVPD instrument 

available, so that data can be shared and the quality and shareability of these data can be examined. 

2.4 Conclusions 

The different strategies appear to be promising for water research. Parts of the data acquisition strategies are 

already implemented within KWR. Background exclusion using AcquireX successfully decreases the percentage of 

fragmented background ions. If desired, inclusion lists can be applied easily with the only requirement that the 

mass spectrometer acquisition software is equipped with this option. HERMES has not been applied within the KWR 

laboratory yet, but since this technique is open-source it can be used by the drinking water companies as well. 

However, this technique is very labour intensive in terms of measuring time and data processing. It is therefore 

unsuitable for regular screening, but might be of added value for extensive analysis of a sample. The alternative 

fragmentation method, UVPD, has benefits for the identification of water relevant compounds but is not yet ready 

for implementation. Only a few mass spectrometers are equipped with UVPD and almost no reference spectra are 

available, so this will become relevant on the long-term. However, it is expected that UVPD will become a more 

commonly and commercially available technique in the future. 
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2.5 Remaining challenges and outlook 

The developed prioritization strategies and alternative fragmentation method contribute to the regular NTS 

workflows by increasing the probability of identification of unknown compounds in water samples. The outcomes 

of this study indicate the need for further research into and development and implementation of online intelligent 

acquisition software. The alternative fragmentation technique (UVPD) could be examined further by setting up a 

collaboration to share and compare measuring results in order to test the added value for drinking water 

laboratories. Future research could also be directed to the implementation of the, in this exploratory research, 

developed prioritization strategies in drinking water laboratories. The potential of online prioritization strategies 

can only be fully harnessed if assessment of spectral quality happens in real time during the MS acquisition. In case 

an MS2 contains insufficient spectral information, an intelligent acquisition method could then trigger a further 

mass spectrometric event with alternative parameters to increase spectral quality. However, to date there are no 

metrics that define spectral quality. A spectrum is a good spectrum if it contains enough characteristic fragments to 

unambiguously identify a compound. Spectral quality metrics could allow the mass spectrometer to decide during 

data acquisition whether a fragmentation spectrum is informative enough for organic micropollutant identification 

or whether it requires alternative fragmentation (settings). These metrics could be defined using machine learning 

strategies and then implemented in intelligent acquisition methods. Subsequently, real time recognition of spectral 

quality could be implemented into MS acquisition software to enable intelligent acquisition. 
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ABSTRACT 

Comprehensive metabolome analyses are hampered by low identification rates of 

metabolites due to suboptimal strategies in MS and MS2 acquisition, and data analysis. 

Here we present a molecular formula-oriented and peak detection-free method, 

HERMES, that improves sensitivity and selectivity for metabolite profiling in MS and 

structural annotation in MS2. An analysis of environmental water, E. coli, and human 

plasma extracts by HERMES showed increased biological specificity of MS2 scans, 

leading to improved mass spectral similarity scoring and identification rates when 

compared to iterative data-dependent acquisition (DDA). HERMES is available as an R 

package with a user-friendly graphical interface to allow data analysis and interactive 

tracking of compound annotations. 

 

INTRODUCTION 

A single LC/MS-based metabolomic experiment generates millions of three-

dimensional (m/z, retention time, intensity) data points that can be annotated and quantified 

into thousands of metabolite features. However, most features are either redundant ions 

caused by ionization-related phenomena such as cation/anion adduction, multimerization and 

in-source fragmentation, or unknown contaminants and artifacts1,2. Moreover, conventional 

untargeted metabolomic experiments lead to highly heterogeneous chromatographic peak 

shapes, which negatively affect the performance of peak detection3 and grouping/annotation 

algorithms in MS1 mode4. These characteristics of MS1 data, in turn, negatively impact MS2 

acquisition methods used for metabolite identification. In data-dependent acquisition (DDA) 

mode, MS2 spectra are automatically collected for precursor ions that exceed a predefined 

intensity threshold. The selection of precursor ions is a stochastic event suffering from low 

analytical reproducibility and favouring the selection of the most abundant, but not necessarily 

biologically relevant, ions. In data-independent acquisition (DIA) methods, multiple precursor 

ions, including redundant and biologically irrelevant ions, are simultaneously fragmented, 

often generating a series of complex convoluted MS2 spectra. Despite the emergence of new 

software to reconstruct the link between precursors and their fragments through mass spectral 

deconvolution5,6, MS2 spectral quality and matching scores to reference spectra are generally 

poorer in DIA compared to DDA7.  
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RESULTS 

Here we present HERMES, a novel experimental method and computational tool that 

improves the selectivity and sensitivity for comprehensive metabolite profiling in MS1, and 

identification in MS2. HERMES replaces the conventional untargeted metabolomic workflow 

that detects and annotates peaks8,9, for an inverse approach that directly interrogates raw 

LC/MS1 data points (i.e., scans) by using a comprehensive list of unique molecular formulas 

selected by the user. These are retrieved from large compound-centric databases (e.g., 

HMDB, ChEBI, NORMAN)10–12, genome-scale metabolic models, or specific metabolic 

pathways. Each molecular formula generates multiple ‘ionic formulas’ by adding or subtracting 

atoms from common adduct ions (Fig. 1). The resulting ionic formulas (on the order of 104-105 

from a database such as HMDB) are searched against millions of data points in an LC/MS1 

experiment. HERMES calculates the theoretical isotopic pattern of each ionic formula based 

on a predefined experimental mass resolution value (Suppl. Fig. 1). The number of collisions 

between monoisotopic ionic formulas vary according to the experimental mass error (i.e., the 

smaller the error, the larger the percentage of non-overlapping ionic formulas; Suppl. Fig. 2). 

An LC/MS1 data point contains m/z and intensity information in a wide mass range (e.g., m/z 

80 to 1,000) for a given instant of time. HERMES solves the limitations of peak detection by 

finding a series of scans, named SOI (Scans Of Interest), which are defined as clusters of data 

points that match an ionic formula and are concentrated within a short period of time (see 

Methods). SOI shapes do not necessarily fit a Gaussian-like function, as assumed in basic 

chromatography theory, making the process independent of the heterogeneous peak shapes 

commonly observed in LC/MS1 experiments from complex mixtures. SOIs are then filtered in 

three steps: (i) blank subtraction from the sample based on a convolutional neural network 

(Suppl. Fig. 3a), (ii) adduct and isotopologue grouping according to the similarity of their elution 

profiles (Suppl. Fig. 3b), and (iii) in-source fragment (ISF) annotation by using publicly 

available low-energy MS2 data (Suppl. Fig. 3c) extending on Domingo-Almenara et al.13. 

Finally, users can prioritize the SOIs that will constitute the inclusion list (IL) for targeted MS2 

acquisition based on the following criteria: type and number of adducts, minimum intensity, 

isotopic fidelity, and a maximum number of overlapped precursors at any time range, which 

together determine the total number of MS2 runs. According to the MS2 acquisition settings, 

each entry in the IL may be associated with one or multiple MS2 scans: if there are more than 

five continuous scans, HERMES provides an optional deconvolution step (adapted from 

CliqueMS14) that resolves co-eluting compounds (Suppl. Fig. 4); if there are fewer scans, 

HERMES selects the most intense scan. The resulting curated MS2 spectra can either be 

identified within HERMES or exported as .mzML, .msp, or .mgf files to be used in other 

identification software such as NIST MS Search, SIRIUS15,16, or GNPS17. 
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HERMES is available as an R package (RHermes) and comes with an R Graphical 

User Interface (GUI) to allow data analysis, tracking of compound annotations, and 

visualization (Suppl. Fig. 5). RHermes accepts both CSV and XLS/XLSX files as valid 

molecular formula lists and can extract formulas from selected KEGG pathways for a given 

organism. The running time, including blank subtraction and IL generation, is <10 minutes on 

a six-core, 2.9 GHz CPU. 

Figure 1. The HERMES workflow. (a) A context-specific database of molecular formulas and MS 
adducts generates a list of ionic formulas. (b) LC/MS1 data points are interrogated against all m/z ions 
corresponding to the ionic formulas and their isotopes. (c) Points with the same m/z annotation are 
grouped by density into retention time (RT) intervals called Scans of Interest (SOI). SOIs with similar 
shape and intensity in a blank sample are removed. (d) SOIs corresponding to different adducts of the 
same formula are grouped by their chromatographic elution profile. Similarly, in-source fragments are 
annotated based on low intensity MS2 spectra of molecules with the same formula. The result is an 
inclusion list (IL) of sample-specific and non-redundant precursor ions that will be monitored in a 
posterior MS2 experiment. (e) The IL entries are acquired continuously along the defined RT interval 
and HERMES groups the resulting fragment elution profiles. (f) This results in deconvoluted spectra 
that can be queried against an MS2 database or exported to be used in alternative identification 
workflows. 
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HERMES has been validated by using three (bio)chemically relevant samples of 

increasing complexity: (i) water collected from a canal in Nieuwegein (Netherlands), (ii) E.coli, 

and (iii) human plasma extracts. The canal water was spiked with 86 common environmental 

contaminants at 1 µg/L (Suppl. Table 1) and analyzed by RP/LC (C18) coupled to an Orbitrap 

in positive (pos) and negative (neg) ionization mode operating at 120,000 resolution. Using 

118,820 (pos) and 46,809 (neg) ionic formulas calculated from 24,696 unique molecular 

formulas in the NORMAN database, HERMES detected and annotated all spiked compounds 

at the MS1 level. Certain ionic formula collisions, particularly those involving Cl, Br, S, or K, 

were automatically resolved by matching experimental isotopic patterns to the expected ones. 

This is the case, for example, of the [M+H]+ ion of chloridazon and the [M+K]+ ion of 2-amino-

alpha-carboline, which overlapped at 0.27 ppm (Suppl. Fig. 6). In-source fragments that 

could be wrongly associated with ionic formulas were also annotated by using low-energy 

MS2 spectra when available. The output was a curated IL of 474 (pos) and 129 (neg) selective 

entries for targeted MS2 (Suppl. Fig. 7).  

Next, a reference E. coli cell extract (Cambridge Isotope Laboratories) was analysed 

by HILIC coupled to an Orbitrap in positive and negative ionization mode. LC/MS1 data were 

analysed by HERMES by using 12,010 (pos) and 4,876 (neg) ionic formulas calculated from 

2,463 unique molecular formulas obtained from the Escherichia coli Metabolome Database 

(ECMDB) and KEGG database. Interestingly, HERMES annotated ionic formulas for 25% 

(pos) and 22% (neg) of all data points acquired by the mass spectrometer (Fig. 2a and Suppl. 

Fig. 8a). In comparison with XCMS, a commonly used open-source LC/MS1 processing data 

tool in untargeted metabolomics9,18, 4.5% of all acquired data points were associated with an 

XCMS peak, 1.5% of data points in XCMS peaks matched an ionic formula from ECMDB and 

KEGG database, and only 0.7% of data points in XCMS peaks were represented in the final 

SOI list after blank subtraction, isotopic fidelity, and ISF removal. The outcome of HERMES 

was 2,058 (pos) and 1,081 (neg) SOIs that led to a curated IL of 1,251 and 661 entries for 

targeted MS2, respectively.  
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Figure 2. Venn-like diagram of the distribution of LC/MS1 data points in different steps of the 
HERMES workflow and XCMS peak-associated points. a) E. coli extract. b) Plasma extract. 
Database: Refers to all data points whose m/z matches with any m/z calculated from the ionic formula 
database (including isotopes). SOI: monoisotopic (M0)-annotated data points that are in Database and 
are also present in a SOI list that does not include blank subtraction nor any filtering. Inclusion List: data 
points present in Database and SOI kept through the blank subtraction, isotopic filter and ISF removal 
steps. Percentages refer to the total number of LC/MS1 data points. Positive ionization mode. On 
average, ~78% of data points in the inclusion list could not be annotated as a peak by XCMS. 
Conversely, ~84% scans annotated as a peak by XCMS could either not be matched to an ionic formula, 
were not specific of the sample or were associated with redundant signals. 

 

The E. coli extract was also analysed by iterative DDA under identical analytical 

conditions. Remarkably, 68% of DDA scans could not be annotated as the monoisotopic signal 

by any ionic formula from ECMDB and KEGG database (Fig. 3a), which indicates their 

exogenous or artefactual origin. After filtering out DDA precursor ions that were classified as 

SOIs in the blank sample, redundant adducts, and ISF by HERMES; only 16% of the DDA 

scans matched with any monoisotopic ionic formula in the inclusion list. In addition, HERMES 

included 571 inclusion list entries (46.5% of the total) that were not triggered by DDA.  
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Figure 3. Distribution of MS2 scans acquired by HERMES and iterative DDA. a) Unlabeled E. coli 
and b) human plasma samples acquired by iterative DDA. c) Human plasma sample acquired by 
iterative DDA with background-exclusion. The acquired scans have been binned into 5Da-5s intervals. 
The precursor m/z of DDA scans have been queried into the corresponding ionic formula m/z database 
with a 3 ppm mass error tolerance. Scans annotated in the database were further classified according 
to whether the m/z and retention time of the scans could be matched to the HERMES inclusion list or 
not. Percentages in the pie-charts refer to the total number of acquired DDA MS2 scans. 

 

To confirm the biogenic specificity of the MS2 scans in HERMES, a reference 13C-

labeled (at ≥98% from uniformly 13C-labeled glucose) E.coli credentialing extract was analysed 

under identical LC/MS1 conditions. For each selected precursor ion in the unlabeled E.coli 

sample, we calculated its fractional contribution (FrC)19–21 and the monoisotopic ratio score 

(MIRS) by using the analogue 13C-labeled sample (see Methods). A metabolite with n carbon 

atoms can have zero (FrC=0) to n (FrC=1) of its carbon atoms labeled with 13C. In turn, similar 

intensity of the monoisotopic ion in the unlabeled and 13C-labeled E.coli extracts indicates no 

isotopic enrichment (MIRS=0), whereas loss of intensity in the 13C-labeled sample is 

associated with enrichment (MIRS=1). Around 63% of inclusion list entries in HERMES were 

associated with highly 13C-enriched metabolites (FrC and MIRS>0.5), proving the biosynthetic 

origin of these ions (Fig. 4a-c). These are mainly associated with abundant ions, while 

unlabeled precursors relate more frequently to low-abundant ions (Suppl. Fig. 9a,b). In 

contrast, only 20% of all DDA scans were associated with 13C-labeled and annotated 

precursors from ECMDB and the KEGG database, pointing to ions also present in the blank 

sample as the main source of unlabeled precursors (Fig. 4d-f). 13C-labeled precursors in DDA 

corresponded to highly abundant ions that were also covered by IL entries in HERMES (Suppl. 

Fig. 9c). 
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Figure 4. 13C-enrichment analysis in the labeled E.coli sample. Each panel represents a scatterplot 
of two independent isotopic enrichment scores ─FrC (Fractional Contribution) and MIRS (MonoIsotopic 
Ratio Score)─ and an overlaid density estimation. a) Distribution of SOIs before applying the blank 
subtraction filtering in HERMES. b) Same SOI list after removing most blank-related SOIs. c) SOIs in 
the MS2 inclusion list after removing redundant signals from b). d) Iterative DDA scans that could be 
matched to any m/z of the ionic formula database. e) DDA scans associated with SOIs removed during 
the blank subtraction step from a) to b). f) DDA scans associated with SOIs conserved during the blank 
subtraction. Percentages in a), b) and c) correspond to the total number of SOIs and inclusion list 
entries, accordingly, while percentages in d), e) and f) correspond to the total number of acquired DDA 
scans. 

 

The biogenic specificity of HERMES resulted in higher similarity scores by mass 

spectral matching in databases (MassBankEU, MoNA, HMBD, Riken, NIST14, mzCloud)22 

than iterative DDA (see Methods). HERMES provided nearly double the number of confident 

structural metabolite annotations than iterative DDA (Fig. 5a and Suppl. Fig. 10a). The higher 

identification rate of HERMES was validated by using alternative spectral similarity and 

distance metrics (Suppl. Fig. 11). A fraction of the 13C-labeled compounds, however, could not 

be identified due to low intensity SOIs and/or the lack of reference spectra in databases. For 

the former, setting the maximum ion injection time at high values (1,500 ms) improved 

sensitivity and MS2 spectral quality in HERMES, resulting in more informative fragments and 

better spectral matching (Suppl. Fig. 12). Furthermore, we identified unlabeled metabolites 
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(FrC=0) in the 13C-labeled E.coli sample, such as choline, that we attribute to contaminants of 

the minimal growth medium that could not properly be removed by blank subtraction.  

 

 

Figure 5. Identified inclusion list entries according to the MS1 precursor intensity. An inclusion 
list (IL) entry is considered identified if at least one MS2 scan associated with it has a compound hit in 
the reference MS2 database with either cosine score > 0.8 (in-house database from MassBankEU, 
MoNA, Riken and NIST14 spectra), or Match > 90 and Confidence > 30 (mzCloud). Positive ionization 
data. a) E. coli extract. b) Human plasma extract. 

 

Finally, we used a human plasma extract to compare HERMES and iterative DDA, with 

and without background exclusion23. Here we used 23,797 unique molecular formulas from 

the HMDB and Chemical Entities of Biological Interest (ChEBI) database to explore virtually 

all known exogenous and endogenous small molecules in this biofluid. HERMES generated 

110,387 and 46,973 ionic formulas that covered 60% and 14% of all data points acquired by 

LC (RPC18)-Orbitrap MS in positive and negative ionization mode, respectively (Fig. 2b and 

Suppl. Fig 8b). Consistent with the pattern observed for E. coli, 3.8% of all acquired data points 

were associated with an XCMS peak. Only 0.5% of the data points in these peaks matched 

with an ionic formula from HMDB or ChEBI and were present in the inclusion list. Again, more 

than half of DDA precursors could not be annotated as monoisotopic ionic formulas from 

HMDB and ChEBI without blank subtraction (Fig. 3b). As expected, the overlap between 

HERMES and DDA increased upon background exclusion in iterative DDA, increasing to 29% 

of the number of common MS2 scans (Fig. 3c). Yet, the number of confident structural 

metabolite identifications with HERMES was more than three times greater than DDA because 

of the larger coverage of sample-specific and low abundant precursor ions (Fig. 5b and Suppl. 

Fig. 10b).  
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DISCUSSION 

Our results demonstrate that a conventional LC/MS-based untargeted metabolomic 

experiment can contain up to ~50 times more non-specific and redundant data points than 

sample-specific and selective ones, which can account for as much as 90% of the MS2 

acquisition run time in an iterative DDA experiment. Current untargeted metabolomic 

approaches are unable to properly annotate the large number of ‘junk’ MS and MS2 signals, 

leading to false-positive identifications and an overall low number of identified metabolites. 

HERMES solves this problem by implementing a broad scope and molecular formula-oriented 

method that improves MS2 coverage by optimizing MS2 acquisition time focusing on sample-

specific, MS1 pre-annotated, and biologically relevant compounds, thereby increasing the 

quality of MS2 spectra and the number of identified metabolites. The use of molecular formulas 

restricts the range of known and unknown chemical structures for in silico MS2 fragmentation 

tools, avoiding the loss of possible unknown isomeric forms in a sample, and facilitating de 

novo MS2 annotation. HERMES, in addition, provides maximum experimental flexibility by 

allowing users to add new molecular formulas not reported in public databases, including in 

silico secondary metabolism prediction24–26 such as environmental microbial degradation, 

biotransformations of gut and soil/aquatic microbiota, or small peptides such as dipeptides 

and tripeptides. Finally, future developments should provide optimized maximum ion injection 

time and collision energies for each IL entry to reduce the number of MS2 scans required and 

improve the quality of MS2 spectra for all inclusion list entries, particularly for low intensity 

SOIs, as current Orbitrap mass spectrometers only allow fixed injection times.  
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METHODS 

Materials. LC/MS-grade acetonitrile, water, isopropanol, and methanol (Burdick & Jackson) 

were purchased from Honeywell (Muskegon, MI). LC/MS-grade ammonium acetate and 

ammonium hydroxide were purchased from Sigma-Aldrich (St. Louis, MO). TraceSELECT 

Fluka brand ammonium phosphate (monobasic) was purchased from Honeywell (Muskegon, 

MI). Dried down metabolic extracts of E. coli were purchased from Cambridge Isotope 

Laboratories (MSK-CRED-DD-KIT). Spike-in compounds (Suppl. Table 1) were purchased 

from Sigma-Aldrich (Zwijndrecht, The Netherlands), LGC Standards (Wesen, Germany) and 

Toronto Research Chemicals (Toronto, ON). 

 

Sample preparation 

Environmental water. Surface water was obtained from the Lekkanaal at Nieuwegein (The 

Netherlands). The spike-in compounds were added to the surface water sample to a final 

concentration of 1 µg/L. Subsequently, the sample was filtered using Phenex™ reversed 

cellulose 15 mm Syringe Filters 0.2u (Phenomenex, Torrance, USA) and transferred to a LC 

autosampler vial. 

E. coli. Dried down E. coli extracts (unlabeled and uniformly 13C-labeled) were reconstituted 

in 100 μL of acetonitrile:water (2:1), followed by 30 s vortexing, 5 min of sonication, and 30 s 

of vortexing. 

Human plasma. Plasma aliquots (50 μL) were thawed at 4ºC and briefly vortex-mixed. 

Proteins were precipitated by the addition of 200 μL cold acetonitrile/methanol/water (5:4:1, 

vol/vol) followed by 10 seconds vortex-mixing. Samples were subsequently maintained on ice 

for 30 min. After centrifugation (10 min, 15.200 rpm at 4ºC), 100 μL of supernatant were 

transferred to a LC autosampler vial. 

  

LC-MS analysis 

Environmental water and human plasma. Ultra-high performance LC (UHPLC)/MS was 

performed with a Thermo Scientific Vanquish UHPLC system interfaced with a Thermo 

Scientific Orbitrap Fusion Tribrid mass spectrometer operated in positive or negative ion 

mode. Reverse phase C18 liquid chromatography (RPLC) analysis was performed by using a 

Xbridge BEH C18 column (Waters, Etten-Leur, The Netherlands) with the following 

specifications: 150 mm x 2.1 mm, 2.5 μm. Mobile-phase solvents were composed of A = 

ultrapure water with 0.05% formic acid (v/v) and B = acetonitrile with 0.05% formic acid (v/v). 

The column compartment was maintained at 25 °C for all experiments. The following linear 

gradient was applied at a flow rate of 250 μL/min: 0-1 min: 5% B, 1-25 min: 5-100% B, 25-29 

min: 100% B, 29.0-29.5 min 5% B followed by 4.5 min of re-equilibration phase. One μL of the 
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human plasma extract was diluted in 100 μL of ultrapure water, and the injection volume was 

100 μL for all experiments. Data were collected with the following settings: spray voltage, 3.0 

kV and -2.5 kV in positive and negative mode, respectively; sheath gas, 40; auxiliary gas, 10; 

sweep gas, 5; ion transfer tube temperature, 300 °C; vaporizer temperature, 300 °C; mass 

range, 80-1000 Da; RF lens, 50%; resolution, 120,000 (MS1), 15,000 (MS/MS); AGC target, 

2e5 (MS1), 5e4 (MS2); maximum injection time, 100 ms (MS1), 50 ms (HERMES), 50 ms 

(DDA); isolation window, 1.6 Da. The collision energy was 35% for HCD fragmentation. With 

every batch run, mass calibration was performed using Pierce ESI positive and negative ion 

calibration solution in order to obtain a mass error of <2 ppm. 

E. coli. LC/MS was performed with a Thermo Scientific Vanquish Horizon UHPLC system 

interfaced with a Thermo Scientific Orbitrap ID-X Tribrid Mass Spectrometer (Waltham, MA). 

Hydrophilic interaction liquid chromatography (HILIC) analysis was performed by using a 

SeQuant ZIC-pHILIC column (Merck Millipore, Burlington, MA) with the following 

specifications: 150 mm x 2.1 mm, 5 μm. Mobile-phase solvents were composed of A = 20 mM 

ammonium bicarbonate, 0.1% ammonium hydroxide solution (25% ammonia in water) and 2.5 

μM medronic acid in water:acetonitrile (95:5) and B = 95% acetonitrile, 5% water, 2.5 µM 

medronic acid. The column compartment was maintained at 40 oC for all experiments. The 

following linear gradient was applied at a flow rate of 250 μL min-1: 0-1 min: 90% B, 1-12 min: 

90-35% B, 12.5-14.5 min: 25% B, 15 min: 90% B followed by 4 min of re-equilibration phase 

at 400 µL min-1 and 2 min at 250 µL min-1. The injection volume was 2 μL for all experiments. 

Data were collected with the following settings: spray voltage, 3.5 kV and -2.8 kV in positive 

and negative mode, respectively; sheath gas, 50; auxiliary gas, 10; sweep gas, 1; ion transfer 

tube temperature, 300 °C; vaporizer temperature, 200 °C; mass range, 70-1000 Da; RF lens, 

60%; resolution, 120,000 (MS1), 15,000 (MS/MS); AGC target, 2e5 (MS1), 5e4 (MS2); 

maximum injection time, 200 ms (MS1), 35 ms (HERMES, unless otherwise stated), 100 ms 

(iterative DDA); isolation window, 1 Da. The collision energy was 35% for HCD fragmentation. 

 

Iterative DDA 

E. coli. After the first DDA run, the raw data file containing MS/MS spectra was converted to 

an .MS2 file using MS Convert27 Next, the IEomics tool28 was used to generate the first 

exclusion list of features fragmented in the first DDA run. User inputs in the R script were 

RTWindow = 0.3 min, noiseCount = 25, MZWindow = 0.001. This procedure was repeated 

two times, which resulted in a total of three DDA data runs per polarity. The mass tolerance 

for exclusion lists was 5 ppm.  

Plasma. An exclusion list of background ions was generated using the AcquireX workflow of 

Xcalibur data acquisition software (Thermo Fisher Scientific), by analyzing an ultrapure water 

sample. The exclusion list contains the exact mass, retention window and intensity (exclusion 
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override factor = 3) of the excluded background ions. DDA was per performed for the top 6-8 

most intense ions per full scan. Dynamic exclusion was used to prevent redundant acquisition 

of MS2 spectra for a selected precursor ion for 10 s, when two MS2 spectra were acquired 

within 20 s, resulting in a total of three DDA data runs per polarity. A mass tolerance of 5 ppm 

was used for the exclusion list and dynamic exclusion. 

 

HERMES algorithm 

All analysis were performed using RHermes (version 0.99.0). 

MS1 data processing: Theoretical isotopic patterns of each ionic formula were calculated by 

Envipat (version 2.4) and refined by RHermes, based on the predefined experimental mass 

resolution and mass accuracy values. Local resolution was calculated for each ionic formula 

as: 

𝑅(𝑚) = 𝑅𝑟𝑒𝑓 · √
𝑚

𝑚𝑟𝑒𝑓
 

Using as input a set of mzML files, SOIs were detected by RHermes using two sets of 5s bins 

(offset by 2.5s) and required a minimum scan density of 30% of acquired scans.  

Blank subtraction was performed using an heuristic prefilter (intensity ratio sample/blank > 3) 

and an artificial neural network trained with >3000 manually annotated sample/blank SOI 

pairs. Adduct and isotopologue grouping were performed using a cosine shape similarity score 

and required a cosine >0.8 and >0.85, respectively. 

In-source fragment (ISF) annotation was performed using an in-house MS2 database 

consisting of MassBankEU, MoNA, HMBD, Riken and NIST14 spectra. Low intensity spectra 

(<20% HCD, <20eV CID) were selected according to each SOI formula annotation. Intense 

fragments (>20% of maximum intensity) m/z were then queried against the SOI list. Finally, 

the suspected ISF SOIs elution profiles were compared to the original SOI and a cosine 

similarity score was calculated.  

MS2 data processing. The program exports the IL into a csv file used to generate the MS2 

acquisition method. Acquired MS2 scans were linked to each IL entry; if >5 scans were 

acquired, a deconvolution algorithm was applied, where fragments m/z were grouped and split 

with a Centwave peak picking (peakwidth = c(5,60)). A cosine shape similarity score was 

applied to each pair of fragment peaks to generate a similarity network. Each network was 

then partitioned using a greedy algorithm from igraph (version 1.2.4.2) and resulted in a list of 

deconvoluted MS2 spectra. If fewer than 5 scans were acquired, the scan with the highest TIC 

was selected and the fragments were filtered by intensity (> 0.5% of maximum). 
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XCMS data processing 

LC-MS raw data files (ESI+ and ESI− modes) were converted to open standard format mzML 

using Proteowizard MS-convert27 and subsequently processed by HERMES and XCMS 

software18 (version 3.8.1). XCMS settings were: xcmsSet(method=”centWave”, ppm=8, 

peakwidth=c(1,60); Common data points between SOIs in HERMES and XCMS peaks were 

calculated by extracting the raw data points delimited by each XCMS peak (rtmin < rt < rtmax 

and mzmin < mz < mzmax) and generating the set intersections using dplyr (version 1.0.4). 

 

Uniformly 13C-labeled E. coli  

Fractional contribution (FrC) was calculated using the formula:  

𝐹𝑟𝐶 =  
∑ 𝑖 · 𝑀𝑖

𝑛
𝑖=1

n ·  M0𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 
 

Where 𝑀𝑖 is the intensity of the 13Ci isotope and n is the total number of carbon atoms in the 

molecule. 

MonoIsotopic Ratio Score (MIRS) was calculated using the formula: 

𝑀𝐼𝑅𝑆 = 1 −
𝑀0𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑

𝑀0𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑
 

If MIRS is smaller than zero, it is set to zero so that all points range from 0 to 1. 

Identification by MS/MS 

In-house DB. MS/MS spectra were obtained from MassBankEU, MoNA, HMBD, Riken and 

NIST14 databases. All fragment m/z were discretized into 0.01Da bins. Each spectrum 

precursor m/z was matched against the DB spectra m/z with a 0.01Da tolerance. For the 

HERMES matching, the reference spectra were further filtered according to the formula 

database used in the MS1 analysis. A cosine similarity score was calculated between the 

query and reference spectra and resulting hits were filtered by requiring a score > 0.8.  

mzCloud DB. The processed HERMES MS2 spectra were exported to the mzML file format. 

The DDA files were directly imported through MassFrontier version 8.0 SR1 (Thermo 

Scientific) and matched against the mzCloud database using three component identification 

types: Identity, Similarity Forward and Similarity Reverse; with the following constraints: 4.0 

Tolerance Factor and Match Ion Activation Type. The resulting hits were filtered by both Match 

and Confidence scores (requiring a score > 90 and > 30, respectively) 

Identified IL entries (Figure 5 and Supp Figure 9) were calculated as number of IL entries that 

resulted in a valid hit (ie. high score) against either of the two databases. For DDA, this number 

was calculated by matching the precursor m/z and RT of the scans to the IL and then 

examining if (i) any of the scans have at least one valid hit against either of the two databases 

and (ii) any valid hit had a molecular formula present in the HERMES formula database. 
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All similarity metrics were calculated using the R package philentropy (version 0.4.0). MS2 

spectra were discretized into 0.01Da bins and their fragment intensities scaled by the sum of 

the intensities, so that all calculated metrics were comparable across the spectra. The query 

spectra (both DDA and HERMES) were matched against the previously described In-house 

DB. For each query, all DB hits were grouped, taking the maximum similarity (cosine and 

fidelity) and the lowest distance (squared chord and topsoe). Additionally, HERMES hits were 

restricted to compounds with formulas present in the HERMES formula database. The 

corresponding plots were generated using ggplot2 (version 3.3.3).  

 

Data availability 

Input mzML mass spectrometry data files and RMarkdown files are available at Zenodo with 

the accession number 4581662. 

 

Code availability 

The source code of RHermes is offered to the public as a freely accessible software package 

under the GNU GPL, version 3 license, and is available at 

https://github.com/RogerGinBer/RHermes. 
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Supplemental Figures 

 

 

Supplementary Figure 1. Calculation of the theoretical isotopic pattern of each ionic formula 
based on predefined experimental mass resolution values. By calculating a resolution-based 
parameter d, it is possible to estimate which close isotopologues are likely to be distinguishable in the 
acquired profile MS1 data and therefore present in the centroided data. 
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Supplementary Figure 2: Ionic formula collisions from the NORMAN database (24,696 unique 
molecular formulas). Distribution of uniquely distinguishable ionic formulas. Blue: Positive ionization 
taking [M+H]+, [M+Na]+, [M+K]+, [M+NH4]+ and [M]+ adducts. Red: Negative ionization taking [M-H]- and 
[M+Cl]- adducts. As the ppm error of the instrument increases, the larger the percentage of overlapping 
ionic formulas. 
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Supplementary Figure 3. Schematic workflow of the different filtering steps in HERMES. a) 
Artificial neural network (ANN) for blank subtraction. b) Adduct and isotopologue grouping according to 
the similarity of their elution profiles. c) In-source fragment annotation, by using publicly available low-
energy MS/MS data. 
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Supplementary Figure 4. Continuous MS2 acquisition resolves co-eluting ionic species by 
comparing their fragment elution profile. a) All fragment ions from continuous MS2 scans are 
grouped according to their m/z. b) A loose peak-picking algorithm is applied and the resulting peaks are 
grouped according to their elution profiles, generating a similarity network that is split by a greedy 
clustering algorithm. c) This grouping yields a curated MS2 spectra for each coeluting species. (*) The 
shaded slice shows the impact of the algorithm on the resulting spectral quality. The delineated 
fragment in yellow has a different elution pattern than the rest and would contaminate the MS2 spectra 
if only one scan was acquired at the top of the peak. The grouping performed by HERMES confidently 
removes the contaminant ion and separates each group of fragments accordingly. 
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Supplementary Figure 5. HERMES R Graphical User Interface (GUI). a) Point-and-click selection of 
SOI detection parameters, with detailed explanations on their usage and optimal values. b) Visualization 
of isotopic profiles of different adducts of the same formula. The formula can be inputted directly or 
inferred from the name of a compound chosen by the user. c) Isotopic fidelity exploration of selected 
SOIs. d) Visualization of the continuous MS2 deconvolution step. The user can check the fragment ion 
elution profiles from each inclusion list entry and how they are interconnected in the corresponding 
profile similarity network. 
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Supplementary Figure 6. Discrimination of SOIs based on isotopic fidelity. a) [M+H]+ ion of 
chloridazon and b) [M+K]+ ion of 2-Amino-alpha-carboline overlapping at 0.27 ppm. The arrows indicate 
the characteristic [37Cl] isotopologue present in chloridazon and the [41K] isotopologue absent in 2-
Amino-alpha-carboline. The absence of characteristic isotopologue signals (Cl, Br, K, etc.) in intense 
SOIs results in a low isotopic fidelity score and the removal of such SOIs. 

 

 

 

Supplementary Figure 7. Distribution of inclusion list entries of water in a) positive and b) negative 
ionization mode after blank subtraction. 
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Supplementary Figure 8. Venn-like diagram of the distribution of negative ionization LC/MS1 
data points in different steps of the HERMES workflow and XCMS peak-associated points. a) E. 
coli and b) human plasma extract. Database: Refers to all data points whose m/z matches with any m/z 
calculated from the ionic formula database (including isotopes). SOI: monoisotopic (M0)-annotated data 
points that are in Database and are also present in a SOI list that does not include blank subtraction 
nor any filtering. Inclusion List: data points present in Database and SOI kept through the blank 
subtraction, isotopic filter and ISF removal steps. Percentages refer to the total number of LC/MS1 data 
points.  
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Supplementary Figure 9. 13C-enrichment distribution according to the precursor intensity. a) and 
b) 13C-enriched metabolites (FC and MIRS > 0.5) are mainly associated with abundant ions (intensity 
>105), while unlabeled precursors (FC and MIRS < 0.5) relate more frequently to low abundant ions 
(intensity between 104-105). c) 13C-labeled precursors in iterative DDA corresponded to highly abundant 
ions that were also covered by HERMES. However, 56% of labeled low abundant ions were not covered 
by the iterative DDA. 
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Supplementary Figure 10. Identified IL entries according to the MS1 precursor intensity. An 
inclusion list entry is considered identified if at least one MS2 scan associated with it has a compound 
hit in the reference MS2 database with either cosine score > 0.8 (in-house database from 
MassBankEU, MoNA, Riken and NIST14 spectra), or Match > 90 and Confidence > 30 (mzCloud). 
Negative ionization data. a) E. coli extract. b) Human plasma extract. 
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Supplementary Figure 11. Alternative spectral similarity algorithms and spectrum-spectrum 
match scores. a) Cosine similarity distribution b) Fidelity similarity distribution. c) Square-chord 
distance distribution. d) Topsoe distance distribution. A density estimation was calculated with ggplot2 
and normalized so that the integral of the curve equals 1. HERMES spectra showed higher similarity 
scores (a and b) and lower spectral distances (c and d) than DDA spectra. 
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Supplementary Figure 12. Injection time (IT) comparison (35 ms vs 1,500 ms). Intensity 
precursor ions <1.0e5. MS/MS (black) of a) NADH, b) Biopterin and c) NADPH against library spectra 
(red). A higher injection time resulted in richer spectra, with more matching fragments against the 
reference spectra and overall better matching scores. 
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Supplementary Table 1. List of spiked compounds 

Compound name Formula Adduct m/z RT (min) 

1-(3,4-dichlorophenyl)-3-methylurea C8H8Cl2N2O [M+H]+ 219.0086 14.28 

1-(3,4-Dichlorphenyl)-urea C7H6Cl2N2O [M+H]+ 204.9930 13.29 

2,4-Dichloroaniline C6H5Cl2N [M+H]+ 161.9872 16.77 

2,6-dichlorobenzamide (BAM) C7H5Cl2NO [M+H]+ 189.9821 8.18 

2-aminoacetophenone C8H9NO [M+H]+ 136.0757 11.93 

Atrazine C8H14ClN5 [M+H]+ 216.1011 14.54 

Azinphos-methyl C10H12N3O3PS2 [M+H]+ 318.0131 17.17 

Bezafibrate C19H20ClNO4 [M+H]+ 362.1154 15.95 

Bromacil C9H13BrN2O2 [M+H]+ 261.0233 12.43 

Caffeine C8H10N4O2 [M+H]+ 195.0877 6.83 

Carbamazepin C15H12N2O [M+H]+ 237.1022 13.27 

Carbendazim C9H9N3O2 [M+H]+ 192.0768 6.38 

Chlorpyrifos-ethyl C9H11Cl3NO3PS [M+H]+ 349.9336 23.34 

Chlortoluron C10H13ClN2O [M+H]+ 213.0789 14.31 

Chloridazon C10H8ClN3O [M+H]+ 222.0429 9.79 

Deet C12H17NO [M+H]+ 192.1383 14.83 

Desethylatrazine C6H10ClN5 [M+H]+ 188.0698 9.78 

Desisopropyl Atrazine C5H8ClN5 [M+H]+ 174.0541 7.69 

Diclofenac C14H11Cl2NO2 [M+H]+ 296.0240 18.37 

Dimethenamid-p C12H18ClNO2S [M+H]+ 276.0820 17.37 
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Dimethoate C5H12NO3PS2 [M+H]+ 230.0069 10.29 

Dimethomorph (isomer 1) C21H22ClNO4 [M+H]+ 388.1310 16.18 

Dimethomorph (isomer 2) C21H22ClNO4 [M+H]+ 388.1310 16.59 

Diuron C9H10Cl2N2O [M+H]+ 233.0243 15.07 

Ethofumesate C13H18O5S [M+H]+ 287.0948 18.48 

Phenazone C11H12N2O [M+H]+ 189.1022 8.66 

Isoproturon C12H18N2O [M+H]+ 207.1492 14.93 

Linuron C9H10Cl2N2O2 [M+H]+ 249.0192 17.24 

Metazachlor C14H16ClN3O [M+H]+ 278.1055 15.87 

Metobromuron C9H11BrN2O2 [M+H]+ 259.0077 15.60 

Metolachlor C15H22ClNO2 [M+H]+ 284.1412 18.92 

Metoprolol C15H25NO3 [M+H]+ 268.1907 9.46 

Metoxuron C10H13ClN2O2 [M+H]+ 229.0738 11.94 

Metribuzin C8H14N4OS [M+H]+ 215.0961 13.19 

Monuron C9H11ClN2O [M+H]+ 199.0633 12.66 

Nicosulfuron C15H18N6O6S [M+H]+ 411.1081 12.24 

Pentoxifylline C13H18N4O3 [M+H]+ 279.1452 9.46 

Pirimicarb C11H18N4O2 [M+H]+ 239.1503 9.11 

Simazin C7H12ClN5 [M+H]+ 202.0854 12.50 

Sulfadimidine C12H14N4O2S [M+H]+ 279.0910 8.38 

Sulfamethoxazole C10H11N3O3S [M+H]+ 254.0594 10.69 
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Terbuthylazine C9H16ClN5 [M+H]+ 230.1167 16.85 

Tetraglyme C10H22O5 [M+H]+ 223.1540 7.78 

Triethyl Phosphate C6H15O4P [M+H]+ 183.0781 10.94 

Triphenylphosphine Oxide C18H15OP [M+H]+ 279.0933 15.34 

Tri-n-butyl-phosphate C12H27O4P [M+H]+ 267.1720 20.52 

Tri-(2-chloroisopropyl)Phosphate C9H18Cl3O4P [M+H]+ 327.0081 17.24 

Tris(2-chloroethyl)Phosphate (TCEP) C6H12Cl3O4P [M+H]+ 284.9612 14.26 

2.4.6-trichlorophenol C6H3Cl3O [M+H]- 194.9177 17.77 

2.4-dichlorophenol C6H4Cl2O [M+H]- 160.9566 16.52 

2,4-dichlorophenoxyacetic Acid (2,4-D) C8H6Cl2O3 [M+H]- 218.9621 15.25 

2.4-dinitrophenol C6H4N2O5 [M+H]- 183.0047 13.21 

(4-chloro-2-methylphenoxy)Acetic Acid 

(MCPA) 
C9H9ClO3 [M+H]- 199.0168 15.31 

Bentazon C10H12N2O3S [M+H]- 239.0496 14.44 

Dichlorprop (2.4-DP) C9H8Cl2O3 [M+H]- 232.9778 16.52 

Mecoprop (MCPP) C10H11ClO3 [M+H]- 213.0324 16.53 

p,p-sulfonyldiphenol C12H10O4S [M+H]- 249.0227 11.21 

N-acetyl sulfamethoxazole C12H13N3O4S [M+H]+ 296.0700 11.06 

Metolachlor ESA C15H23NO5S [M+H]+ 330.1370 11.24 

10,11-dihydro-10,11-dihydroxy 

Carbamazepine 
C15H14N2O3 [M+H]+ 271.1077 7.55 

Gabapentin C9H17NO2 [M+H]+ 172.1332 6.45 
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Hydrochlorothiazide C7H8ClN3O4S2 [M+H]- 295.9572 7.20 

Desfenylchloridazon C4H4ClN3O [M+H]+ 146.0116 2.25 

Lamotrigine C9H7Cl2N5 [M+H]+ 256.0151 9.36 

Metazachlor ESA C14H17N3O4S [M+H]+ 324.1013 9.19 

N-formyl-4-aminoantipyrine C12H13N3O2 [M+H]+ 232.1081 7.12 

N-acetyl-4-aminoantipyrine C13H15N3O2 [M+H]+ 246.1237 7.08 

Metazachlor OA C14H15N3O3 [M+H]+ 274.1186 9.32 

Sitagliptin C16H15F6N5O [M+H]+ 408.1254 10.27 

Valsartan Acid C14H10N4O2 [M+H]+ 267.0877 11.78 

Gabapentin-lactam C9H15NO [M+H]+ 154.1226 11.22 

HMMM C15H30N6O6 [M+H]+ 391.2300 13.24 

Candesartan C24H20N6O3 [M+H]+ 441.1670 14.37 

Irbesartan C25H28N6O [M+H]+ 429.2397 14.13 

Valsartan C24H29N5O3 [M+H]+ 436.2343 16.51 

Sebutylazine C9H16ClN5 [M+H]+ 230.1167 16.20 

Telmisartan C33H30N4O2 [M+H]+ 515.2442 14.07 

Cetirizine C21H25ClN2O3 [M+H]+ 389.1627 23.33 

1-H-benzotriazole C6H5N3 [M+H]+ 120.0556 7.92 

4-methyl-1H-benzotriazole C7H7N3 [M+H]+ 134.0713 9.94 

5-methyl-1H-benzotriazole C7H7N3 [M+H]+ 134.0713 10.07 

5,6-dimethyl-1H-benzotriazole C8H9N3 [M+H]+ 148.0869 11.52 
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5-chloro-1H-benzotriazole C6H4ClN3 [M+H]+ 154.0167 11.30 

2-aminobenzothiazole C7H6N2S [M+H]+ 151.0324 6.43 

2-hydroxybenzothiazole C7H5NOS [M+H]+ 152.0165 11.59 

2-(methylthio)benzothiazole C8H7NS2 [M+H]+ 182.0093 17.38 
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Abstract: Non-target screening (NTS) based on the combination of liquid chromatography coupled to
high-resolution mass spectrometry has become the key method to identify organic micro-pollutants
(OMPs) in water samples. However, a large number of compounds remains unidentified with current
NTS approaches due to poor quality fragmentation spectra generated by suboptimal fragmentation
methods. Here, the potential of the alternative fragmentation technique ultraviolet photodissociation
(UVPD) to improve identification of OMPs in water samples was investigated. A diverse set of
water-relevant OMPs was selected based on k-means clustering and unsupervised artificial neural
networks. The selected OMPs were analyzed using an Orbitrap Fusion Lumos equipped with UVPD.
Therewith, information-rich MS2 fragmentation spectra of compounds that fragment poorly with
higher-energy collisional dissociation (HCD) could be attained. Development of an R-based data
analysis workflow and user interface facilitated the characterization and comparison of HCD and
UVPD fragmentation patterns. UVPD and HCD generated both unique and common fragments,
demonstrating that some fragmentation pathways are specific to the respective fragmentation method,
while others seem more generic. Application of UVPD fragmentation to the analysis of surface
water enabled OMP identification using existing HCD spectral libraries. However, high-throughput
applications still require optimization of informatics workflows and spectral libraries tailored to UVPD.

Keywords: mass spectrometry; non-target screening; ultraviolet photodissociation; higher-energy
collisional dissociation; organic micropollutants; water quality; small molecule fragmentation;
cheminformatics; data analysis

1. Introduction

1.1. Challenges of Monitoring Drinking Water Quality

Reliable identification of organic micro-pollutants (OMPs) in drinking water and its sources is
essential to risk assessment and prediction of the behavior of a substance in the environment and during
water treatment. Non-target screening (NTS) based on the combination of liquid chromatography
coupled to high-resolution mass spectrometry (LC-HRMS/MS) has become the key method to identify
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OMPs in water samples, as it has the potential to detect all ionizable compounds that are amenable to
the selected chromatographic separation, within a defined mass range [1].

The unambiguous identification of an OMP from NTS data relies on the accurate mass and
isotopic pattern from the full scan MS1 spectrum to determine the elemental formula of the compound.
The addition of MS2 fragmentation spectral data then allows to determine the molecular structure,
given that the fragmentation event causes reproducible bond cleavages that result in diagnostic and
interpretable fragment ions representative of the structure of the molecule. The MS2-based structural
identification typically relies on matching of the experimental spectrum with entries in spectral libraries
or in silico predicted fragmentation spectra. For compounds that show poor fragmentation spectra
generated by higher-energy collisional dissociation (HCD) fragmentation, the fragmentation technique
routinely applied in Orbitrap based NTS, confident structural elucidation often remains elusive.
Alternative fragmentation techniques that cause different bond cleavages may remedy structural
elucidation in these cases.

1.2. Interpreting Fragmentation Spectra from Ultraviolet Photodissociation

Ultraviolet photodissociation (UVPD) is a fragmentation technique achieved with a UV laser.
Its main application to date is protein characterization with proteomics and intact protein MS.
However, it also allows structural elucidation of small molecules that cannot be identified by HCD
alone [2]. For instance, UVPD was shown to facilitate characterization of various lipid classes [3],
to generate unique fragments or enhance detection of kinetically unfavorable fragments of flavonoids,
phenylpropanoids and chalconoids [4,5].

In the Orbitrap Fusion Lumos mass spectrometer, a Q3 series passively Q-switched Nd:YAG
laser (CryLaS GmbH) that outputs the 5th harmonic at 213 nm is interfaced to the rear of the ion
trap, in the low pressure cell of which the UV photoactivation occurs [6]. The laser pulse energy is
a 1.5 ± 0.2 µJ/pulse at 2.5 kHz repetition rate. With 450 ± 200 µm, including the divergence at the
center of the ion trap, the beam diameter is slightly larger than the simulated ion cloud diameter at
normal AGC targets and no focusing optics are required. With the incorporation of this compact
and robust solid state laser into a commercial instrument, UVPD could be routinely implemented in
NTS workflows.

To date, however, UVPD fragmentation has not been applied to the NTS-based monitoring of
small molecules. This is due to the fact that apart from the compounds mentioned above, little is
known about UVPD fragmentation pathways of small molecules, the kinetics of fragment formation,
and the influence of reaction time on fragmentation patterns. Moreover, as it is a novel fragmentation
technique in the small molecule field, spectral library entries with UVPD spectra are still lacking,
and the usability of HCD spectra for spectral matching of UVPD spectra remains to be explored.
Furthermore, the aptness of in silico prediction algorithms for the prediction of UVPD spectra has
not yet been demonstrated. Combinatorial prediction algorithms that do not apply any rules of
fragmentation, but use a bond dissociation approach, could potentially be used for UVPD data.

1.3. UVPD Fragmentation for Water Quality Monitoring

Here, the potential of the fragmentation technique UVPD to improve the structural identification
of small molecules, in particular OMPs in water samples, was evaluated using the Orbitrap Fusion
Lumos Tribrid [6]. After application of a cheminformatics strategy to select water relevant OMPs
that cover a wide chemical space and development of a data analysis workflow in R, HCD and
UVPD fragmentation patterns of selected OMPs could be characterized and compared. The two
fragmentation techniques generated both unique and common fragments, demonstrating that some
fragmentation pathways are specific to the respective fragmentation method whilst others seem more
generic. Application to environmental water samples showed that HCD spectral libraries can be
used for UVPD based OMP identification, in particular when high collision energy (CE) spectra are
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available. However, to increase successful feature annotation of NTS data with UVPD fragmentation,
UVPD spectra need to be added to spectral libraries.

2. Results and Discussion

2.1. Proof of Principle: Manual Spectral Interpretation of Single Compounds

To investigate the potential of UVPD for OMP identification, the three compounds triadimenol,
gemfibrozil and sucralose were selected as model compounds. These compounds are both relevant
for the water sector and known to not fragment well using standard HCD fragmentation settings,
i.e., CEs ranging from 20 to 50 (arbitrary units). As little was known about UVPD fragmentation
pathways of these OMPs, we applied the combinatorial prediction algorithm of MetFrag [7], which does
not rely on fragmentation rules, but uses a bond dissociation approach to predict potential fragments
and matches these to the experimentally observed.

UVPD provided unique fragmentation information for structural elucidation of triadimenol,
a fungicide that can be found in drinking water sources (Figure 1). HCD fragmentation at 35CE, the CE
range typically used in NTS experiments, resulted in a predominant fragment at 70 m/z, a minor
fragment at 99 m/z and a low intensity fragment (see 10× zoom-in) at 141 m/z. These fragments could
be assigned to the in silico predicted fragments [C2H2N3 + H] + H+, [C6H12O-H]+ and [C7H5ClO] +

H+. In contrast, UVPD fragmentation led to more and different fragment ions. The peaks detected
with HCD were also detected in the UVPD fragmentation spectra when using shorter reaction times
(25 to 100 ms), but decreased with increasing UVPD reaction times. Concurrently, peaks at 112,
168, and 261 m/z increased with increasing reaction times. These could be matched to the in silico
predicted fragments [C4H5N3O] + H+, [C8H14N3O] + H+, and [C14H18N3O2] + H+. A fragment at
227 m/z was detected with UVPD at short reaction times, i.e., 25 to 50ms only and could be matched
to [C12H16ClO2]+. These promising results showed that UVPD could lead to informative spectral
information of an OMP that did not fragment well with HCD, and that the in silico prediction using
MetFrag could successfully be applied for UVPD spectral annotation.

Next, UVPD fragmentation of OMPs that ionize in negative ionization mode were investigated,
starting with the pharmaceutical gemfibrozil. Two peaks could be annotated in the HCD spectrum with
35CE and UVPD spectrum with 25ms reaction time, namely [C8H9O]− at 121 m/z, and [C7H13O2-H]-H-

at 127 m/z (see Figure S1a). In the UVPD spectra with longer reaction times, only the 121 m/z peak could
be matched. The predominant UVPD peak at 112 m/z increased with reaction times. This peak was
also present in the HCD spectrum. However, it could not be matched to an in silico predicted fragment
mass, nor could any of the other UVPD peaks. The base peak in all UVPD spectra was the precursor
ion, the absolute intensity of which decreased with increasing reaction times. As observed previously
with UVPD of lower charged negative DNA ions, this could be due to an electron detachment-induced
charge reduction [2]. Electron detachment dissociation usually involves two or more negatively
charged species. For single ion negative UVPD, the mechanism for electron detachment may be more
favorable than fragment generation. However, these data were based on 193 nm UVPD, and whether
213 nm UVPD would have the same effects remains unknown.

As a second OMP analyzed in negative ionization mode, the artificial sweetener sucralose
was fragmented. With the standard HCD fragmentation with 35CE, six peaks could be annotated
(see SI Figure 1b). Four of the annotations, i.e., [C2H4O2]-H− at 59 m/z, [C3H5O2-H]-H− at 71 m/z,
[C3H5O2]− at 73 m/z and [C3H5O3-H]-H− at 87 m/z, were low mass range fragments only detected
using HCD fragmentation. The other two, [C4H7O3-H]-H− at 101 m/z and [C6H10O4-2H]-H− at 143 m/z,
were present in both HCD and UVPD spectra with 50, 100, 200 ms and—in the latter—400 ms reaction
time. At 25 ms, the species, [C6H10O4-H]-H− at 144 m/z, was present instead. At 400 ms reaction
time, the 143 m/z peak was the only one that could be annotated in an overall noisy low intensity
fragmentation spectrum. Corresponding to what was observed for triadimenol, long UVPD reaction
times negatively affected spectral quality as well as the duty cycle in the case of sucralose.
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In the spectra of all shorter reaction times, i.e., 25 to 200 ms, the fragments [C6H10O5-2H]-H− at
159 m/z and [C6H9Cl2O3]-H− at 197 m/z could be annotated; at lower reaction times also [C6H9Cl2O3]−

at 198 m/z and [C6H9Cl2O3-H]-H− at 196 m/z. At 50 ms, another annotated fragment, [C6H10ClO5-H]-H−

at 195 m/z, was present. This reaction time resulted, thus, in the most informative spectra, in particular
in combination with the HCD spectrum of low mass range annotated fragments.

The UVPD fragmentation data of the three model compounds of which one ionized in positive
and two in negative ionization mode suggested that UVPD could facilitate structural elucidation of
some OMPs for which HCD spectra did not contain enough information. While fragmentation of the
positively charged triadimenol led to more fragments and higher fragment intensities with UVPD
compared to HCD, the negatively charged compound gemfibrozil fragmented poorly with both HCD
and UVPD, and UVPD fragmentation of sucralose resulted in complementary fragments to HCD.

2.2. Selection of Reference Standards Based on Clustering

To further investigate the applicability of UVPD for OMP identification, a representative selection
of compounds regarding their distribution in the chemical space and water relevance was made.
First, a k-means clustering was performed using Pubchem extended fingerprints, resulting in 20
defined clusters (Figure 2a). The molecular discrimination of these clusters was confirmed using the
unsupervised artificial neural network self-organizing maps (SOM, Figure 2b). In the SOM, the selected
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compounds were colored according to their k-means cluster number. As compounds of the same
color are in close vicinity in the SOM, this shows that the different clusters successfully separated
these compounds.Molecules 2020, 25, x FOR PEER REVIEW 5 of 14 
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Depending on in-house reference standard availability, one to four compounds were selected per
cluster for fragmentation experiments, apart from cluster 19, for which no standard was available.
In addition, a selection of disinfection by-products known to be relevant for drinking water treatment
was added to the set of compounds, to be fragmented by HCD and UVPD.

2.3. An R-Based Data Analysis Workflow and Shiny Application Interface to Explore (Novel)
Fragmentation Techniques

To enable high throughput data analysis of the LC-HRMS data including UVPD fragmentation
spectra, an R-based workflow was developed that takes the extracted ion chromatogram (XIC) of a
given compounds based on its simplified molecular-input line-entry specification (SMILES), determines
the peak apex and extracts the corresponding retention time (RT). The three MS2 spectra with highest
intensity neighboring the apex were used to match experimental spectra with in silico predicted
fragmentation spectra of the given SMILES.

For a user friendly output and to support exploratory data analysis [8], a Shiny application
based interface was created to further examine the data (https://CRAN.R-project.org/package=shiny).
The Shiny application is provided with the ‘uvpd’ R package (https://github.com/cpanse/uvpd/) and can
be accessed at http://fgcz-ms-shiny.uzh.ch:8080/p2722-uvpd/. Its user interface is split into an input and
output part. On the left, the input panel provides a selection for the input data, compounds, ionization
mode and cut-off values for the relative and absolute mass errors of the precursor mass, precursor
signal removal in the MS2 spectra and cluster ID. This selection then determines the respective output
in the several tab panels on the right. These tabs provide data visualization and tables of the selected
compound. Table 1 describes the output tabs and whether the selected filtering is applied to a given tab.

https://CRAN.R-project.org/package=shiny
https://github.com/cpanse/uvpd/
http://fgcz-ms-shiny.uzh.ch:8080/p2722-uvpd/
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Table 1. Description of Shiny application output panels and applied filtering parameters.

Tab Panel Description Selected Filter Option Applied to the Tab

Compound Remove Precursor Items (+/−) Ion Type Ppm Error Cut-Off Absolute Error Cut-Off

stacked fragments

1) Bivariate scatterplots of scores 1, 2 and 3 per
fragmentation mode.

2) Two stacked bar charts of the logarithmically
transformed fragment ion intensities of the matched
fragment ions and types, respectively, per
fragmentation mode.

3) Bivariate scatterplots of the total ion count (TIC) of
the MS2 spectrum and the corresponding master
intensity for the three most abundant master
intensities of each raw file per fragmentation mode.

4) Boxplots of the absolute error distribution (in Dalton)
per fragmentation mode.

X X X X X

summary

1) Statistics of the overall data and the applied
filter setting.

2) Frequency value per fragmentation mode.
3) Histograms of ppm and absolute error distribution

over the entire data set and selected compound,
including a maximum-likelihood fitting, assuming an
underlying normal distribution.

X X X X X

ms2
1) Table of detected fragment ions and ion types.
2) Fragmentation spectra per fragmentation mode. X X X X X

data All quantitative and qualitative data. X X X X X

scores
1) Scores 1, 2 and 3.
2) Plots of the scores. X X X X

frequencies Downloadable frequency table, per compound and
fragmentation type X automatic X X

predicted ion In silico predicted, i.e., theoretical fragment ions predicted
with ‘metfRag: frag.generateFragments’ X

help Help page
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2.4. Higher-Throughout Comparison and Interpretation of UVPD and HCD Fragmentation Spectra

For a thorough comparison of UVPD and HCD fragmentation spectra, 46 selected water-relevant
OMPs covering a wide chemical space were analyzed with LC-HRMS using UVPD with 25–800 ms
reaction time, and HCD with 20, 35 and 60 CE. Eight of the compounds could not be detected with
electrospray ionization (ESI), one eluted too early with reverse-phase (RP) LC for peak detection,
one had an intensity below the cut-off threshold and two were not picked by the data analysis workflow
due to a Na-adduct and Cl-salt, respectively (see Table S1). The remaining 34 compounds belonged to
11 different clusters, with one to four compounds per cluster. Their fragmentation behavior varied
substantially and, based on fragmentation, four different groups of compounds could be distinguished
(Table S1); such with poor fragmentation with both UVPD and HCD (Figure 3a), a preference for
HCD (Figure 3b) or UVPD (Figure 3 c), or good fragmentation with both UVPD and HCD (Figure 3d).
These groups, however, did not seem related to the cluster number.
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The first group of compounds did not generate information-rich spectra, as illustrated in Figure 3a,
which shows the summed intensities of the annotated fragments from HCD and UVPD spectra of
4-chlorobenzoic acid; poor fragmentation was observed for ibuprofen, 3-nitrophenol and 4-nitrophenol
with both fragmentation techniques under all conditions, for 4-chlorobenzoic acid, 4-nitrophthalic
acid and 5-nitroisophtalic acid in particular with HCD. In the case of 2-methyl-4-nitrophenol and
gemfibrozil, spectra were still poor, but slightly better with HCD.

A second group of compounds showed a preference for HCD compared to UVPD (Figure 3b)
either with increasing CEs, for instance 3-nitroindole, with low CEs, for instance imipenem at
20CE, with a specific CE, for instance 2-methyl-4-chlorophenoxyacetic acid (MCPA) at 35CE, or with
all CEs, for instance N-Desmethyl Clarithromycin. In contrast, for another group of compounds,
no fragmentation was observed with HCD, but good fragmentation with a range of UVPD reaction
times (Figure 3c), for instance for benzocaine and to a lesser degree 4-nitroanthranilic acid. In the case
of fenofibric acid, flubendazole and triadimenol good information rich spectra were generated with a
range of UVPD reaction times, but only with HCD at 60 CE.

A fourth group of compounds exhibited good fragmentation with both fragmentation techniques
(Figure 3d). Some of these had an optimum at a specific fragmentation condition, for instance
2-amino-3-nitrobenzoic acid with UVPD at 50 ms, 3,5-Dinitrosalicylic acid with HCD at 35CE
and UVPD at 50 ms, aflatoxin B2, dinoterb, epoxiconazole and JWH-250 with HCD at 60CE and
2-hydroxy-4-nitro-benzoic acid at 20 CE. Others fragmented well with a range of conditions, such as 2,4
Dinitrophenol, which showed more informative spectra with higher CEs, and 2-methoxy-4-nitrophenol
and phenethylamine with higher HCD CEs and longer UVPD reaction times. Good fragmentation was
observed for both (ranges of) UVPD and HCD conditions in the case of 2-methoxy-4,6-dinitrophenol,
4-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzenesulfonic acid and 5-nitrovanillin. In the case of
nitrofurazone, more informative spectra were generated with UVPD.

Cluster numbers could not be related to these four broad groups of fragmentation behavior.
For instance, while benzocaine and 4-Nitroanthranilic acid both fragmented well with UVPD and
poorly with HCD, the other two compounds from cluster 13, piperacillin and 5-Nitroisophthalic
acid, showed good fragmentation for both UVPD and HCD and poor fragmentation, respectively.
Regarding cluster 11, aflatoxin b2 and fenofibric acid both exhibited information rich spectra at multiple
different UVPD reaction times. However, gemfibrozil, a compound of the same cluster, did not
fragment well with both UVPD and HCD. This lack of similar fragmentation behavior within a cluster
could indicate that fragmentation behavior depends only on a few of the descriptors used for clustering.

In particular, UV absorbing compounds such as aromatic compounds, and compounds with
double bonds are expected to fragment well with UVPD. Compound class information for each of the
compounds that fragmented well with UVPD, including the lipids [3], flavonoids, phenylpropanoids
and chalconoids [4,5] published previously could be utilized to predict UVPD fragmentation.
Furthermore, if certain compounds of classes with good UV absorbance did not fragment well,
further clustering within that compound class could be utilized to improve our understanding and
ultimately the prediction of UVPD fragmentation behavior.

In the UVPD spectra, fragment ion intensities decreased with increasing UVPD reaction times
when normalized to precursor intensity, as illustrated in Figure S2. Overall, UVPD fragmentation was
beneficial for multiple compounds, often leading to a number of annotated fragments that were unique
to the fragmentation technique. This complementarity of UVPD makes it an attractive addition to HCD
that can be implemented in data-dependent decision trees during NTS data acquisition. Optimal UVPD
reaction times depended on the compound, analogous to HCD where the optimal CE varied amongst
compounds. Interestingly, in the HCD experiments, oftentimes, CEs higher (60 CE) and lower (20 CE)
than the 35 CE routinely used in NTS experiments were needed to generate informative fragmentation
spectra. This should be considered in future studies to increase the confidence of OMP identification,
in particular when UVPD is not available.
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2.5. NTS of a Meuse River Surface Water Sample

To investigate the applicability of currently available spectral libraries and NTS workflows
to UVPD data, a surface water sample from the river Meuse was acquired with HCD and UVPD
fragmentation and analyzed using the NTS data analysis software Compound Discoverer (Thermo
Fisher Scientific, San Jose, USA). This software enables suspect screening based on spectral matching
with the spectral library mzCloud, which consists of collision-induced dissociation (CID) and HCD
fragmentation spectra. The mzCloud score of a tentatively identified compound is a measure for the
confidence of identification. It is based on the number of fragments that match the experimental and
library spectra, with a score of 100 indicating a perfect match. Comparison of mzCloud scores of spectra
acquired with HCD and UVPD showed that the overall score distribution was similar (no significant
difference, see Appendix A), visualized in the combined box and violin plots in Figure 4a. However,
individual compounds differed strongly in their scores. For instance, known water relevant OMPs on
average showed a mzCloud score with UVPD fragmentation that was 15 points lower than the HCD
score; atrazine scored 75.1 with UVPD versus 95.4 with HCD, caffeine 75.5 versus 91, carbamazepine
69.1 versus 96.6 and terbuthylazine 87.4 versus 98.6. UVPD spectra were matched with HCD library
spectra of high CEs, i.e., 70 CE, 40 CE, 80 CE and 90 CE for the four different OMPs. In contrast,
metoprolol showed a similar mzCloud score with UVPD, i.e., 78.9, when matched with an HCD 30 CE
spectrum, compared to an HCD score of 77.6.
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Half of the compound annotations with mzCloud in the NTS data with UVPD were not assigned
in the HCD data (Figure 4b). The HCD data was manually checked for features with accurate mass
and retention time matching these unique compounds. Information on whether these features were
detected in the HCD data and their annotation is available in Table S2. Twenty-five features were
detected in the HCD data, but had no mzCloud hit, and six were annotated with a different compound
based on the mzCloud matching. Ten features were not detected. This is most likely due to differences
in peak picking during data analysis. Manual inspection of the UVPD assignments showed that in most
cases when there was no assignment in the HCD data, the annotated UVPD spectrum consisted of only
a precursor signal and—if any—low intensity ions close to the noise cut-off (see SI Table S2 Compounds
detected in UVPD NTS experiments). In these cases, the match was usually against a low energy CID
or HCD library spectrum (CE10 to 20) that also only contained the precursor. Consequently, these can
likely be false positive assignments. The high scores for matches based on the precursor signal alone
are problematic. In future studies, more appropriate scoring algorithms should be considered.

In contrast, the assignments where multiple fragments were matched, i.e., 1-methylbenzotriazole
with 15, 3-hydroxyfluorene with 11, acetyl norfentanyl with three, mandipropamid with seven and
metolachlor with 17 fragments, were all based on high energy HCD library spectra (60 to 130 CE)
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except for 3-hydroxfluorene (20 CE). This was in correspondence with the assignments of known
water relevant OMPs, and indicates that UVPD-induced fragmentation pathways in these molecules
resemble those of higher energy HCD. As routinely lower HCD CEs are applied, i.e., 20–50 CE, this can
explain why these assignments were only made in the case of UVPD fragmentation, emphasizing the
benefit of this alternative fragmentation technique and/or higher CEs for NTS based identification of
OMPs. Moreover, UVPD annotations could be used to exclude false positive annotations of sparse
HCD MS2 spectra (precursor only matches) and vice versa. While HCD spectral libraries proved to be
of (limited) use for UVPD spectral annotation, for the routine implementation of UVPD data in NTS
workflows, spectral libraries need to be extended with UVPD spectra.

3. Materials and Methods

3.1. Selection of Reference Standards Through Clustering

Selection criteria for OMPs to be fragmented with UVPD and HCD included their relevance
for the water sector and a good coverage of the chemical space, as the compound structures were
expected to affect fragmentation. To select water relevant OMPs, 4000 compounds were randomly
selected from the NORMAN Substance Database, which is compiled of multiple suspect lists relevant
for environmental monitoring (SusDat, https://www.norman-network.com/nds/susdat/). To select
compounds with diverse chemical structures, these compounds were clustered [9]. To this end,
the Simplified molecular-input line-entry systems (SMILES) of each compound were parsed and
configured for atom typing and isotoping using the R package rcdk [10]. Next, for each compound,
the extended fingerprint, a binary vector of 1024 dimensions, was extracted. A k-means clustering
was conducted of the computed Tanimoto Distance matrix between all pairs of fingerprints [11].
The optimal number of clusters was determined by the elbow method [12]. To investigate molecular
discrimination by the clusters, we trained a self-organizing map (SOM) [13] as a complementary
approach. The SOM grid was initialized with 10 × 10 nodes. Each fingerprint selected in the training
phase was colored by the corresponding k-means cluster ID for visualization. The entire in silico
data analysis was performed using R version 3.5.1 to 4.0.1 running on Linux, Windows and MacOSX
systems [14]. All code snippets are available as an R package through https://github.com/cpanse/uvpd/.

3.2. LC-HRMS Analysis with UVPD Fragmentation

Selected reference compounds listed in SI Table S2 were prepared in ultra-pure water with a
final concentration of 10 µg/L. The surface water (SW) sample was collected from the river Meuse,
the Netherlands, 16.666× concentrated using Oasis-HLB SPE columns-based extraction and diluted
50× for the LC-HRMS analysis. The internal standards (IS) atrazine-d5 (CDN isotopes, Pointe-Claire,
Quebec, Canada), benzotriazole-d4 and bentazon-d6 (LGC Standards, Wesen, Germany) were added
to the SW sample to a final concentration of 1 µg/L. Samples were filtered using 0.2 µm PhenexTM-RC
15 mm Syringe Filters (Phenomenex, Torrance, USA) prior to analysis. Blank samples were prepared
correspondingly, through spike-in of IS to ultra-pure water followed by filtration. In total, 100 µL of
sample were injected into the LC-HRMS.

Compounds were analyzed using reverse phase (RP) LC-HRMS/MS with a Vanquish Horizon
UHPLC system (Thermo Fisher Scientific, San Jose, CA, USA) coupled to an Orbitrap Fusion Lumos
equipped with ultraviolet photodissociation (UVPD) and the acquisition software AcquireX (Thermo
Fisher Scientific, San Jose, CA, USA). An XBridge BEH C18 XP column (150 mm × 2.1 mm I.D., particle
size 2.5 µm, Waters, Etten-Leur, The Netherlands) was used in combination with a 2.0 mm × 2.1 mm
I.D. Phenomenex SecurityGuard Ultra column (Phenomenex, Torrance, CA, USA), at a temperature of
25 ◦C. The LC gradient started with 5% acetonitrile, 95% water and 0.05% formic acid (v/v/v), increased
to 100% acetonitrile, 0.05% formic acid in 25 min and then remained constant for 4 min. The flow rate
was 0.25 mL/min.

https://www.norman-network.com/nds/susdat/
https://github.com/cpanse/uvpd/
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For the reference standards, fragmentation spectra were acquired using targeted methods with
mass triggers. The fixed collision energies (CEs) 20, 35 and 60 were used for HCD fragmentation,
and UVPD reaction times ranging from 25 to 800 ms for UVPD fragmentation. The full scan mass
range was 100–800 m/z with 120k resolution at FWHM for the MS1 scans, and 50–500 m/z with 15k
resolution at FWHM for the MS2 scans (due to a corrupted data file, the disinfection by-products data
with 100 ms and 25 0 ms UVPD reaction time is lacking in the data set).

For the SW sample, NTS analyses were performed with data dependent acquisition (ddA), using
the AcquireX deepscan functionality that ensures MS2 scans are acquired for most features, Top Speed
and 35 CE for the HCD and 100 and 150 ms reaction time for the UVPD experiments. The full scan
mass range was set at 80–1300 m/z with 120k resolution, the MS2 at 50–500 m/z with 15k resolution.

3.3. Manual Annotation of Fragmentation Spectra

Thermo Fisher Scientific raw files were viewed with Thermo Xcalibur Browser (Thermo Fisher
Scientific, San Jose, CA, USA). MS2 peak lists of HCD and UVPD fragmentation spectra were exported
and used for fragment annotation with the MetFrag web tool (https://msbi.ipb-halle.de/MetFragBeta/).

3.4. An R-Based LC-HRMS Data Analysis Workflow to Explore Novel Fragmentation Techniques

Fragment ions of the selected reference standard compounds were predicted with tree depth 1
and 2, using the R package MetFrag [7] in a preprocessing step. Charge configurations were derived
for the predicted singly charged fragments [M]+, [M + H]+ and [M + 2H]+ and [M]−, [M −H]− and
[M − 2H]− for the positive and negative ionization mode, respectively. The predicted fragment ions
were stored and made available as a dataset in the R package UVPD.

Thermo Fisher Scientific raw files were processed with the R package rawDiag [15]. The in profile
mode recorded data were centroided using the centroid method of the R package protViz (https:
//CRAN.R-project.org/package=protViz, [16]). For all compounds measured in all fragmentation modes,
the retention time (RT), the area under the curve (AUC) of the APEX extracted ion chromatography
(XIC) of the protonated and deprotonated precursor species, i.e., [M + H]+ and [M −H]− of the selected
reference standard compounds, the master intensity and the total ion count (TIC) were determined (see
Figure S3). The m/z of the [M + H]+ and [M −H]− were calculated based on the compound SMILES.
The top three highest intensity spectra of each reference compound per fragmentation mode were
used to assess the performance of the different fragmentation modes. The peaks of the centroided
fragmentation spectra were annotated with the previously predicted fragment ions if the match was
within a given mass window. A default cut-off value for fragment matching was set to 1 Da, further
refinement can be made in the Shiny application (1–100 ppm, 10e–4 to 0.5 Da). The default values in
the Shiny application are relative and absolute cut-off of 10 ppm and 0.02 Da, respectively. These are
also the tolerances used throughout the manuscript.

The quantitative, e.g., MS1 derived XIC and master intensity, and MS2 derived TIC and fragment
intensities, and qualitative fragmentation data were joined by the raw file name and the scan number.
To compare fragment ion annotation qualitatively and quantitatively across all compounds and
fragmentation modes, we implemented three different scores:

Score 1 =
nexp f rags matched

ntheor f rags
(1)

Score 2 =
nexp f rags matched

nexp f rags
(2)

Score 3 =
intexp f rags matched

intMS1 precursor
(3)

https://msbi.ipb-halle.de/MetFragBeta/
https://CRAN.R-project.org/package=protViz
https://CRAN.R-project.org/package=protViz
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where exp frags are the experimentally detected fragments, exp frags matched the experimentally detected
fragment ions that could be matched to the in silico predicted, and theor frags the in silico predicted
theoretically possible fragment ions. n indicates the number of fragments and int their intensity.

All data and results are visualized and can be interactively accessed in the R shiny application
provided with the uvpd R package and through http://fgcz-ms-shiny.uzh.ch:8080/p2722-uvpd/.
The entire workflow is shown in Figure S2.

3.5. NTS Data Analysis

NTS data were processed with Compound Discoverer 3.1 (Thermo Fisher Scientific, San Jose,
CA, USA) for peak picking, componentization and suspect screening using the spectral library mzCloud.
The output feature list, i.e., a table with accurate mass/retention time pairs (features) and their intensity,
information on whether an MS2 spectrum was acquired for a given feature and the mzCloud spectral
matching scores were imported into R Studio for further data analysis and visualization. R version
3.6.3. and R-Studio version 1.1.463 were used for the data analysis [14,17].

4. Conclusions

Combining the novel fragmentation technique UVPD and cheminformatics tools, we showed
the potential of UVPD for structural elucidation of water-relevant OMPs in NTS data. Based on
the two complementary methods k-means clustering and SOMs, a set of OMPs could be selected
that was representative for the water cycle and a wide chemical space. An R-based LC-HRMS data
analysis workflow and interactive interface for data visualization was developed to investigate UVPD
fragmentation of these OMPs in a high-throughput manner.

Information-rich UVPD fragmentation spectra were achieved for 62% of the examined OMPs,
in 15% of the cases also for OMPs that fragmented poorly with HCD. For 26% of the OMPs,
neither fragmentation technique generated informative spectra; the remaining 12% HCD spectra
were information-rich. UVPD and HCD generated both unique as well as overlapping fragments,
demonstrating that some fragmentation pathways are specific to the respective fragmentation methods,
while others seem to be more generic. These unique fragments provided additional information for
structural identification complementary to HCD spectra. Based on these results, implementation of
UVPD as a second fragmentation option in data dependent decision trees during NTS data acquisition
is an attractive strategy to improve the confidence in OMP identification.

Analysis of NTS UVPD data with existing NTS software and the spectral library mzCloud enables
annotation of features in the UVPD data using HCD library spectra of high CEs. For the routine
implementation of UVPD fragmentation in NTS workflows, however, databases need to be extended
with UVPD spectra, which would allow the full potential of this novel fragmentation technique to
be exploited.

Supplementary Materials: The following are available online, Figure S1: Negative ionization mode model
OMPs (a) gemfibrozil and (b) sucralose; Figure S2: Fragment intensity decreases with increasing UVPD reaction
times. Total ion counts (TIC) for a given fragmentation mode versus master intensity; Figure S3: Data analysis
and visualization workflow, Table S1: List of reference standards; Table S2: Compounds detected in UVPD
NTS experiments.
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Appendix A

There was no significant difference between mzCloud scores of NTS data with HCD and
UVPD fragmentation:

t.test(data$mzCloud.Best.Match ~ data$frag)

Welch Two Sample t-test

data: data$mzCloud.Best.Match by data$frag
t = 0.44183, df = 177.56, p-value = 0.6591
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
−2.969521 4.682821
sample estimates:
mean in group HCD mean in group UVPD
84.99091 84.13426
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ABSTRACT: LC-HRMS-based nontarget screening (NTS) has become the method of choice to monitor organic micropollutants
(OMPs) in drinking water and its sources. OMPs are identified by matching experimental fragmentation (MS2) spectra with library
or in silico-predicted spectra. This requires informative experimental spectra and prioritization to reduce feature numbers, currently
performed post data acquisition. Here, we propose a different prioritization strategy to ensure high-quality MS2 spectra for OMPs
that pose an environmental or human health risk. This online prioritization triggers MS2 events based on detection of suspect list
entries or isotopic patterns in the full scan or an additional MS2 event based on fragment ion(s)/patterns detected in a first MS2
spectrum. Triggers were determined using cheminformatics; potentially toxic compounds were selected based on the presence of
structural alerts, in silico-fragmented, and recurring fragments and mass shifts characteristic for a given structural alert identified. After
MS acquisition parameter optimization, performance of the online prioritization was experimentally examined. Triggered methods
led to increased percentages of MS2 spectra and additional MS2 spectra for compounds with a structural alert. Application to surface
water samples resulted in additional MS2 spectra of potentially toxic compounds, facilitating more confident identification and
emphasizing the method’s potential to improve monitoring studies.

■ INTRODUCTION

Organic Micropollutants in Water. Issues with water
quality occur worldwide due to the large spread of the human
population and their extensive use of chemicals, which leads to
chemical pollution in a large number of water systems.1 These
systems cause distribution of the pollution with long-range
effects, ultimately posing a threat to drinking water sources.2−4

Various types of organic micropollutants (OMPs), that is,
anthropogenic chemicals that are present at trace levels (μg/
L), have been detected in ground and surface waters used for
drinking water production. These include OMPs such as
pesticides, pharmaceuticals, and industrial and consumer
products. Despite their low concentrations, OMPs can pose
a risk to human and environmental health as they can be toxic,
persistent or easily degraded into more toxic (bio)-
transformation products.5 Compounds that pose a potential
health risk need to be monitored to be able to assess the actual
risks. Monitoring is typically performed using quantitative
target analyses. As target analyses are limited to a set of known

compounds, nontarget screening (NTS) based on liquid
chromatography coupled with high-resolution mass spectrom-
etry (LC-HRMS) is often applied to monitor chemical water
quality more comprehensively and broaden contaminant
discovery.6,7

NTS-Based Micropollutant Identification. The struc-
tural identification of unknown compounds from NTS data
remains challenging due to the large number of signals
detected per experimenttypically referred to as features
(accurate mass and retention time pairs associated with a signal
intensity), and the need for high quality fragmentation
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spectra.8,9 The latter facilitates identification through spectral
matching, where experimental spectra are compared to library
spectra or in silico-predicted spectra. Software tools can
connect the experimentally obtained mass spectrum with
candidate structures from various sources.10−14

Prioritization. To limit the features that need to be
identified, prioritization can be applied by selecting peaks of
interest based on intensity, occurrence, persistence, or
potential toxicity.9,15 Prioritization is currently performed
offline during data analysis (Figure S1a). This entails that
the structure of prioritized features without fragmentation
spectrum or with uninformative, low-quality fragmentation
spectra cannot be identified in a sufficiently confident manner.
Instead, the sample has to be reanalyzed to obtain high-quality
fragmentation spectra requiring more measurement time and
resulting in delayed identification. Here, we hypothesize that
the high costs and laboriousness of NTS offline prioritization
could be remedied by using online prioritization for potentially
toxic compounds in the mass spectrometer during data
acquisition (Figure S1b).
Structural Alerts. Toxic compounds often comprise one or

more structural alerts, that is, molecular (sub)structures related
to the toxicity of a chemical. Several databases and software
programs have been developed to derive and screen molecules
for the presence of a structural alert, such as ToxAlerts,16

DEREK,17 and MultiCASE.18 Structural alerts can be specific

for a toxic end point, that is, a measured biological effect in a
toxicity test.19 Most are derived from the end points
carcinogenicity and mutagenicity, with several lists pub-
lished,20−23 including a revised list by Benigni and Bossa24 of
33 structural alerts included in the ToxAlerts database. Other
water relevant toxic end points are examined less extensively,
but some structural alerts were available in ToxAlerts for
genotoxicity, endocrine disruption, and developmental toxicity.

Intelligent Acquisition. Structural alerts could be used for
the “rough” selection of potentially toxic compounds that need
to be identified in NTS methods. To this end, fragment ion
masses and/or patterns indicating the presence of one or more
structural alerts could be used as an MS trigger for further
fragmentation events. In addition, suspect lists of toxic
compounds and isotopic patterns suggesting anthropogenic
origin of a compound were used to prompt a fragmentation
event. This novel combination leads to an intelligent
acquisition method, which would thereby prioritize (poten-
tially) toxic compounds in contrast to the currently used data-
dependent acquisition (DDA) that selects features using only
the intensity in MS1 scans as selection criteria for
fragmentation.

Overview. Here, we developed an intelligent acquisition
method that utilizes online prioritization of potentially toxic
compounds circumventing reanalysis of the sample due to
lacking (high-quality) fragmentation spectra of features that

Figure 1. (A) Schematic representation of the proposed LC-HRMS/MS workflow using intelligent acquisition based on structural alerts (SAs). A
full MS1 scan is taken after chromatographic separation, and the peaks are screened for their intensity and the presence of MS1-triggers (blue
diamond marker). The most intense peaks (based on DDA-approach, yellow star marker) and those that contain a MS1-trigger are selected for a
MS2 scan. The MS2 scans are screened for MS2-triggers, indicating the presence of a SA, resulting in two possible scenarios: 1. SA is present, so an
additional MS2 scan at different conditions is taken. 2. No SA is present, so structure identification is not necessary, and no additional MS2 is taken.
B) Schematic overview of the strategy that was used to develop the intelligent acquisition method, both cheminformatics (left) and LC-HRMS
experiments (right) were applied.
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are prioritized post-analysis (Figure 1). Cheminformatics were
applied to determine triggers for (additional) MS2 events to be
used in the LC-HRMS method. MS1-triggers exploited
accurate mass and isotopic ratios detected in the full scan
MS1 spectrum that suggested potential toxicity. MS2-triggers
were based on fragment ion masses and/or patterns detected
in the MS2 spectrum and linked to the presence of a structural
alert. To this end, in silico fragmentation predictors were used
to predict fragmentation of molecules with a structural alert
and screen these spectra for patterns. The derived triggers were
experimentally evaluated with LC-HRMS experiments. Finally,
the developed method including MS1- and MS2-triggers was
compared to a regular NTS method to evaluate whether the
prioritization was successful.

■ METHODS AND MATERIALS
Screening of Compounds for Structural Alerts. The

detailed workflow for the screening and fragmentation of the
ToxCast13 data set is given in S2.1. First, the CAS registry
numbers of the 9224 compounds registered in the ToxCast
data file Chemical_Summary_190708.csv25 were converted
into MS-ready SMILES using the CompTox Chemicals
Dashboard (https://comptox.epa.gov/dashboard).12 MS-
ready SMILES are defined as structural representations that
are observed in HRMS.26 Not all CAS registry numbers could
be converted, and some lead to the same MS-ready SMILES,
resulting in 7571 unique MS-ready SMILES. In addition to
ToxCast entries (n = 7571), the MS-ready SMILES of the two
databases NORMAN MassBank11 (n = 2304), and NORMAN
SusDat14 (n = 65,697) were screened for structural alerts.
NORMAN MassBank is a subset of MassBank Europe
(https://massbank.eu) containing the majority environmental
contributors. The compounds in the NORMAN MassBank are
also included in NORMAN SusDat; however, MassBank
contains fragmentation data and this was used for validation
purposes. In the case of MassBank, only the 1903 compounds
having available positive ionization HCD data were screened as
this ionization mode was later used in the LC-HRMS
experiments. Regarding SusDat, compounds were filtered for
those with an EPISuite predicted log Kow value between −2.5
and +3.5 (provided in SusDat), resulting in 46,688
compounds. This filtering step was applied to eliminate
compounds that are not detectable by RPLC.
Four toxic endpoints were selected for screening with

ToxAlerts: “endocrine disruption” (EDC), “nongenotoxic
carcinogenicity” (NGC), “genotoxic carcinogenicity, mutage-
nicity” (GCM), and “developmental and mitochondrial
toxicity” (DMT). These end points and their corresponding
187 structural alerts were chosen based on their relevance for
drinking water and potential human health risk. The endocrine
disruption alerts belonged to both estrogenic and androgenic
endocrine disruptors.27 This selection was made based on in
vitro and in vivo (mammalian) data.
The output of ToxAlerts was formatted in R28 (version 3.6.1

(2019-07-05)) for fragmentation with CFM-ID. A text file was
generated per structural alert containing the InChIKey and
SMILES code as input for CFM-ID 2.0.
Validation. ToxCast assays relevant for the end points that

were linked to the structural alerts were selected based on
literature.9 These assays are listed in Table S1. The AC50 values
of the ToxCast compounds with an alert were obtained from
“ac50_Matrix190708.csv” (downloaded at 04 December
2019).29 In this file, inactive compounds are given an AC50

value of 1 × 106. Lower values indicate that the compound is
active. Per toxic end point, that is, EDC, DMT, NGC, and
GCM, the percentage of molecules with both a structural alert
and activity in one of the specified assays was calculated. This
percentage was compared to the percentage of active
compounds for the total ToxCast data set, irrespective of the
presence of a structural alert.
In ToxCast, MS-ready SMILES can occur multiple times but

with a different DSSTox Substance identifier and in some
cases, varying toxicity information. The toxicity validation was
based on the DSSTox Substance ID to include all bioassay
results for the same MS-ready SMILES and prevent
information loss.

In silico Fragmentation. Compounds with a structural
alert were in silico-fragmented with the combinatorial
fragmentation predictor CFM-ID 2.0 using single energy
competitive fragmentation modeling (SE-CFM) in the
command line. The main reason for using CFM-ID is that it
can be accessed in batch mode. CFM-ID includes assumptions
of the fragmentation process such as that the molecule needs
to carry a single positive charge, removal or addition of sigma
bonds during a break is not allowed, and the valence and even
electron rules must be satisfied in all fragments.30 Note that
here, in silico fragmentation was not used for subsequent
fragment matching but to predict spectra and screen these for
patterns.
The command-line utility cfm-predict.exe31 was used to

generate fragments with CFM-ID 2.0; the standard trained
CFM model and its standard configuration parameters were
used (S2.1). The postprocessing option was not included, and
the probability threshold was set to 0.001 (default setting).
The program output consisted of three lists containing m/z
values and corresponding intensities for low energy CID (10
V), medium energy CID (20 V), and high energy CID (40 V).
These energies reflect the type of spectra the model is based
on. CFM-ID is based on CID QTOF data, which are
comparable to HCD data from an Orbitrap instrument. The
output was processed in R.

Validation. The in silico-predicted fragmentation results of
SusDat generated with CFM-ID were validated with
experimental data obtained from NORMAN MassBank.11

MassBank data was available for 2.25% of the 26,081
fragmented molecules with an alert from SusDat. The overlap
in percentage of MassBank and CFM-ID fragments was
calculated using eqs 1 and 2 to account for the differing total
number of MassBank and CFM-ID fragments per spectrum.
Since experimental data are also prone to errors, the output of
these calculations must be considered as approximations.

=
‐

·pct
number of MassBank fragments matching with CFM ID

total number of MassBank fragments
100%MassBank

(1)

=
‐

‐
·‐pct

number of CFM ID fragments matching with MassBank
total number of CFM ID fragments

100%CFM ID

(2)

Pattern Screening. The in silico-predicted fragmentation
spectra of compounds with a structural alert were screened for
characteristic patterns, that is, recurring fragment masses and
recurring mass shifts (deltas). All structural alerts which were
found in more than four molecules were included in the
analysis. The CFM-ID data set was screened, with the control
set being the in silico-predicted MS2 spectra of all molecules for
each fragmentation method. To be able to compare the effect
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of the three CFM-ID energy levels on the recurring fragments
and deltas, an intensity threshold was set at a minimum of 5%
of the maximum peak intensity (100). The energy levels had
an effect on the signal intensity only and not on the type of
predicted fragments. Setting this threshold led to elimination
of low-intensity fragments, resulting in different fragmentation
spectra for the energy levels.
The frequencies of each m/z value and delta recurring

within the MS2 spectra of the molecules of one structural alert
were calculated and compared to the frequencies in the total
fragmented data set. An extra control step for the frequencies
was performed to show the difference in frequencies between a
random sample and alerts. A random set of compounds (n =
3953) from NORMAN SusDat (ntotal = 65,697) that had not
been screened for structural alerts was fragmented with CFM-
ID. The frequencies of recurring fragment masses and
recurring deltas within this random sample were then
compared to the frequencies within MS2 spectra of
compounds with structural alerts derived from ToxCast.
HRMS Method Development. Sample Preparation. The

chemicals used in this study are listed in Tables S2−S8. An
internal standard mixture of atrazine-d5 (CDN isotopes,
Pointe-Claire, Canada) and benzotriazole-d4 (LGC Standards,
Wesen, Germany) was added to each sample to a final
concentration of 1 μg/L. Surface water (SW) (Lekkanaal, the
Netherlands) and wastewater treatment plant (WWTP)
influent samples, with and without spike-in (see Tables S2−
S8) were filtered using 0.2 μm Phenex-RC 15 mm Syringe
Filters (Phenomenex, Torrance, USA) prior to analysis. The
WWTP-influent samples were 10 times diluted after spike-in
and prior to filtration. The blanks used for these analyses were
filtered as well. The spiking solution with water-relevant
contaminants (see Table S2) was added to the samples to final
concentrations of 10 μg/L, 1 μg/L, 100 ng/L, 10 ng/L, and 1
ng/L.
MS1-Trigger Experiments. Inclusion lists for MS1-trigger

experiments (SusDat,14 SusDat + tR,14 UBAPMT,32 Sjerps,33

and Spike) were retrieved from the NORMAN Suspect List
Exchange (https://www.norman-network.com/?q=suspect-
list-exchange) and an in-house database and filtered for
organic compounds within the full scan mass range (80 to
1000 Da) and polarity amenable to RP-HPLC, that is, log KOW
between −2.5 and +3.5 (see the calculation method described
in S2.3).
Based on the distribution of the number of chlorine and

bromine atoms in the compounds registered in the CompTox
Chemicals dashboard (n = 869,027),34 the isotopic ratios
covering ≥99% of the chlorinated compounds (n = 128,650)
and brominated compounds (n = 53,258) were used for the
MS1-triggers. The isotopic ratios of Cl up to Cl6 and Br up to
Br5 were calculated with the software Xcalibur (Thermo Fisher
Scientific, San Jose, USA) and are shown in Table S9. The
inclusion lists and the isotopic ratio trigger were tested
separately and combined. The design of the resulting
acquisition decision trees is shown in Figure S2. The methods
were evaluated using surface water and WWTP-influent
samples spiked with water-relevant contaminants; see Table
S2.
MS2-Trigger Experiments. The performance of four

different MS2-triggers, that is, two recurring deltas and two
recurring fragments, was evaluated using ultrapure water
samples spiked with compounds (Tables S3−S8) predicted
to exhibit these fragments or deltas in their MS2 spectra based

on the in silico experiments. Due to in-house availability of
chemicals, only four different MS2-triggers were tested. The
spike-in compounds were also added to surface water at
concentrations ranging from 1 ng/L to 10 μg/L to determine
sensitivity of the triggers. The MS2-trigger experiments were
performed separately, together, and combined with the MS1-
triggers using isotopic ratios and the Sjerps inclusion list.
Detection of an MS2-trigger led to an additional MS2 event
using alternative collision energies (CEs), that is, stepped CE
(10, 75, 90) or assisted CE (20, 35, 50, 75, 90), or longer ITs,
that is, stepped CE (20, 35, 50) with 200 ms IT instead of the
regular 50 ms. These alternative fragmentation events were
hypothesized to result in spectra with complementary
fragments in the case of alternative energies, and higher-
quality spectra in the case of longer ITs. The 11 different
methods are described in Table S10 and the design of their
decision trees in Figure S3. The experimental data obtained
with the MS2-trigger experiments were used to validate the in
silico-predicted fragmentation spectra and the pattern screen-
ing.

Data Analysis. The details of the data analysis are reported
in S2.4 and S2.5. Data preprocessing and compound
annotation were performed using Compound Discoverer 3.1
(Thermo Fisher Scientific, San Jose, USA). Further processing
was done in R. Spectrum similarity scores were calculated
using the function SpectrumSimilarity() from the R-package
OrgMassSpecR (version 0.5−3).35 Fragment annotation was
performed with the R-package metfRag (version 2.4.2)36 using
the function frag.generateMatchingFragments() on the cen-
troided MS2-spectra, using default settings. The spectrum
similarity scores and number and percentage of annotated
fragments and percentage of the annotated peak area were
used to gain insights into the quality of the fragmentation
spectra acquired with different acquisition settings.

■ RESULTS AND DISCUSSION
Screening of Compounds for Structural Alerts. Three

databases were screened with ToxAlerts for compounds with
structural alerts (Figure S4). Screening of the ToxCast
database revealed the presence of 139 unique structural alerts
in one or more molecules (Figure S4). A total of 109 of these
exceeded the pattern detection cutoff of a minimum of five
molecules. Screening for structural alerts of SusDat compounds
was performed accordingly, resulting in the detection of 152
unique alerts and 133 after the cutoff (Figure S4). The
compounds in the NORMAN MassBank data set contained
103 unique structural alerts, of which 59 alerts were present in
at least 5 compounds (Figure S4).

Validation of Toxicity. To validate the ToxAlerts approach
for structural alert detection, we investigated whether
compounds with a given structural alert were active in a
bioassay linked to the toxic endpoint which was related to that
alert. For all four end points, the compounds with structural
alerts showed higher percentages of active chemicals in
bioassays related to that alert (S3.1) than ToxCast compounds,
regardless of the respective structural alert. Based on these
results, structural alerts could indeed indicate toxicity, but the
alerts used for screening did not cover all chemicals active in
these toxic end points. Moreover, many chemicals have not
been tested on all included ToxCast assays,37 causing a data
gap.

In silico Fragmentation. To be able to determine patterns
in the MS2 spectra characteristic for a structural alert,
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fragmentation spectra were generated in silico using the
fragmentation software CFM-ID 2.0. CFM-ID provided
intensity values to filter for the most likely fragments.

Validation with NORMAN MassBank Data. The in silico
fragmentation results generated by CFM-ID were validated
with experimental HCD data retrieved from NORMAN

Table 1. Structural Alerts with a Recurring Fragment (Top) and Deltas (Bottom) and Their Frequencies in Each Data Set

anTC and nSD represent the number of compounds in the ToxCast and SusDat data set, respectively. A description of the structural alert is given in
the second column.38

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.0c04473
Anal. Chem. 2021, 93, 5071−5080

5075

https://pubs.acs.org/doi/10.1021/acs.analchem.0c04473?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04473?fig=tbl1&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.0c04473?rel=cite-as&ref=PDF&jav=VoR


MassBank.11 Positive ionization HCD data were available for
1903 compounds, 587 of which were NORMAN SusDat
compounds with a structural alert. To account for the
experimental error in the MassBank data, a 10 ppm mass
tolerance was used to find overlapping fragments between the
CFM-ID predicted and experimental MassBank fragments.
Depending on the CFM-ID energy, for 144 up to 398 of the
587 compounds ≥50% of the CFM-ID fragments were
matched with a MassBank fragment (S3.2, Table S3.2, Figure
S3.2). As no CFM-ID fragmentation energy setting out-
performed the others, all energies were included in the further
analyses.
Pattern Screening. After in silico generation of predicted

fragmentation spectra, these predicted spectra of compounds
with structural alerts were screened for patterns characteristic
for each structural alert for subsequent use as MS2-triggers.
These patterns included recurring fragment masses and
recurring mass differences between two fragments referred to
as deltas. All three CFM-ID fragmentation energies were
included in the pattern screening, and patterns were filtered for
occurrence in the spectra of at least two fragmentation energies
to remove less relevant fragments and/or deltas. To further
increase specificity, only fragments and deltas with a frequency
higher than 0.5 in both the ToxCast and SusDat data sets were
taken into consideration. These strict requirements led to a
relatively low number of alerts: 6 recurring fragments and 11
deltas exceeded this frequency cut-off (Table 1). m/z 62.99960
was a recurring fragment in mustard-like structural alerts,
which could correspond to C2ClH

+, a fragment that is likely to
form from these alerts. The recurring fragments m/z 55.01784
and m/z 109.01632 could correspond to C3H3O

+ and
C2H6ClON2

+, respectively. Five structural alerts corresponded
to the same recurring fragment, that is, m/z 62.99960 (Table
1), and four structural alerts to two recurring deltas, that is, Δ
m/z 27.99491 and Δ m/z 42.01056 (Table 1) due to the
similarity in their structures.
For both the recurring fragments and deltas, their

frequencies within an alert were significantly higher than the
highest frequency observed in the three different control data
sets, that is, in all fragmented molecules with an alert from
ToxCast, a random sample from SusDat, regardless of the
presence of an alert, and all fragmented molecules with an alert
from SusDat (Tables S11−S13). This confirmed that the
recurring fragments and deltas were characteristic for their
structural alerts. Two deltas detected with high frequency were
2.01565 and 18.01056 Da. These were not considered as
relevant deltas because there was no significant difference
between their frequencies in the compounds with alerts

compared to the total data set. These deltas are expected to
correspond to a loss of 2H and H2O, respectively.
In order to increase the “yield” of alerts that could be used as

trigger, other data mining approaches could be applied such as
hierarchical clustering, random forest or multiple linear
regression to find patterns characteristic for a specific structural
alert. However, one has to take into account that the output of
more advanced pattern recognition needs to be in a format that
is suitable for implementation in acquisition software used to
operate mass spectrometers. Moreover, even more reliable
results could be generated when experimental fragmentation
data is used instead of in silico-predicted fragments.
Based on in-house availability of chemicals, the recurring

fragments m/z 62.99960 of ToxAlert alert TA344/TA362
(Table 1) and m/z 55.01784 of alert TA367 and the recurring
deltas m/z 17.02655 of alert TA322 and m/z 42.01056 of alert
TA387/TA395 were selected for use in the MS2-trigger
experiments.

LC-HRMS Experiments. MS1-Trigger Experiments. Prior
to implementing MS triggers, background exclusion and
selected MS acquisition parameters were optimized to
maximize available cycle time for (additional) MS2 scans
and MS2 spectral quality during online prioritization (S3.3
Acquisition parameter optimization). Subsequently, the
potential of MS1-triggers for the prioritization of toxic
compounds was assessed experimentally. The MS1-triggers
consisted of five different inclusion lists and isotopic ratios for
chlorinated and brominated compounds.
Based on the Cl/Br pattern, which is a parameter in

Compound Discoverer stating whether a chlorine- or bromine-
specific isotopic pattern is present in the MS1, there was a
significant increase in the percentage of MS2 scans for the
surface water (μNTS = 94.2 ± 0.4%, μMS1‑trig = 100 ± 0%, p-
value of 0.001292, Figure S7) but not the WWTP-influent
samples (μNTS = 82.7 ± 5.2%, μMS1‑trig = 84.5 ± 1.3%, Figure
S7). The lesser performance in the WWTP-influent samples
could be due to the more complex MS1 spectra confounding
isotopic ratios, in particular when low error tolerances are set.
This is also supported by the pattern matches determined
during the Compound Discoverer analysis. The peaks of Cl-
and/or Br-containing features should contain a characteristic
isotopic pattern due to the natural abundance of chlorine and
bromine isotopes. For some brominated and/or chlorinated
compounds, no additional MS2 was triggered because the
isotopic ratio deviated more than the allowed 10% ratio
tolerance. Additional experiments with increased mass
tolerance (10 ppm instead of 3 ppm, which was chosen to
test the extreme effect) and ratio tolerance (15% instead of

Table 2. Comparison of Percentage MS2 Scans of the Inclusion List m/z Values between Methodsa

inclusion list type sample type method with inclusion list μ% features with MS2 standard NTS method μ% features with MS2 p-value test type

SusDat WWTP-influent 95.86 91.76 0.01576 t-test
SW 97.68 97.31 0.1039 t-test

UBAPMT WWTP-influent 100.0 100.0 -
SW 96.97 96.97 -

Sjerps WWTP-influent 98.36 93.32 0.01485 t-test
SW 95.76 96.58 0.8779 t-test

Spike WWTP-influent 96.41 95.60 0.3425 t-test
SW 98.58 97.65 0.1250 Sign test

SusDat + tR WWTP-influent 97.74 92.53 0.004934 t-test
SW 98.80 97.87 0.0005877 t-test

aIn one case (Spike SW), a Sign test is applied since the data was not normally distributed.
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10%) did not improve this. Setting priority of the decision tree
to the branch with the targeted isotopic ratio node, however,
led to a significant increase in percentage of Cl and/or Br
containing features with an MS2 spectrum (p-value of 0.04225,
one-sided t-test). Further experiments could focus on
optimizing the isotopic ratio and mass tolerance of the MS1-
trigger to balance a more tolerant threshold and the
subsequent increase in false-positive triggers.
Based on these results, the isotopic ratio was implemented

(with the narrow tolerances) in the intelligent acquisition
method as MS1-trigger as it increased MS2 spectral availability
for Cl-/Br- containing features which are mostly anthropogenic
and often toxic, and the risk of triggering fragmentation of
irrelevant features was low.
Regarding the use of inclusion lists as MS1-triggers, there

was a significant increase in percentage of MS2 scans for m/z
values present in the inclusion lists SusDat, SusDat + tR, and
Sjerps in the WWTP-influent and SusDat + tR in the SW
samples (Table 2). The lesser effect observed in SW samples
can be explained by the fact that the standard NTS method
without an inclusion list was able to separate and identify the
features present in the SW but not WWTP influent samples.
Due to the large number of compounds in SusDat (+tR),
including non water-relevant ones, the Sjerps list was used for
subsequent MS2-trigger experiments.
Overall, less complex matrices such as SW samples seemed

to benefit more from the isotopic ratio MS1-trigger,
demonstrated by the significant increase in the percentage of
MS2 scans for these samples. The analysis of more complex
matrices such as WWTP influent improved through the use of
inclusion lists that ensured that water relevant compounds
were fragmented. The inclusion list MS1-trigger showed
promising results for the inclusion lists SusDat, with and
without retention time estimate, and Sjerps. As the Sjerps list
consisted of water-relevant compounds, this list was used in
subsequent experiments in combination with the MS2-triggers.

MS2-Trigger Experiments. Next to MS1-triggers that trigger
an MS2 scan, MS2-triggers were developed that trigger an
additional MS2 scan in the presence of a structural alert,
indicating a potentially toxic compound. Four specific fragment
masses and deltas were used as MS2-triggers: the recurring
fragments m/z 62.99960 of alert TA344/TA362 and m/z
55.01784 of alert TA367 and the recurring deltas m/z
17.02655 of alert TA322 and m/z 42.01056 of alert TA387/
TA395. These alerts correspond to the toxic end points
genotoxic carcinogenicity and mutagenicity. A total of 12
reference compounds were selected, which were hypothesized
to contain an alert and MS2-trigger based on pattern screening
(Tables S3−S7).
The recurring fragments were present in the MS2 spectra of

all 12 detected compounds, thereby confirming the usefulness
of the in silico-predicted spectra generated with CFM-ID. MS2
scans were triggered in all cases, except ifosfamide and
diacetone acrylamide. For these compounds, the ppm mass
error tolerance was too narrow. Increasing the tolerance to 20
ppm lead to triggering of additional MS2 scans. Therefore, a
higher error tolerance or potentially a combination of a low
relative tolerance and an absolute tolerance of m/z 0.001
would be advantageous. Alternatively, the calibration range of
the instrument could be expanded to lower m/z values.
In addition to the recurring fragments, the use of recurring

deltas as MS2-triggers was investigated. The recurring delta m/
z 17.02650 corresponding to alert TA322 was detected in the
MS2 spectra of all reference compounds that contained this
alert, thereby validating the approach of using CFM-ID to in
silico predict spectra. Additional MS2 scans were triggered for
all compounds with this recurring delta.
Examples of spectra where an additional MS2 was

successfully MS2-triggered are shown in Figure 2. The
recurring delta m/z 42.01060 corresponding to the alerts
TA387 and TA395 was detected in all spectra except those of
diatrizoic acid and one of the three triplicates of n-

Figure 2. Four experimentally obtained MS2 scans with expected MS2-trigger marked in red, of which an additional MS2 was triggered. (a) MS2
spectrum of ifosfamide and its recurring fragment, (b) MS2 spectrum of diacetone acrylamide and its recurring fragment, (c) MS2 spectrum of
desethylatrazine and its recurring delta, and (d) MS2 spectrum of paracetamol and its recurring delta.
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acetylsulfamethoxazole. The delta m/z 42.01060 triggered
additional MS2 scans in all other compounds, where the
recurring delta was detected. The measured MS2 spectra of
diatrizoic acid did not match the in silico-predicted spectrum
(see Figure S8), and the peaks that were expected to form the
recurring delta (m/z 614.7769272 and m/z 572.7663625 or
m/z 596.7663625 and m/z 554.7557979) were not present.
Next, the effect of compound concentration levels on the

MS2-triggers was investigated (Figure 3). To this end, a
concentration range from the 10 μg/L used in the proof-of-
principle experiments down to 1 ng/L was used. At first, the
precursor ion of the compound containing a structural alert has
to be selected for a MS2 scan, in which the MS2-trigger can be
detected. Thereafter, this trigger can prompt the consecutive
MS2 scan. Generally, once a compound was detected and a
MS2 scan recorded, an additional MS2 scan was triggered as
well, indicating the sensitivity of the MS2-trigger. However,
some exceptions were observed (marked in yellow in Figure
3). In these cases, the compound was detected, but no
additional MS2 scans were triggered due to the absence of the
trigger in the MS2 scan (in case of metamitron, desethyla-
trazine up to 100 ng/L, sulfamethoxazole, trimethoprim, and
sulfaquinoxaline) or the selected error tolerance (5 ppm, in
case of ifosfamide and desethylatrazine in the third measure-
ment at 1 μg/L). In one case, no MS2 scan was recorded.
Consequently, no additional MS2 scan could be triggered. This
was the case for a single measurement of N(4)-acetylsulfadia-
zine at 1 μg/L.
MS2-triggers were applied to prompt an additional MS2

scan that would ensure more informative fragmentation
spectra, that is, higher spectral quality or complementary
fragments to the first MS2 scan, of features with a structural
alert. Different acquisition parameters were used for this
additional MS scan: stepped CE (10, 75, 90 instead of the
regular 20, 35, 50), assisted CE (20, 35, 50, 75) and longer ITs
(200 ms IT instead of the regular 50 ms). The effect of the
acquisition parameter to increase the information content of
the spectra was assessed based on the mzCloud scores assigned
to the identified features because these could be easily
extracted from the Compound Discoverer results. The
mzCloud scores tended to increase slightly (approximately
0.1−1%) with the additional MS2 scan using assisted CE and

longer IT. As mzCloud scores are based on experimental
spectra that might have not been generated with the optimal
acquisition parameters, as an alternative performance evalua-
tion MetFrag annotation was examined. This showed that
generally, the additional MS2 scans using assisted CE had a
higher percentage of annotated intensity (Figure S9) but no
higher percentage of annotated fragments (Figure S10).
However, to reach the maximum advantage of the additional
MS2, higher spectral quality that facilitates identification,
spectral quality metrics need to be developed and implemented
online, that is, during the measurement.

Application of Triggered Methods to SW Samples. To
compare the online prioritization methods to the standard
NTS method, a SW sample spiked with water-relevant
contaminants was analyzed. Three versions of the intelligent
acquisition method combining the MS1- (isotopic ratio and
Sjerps inclusion list) and MS2-triggers (fragment m/z
62.99960, fragment m/z 55.01784, delta m/z 42.01060, and
delta m/z 17.02650) were used: with the additional MS2 with
either stepped CE, ACE or longer IT. Ten of the spiked
compounds contained an alert related to these MS2-triggers,
and for eight of them, an additional MS2 was triggered. The
spectra of 2-aminobenzothiazole and 2,4-dichloroaniline did
not exhibit the expected delta m/z 17.02650. Consequently, no
additional MS2 was triggered. Using the regular NTS method
(see Tables S14−S15), the mzCloud best match and mzVault
best match scores (S1.2) ranged from 97.1 to 99.8 out of 100
and from 89.6 to 99.8, respectively. This indicates that these
scores are already high. Despite these high scores, for the
compounds desisopropylatrazin and desethylatrazin, the
mzCloud scores increased with all three tested intelligent
acquisition methods (Table S15).

■ CONCLUSIONS

Overall, the intelligent acquisition method, using the Sjerps
inclusion list and additional MS2’s with ACE or longer IT,
directed prioritization toward potentially toxic compounds.
The isotopic ratio MS1-trigger significantly improved the
percentage of Cl-/Br-containing compounds with a MS2
spectrum if priority was assigned in the method. The use of an
inclusion list increased the percentage of MS2 spectra of

Figure 3. Schematic overview of the detection of the spike-in compounds, and whether an additional MS2 was triggered or not.
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features with m/z values present in the inclusion list. The MS2-
trigger method successfully triggered additional MS2 scans of
molecules with a structural alert for the four alerts that were
tested. Therefore, the method could prioritize these potentially
toxic compounds online, and further developments will
improve the added value. Once fully developed, it could be
far more efficient than many current strategies involving post-
acquisition processing.
Future work could expand the developed method with more

structural alerts targeting different toxic endpoints, implement-
ing the method in our laboratory, and making it available for
other laboratories to use. Ultimately, application of intelligent
acquisition methods in routine monitoring studies is necessary
to expose the benefits in practice for safety monitoring of
drinking water sources. While a clear benefit was demonstrated
for MS1- and MS2-triggers, the automatic triggering of an
additional MS2 scan will reach its maximum benefit once more
knowledge is available on how spectral quality can be
optimized in a directed manner through selection of
appropriate acquisition parameters.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04473.

Acquisition parameters, spectral libraries and chemical
databases, workflow screening with ToxAlerts and
fragmentation, instrument settings for LC-HRMS experi-
ments, inclusion lists, data analysis, compound discov-
erer workflow parameters, toxicity validation, validation
of in silico fragmentation, acquisition parameter opti-
mization, NTS workflow, design of acquisition decision
trees, ToxAlerts screening results, frequency distribu-
tions of recurring fragments and deltas, number of
detected features per MS1-trigger method, number of
detected chlorinated and brominated features per MS1-
trigger method, in silico predicted and experimental MS2
of diatrizoic acid, comparison of annotated intensity of
regular MS2 scan and triggered MS2 scan, and
comparison of annotated fragments of regular MS2
scan and triggered MS2 scan (PDF)

ToxCast assays used in toxicity validation, lists of spiked
compounds and sample compositions, isotopic ratios,
methods of MS2-trigger experiments, frequencies of
recurring fragments and deltas within compounds with
an alert, frequencies of recurring fragments and deltas in
control data sets, mzVault and mzCloud best match
scores from the total performance analysis (XLSX)

Screening results ToxAlerts (ZIP)

■ AUTHOR INFORMATION
Corresponding Author
Andrea M. Brunner − KWR Water Research Institute, 3430
BB Nieuwegein, The Netherlands; orcid.org/0000-0002-
2801-1751; Email: andrea.brunner@kwrwater.nl

Authors
Nienke Meekel − KWR Water Research Institute, 3430 BB
Nieuwegein, The Netherlands

Dennis Vughs − KWR Water Research Institute, 3430 BB
Nieuwegein, The Netherlands

Frederic Béen − KWR Water Research Institute, 3430 BB
Nieuwegein, The Netherlands; orcid.org/0000-0001-
5910-3248

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.0c04473

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors acknowledge Astrid Reus, Tessa Pronk, and
Margo van der Kooi from the KWR Water Research Institute
for advice about relevant toxic end points, advice in
programming in R, and preparation of the samples. Caroline
Ding, Lena Becciolini, and Seema Sharma from Thermo Fisher
Scientific are acknowledged for their help with the data
acquisition and data processing software. Christian Panse from
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Abstract 

The increasing occurrence of organic micropollutants (OMPs) in drinking water sources stresses the 

need for comprehensive chemical monitoring to ensure drinking water quality. Recently, LC-HRMS-

based non-target screening (NTS) has become the method of choice for OMP monitoring. NTS 

enables the identification of a wide range of compounds based on their mass and isotopic pattern 

provided in the MS1 full scan spectrum, and the match of their MS2 fragmentation spectrum with 

library or in silico predicted spectra. However, it is challenging to acquire MS2 spectra for all 

compounds as the number of MS2 scans is limited by the time available between two MS1 scans. 

Furthermore, high quality MS2 spectra are required for confident identification based on spectral 

matching. To date, due to the high number the structural identification of unknown compounds 

requires prioritization which occurs during data analysis. Only at this point of the identification 

workflow, relevant compounds are selected and the availability and quality of their MS2 spectra is 

assessed. Lacking or low quality spectra entail re-analysis of the sample.  

Here, a different prioritization strategy that ensures high quality MS2 spectra for all OMPs in water 

samples that potentially pose a risk for human or environmental health is proposed. The strategy is 

based on an innovative intelligent MS acquisition workflow and prioritizes compounds that potentially 

represent toxic OMPs online in the mass spectrometer. This workflow is based on MS1- and MS2-

triggers; MS1-triggers prompt a MS2 event based on properties of the precursor ion in the full scan, 

MS2-triggers an additional MS2 event based on properties of the first MS2 spectrum, respectively. 

Using a cheminformatics approach, potentially toxic compounds were selected based on the presence 

of structural alerts which are functional groups or substructures linked to a particular toxicological 

endpoint using ToxAlerts. The selected compounds were in silico fragmented with the fragmentation 

tools CFM-ID and MetFrag. Recurring masses and mass shifts (MS2-triggers) were identified in the in 

silico fragmentation spectra per structural alert using data mining strategies in R. Isotopic ratios of 

chlorine and bromine, and an inclusion list with m/z values of water-relevant pollutants were used as 

MS1-triggers. 

The performance of MS1- and MS2-triggers was experimentally examined, as well as the effect of 

selected MS2 acquisition parameters on spectral quality and the use of a background exclusion list on 

spectral availability. The examined acquisition parameters included the fragmentation energy (CE) 

mode, the number of ions that are accumulated per scan (AGC-target) and the timespan in which 

they are accumulated (injection time). Higher AGC-targets resulted in an increase in the number of 

peaks and corresponding annotated fragments. Assisted CE increased fragment annotation compared 

to fixed and stepped CE. In stepped CE, an average spectrum is recorded of three different CEs 

whereas the optimal CE is selected by the mass spectrometer in assisted CE mode. 

Regarding the MS1-triggers, the use of an inclusion list led to an increase in the percentage of 

compounds with an MS2, while the isotopic ratio did not have significant effects. The four tested 

MS2-triggers prompted additional MS2 scans for compounds that had a structural alert. Therefore, 

this intelligent acquisition method should be tested in high-throughput analyses and developed 

further to be able to apply it in routine monitoring studies for the detection of OMPs in drinking water 

sources. 

 

Keywords: non-target screening, structural alerts, high resolution mass spectrometry, in silico 

fragmentation, prioritization, liquid chromatography, spectral quality 
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Populair wetenschappelijke samenvatting 

Het gebruik van door de mens gemaakte stoffen zoals medicijnen, bestrijdingsmiddelen, UV-filters in 

bijvoorbeeld zonnebrand en stoffen als PFAS, neemt toe. Hierdoor stijgt het voorkomen van deze 

chemicaliën en hun afbraakproducten in het milieu ook. De stoffen komen in de lucht, de bodem en 

het water terecht, vaak in lage concentraties (µg/L) en worden organische microverontreinigingen 

genoemd. Een aantal van deze stoffen is giftig of wordt giftig zodra het afgebroken wordt in de 

natuur. Om te voorkomen dat deze stoffen in drinkwater terechtkomen wordt de inname van water 

uit de drinkwaterbronnen constant gemonitord op de aanwezigheid van giftige stoffen. 

Identificatie van deze stoffen gebeurt meestal met behulp van vloeistofchromatografie gekoppeld aan 

massaspectrometrie. Hierbij worden de retentietijd, de massa en het fragmentatiespectrum van het 

molecuul gebruikt om de structuur te kunnen bepalen. Omdat dit water veel stoffen bevat die niet 

allemaal giftig zijn is het niet nodig om ze allemaal te identificeren. Momenteel wordt ‘target-

screening’, ‘suspect-screening’ en ‘non target-screening’ toegepast om de focus op de giftige stoffen 

te leggen. Hierbij is het gangbaar dat van de stoffen die het meest intense signaal geven in het 

massaspectrum (MS1), een fragmentatiespectrum (MS2) wordt opgenomen. Maar ook bij deze 

strategieën lukt het vaak niet om van alle (giftige) stoffen een MS2 op te nemen dat goed genoeg is 

om de structuur van de stof op te helderen. Als gevolg moet het monster nog een keer gemeten 

worden om zo betere MS2’s te verkrijgen. Hoe kan dit efficiënter? 

Met de hulp van MS1- en MS2-triggers die samen zorgen voor de prioritering van potentieel giftige 

stoffen tijdens de meting. MS1-triggers activeren de opname van een MS2 scan zodra er stoffen 

gedetecteerd worden die een verdachte massa hebben (d.w.z. de massa staat op een lijst met giftige 

stoffen) en/of chloor of broom bevatten, ongeacht de intensiteit van het signaal. 

MS2-triggers activeren de opname van een extra MS2 scan op basis van de aanwezigheid van 

‘structuur alerts’; moleculaire substructuren die gelinkt zijn aan de toxiciteit van een stof. Door tijdens 

de meting te bekijken of een stof een structuur alert heeft, kan op basis daarvan tijdens diezelfde 

meting een extra MS2 opgenomen worden in andere condities (bijv. hogere of lagere fragmentatie 

energie). Er wordt verwacht dat hierdoor meer stoffen geïdentificeerd kunnen worden op basis van 

één meting. 

In dit onderzoeksproject werden stoffen uit de Amerikaanse ToxCast databank en de Europese 

NORMAN databank met een structuur alert virtueel (in silico) gefragmenteerd. De 

fragmentatiespectra werden gescreend op massa’s en massaverschillen die karakteristiek zijn voor 

dat alert; de MS2-triggers. De MS1- en MS2-triggers werden toegevoegd aan de reguliere 

analysemethode van wateronderzoeksinstituut KWR en getest op oppervlaktewater- en 

waterzuiveringsinstallatie-influent monsters. Ook werd het effect getest van de verschillende 

instellingen voor de opname van een MS2 scan (maximale ion injectietijd, maximaal aantal ionen en 

verschillende fragmentatie energieën en -modi). 

Uit dit onderzoek is gebleken dat een langere injectietijd en een hoger maximaal aantal ionen leiden 

tot meer fragmenten die geïdentificeerd kunnen worden. De MS1-triggers bleken deels effectief te 

zijn, maar er is meer onderzoek nodig om dit te optimaliseren. De MS2-triggers hebben extra MS2 

scans geactiveerd voor de stoffen die de betreffende structuur alerts bevatten. Kortom, de 

ontwikkelde slimme acquisitiemethode bleek grotendeels succesvol en kan, mits verder ontwikkeld 

en getest, toegepast worden in de monitoring van microverontreinigingen in drinkwaterbronnen. 
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1. Introduction 

Issues with water quality occur worldwide due to the large spread of the human population and their 

extensive use of chemicals which lead to chemical pollution in a high number of water streams.1 

These streams cause distribution of the pollution with long-range effects, ultimately posing a threat to 

drinking water sources.2-4 Various types of organic micropollutants (OMPs), i.e. anthropogenic 

chemicals that are present at trace levels (µg/L) have been detected in ground and surface waters 

used for drinking water production. These OMPs include halogenated compounds such as poly- and 

perfluorinated alkylated substances (PFAS) and other types such as hormones, pharmaceuticals, UV 

filters and brominated flame retardants. Despite their low concentrations, OMPs can pose a risk to 

human and environmental health as they can be toxic, persistent or easily degraded into more toxic 

(bio)transformation products.5 

To ensure drinking water quality, compounds that pose a potential health risk need to be monitored 

to be able to assess the actual human and environmental risks. Monitoring is typically performed 

using quantitative target analyses. As target analyses are limited to a set of known compounds, liquid 

chromatography coupled to high resolution mass spectrometry (LC-HRMS) based non-target 

screening (NTS) is often applied to more comprehensively monitor chemical water quality and 

broaden contaminant discovery.6-7 However, the structural identification of unknown compounds 

from NTS data remains challenging due to the high number of features detected per experiment, and 

the need for high quality fragmentation spectra.8-9 A feature is defined as an accurate mass combined 

with retention time and its intensity. 

Here, these two challenges were addressed using intelligent acquisition in mass spectrometry; this 

strategy focuses on the features that are potentially toxic and thereby reduces the number of NTS 

features that need to be identified. This prioritization step occurs in the mass spectrometer during 

data acquisition instead of during data analysis which is the conventional offline prioritization 

strategy. The potentially toxic features are selected based on the presence of structural alerts. These 

potentially toxic features are fragmented using a number of different parameters to ensure high 

spectral quality. Together, this strategy can facilitate risk assessment through more efficient 

identification of compounds that pose a risk to human and environmental health. 

The effects of selected acquisition parameters on the spectral quality and the resulting fragment 

annotation were tested as well. The acquisition parameters of interest were the type of collision 

energy (CE) (assisted or stepped), the use of a background exclusion list, the maximum ion injection 

time (IT) of the fragmentation scan and the automatic gain control-target (AGC-target) of this scan. 

The aim of this research was to develop an online method suitable for the NTS of ‘unknown 

unknowns’ that prioritizes toxic compounds online in the mass spectrometer for fragmentation which 

leads to better spectra and consequently facilitates identification. 
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2. Theoretical background 

2.1 Non-target screening 

Three common approaches in the monitoring of organic micro-pollutants are target analyses, suspect 

screening and non-target screening. Target analyses require an in-house reference standard of the 

target compound, this standard must be measured under the same analytical conditions as the 

analyte. A calibration curve is generated on which the quantitative analysis is based on. Moreover, 

target methods are optimized, including buffers, LC gradient, ionization source and mass range for 

the selected target compounds. For both NTS and suspect screening, the whole mass range is 

acquired with a generic method that is possibly not optimal for every compound. All compounds that 

are separable with the chosen chromatography and ionizable with the selected ion source can be 

detected with such a method. As a result, a broad screening is achieved and a large amount of data is 

generated. A suspect screening can be performed on these data which is based on prior information 

of compounds that are expected to be present in the sample, such as exact mass, isotopic pattern and 

molecular structure. The NORMAN Suspect List (SusDat) is a list that contains this prior information.10 

When no prior information is available, NTS is performed, which is comparable to suspect screening 

but with a larger database (all possible molecules). Several levels of confidence for these different 

types of identification via HRMS data can be distinguished (see table 1).11-12 

 
Table 1 – Levels of confidence for identification of small molecules via HRMS from Schymanski et al.11 

Identification level Minimum data requirements 

Level 1 Confirmed structure 
Reference standard is available and measured 
under the same conditions with MS, MS/MS and 
retention time match. 

MS, MS2, RT, reference standard 

    

Level 2 Probable structure 

a. Library: evidence via a spectrum-structure 
match from literature or a library spectrum. 

MS, MS2, library MS2 

b. Diagnostic: no other structure fits the 
experimental information, but no reference 
standard or literature information is available. 

MS, MS2, experimental data 

    

Level 3 Tentative candidate(s) 
Evidence for a few possible structure(s), but not 
sufficient to determine the exact structure. 

MS, MS2, experimental data 

    

Level 4 
Unequivocal 
molecular formula 

Only exact molecular formula is known. MS isotope/adduct 

    

Level 5 Exact mass (m/z) 
Unambiguous information about structure or 
formula does not exist 

MS 

 

The general workflow for NTS is illustrated in figure 1a. It is not yet feasible to identify all hundreds to 

thousands, depending on type of water sample, peaks in a generated NTS spectrum of a sample, 

therefore prioritization strategies are needed. Prioritization is the selection of peaks of interest based 

on intensity, occurrence, persistence or potential toxicity. To date, prioritization strategies are applied 

offline during the data-analysis such as prioritization based on the presence in a suspect list or on 

ToxCast toxicity data.9, 13 The disadvantage of offline prioritization is that this is performed during data 

analysis. If prioritized features lack a MS2 fragmentation spectrum or the spectrum is of insufficient 

quality to allow structural identification of the feature, the sample has to be re-analyzed. This 

research project addresses the issue of uninformative MS2 fragmentation spectra by online 
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prioritization of features leading to higher spectral quality, see figure 1b. A feature is defined as an 

accurate mass together with its retention time and intensity, see figure 2. 

 

 
Figure 1 – a) typical workflow of NTS by Hollender et al. (2019), the prioritization step is performed offline.14 b) workflow of 
this project, the prioritization step is performed online, during the analysis. 
 

 
Figure 2 – Definition of a feature by Brunner (2019).15 

 

Other approaches that are currently in use for prioritization and detection of unknown unknowns, but 

time- and source-consuming, are Effect Directed Analysis (EDA) and Toxicity Identification Evaluation 

(TIE).16 The aim of TIE is to detect toxicity and ecological relevance of contaminated water and 

sediment samples. The aim of EDA is to detect which chemicals are responsible for the bioactivity and 

overall endpoint-specific activity. EDA is based on fractionation of samples to reduce the complexity 

of toxic mixtures and measuring the biological response in in vitro or in vivo assays. EDA is applied in 

water resource monitoring.16 Both regular EDA and TIE are not performed online which makes them 

less suitable for routine monitoring. Currently, high-throughput effect-directed analysis (HT-EDA) is 

being developed. This technique combines NTS with EDA and is more suitable for routine monitoring 

as it increases the throughput and the fractionation resolution.17-18  

This study tries to overcome the problems associated with the high costs and laboriousness of NTS 

offline prioritization by using intelligent MS acquisition methods based on computational strategies to 

give preference to the fragmentation of potentially toxic compounds, based on structural alerts. 

Structural alerts are molecular substructures that are linked to the toxicity of a molecule. A method 

involving structural alerts can be performed online and in routine monitoring studies. Therefore, this 

prioritization technique might be more cost-efficient and less time- and labor-consuming and easy to 

adjust when new structural alerts are discovered. Therefore, this method should make identification 

more efficient; potentially toxic compounds that contain structural alerts are automatically selected. 

a 

b 
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2.2 High resolution mass spectrometry 

Mass spectrometry is a detection technique that separates ions based on their mass-to-charge ratio, 

m/z. A mass spectrometer is typically composed of an ion source, a separator and a detector. The ion 

source ionizes the analytes that enter the mass spectrometer, these ions are separated by the mass 

separator and detected in the detector. The output of a mass spectrometer is a mass spectrum, 

containing the number of ions per m/z value. High resolution mass spectrometry is a technique with 

high mass accuracy (± 0.001 Da) and high mass resolution (m/∆m ≥ 20 000).8 This technique is very 

suitable for NTS of environmental contaminants as it is sensitive and thus can detect thousands of 

(trace) compounds in one sample within short time frames.14 Moreover, the high resolution facilitates 

determination of the elemental formula.  

 

Mass analyzers 

The quadrupole mass analyzer consists of four parallel hyperbolic rods to which oscillating (time-

dependent) and static (time-independent) electric fields are applied.19 As a result, ions are separated 

based on their different stabilities depending on their m/z value, only ions that have a stable 

trajectory towards the z-direction (which is parallel to the quadrupole rods) will reach the detector. 

Quadrupole mass analyzers have a limited mass range (up to 103), limited resolution (103-104) and 

accuracy (100 ppm). The quadrupole is used to get rid of noise and ions in the mass range that is out 

of interest. 

The linear ion trap analyzer is a three dimensional version of the quadrupole where an oscillating 

electric field (generated by four rods) traps the ions.19 The electric field is present in the axial 

dimension and at the two end-caps of the trap. The ions are repelled inside the trap (the closer the 

ion is to the rods, the more it is repelled) leading to the formation of an ion cloud in the center of the 

trap. The ions can be ejected selectively via axial injection (parallel to the axis of the trap) or radial 

ejection (perpendicular to the axis of the trap). Ion traps are sensitive, but have a low resolution and 

low mass accuracy (100 ppm).  

The Orbitrap is a mass analyzer with a high resolution and high accuracy (< 5 ppm), but the higher the 

accuracy, the higher the resolution has to be and the more scan-time is required, see table 2. The 

Orbitrap consists of two electrodes (see figure 3); an inner, spindle-shaped, electrode which 

generates an axial field gradient and an outer electrode that is split in two.19 The ions are axially 

injected into the Orbitrap via the C-trap (see figure 3) and make circular or oval trajectories around 

the electrode while oscillating along the z-axis. The moving ions induce an image current that is 

detected by an amplifier in the split between the two halves of the outer electrode. The m/z values of 

the ions are determined after Fourier transformation.  

 
Table 2 – Trade-off between resolution and scan time from University of Washington’s Proteomics Resource (UWPR).20 

Resolution at m/z 200 Transient length (ms) Approximate scan speed [Hz] “Free” ion time (ms) 

15,000 32 NA 22 
30,000 64 15 54 
50,000 96 NA 86 
60,000 128 7.5 118 

120,000 256 4 246 
240,000 512 2 502 
450,000 1024 <1 1014 
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Tandem mass spectrometry 

Tandem mass spectrometry involves additional mass analysis stages. It is applied to obtain more 

information of an ion besides the m/z value obtained in a MS1 scan. In tandem mass spectrometry 

the precursor ion, detected in the MS1 scan, is selected and fragmented. The fragmentation pattern 

of a compound reflects its structure. These fragments can thus be used for structural elucidation 

through matching of the experimental fragmentation spectrum with spectral library entries or in silico 

predicted fragmentation spectra. The first analysis stage (in this case the quadrupole) is used to select 

a precursor ion, which is further fragmented in the second stage, MS2. These fragment ions can be 

further fragmented and analyzed in MS3 or MSn experiments.  

Fragmentation reactions consist of homolytical cleavages, heterolytical cleavages and rearrangement 

reactions of the molecular ion, leading to different fragments. Some reactions are favored at higher 

energies whereas others are favored at lower fragmentation or collision energies (CEs). One way of 

fragmenting ions is via collision-induced dissociation (CID) where the ions are accelerated by a higher 

electrical potential leading to higher kinetic energies.19 The accelerated ions collide with noble gas 

atoms such as helium or small molecules such as N2 and O2 and the kinetic energy is converted into 

internal energy. This leads to dissociation of the ion into fragments and the fragments are analyzed. 

Higher-energy collisional dissociation (HCD) is typically used for smaller molecules and occurs in the 

HCD cell (or Ion Routing Multipole IRM). The radiofrequency voltages are increased aiming to retain 

the maximum number of fragment ions.21  

In small molecule identification, acquired fragmentation spectra are matched with in silico predicted- 

or library spectra. The more (true) fragments that can be matched, the higher the confidence of 

identification. Therefore, high spectral quality of the MS2 and potentially MSn spectra is required for 

proper structure elucidation, as it leads to a better sensitivity (more true positives) and better 

specificity (more true negatives). Spectral quality can be affected by e.g. signal distortion and 

electrical noise.19 Moreover, CEs have a big influence on the number of fragments in an MS2 or MSn 

spectrum and thus the quality of these fragmentation spectra. At higher CEs, the ion is fragmented 

more heavily than at lower CEs, and different molecules have different optimal CEs. Too high CEs lead 

to uninformative fragments that are unspecific, whereas too low CEs lead to too few fragments that 

provide insufficient information for structure elucidation. CE optimization is therefore a prerequisite 

for high spectral quality. Also, combinations of different CEs can be used to generate more 

informative spectra (see Acquisition parameters section below).  

Selection of peaks that have to be fragmented can be done via data-independent acquisition (DIA) or 

data-dependent acquisition (DDA). In data-independent acquisition all parent ions within a given m/z 

range are fragmented and a MSn spectrum is recorded. The spectra acquired with DIA are 

multiplexed due to the wide m/z range that is fragmented. As a result, data analysis and spectral 

matching are more complicated. Data-dependent acquisition selects the most intense peaks (parent- 

or precursor ions) for further fragmentation. However, compounds with low peak intensities in the 

mass spectrum can be highly toxic as well and thus pose a risk to human and/or environmental 

health. These currently risk to not be fragmented using the standard DDA-approach. Moreover, as 

mass spectrometry is not inherently quantitative, the signal intensity does not necessarily reflect the 

concentration of the compound in a sample. Actual concentrations might be higher or lower than 

expected from the detected signal intensity due to the compound’s ionization efficiency. For instance, 

the poor ionization efficiency with ESI of delta-5 steroids, 5α-reduced androgens and estrogens 

results in low signal intensities of these compounds even if present at relevant concentrations.22-23 
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This indicates the need for prioritization strategies that are not based on signal intensity, such as 

inclusion lists. Using an inclusion list for the selection of precursor ions for fragmentation is a 

hypothesis-driven strategy that is often applied in LC-MS/MS, for instance in directed proteomics.24 It 

uses m/z values and retention time (optionally)24 of compounds or features of interest. 

 

Experimental set-up used 

The Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) was 

used for NTS of organic micropollutants. This instrument was chosen for its high resolution that allows 

elemental formula determination, high speed and sensitivity that allow multiple scan events, and the 

availability of an ion trap that allows assisted CE and fragmentation trees. The instrument combines 

three mass analyzers (see figure 3): the linear quadrupole, Orbitrap and linear ion trap. It has a 

maximum resolution of m/∆m 560 000. In the experiments presented here, it was operated at m/∆m 

120 000 and 240 000, the MS2 resolution was set at m/∆m 15 000. The mass spectrometer was 

connected to a reversed-phase liquid chromatography (RPLC) system and equipped with a heated 

electrospray ionization (ESI) source, a soft ionization technique.  

 
Figure 3 – Schematic representation of the Orbitrap Fusion Tribrid mass spectrometer, Thermo Fisher Scientific.25 

 

Acquisition parameters 

There are three collision modes implemented in the Orbitrap Fusion for both CID and HCD 

fragmentation; fixed, stepped and assisted CE (ACE). In fixed CE mode all ions are fragmented with 

the same CE. In contrast, in stepped CE mode, fractions of the precursor are fragmented at a defined 

number of different CEs, fragments are pooled and analyzed in the Orbitrap analyzer. With ACE, the 

precursor is successively fragmented with multiple pre-defined HCD energies and analyzed in the ion 

trap. The optimal CE is determined at which the precursor ion is present at a defined intensity, for 

instance 10% of its original intensity, and used for a final analytical scan in the Orbitrap.26  

The mass spectrometry acquisition software allows multiple acquisition parameters to adjust for a 

specific sample type and/or study goal. These parameters each affect the type and number of spectra 

that is recorded, as well as the spectral quality. The parameters automatic gain control (AGC), 

maximum ion injection time (IT) and CE mode are described in this section with regard to small 

molecule analysis in aqueous samples.  

The AGC-target defines the number of ions to accumulate in the C-trap before the MSn+1 scan is 

performed.27 The timespan in which this accumulation is allowed is defined as the maximum IT. The 
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AGC-target and maximum IT are related to each other; a MSn scan is triggered in case one of these 

values is reached. In a MS1 scan with a max IT of 200 ms and an AGC-target of 5x104, the MS2 scan is 

recorded after 150 ms if the AGC target is achieved at 150 ms. If the AGC-target is not reached, the 

MS2 scan will be recorded at 200 ms. There is a trade-off between the quality of the spectra and the 

number of scans available; more additional MS2 scans can be acquired if the AGC-target and/or IT are 

set low but also the spectral quality will be lower.27 If the AGC target is set too high, space-charge 

effects can lead to higher mass errors. 

The Orbitrap Fusion method editor also gives the possibility to in- or exclude certain m/z values 

(together with a retention time if desired) for/from DDA. Thermo Fisher’s AcquireX28 software can be 

used to automatically create a background exclusion list that includes all m/z values and their 

retention time detected in a previous blank sample. This background exclusion list is then used during 

the analysis to exclude background ions from fragmentation events and increase the MS2 percentage 

of non-background ions. Since there is a maximum number of MS2 scans that can be recorded in the 

duty cycle, it is disadvantageous to record MS2 scans of background ions that are not of interest. 

 

2.3 Spectral libraries and chemical databases 

The different levels of identification described by Schymanski et al. are shown in table 1.11 To be able 

to reach confidence level 2 or 3, ‘tentative candidate(s)’ or ‘probable structure’, respectively, spectral 

matching is required, where experimental spectra are compared to library spectra or in silico 

predicted spectra. To this end, spectral libraries, in silico fragmentation predictors, and software that 

implements spectral matching have been developed. These tools can connect the experimentally 

obtained mass spectrum with candidate structures. 

Spectral libraries occur in both commercial, such as mzCloud29, and open source forms, such as 

MassBank30. mzCloud is a spectral library that contains HRMS spectra, both MS2 and MSn, in so-called 

fragmentation trees.29 These fragmentation trees contain several fragmentation spectra of the same 

precursor that are obtained at multiple different CEs. mzCloud is available online 

(https://www.mzcloud.org) and in Compound Discoverer (Thermo Fisher Scientific), both the online 

library as its offline version mzVault.31 mzVault has the possibility to add in-house acquired spectra. A 

disadvantage of mzCloud is that it only contains spectra acquired with Orbitrap mass analyzers. In 

contrast, e.g. MassBank Europe by the NORMAN network (nMassBank = 2304) contains also data 

acquired with QTOF mass analyzers and is an open source spectral library that can be accessed freely 

and is constantly developing as well.30 NORMAN MassBank is directed towards environmentally 

relevant contaminants32 but has a lower data curation level than mzCloud.  

Compounds that are not included in spectral libraries, but are present in suspect lists and chemical 

databases can be fragmented in silico. The resulting predicted fragmentation spectra can then be 

compared to the experimental spectra. Suspect lists and chemical databases occur in various sizes. 

The NORMAN network for example hosts the NORMAN Substance Database (SusDat, nSusDat = 

65697)33 which is composed of various environmentally relevant suspect lists such as the 

STOFFIdent34 and KWR Sjerps lists35 with water relevant compounds (nSjerps = 5722), and the UBAPMT 

list36 with REACH substances that are (very) persistent, (very) mobile and toxic (nUBAPMT = 240). These 

lists provide information such as chemical names, CAS registry numbers, structure (SMILES, InChI, 

InChIKey), retention time index, [M+H]+ and/or [M-H]-. 

The Chemistry Dashboard37 is a chemical database held by the U.S. Environmental Protection Agency 

and is i.a. linked to the toxicity database ToxCast.38 The latter holds in vitro toxicity information of 
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many chemicals based on their response to various bioassays, this database is constantly growing. 

The version used in this project contained 9224 chemicals.  

ChemSpider39 is a chemical database that covers a larger chemical space than SusDat and currently 

consists of 84 million entries. ChemSpider is often used in annotation software such as MetFrag40 or 

Compound Discoverer31 to identify detected features. 

 

2.4 In silico fragmentation 

In silico fragmentation techniques are often applied in compound annotation; candidate structures 

are fragmented using computational strategies and their in silico fragmentation spectra are compared 

with the measured spectrum. In silico fragmentation can also be used for prediction of the 

fragmentation spectra of molecules with a structural alert, without comparison to experimental 

spectra. Rule-based fragmentation and combinatorial fragmentation are the most common types of 

algorithm used for in silico fragmentation of molecules.41 The rule-based fragmentation tools predict 

MS2 spectra using manually created fragmentation rules. When using combinatorial fragmentation, 

all bonds of a molecule are broken systematically where bond energies can be taken into account. In 

this project, two types of fragmentation software were applied; MetFrag and CFM-ID 2.0. 

 

MetFrag 

MetFrag is a combinatorial fragmentation predictor designed for the matching of experimental 

spectra to a candidate structure retrieved from databases such as KEGG, PubChem, ChemSpider or an 

uploaded structure data file (SDF).40 MetFrag fragments these candidate molecules in silico using a 

bond dissociation approach. This means that each possible bond of the molecule is broken, and tree 

depths can be chosen. Five neutral loss rules are applied to consider rearrangement reactions. The 

resulting spectra are ranked based on the intensity, m/z values and bond dissociation energy of the 

matched peaks to find the best spectrum and compound match. In this project, no candidate 

matching was required. Instead, the R-package metfRag42 (version 2.4.2) was used to generate 

fragments for molecules with a structural alert.  

 

Competitive Fragmentation Modeling (CFM) 

CFM is another combinatorial fragmentation predictor but different from MetFrag. CFM consists of 

two methods for ESI-MS/MS CID fragmentation; single energy competitive fragmentation modeling 

(SE-CFM) and combined energy competitive fragmentation modeling (CE-CFM).41 The SE-CFM model 

is a stochastic, homogeneous Markov process, where the probabilities of the fragmentation process 

are defined by a transition model. The model makes a few assumptions for the fragmentation process 

such as that the molecule needs to be singly positive charged, collision yields two fragments of which 

one is neutral and the other has a single positive charge, removal or addition of sigma bonds during a 

break is not allowed, and the valence and even electron rules must be satisfied in all fragments.41 In 

fact, the method is similar to MetFrag apart from these assumptions. The CE-CFM model combines 

the information of multiple energies and is therefore more complex but does not show better results 

according to the designers.  

Compared to MetFrag, CFM-ID 2.0 performs better at compound identification but the computation 

time is longer.40 Ruttkies and coworkers (2016) concluded that the combination of MetFrag with CFM-

ID 2.0 gave better results for compound identification.40 CFM-ID 2.0 won the Critical Assessment of 
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Small Molecule Identification (CASMI) contest in 2014.43 This contest was developed to assess the 

performance of annotation software for mass spectrometry data.  

Recently, a new version of CFM-ID with higher performance has been developed. CFM-ID 3.0 uses a 

rule-based approach instead of the combinatorial approach but no Windows executables were 

available yet.44 So CFM-ID 2.0 was applied in this project, using ‘cfm-predict.exe’ which predicts the 

spectrum for an input molecule based on the pre-trained SE-CFM model.45 The program output 

consists of three m/z and intensity lists, for low energy CID (10 V), medium energy CID (20 V) and high 

energy CID (40 V). These energies reflect the type of spectra where the model is based on. CFM-ID is 

based on CID QTOF data which is comparable to HCD data from an Orbitrap instrument (beam-type 

CID).46 

 

2.5 Structural alerts 

Structural alerts, often referred to as toxicophores or expert rules, are molecular (sub)structures 

related to the toxicity of a chemical, see figure 4. The presence of halogens is for example often 

related to toxicity, such as fluor in GenX of the PFAS class. 

Historically, structural alerts have been derived manually based on expert knowledge, today they can 

be derived computationally. To this end, several databases and software programs have been 

developed, such as ToxAlerts47, DEREK48, and MultiCASE49. These are often applied as a tool in the 

development of pharmaceuticals for prediction of potential drug toxicity using read-across. Read-

across is a technique for predicting toxicity for one compound based on data of the same toxic 

endpoint for other compounds.50 

 

    
Figure 4  Examples of structural alerts; acyl halides, aromatic ring N-oxide and dioxin-like structures.51 

 

Toxic endpoints are defined as the recorded observation or measured biological effect in a toxicity 

test (in chemico, in vitro or in vivo).52 Most structural alerts are derived from the endpoints 

carcinogenicity and mutagenicity. Several lists of structural alerts for carcinogenicity and mutagenicity 

have been published, the most common are generated by Ashby and Tennant (1998)53, Baily et al. 

(2005)54 and Kazius et al. (2005 & 2006).55-56 Benigni and Bossa (2008)51 compared those lists and 

found agreement of 65% with rodent carcinogenicity data and 75% with Salmonella mutagenicity 

data. They generated a revised list of 33 structural alerts which is given in appendix A. These alerts are 

included in the ToxAlerts database. Other toxic endpoints are examined less extensively, but they 

might be relevant as well. The hazardous chemicals in water are usually present at low concentrations 

and toxicity occurs in the long term.57 Drinking water-relevant toxic endpoints are genotoxicity, 

carcinogenicity, mutagenicity, endocrine disruption, neurotoxicity and developmental toxicity.57  

Structural alerts are useful to apply in the ‘rough’ selection of compounds that need to be identified 

in NTS methods, as compounds with a structural alert could potentially be toxic. The presence of one 

or more structural alerts can be used as a trigger for further fragmentation events. A disadvantage of 

using structural alerts in NTS for the selection of features is that initially non-toxic compounds that 

are bioactivated once taken up by an organism will not be selected for further identification. 

However, if known, these compounds could be added to the target- or suspect screening list. 
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Another remark on this technique is that the total molecular structure is not considered, this can 

result in potentially overlooking mutually interfering functional groups that affect the total potency of 

the compound.58 Other modulating factors that influence the biological activity of the chemical are:59  

- Molecular weight. The molecule is less easily absorbed with increasing molecular weight and 

size. 

- Physical state of the compound. This determines the chances of the compound to reach its 

target sites. 

- Solubility. Highly hydrophilic chemicals are rarely absorbed and easily excreted. 

- Chemical reactivity. Reactive compounds may react with other compounds before they reach 

their target site. 

- Geometry. This determines the fit to the target site.  

Some of these limitations are less relevant, for instance solubility, as highly hydrophilic chemicals will 

not be detected when RPLC using a C18 column is applied because they are expected to elute at t0. 

 

2.6 Proposed method 

Here, an intelligent acquisition method that online prioritizes potentially toxic features and ensures 

availability and good quality fragmentation spectra of the prioritized features is proposed. To this end, 

the concept of MS1- and MS2-triggers is introduced. MS1-triggers are specific properties of an ion 

detected in the full scan MS1 spectrum that suggest potential toxicity. These properties are defined 

as the presence of chlorine and/or bromine and masses that occur in suspect lists. If an ion is 

detected in the MS1 spectrum that has an isotopic pattern characteristic for chlorine and/or bromine, 

or when the m/z value of the ion is present in the suspect list applied, a MS2 scan is triggered. MS2-

triggers are specific fragment masses or deltas in the recorded MS2 spectrum that are indications for 

the presence of a structural alert. If such a fragment or delta is detected in the MS2 spectrum, an 

additional MS2 scan is triggered.  

Figure 5 is a schematic overview of the proposed workflow of the NTS intelligent acquisition method 

with online prioritization. Analytes are separated by reversed-phase liquid chromatography and 

transferred to the mass spectrometer where a MS1 full scan is taken. Ions are selected for a MS2 scan 

if a MS1-trigger is present, otherwise/additionally the top n most intense peaks are selected. This 

MS1-trigger is defined as the presence of a chlorine or bromine isotopic pattern and/or a m/z value of 

the inclusion list with m/z values of suspect compounds. Once a MS2 scan is recorded, it is screened 

for the presence of a recurring fragment or delta corresponding to a structural alert. An additional 

MS2 scan is taken if such a MS2-trigger is present (figure 5, scenario 1). This additional MS2 scan is 

recorded with different settings such as a longer maximum IT, different CE or a different CE mode. 

The added value of this intelligent acquisition method is that prioritization happens online, during the 

MS measurement and not after data analysis. Potentially toxic compounds are prioritized and have a 

higher probability to be fragmented (MS1-trigger) or receive an additional MS2 scan (MS2-trigger). 

This results in prioritized features with sufficient, good quality MS2 information which in turn 

facilitates their identification. Re-analysis of samples becomes obsolete and identification ultimately 

more efficient. 
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Figure 5 – Schematic representation of the proposed LC-HRMS/MS workflow using intelligent acquisition based on structural alerts. A full MS1 scan is taken after chromatographic separation and 
the peaks are screened for their intensity and the presence of MS1-triggers (blue diamond marker). The most intense peaks (based on DDA-approach, yellow star marker) and those that contain a 
MS1-trigger are selected for a MS2 scan. The MS2 scans are screened for MS2-triggers indicating the presence of a structural alert resulting in four possible scenarios: 

1. SA is present, so an additional MS2 scan at different conditions is taken. 
2. No SA present, structure identification is not necessary, no additional MS2 is taken. 
3. SA is present, but an additional MS3 scan is necessary for complete structural elucidation (MS3 scans are outside the scope of this project).  
4. SA is present, the spectral quality is sufficient for structure elucidation (online spectral quality assessment is outside the scope of this project). 
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3. Materials & Method 

The complete strategy used to develop the intelligent acquisition method using both cheminformatics 

and LC-HRMS experiments is illustrated in figure 6. First, cheminformatics were applied to retrieve 

compounds with structural alerts, in silico fragment these compounds, mine for recurring fragments 

and deltas in the predicted spectra, and ultimately determine MS1- and MS2-triggers. LC-HRMS 

experiments were then performed to assess the performance of both trigger types, and in addition 

investigate the effect of selected acquisition parameters on MS2 spectral quality. 

 

 
Figure 6 – Schematic overview of the strategy that was used to develop the intelligent acquisition method, both 
cheminformatics (left) and LC-HRMS experiments (right) were applied.  

 

3.1 Screening of compounds for structural alerts 

The workflow for the screening and fragmentation of the ToxCast dataset is given in appendix B. First, 

the CAS registry numbers of the 9224 compounds registered in the ToxCast data file 

Chemical_Summary_190708.csv60 were converted into 7571 unique MS-ready SMILES using the 

Chemistry Dashboard.37  

Four toxic endpoints were selected for screening with ToxAlerts: ‘endocrine disruption’ (edc), ‘non-

genotoxic carcinogenicity’ (ngc), ‘genotoxic carcinogenicity, mutagenicity’ (gcm) and ‘developmental 

and mitochondrial toxicity’ (dmt). These endpoints and their corresponding 187 structural alerts were 

chosen based on their relevance for drinking water and potential human health risk.57 The endocrine 

disruption alerts used in this study belong to both estrogenic and androgenic endocrine disruptors.61 

This selection was made based on in vitro and in vivo (mammalian) data. As endocrine compounds are 

poorly ionizable, it is questionable whether these compounds can be detected in ESI-MS/MS. 

The output of ToxAlerts was formatted in R62 (version 3.6.1 (2019-07-05) -- "Action of the Toes") for 

fragmentation with MetFrag and CFM-ID. A .txt file was generated per structural alert containing the 

InChIKey and SMILES code for suitability with CFM-ID 2.0. 
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3.2 In silico fragmentation 

The compounds with a structural alert were in silico fragmented with MetFrag in R using the R-

package metfRag42 (version 2.4.2) and CFM-ID 2.0 using the command line. The command-line utility 

cfm-predict.exe was used to generate fragments with CFM-ID 2.0, the standard trained CFM model 

and its standard configuration parameters were used, see appendix B. The post processing option was 

not included and the probability threshold was set to 0.001 (default setting). The output was 

processed in R. MetFrag is not designed for fragmentation of molecules only, so a separate script was 

written to process the generated fragments and add a proton (1.00727646677 Da) to generate the 

[M+H]+ mass. 

 

3.3 Pattern mining 

The results of the in silico fragmentation of compounds with a structural alert were screened for 

characteristic patterns, that is, recurring fragments and recurring mass shifts (deltas). All structural 

alerts with more than 4 molecules were included in the analysis. Both the CFM-ID dataset and the 

MetFrag dataset were screened, with the control set being the MS2 spectra of all molecules for each 

method. For CFM-ID, to be able to compare the effect of the three energy levels on the recurring 

fragments and deltas, an intensity threshold was set at minimal 5% of the maximum peak intensity 

(100). The energy levels had an effect on the signal intensity only and not the m/z values of the signal. 

So no energy effects could be taken into account in the analysis without setting this threshold value of 

5%. The spectra were screened for recurring fragments by counting the presence of all m/z values, 

regardless of the peak intensity, as long as it was ≥ 5% of the maximum peak intensity. A code snippet 

with the defined function is shown in figure 7. 

 

 
Figure 7 – R-script for the function getCount(), where the frequency of each fragment within all MS2 spectra of the same 
structural alert is calculated. x represents a numeric vector with m/z values of all the generated fragments. 

 

The frequency of each m/z value recurring within the MS2 spectra of the molecules of one structural 

alert was calculated. The same was done for the MS2 spectra of the total fragmented dataset and 

these frequencies were compared.  

Screening for recurring deltas between fragments was performed in R as well, the frequencies of 

these deltas were calculated and compared with the frequencies of the deltas occurring in the total 

dataset. A code snippet with the defined function is shown in figure 8. 

An extra control step for the frequencies was performed by taking a random sample (n = 3953) from 

the NORMAN SusDat (ntotal = 65697) that was not screened for structural alerts. The sample was 

fragmented with MetFrag and CFM-ID as well, following the same approach. Next, the frequencies of 

recurring fragments and recurring deltas within this random sample were compared with the 

frequencies within MS2 spectra of compounds with structural alerts derived from ToxCast. 
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Figure 8 – R-script for the function getDelta(), where all possible deltas of each MS2 scan are calculated. y represents a 
numeric vector with m/z values of all the generated fragments. 

 

3.4 Validation 

Validation of structural alerts with ToxCast toxicity data 

ToxCast assays relevant for the endpoints that were linked to the structural alerts were selected based 

on literature.9 These assays are listed in appendix D. The AC50 values of the ToxCast compounds with 

an alert were obtained from ‘ac50_Matrix190708.csv’ (downloaded at 04 December 2019).63 In this 

file, non-active compounds are given an AC50 value of 1.000000e+06. Lower values indicate that the 

compound is active. Per toxic endpoint, i.e. endocrine disruption, developmental and mitochondrial 

toxicity, non-genotoxic carcinogenicity and genotoxic carcinogenicity, mutagenicity the percentage of 

molecules with both a structural alert and activity in one of the specified assays was calculated. This 

percentage was compared to the percentage of active compounds for the total ToxCast dataset, 

irrespective of the presence of a structural alert. 

In ToxCast, some MS-ready SMILES codes occur multiple times (but with a different DSSTox Substance 

identifier) with in some cases varying toxicity information. The toxicity validation was based on these 

DSSTox Substance ID to include all bioassay results for the same MS-ready SMILES and prevent 

information loss. 

 

Validation of in silico predicted fragmentation spectra with experimental spectra 

The fragmentation results were validated with experimental data obtained from the NORMAN 

MassBank (MassBankEU).30 As this dataset is composed of experimental data originating from various 

laboratories, results are not completely comparable and contain experimental errors. Therefore, it 

was not possible to perform the same structural alert analysis of screening for recurring fragments 

and deltas in the MassBank data. However, the MassBank fragments were used to validate the CFM-ID 

results of SusDat. MassBank data was available for 2.25% of the fragmented molecules from SusDat.  

Another part of the validation included the experimental data obtained during the MS2-trigger 

experiments. The computationally derived fragments and deltas were compared with these 

experimental results. 

 

3.5 HRMS method development 

Sample preparation 

The chemicals used in this study are listed in appendix E. An internal standard mixture of atrazine-d5 

(CDN isotopes, Pointe-Claire, Canada), benzotriazole-d4 and bentazon-d6 (LGC Standards, Wesen, 

Germany) at a final concentration of 1 µg/L was added to each sample. Surface water samples 
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(Lekkanaal, the Netherlands), wastewater treatment plant (WWTP) influent samples, spiked surface 

water samples and spiked WWTP-influent samples were filtered using 0.2 µm PhenexTM-RC 15 mm 

Syringe Filters (Phenomenex, Torrance, USA) prior to analysis. The WWTP-influent samples were 10 

times diluted. The blanks used for these analyses were filtered as well. The spiking solution ‘LOA-600 + 

specials’ was added to the samples to final concentrations of 10 µg/L, 1 µg/L, 100 ng/L, 10 ng/L and 1 

ng/L (see sequence list in appendix F). 

 

Acquisition parameters 

Two sets of experiments were performed to determine the effect of a background exclusion list using 

the AcquireX acquisition software (Thermo Fisher Scientific Inc.), stepped and assisted CE, the AGC-

target and maximum IT for the MS2 scan. The methods were edited using Thermo Xcalibur Instrument 

Setup (version 4.2.28.14, Thermo Fisher Scientific Inc.). All methods were based on the standard LC-

HRMS KWR non-target screening reversed phase method in positive mode with the following 

instrument settings. 

A Vanquish HPLC system (Thermo Fisher Scientific) coupled to a Tribrid Orbitrap Fusion mass 

spectrometer (Thermo Fisher Scientific) was used for all experiments in this study. The LC system was 

composed of pumps, auto sampler (VF-A10-A) with draw- and dispense speed set to 5 µL/s, column 

compartments (VH-C10-A) maintained at 25 °C. The analytical XBridge BEH C18 XP column (150mm x 

2.1 mm i.d., 2.5 µm particle size, Waters) was protected by a Phenomenex SecurityGuard Ultra 

column (UHPLC C18, 2.1 mm i.d.). The system was controlled with Thermo Scientific Xcalibur software 

(version 4.2.28.14, Thermo Fisher Scientific Inc.).  

The mobile phase consisted of 0.05% formic acid (J.T. Baker, Avantor Performance Materials B.V., 

Deventer, the Netherlands) in ultrapure water (LiChrosolv, LC-MS grade, Merck, Darmstadt, Germany) 

[v/v] (mobile phase A) and 0.05% formic acid in acetonitrile (J.T. Baker, ultra-gradient HPLC grade, 

Avantor Performance Materials B.V., Deventer, the Netherlands) [v/v] (mobile phase B). The injection 

volume was set to 100 µL. The total analysis time was set to 34 minutes: 0 to 1 min, isocratic at 5% B; 

1 to 25 min linear gradient to 100% B, 25 to 29.5 min linear gradient to 5% B; 29.5 to 34 min isocratic 

at 5% B. 

The mass spectrometer was equipped with a heated-electrospray ionization source with a spray 

voltage of 3000 V in positive mode. Sheath, auxiliary and sweep gas were set to 40, 10 and 5 (arbitrary 

units), respectively. Both the ion transfer tube and vaporizer temperature were set to 300 °C. Full scan 

high resolution mass spectra were recorded with the Orbitrap detector at a resolution of 120,000 

FWHM from m/z 80 up to m/z 1000 during the first 28 minutes of the LC run. RF lens was set to 50%. 

For the MS1 scan, the AGC target was set at 2.0x105 with a maximum IT of 100 ms. Data was acquired 

in profile mode. 

Three different CE settings were tested in the AcquireX experiments: stepped CE 20, 35 and 50, 

assisted CE 20, 35 and 50, and assisted CE 20, 35, 50 and 75. These three methods were tested at a IT 

of 30 ms, 50 ms and 100 ms. Four different AGC-targets for the MS2 scan were tested: 5x104, 2x104, 

1x104 and 5x103 and four different ITs: 30 ms, 50 ms, 100 ms and 200 ms. Leading to 16 methods 

which were measured in triplicate. Sequence lists are given in appendix F. 
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MS1-trigger experiments 

The effect of using an inclusion list and isotopic ratio trigger were tested in the MS1-trigger 

experiments. Five inclusion lists were used. These consisted of compounds within the mass range of 

the full scan, i.e. m/z between 80 and 1000 Da, and polarity (if available) amenable to RP-HPLC, i.e. log 

KOW between -2.5 and +3.5. When the scan range is enlarged to > 1000 Da, the sensitivity decreases 

significantly. Fragmentation of molecules < 80 Da leads to fragment ions below the detection limit in 

MS2, ~50 Da. The mass distribution of all organic compounds present in NORMAN substance database 

with the selected log KOW is shown in figure 9. It reveals that the majority of compounds is between 80 

and 1000 Da, marked by the vertical red dotted lines, and is thus covered by the full scan range.  

 
Figure 9 – Mass distribution of NORMAN Substance Database, filtered for organic compounds with predicted log KOW between 
-2.5 and +3.5, binwidth = 2. 

 

The five inclusion lists were: 

a) NORMAN Substance Database (susdat_2020-02-03-164350.csv, downloaded at 3 February 

2020).33 This dataset was filtered for organic compounds with [M+H]+ ≥ 80 Da and ≤ 1000 Da and 

log KOW (predicted with EPISuite) ≥ -2.5 and ≤ +3.5, resulting in 18667 compounds. 

b) NORMAN Substance Database with retention time prediction, the log KOW values of the NORMAN 

Substance Database were used to predict the retention time with an experimentally derived 

equation, based on KWR internal data (see equation 1), this resulted in 32485 m/z values.64   

(1)   �� = log ��� 0.254 + 5.1945⁄   

c) UBAMPT (Potential Persistent, Mobile and Toxic (PMT) substances, retrieved from NORMAN 

SusDat at 12 February 2020), also filtered for organic compounds with [M+H]+ ≥ 80 Da and ≤ 1000 

Da, resulting in 192 m/z values.36  

d) Extended KWR Sjerps list (Sjerp_2016_WatResManuscript_SI-1.docx, downloaded at 19 February 

2020) filtered for organic compounds with [M+H]+ ≥ 80 Da and ≤ 1000 Da, resulting in 3399 m/z 

values. 35 

e) Spiking list with all [M+H]+ of a water relevant contaminants spike, 82 m/z values. These water 

relevant contaminants (LOA-600 + specials) are determined in-house at KWR and listed in 

appendix E. 

 

A distribution was made of the number of chlorine and bromine atoms in all 869027 compounds 

registered in the CompTox Chemistry dashboard, see appendix G.65 As some outliers were present 

(formulas with 30 Cl or 18 Br atoms), the isotopic ratios covering ≥ 99% of the chlorinated compounds 

(n = 128650) and brominated compounds (n = 53258) were considered. The isotopic ratios of Cl up to 
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Cl6 and Br up to Br5 were calculated with Compound Discoverer software (Xcalibur) and are shown in 

table 3. 

 
Table 3 – Calculated ratios between the monoisotopic peak and the next peak, for Cl and Br combinations. 

delta M expected ratio number of Cl or Br atoms 

1.99705 0.3193 Cl 
1.99705 0.6394 Cl2 
1.99705 0.9586 Cl3 
1.99705 1.2788 Cl4 
1.99705 1.5960 Cl5 
1.99705 1.9206 Cl6 
1.99795 0.9724 Br 
1.99795 1.9455 Br2 
1.99795 2.9231 Br3 
1.99795 3.8939 Br4 
1.99795 4.8657 Br5 

 

The inclusion lists and the isotopic ratio trigger were tested separately and combined. The design of 

the resulting acquisition decision trees is shown in figure 10. The methods were tested on surface 

water and WWTP-influent samples spiked with water relevant contaminants (LOA-600 + specials, see 

appendix E). The sequence lists of the MS1-trigger experiments are given in appendix F. The inclusion 

lists were imported in the ‘Targeted Mass’ node, with the targeted mass tolerance set to +/- 5 ppm. 

The isotopic ratios were imported in the ‘Targeted Isotopic Ratio’ node with a ratio tolerance of 10% 

and the mass tolerance set to +/- 3 ppm. 

 
 
Figure 10 – Design of acquisition decision trees for MS1-trigger experiments, tree (a) is the regular KWR method, tree (b) 
includes the targeted isotopic ratio node, tree (c) includes the targeted mass node and tree (d) combines both.  

a b 

c d 
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MS2-trigger experiments 

The effects of four different MS2-triggers, i.e. two recurring deltas and two recurring fragments, were 

tested as well. For this, ultrapure water samples were spiked with compounds that were predicted to 

exhibit these fragments and deltas in their MS2 spectra with the in silico experiments. The spike-in 

compounds were also added to surface water at different concentrations (1 ng/L up to 10 µg/L). All 

MS2-trigger samples are given in appendix E. The trigger experiments were performed separately, 

together and combined with the MS1-triggers using isotopic ratios and the Sjerps inclusion list. 

Presence of an MS2-trigger led to an additional MS2 event using alternative CEs, i.e. stepped CE (10, 

75, 90) or assisted CE (20, 35, 50, 75, 90), or longer ITs, i.e. stepped CE (20, 35, 50) with 200 ms IT 

instead of the regular 50 ms. These alternative fragmentation events were hypothesized to result in 

spectra with complementary fragments in the case of alternative energies, and higher quality spectra 

in the case of longer ITs. The 11 different methods that were tested are described in table 4 and the 

design of their decision trees in figure 11. The sequence lists can be found in appendix F. 

 
Table 4 – Description of the methods tested in the MS2-trigger experiments. 

Method  Description Different settings additional MS2 

1 regular NTS KWR method - 
2 Targeted Mass Trigger for alert TA344/TA362, m/z 62.9996 CE stepped (10, 75, 90) 
3 Targeted Mass Trigger for alert TA367, m/z 55.0178 CE stepped (10, 75, 90) 
4 Targeted Mass Difference for alert TA322, ΔM1 =  17.0265 CE stepped (10, 75, 90) 
5 Targeted Mass Difference for alert TA387/TA395, ΔM1 =  42.0106 CE stepped (10, 75, 90) 
6 All four alerts, m/z 62.9996; m/z 55.0178; ΔM1 =  17.0265; ΔM1 =  42.0106 CE stepped (10, 75, 90) 
7 All four alerts, m/z 62.9996; m/z 55.0178; ΔM1 =  17.0265; ΔM1 =  42.0106 CE assisted (20, 35, 50, 75, 90) 
8 All four alerts, m/z 62.9996; m/z 55.0178; ΔM1 =  17.0265; ΔM1 =  42.0106 max IT 200 ms 
9 method 6 + MS1-triggers (isotopic ratio & Sjerps inclusion list) CE stepped (10, 75, 90) 

10 method 7 + MS1-triggers (isotopic ratio & Sjerps inclusion list) CE assisted (20, 35, 50, 75, 90) 
11 method 8 + MS1-triggers (isotopic ratio & Sjerps inclusion list) max IT 200 ms 
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Figure 11 – Design of acquisition decision trees for MS2-trigger experiments, tree (a) corresponds to method 2 & 3, (b) 
corresponds to method 4 &5, tree (c) combines both and corresponds to method 6, 7 & 8, and tree (d) combines MS1- and 
MS2-triggers and corresponds to method 9, 10 and 11.  

 

Data analysis 

Compound Discoverer 3.1 (Thermo Fisher Scientific) was used to perform i.a. peak picking, retention 

time alignment and compound annotation. The Compound Discoverer workflow settings are given in 

appendix H. The output of the Compound Discoverer runs was exported as Compound Tables 

including MassList search results. For spectral quality assessment, compound annotations were 

removed in Compound Discoverer and the results of non-background features with tR ≥ 2.40 min were 

exported to mzVault (Thermo Fisher Scientific). From mzVault, libraries containing feature 

information, CE, precursor mass and the 10 most intense peaks and their intensities were exported as 

.csv files. Both the mzVault libraries and the compound tables were imported in R version 3.6.1 for 

further processing. 

a b c 

d 
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The general parameters used for spectral quality assessment were obtained from the Compound 

Discoverer results: MassList hits, ChemSpider hits, mzCloud scores and mzLogic scores. For each MS2 

scan assigned to a feature, eight more specific parameters derived by Nesvizhkii et al.66 were 

calculated in R. These parameters consisted of the number of peaks, mean and standard deviation of 

the peak areas, smallest m/z ranges containing 50% and 95% of the total peak area, total ion current 

per m/z value, standard deviation of the sequential gaps between the peaks and the average number 

of neighbor peaks within a 2-Da interval around every peak.66 

Spectrum similarity scores were calculated using the function SpectrumSimilarity() from the R-package 

OrgMassSpecR67 (version 0.5-3), which is using equation (2) to calculate a similarity score between 

two spectra, where u and v are the aligned vectors of the two spectra. This function takes the signal 

intensities into account.  

 

(2)  cos � = (� ∙  �)/(�∑ �� × �∑��) 

 

Fragment annotation was performed with the R-package metfRag42 using the function 

frag.generateMatchingFragments() on the centroided MS2-spectra, using default settings. Thereby, 

the MS2-spectra of the four spiked compounds DEET, phenazone, primicarb and triphenylphosphine 

oxide could be assessed in regards to annotated peak numbers and intensities. These compounds 

were chosen because their MS2 scans reached the AGC-target of 5x104 within the maximum IT. 
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4. Results 

4.1 Screening of compounds for structural alerts 

It appeared that the input SMILES uploaded to ToxAlerts were converted into different SMILES 

describing the same molecule, see appendix C. The use of canonical SMILES instead of MS-ready 

SMILES as input for ToxAlerts did not improve the overlap. Communicating the differences between 

in- and output to the developers led to an adjustment in the software of ToxAlerts which resulted in 

the possibility to connect the output SMILES to the original input MS-ready SMILES by using 

indexation. 

In addition to ToxCast entries (n = 7571), the MS-ready SMILES of the two databases NORMAN 

MassBank30 (n = 2304), and NORMAN SusDat33 (n = 65697) were screened for structural alerts. In the 

case of MassBank, only the 1903 compounds having available positive ionization HCD data were 

screened. Regarding SusDat, compounds were filtered for those with an EPISuite predicted log Kow 

value between -3.0 and +4.5 (provided in SusDat), resulting in 46688 compounds. This filtering step 

was applied to eliminate compounds that are not detectable by RPLC. Figure 12a shows a comparison 

of the number of compounds before and after screening of the different datasets.  

 

 
Figure 12 – a) Number of compounds per dataset, the unique compounds screened and the compounds with a structural alert. 
b) Schematic representation of the number of structural alerts present in the datasets. 

 

Screening of the ToxCast database with ToxAlerts revealed the presence of 157 structural alerts, in 

one or more molecules. Several duplicate structural alerts were present in the ToxAlerts database. 

These were removed from the analysis resulting in 139 unique structural alerts. The distribution of the 

number of molecules per unique alert is shown in figure 13a. To enable pattern detection, a cut-off 

was set at n = 4. Consequently, only structural alerts with a minimum of 5 molecules were selected for 

further analysis, resulting in 109 structural alerts. Screening for structural alerts of SusDat compounds 

was performed accordingly, resulting in the detection of 152 unique alerts (see distribution in figure 

13b) and 133 after the n = 4 cut-off. 

The compounds in the NORMAN MassBank dataset contained 103 unique structural alerts of which 59 

alerts were present in at least 5 compounds. An overview of the number of structural alerts per 

dataset is illustrated in figure 12b. 

 

a b 
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Figure 13 – Distribution of number of compounds found per alert (a) in ToxCast (TA441 with n = 1201 and TA390 with n = 675 
were excluded from this graph) and (b) SusDat (48 alerts with n ≥ 500 were not included in this graph), the red dotted line is 
placed at n = 5. Binwidth = 1. 

 

Validation of toxicity 

To validate the ToxAlerts approach for structural alert detection was investigated whether compounds 

with a given structural alert were active in a bioassay related to that alert. To this end, the 

percentages of compounds in the in vitro toxicity database ToxCast were calculated for compounds 

with both an alert and activity in the respective toxic endpoint(s), and for the active compounds in the 

total ToxCast dataset (table 5).  

Overall, 55.1% of the ToxCast molecules with an alert were active in one or more bioassays 

corresponding to that alert, compared to 55.5% of all ToxCast molecules. These percentages are close 

to each other and give an indication that the alerts indeed indicate toxicity. They also indicate that the 

alerts used for screening were not covering all chemicals active in these toxic endpoints. Moreover, 

many compounds have not been tested on each bioassay. The availability of toxicity information in 

ToxCast has to be considered, not all chemicals are tested on all included assays.68 And the U.S. EPA 

have not included all available assays in their program, e.g. Chemical Activated Luciferase gene 

eXpression (CALUX) Assays for detection of dioxins or endocrine disrupting compounds. This does not 

have to be a limiting factor for the derivation of structural alerts but it influences the validation of 

toxicity. Consequently, if a compound is not marked as active, it could be inactive or unknown. 

The percentages might increase in case more tests are done. The data gap caused by missing toxicity 

information is shown in figure 14 per bioassay, and in figure 15 per structural alert. The data 

distribution for non-genotoxic carcinogenicity and genotoxic carcinogenicity and mutagenicity 

illustrated in figure 14 looks similar but it is not. This is due to the similarity in structural alerts linked 

to these toxicity endpoints and the overlap in bioassays that are linked to these endpoints. This is also 

represented by the percentages shown in table 5. Figure 15 suggests that there are no inactive 

compounds but compounds can only be marked as inactive if they are tested on all bioassays included 

in ToxCast and do not show activity in all of them. Since no compounds have been tested on all 

bioassays, none of them could be marked as inactive. 
 
Table 5 – Toxicity of the screened molecules with a structural alert present, from screening results of the ToxCast data. 

Toxic endpoint 
active compounds with structural 
alert, % of all compounds with alert 
belonging to that endpoint 

active compounds regardless of 
structural alert, %  of all compounds in 
ToxCast (control group)  

Endocrine disruption (edc) 57.2% 38.1% 
Non-genotoxic carcinogenicity (ngc) 52.9% 45.8% 
Genotoxic carcinogenicity, mutagenicity (gcm) 52.7% 45.8% 
Developmental and mitochondrial toxicity (dmt) 11.1% 5.7% 
Total toxicity 55.1% 55.5% 

a b 
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Figure 14 – Distribution of available toxicity information between in vitro bioassays per toxic endpoint.  

 

 

  

 
Figure 15 – Distribution of available toxicity information between in vitro bioassays per structural alert, each subplot 
represents a toxic endpoint.  
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4.2 In silico fragmentation 

To be able to determine common patterns in the MS2 spectra of compounds with the same structural 

alert, fragmentation spectra were generated in silico using the fragmentation software CFM-ID 2.0 and 

MetFrag. As the CFM-ID software is designed to fragment molecules that are neutral or single charged 

(+1 or -1), multiple charged molecules resulted in an error leading to 8 molecules from the ToxCast 

dataset and multiple from the SusDat dataset that could not be fragmented. In silico fragmentation 

with MetFrag is based on a bond dissociation approach resulting in such a high number of predicted 

fragments that these could not be used for pattern mining. For example fragmentation of gonadorelin 

lead to 1031 MetFrag fragments and 274 CFM-ID fragments. Furthermore, CFM-ID provided intensity 

values to filter for the most likely fragments which was not possible for MetFrag. 

 

Validation with NORMAN MassBank data 

The in silico fragmentation results generated by CFM-ID 2.0 were validated with experimental HCD 

data retrieved from NORMAN MassBank.30 Positive ionization HCD data was available for 1903 

compounds. 587 of these compounds were part of the NORMAN SusDat compounds with a structural 

alert. It is challenging to compare the in silico fragmentation results with the MassBank fragments due 

to experimental errors in the MassBank data. The experimental error plays a role when using the 

percentage of total MassBank fragments overlapping with CFM-ID results. This is due to MassBank 

records being composed of multiple spectra and thus similar fragments that differ by a few Dalton, 

these are listed as individual fragments.  

To overcome this, a threshold of 10 ppm deviation was set to find overlapping fragments between the 

CFM-ID results and MassBank fragments. Overlap in percentage of MassBank and CFM-ID fragments 

was calculated using equations (3) and (4).  

 

(3)  ����������� =
������ �� �������� ��������� �������� ���� ������

����� ������ �� �������� ���������
∙ 100% 

 

(4)  ��������� =
������ �� ������ ��������� �������� ���� ��������

����� ������ �� ������ ���������
∙ 100% 

 

The results of the validation study are shown in figure 16. Fewer molecules have ≥50% of their 

fragments matched between the two datasets based on %MB than based on %CFM-ID. This is expected to 

be caused by the larger total number of fragments per molecule in MassBank than calculated by CFM-

ID. This is probably due to the multiple spectra included in MassBank resulting in more different m/z 

values because of the experimental errors. Binning these experimental values with ranges of 10 ppm 

did not solve the issue because the theoretical fragment masses, where the 10 ppm deviation had to 

be derived from, were unknown. Therefore, all three CFM-ID fragmentation energies were included in 

the pattern mining and patterns were filtered for occurrence in the spectra of at least two 

fragmentation energies. 
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Figure 16 – Results of the validation study with MassBank and CFM-ID at the three different energy levels, shown in violin 
plots. Based on the 587 overlapping molecules between MassBank and CFM-ID.  

 

4.3 Pattern mining  

After in silico generation of fragmentation spectra, the predicted spectra were mined for patterns that 

are characteristic for each structural alert for subsequent use as MS2-triggers. These patterns included 

recurring fragment masses, and recurring mass differences between two fragments referred to as 

deltas. 

Figure 17 illustrates the distributions of the recurring fragments and recurring deltas within structural 

alerts (blue bars) and within the total dataset (red bars) per CFM-ID fragmentation energy (different 

plots). The frequencies are shown on the x-axis and the number of cases where this frequency occurs, 

the ‘count’, is shown on the logarithmic y-axis. These graphs indicate that a frequency threshold of 

around 0.1 would be sufficient to find fragments or deltas that are specific for a certain alert, as higher 

frequencies hardly occur within the total dataset. However, to increase specificity only fragments and 

deltas with a frequency higher than 0.5 were taken into consideration. Two deltas detected with high 

frequency were 2.01565 Da and 18.01056 Da. These were not considered as relevant deltas because 

they occurred in relatively high frequencies in the total dataset. These deltas are expected to 

correspond to a loss of 2H’s and H2O, respectively.  

The mining results of recurring fragments are shown in table 6-7 and the results of the recurring 

deltas are shown in table 8-9. Table 6 contains the frequencies of the recurring fragments in three 

different control datasets; all fragmented molecules with an alert from ToxCast, a random sample 

from SusDat, regardless of the presence of an alert, and all fragmented molecules with an alert from 

SusDat. The highest frequency is 0.02588 and is thus much lower than the frequency of that fragment 

within an alert, shown in table 8. Table 8 is similar to table 6, but represents frequencies of the 

recurring deltas, which are also lower than the frequencies reported in table 9. So the frequencies in 

table 6 and 8 support the recurring fragments and deltas for being indicative for their structural alerts.  

An often recurring fragment in mustard-like structural alerts is m/z 62.99960 which could correspond 

to C2ClH+, a fragment that is likely to form from these alerts. The recurring fragments m/z 55.01784 

and m/z 109.01632 could correspond to C3H3O+ and C2H6ClON2
+, respectively. Some structural alerts 

correspond to the same recurring fragment due to the similarity in their structures which could lead to 

similar fragments. Based on in-house availability of chemicals was decided to test the recurring 

fragments m/z 62.99960 of alert TA344/TA362 and m/z 55.01784 of alert TA367, and the recurring 

deltas m/z 17.02655 of alert TA322 and m/z 42.01056 of alert TA387/TA395 were used as triggers in 

the MS2-trigger experiments.  



31 

 

  
 

   
 

  

 
Figure 17 – Frequency distributions of recurring fragments (left) and recurring deltas (right) per CFM-ID energy. Note the 
logarithmic scale, the bars that look negative represent a count of 0, if no bar is visible, the count is 1. 

 

 

 
Table 6 – All recurring fragments and their frequencies in ToxCast compounds with an alert, in a random sample of SusDat 
(regardless of the presence of an alert), and in SusDat compounds with an alert. 

Fragment 
(m/z) 

Frequency in fragmented part of 
ToxCast with alert (n = 3932) 

Frequency in random sample of 
SusDat (n = 3953) 

Frequency in fragmented part of 
SusDat with alert (n = 26081) 

Energy 0 Energy 1 Energy 2 Energy 0 Energy 1 Energy 2 Energy 0 Energy 1 Energy 2 

55.01784 0.012971 0.013889 0.025178 0.000253 - - 0.013266 0.017752 0.025881 
62.99960 0.004578 0.013889 0.015005 - - - 0.004601 0.007707 0.013803 
109.01632 0.001017 0.001017 - 0.000506 0.000253 0.000253 0.000192 0.000192 - 
121.02841 0.009410 0.013479 0.015514 - - - 0.004141 0.007247 0.009705 
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Table 7 – Structural alerts with a recurring fragment and its frequencies in each dataset. 

Alert Name47, 69 Structure Endpoint 

Recurring fragment frequencies 
within compounds with the alert 

m/z 
ToxCast 

freq 
SusDat 

freq 

TA344 
nTC = 23 (0.3%) 
nSD = 95 (0.2%) 

Nitrogen and sulphur mustard 
(specific) 
X = Cl, Br, I 

 
gcm 62.99960 

E0: 0.174 
E1: 0.783 
E2: 0.957 

E0: 0.189 
E1: 0.705 
E2: 0.853 

TA362 
TA3023 
TA435 
nTC = 11 (0.1%) 
nSD = 21 
(<0.1%) 

S or N mustard 
R = any atom/group; X = F, Cl, 
Br, I 

 
 

gcm, ngc 62.99960 
E0: - 
E1: 0.636 
E2: 1.000 

E0: 0.095 
E1: 0.714 
E2: 0.810 

TA367 
nTC = 81 (1.1%) 
nSD = 578 
(1.2%) 

α, β-Unsaturated carbonyl 
R1 and R2 = any atom/group, 
except alkyl chains with C>5 or 
aromatic rings;  
R = any atom/group, except 
OH, O- 

 

gcm 55.01784 
E0: 0.593 
E1: 0.617 
E2: 0.679 

E0: 0.571 
E1: 0.599 
E2: 0.585 

TA401 
nTC = 5 (<0.1%) 
nSD = 5 (<0.1%) 

N-Nitroso-N-alkylureas 
R = aliphatic carbon or 
aromatic atom;  
R1 = aliphatic carbon  

gcm 

62.99960 
E0: 0.600 
E1: 0.600 
E2: 0.800 

E0: 0.800 
E1: 0.400 
E2: 1.000 

109.01632 
E0: 0.800 
E1: 0.800 
E2: - 

E0: 1.000 
E1: 1.000 
E2: - 

TA414 
nTC = 16 (0.2%) 
nSD = 67 (0.1%) 

Haloethylamines 
R = hydrogen or carbon atom;  
X = F, Cl, Br, I  

gcm 62.99960 
E0: - 
E1: 0.875 
E2: 0.938 

E0: 0.045 
E1: 0.731 
E2: 0.791 

TA415 
nTC = 10 (0.1%) 
nSD = 76 (0.2%) 

Haloalkylethers 
R = carbon atom;  
X = F,Cl,Br,I; only ethers 
containing -OCH2X (methyl) or 
-OCH2CH2X (ethyl) groups are 
included 

 

 
 

gcm 62.99960 
E0: 0.600 
E1: 0.500 
E2: 0.600 

E0: 0.526 
E1: 0.513 
E2: 0.526 

 

 

 
Table 8 – All recurring deltas and their frequencies in ToxCast compounds with an alert, in a random sample of SusDat 
(regardless of the presence of an alert), and in SusDat compounds with an alert. 

Delta (m/z) 
Frequency in fragmented part of 
ToxCast with alert (n = 3932) 

Frequency in random sample of 
SusDat (n = 3953) 

Frequency in fragmented part of 
SusDat with alert (n = 26081) 

Energy 0 Energy 1 Energy 2 Energy 0 Energy 1 Energy 2 Energy 0 Energy 1 Energy 2 

15.01090 0.019074 0.021871 0.059257 0.025044 0.027321 0.046294 0.036118 0.034316 0.066677 
17.02655 0.145473 0.156918 0.059766 0.136352 0.133569 0.047306 0.166098 0.158621 0.048579 
27.99491 0.094354 0.195066 0.136826 0.103213 0.189476 0.114849 0.095740 0.187953 0.135041 
30.01056 0.013225 0.048576 0.067904 0.013155 0.043005 0.056919 0.017446 0.050535 0.066945 
35.97668 0.023906 0.036626 0.042981 0.017961 0.022515 0.020238 0.030827 0.039262 0.036195 
42.01056 0.047050 0.047559 0.053662 0.056160 0.065520 0.055654 0.061347 0.063724 0.060044 
43.97207 0.003052 0.003815 0.006104 0.003036 0.005059 0.007336 0.002876 0.005138 0.007055 
47.00073 0.001018 0.001017 - 0.116367 0.024538 0.010372 0.026839 0.048963 0.024363 
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Table 9 - Structural alerts with a recurring delta and its frequencies in each dataset. 

Alert Name47, 69 Structure Endpoint 

Recurring delta frequencies within 
compounds with the alert 

m/z 
ToxCast 

freq 
SusDat 

freq 

TA11479 
nTC = 24 (0.3%) 
nSD = 75 (0.2%) 

 

 

edc 27.99491 
E0: 0.083 
E1: 0.208 
E2: 0.875 

E0: 0.307 
E1: 0.520 
E2: 0.787 

TA322 
nTC = 445 (5.9%) 
nSD = 3524 (7.5%) 

Aromatic amine (general) 
Ar = any aromatic/heteroaromatic 
ring 

 gcm 17.02655 
E0: 0.562 
E1: 0.524 
E2: 0.200 

E0: 0.661 
E1: 0.516 
E2: 0.131 

TA360 
TA3021 
nTC = 9 (0.1%) 
nSD = 92 (0.2%) 

N-Methylol derivatives 
R = any atom/group 

 

gcm, ngc 30.01056 
E0: 0.889 
E1: 0.556 
E2: 0.111 

E0: 0.848 
E1: 0.620 
E2: 0.076 

TA366 
TA3027 
TA332 
nTC = 5 (<0.1%) 
nSD = 12 (<0.1%) 

Alkyl nitrite 
R = any alkyl group  

gcm, ngc 47.00073 
E0: 0.800 
E1: 0.800 
E2: - 

E0: 0.667 
E1: 0.667 
E2: - 

TA387 
nTC = 44 (0.6%) 
nSD = 605 (1.3%) 

Aromatic N-acyl amine 
Ar = any aromatic/heteroaromatic 
ring,  
R = hydrogen, methyl; chemicals 
with ortho-disubstitution, or with an 
ortho carboxylic acid substituent 
with respect to the N-acyl amine 
group are excluded; chemicals with 
a sulfonic acid group (-SO3H) on the 
same ring of the amino group are 
excluded. 

 

gcm 42.01056 
E0: 0.886 
E1: 0.864 
E2: 0.091 

E0: 0.906 
E1: 0.701 
E2: 0.064 

TA395 
nTC = 52 (0.7%) 
nSD = 669 (1.4%) 

Secondary aromatic acetamides and 
formamides 
Ar = any aromatic/heteroaromatic 
ring; R = H, methyl or activated 
methyl 

 

gcm 42.01056 
E0: 0.904 
E1: 0.885 
E2: 0.115 

E0: 0.916 
E1: 0.716 
E2: 0.073 

TA408 
nTC = 16 (0.2%) 
nSD = 174 (0.4%) 

Benzylic halides 
Ar = any aromatic/heteroaromatic 
ring;  
X = Cl, Br, I  

gcm 35.97668 
E0: 0.625 
E1: 0.625 
E2: 0.063 

E0: 0.546 
E1: 0.534 
E2: 0.155 

TA423 
nTC = 20 (0.3%) 
nSD = 138 (0.3%) 

Isocyanate 
R = any atom/group  

gcm 

15.01090 
E0: 0.300 
E1: 0.600 
E2: 0.550 

E0: 0.239 
E1: 0.514 
E2: 0.514 

27.99491 
E0: 0.800 
E1: 0.700 
E2: 0.300 

E0: 0.754 
E1: 0.580 
E2: 0.210 

TA424 
nTC = 8 (0.1%) 
nSD = 68 (0.1%) 

Isothiocyanate 
R = any atom/group  

gcm 43.97207 
E0: 0.625 
E1: 0.625 
E2: 0.125 

E0: 0.706 
E1: 0.706 
E2: 0.074 

TA433 
nTC = 9 (0.1%) 
nSD = 92 (0.2%) 

N-Methylol derivatives 
R = any atom/group 

 

gcm 30.01056 
E0: 0.889 
E1: 0.556 
E2: 0.111 

E0: 0.848 
E1: 0.620 
E2: 0.076 
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4.4 LC-HRMS experiments 

Acquisition parameters 

Prior to implementing MS triggers for the online prioritization of toxic compounds, the effect of a few 

selected acquisition parameters on the quality of the acquired MS2 spectra was studied. The effect of 

using a background exclusion list was tested, the effect of the different CE modes stepped and 

assisted CE together with maximum IT and the effect of four different AGC-targets and maximum ITs. 

Once the optimal CE, AGC-target and maximum IT parameters are determined, these can be applied in 

the additional scans triggered by the MS2-trigger, leading to spectra of higher quality and thereby 

facilitating identification. 

AcquireX automatically generates a background exclusion list of features that are detected in the 

blank sample. The AcquireX experiments showed that the use of this exclusion list lead to a decrease 

in the percentage of MS2 scans of features marked as background. When no exclusion list was used; 

94.7 ± 0.9 % of the background features were fragmented. The background exclusion list significantly 

reduced this number to 21.9 ± 1.4 %. As a result, more time is available for fragmentation of other, 

more relevant, features. 

Besides the use of a background exclusion list the effect of different CE modes on spectral quality was 

tested. A fragmentation spectrum of good quality has high signal intensity, sufficient fragments and 

low noise levels. However, it is difficult to determine, high-throughput, whether a spectrum is of good 

quality or not because it is unknown what parameters describe spectral quality for small molecules. 

Moreover, no spectral quality metrics are available. Currently, spectral quality has to be determined 

manually for each single spectrum.  

To assess spectral quality, eight spectral quality parameters developed for protein analysis by 

Nesvizhkii et al.66 were determined for the experimental data sets, and the distributions of the 

parameters were visualized (see appendix I). The spectral quality parameter plots did not reveal 

obvious trends; a change in the distribution-shape was visible for some parameters, but not a clear 

shift on the x-axis. Moreover, it remains to be shown how these spectral quality parameters 

correspond to spectral quality. Together, these findings stress the need for spectral quality metrics. 

Another strategy including mzCloud and mzLogic scores was applied to gain insight into the spectral 

quality of the acquired spectra per experimental condition. These two scores assess the match 

between the experimental spectrum and a mzCloud library spectrum, and a combination of mzCloud 

and structural data from ChemSpider and applied masslists, respectively. No effect of CE modes was 

detected in the mzLogic and mzCloud score distributions. Alternatively to the spectral quality 

parameters and the mzCloud based annotation scores, in silico predicted fragmentation spectra can 

be used to determine the information content of a spectrum. When the spectrum has a higher 

information content the more fragments could be annotated by in silico prediction tools. The MS2 

spectra of four spike-in compounds, i.e. DEET, primicarb, phenazone and triphenylphosphine oxide 

were selected, annotated with MetFrag and annotation was compared for each method. 

The results of the annotation experiment for the spiked compounds DEET, primicarb, phenazone and 

triphenylphosphine oxide are shown in figure 18-20. The number of annotated fragments significantly 

increased with longer ITs in the case of primicarb (p-value of 0.00356), phenazone (p-value of 2.32x10-

10) and triphenylphosphine oxide (p-value of 2.05x10-5) (two way ANOVA, figure 18). The DEET-

annotation dataset was not normally distributed, preventing significance testing with an ANOVA. The 

effect of the CE mode varied between the compounds. For triphenylphosphine oxide assisted CE 20-

75 resulted in the most annotated fragments (p-value triphenylphosphine oxide 2.21x10-9), for 
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phenazone assisted CE 20-50 (p-value phenazone 3.44x10-7). For primicarb the best mode varied per 

maximum IT (p-value primicarb 0.00158).  

 

 

 

 
Figure 18 – Number of annotated fragments, AcquireX experiments. a) triphenylphosphine oxide, b) primicarb, c) DEET, d) 
phenazone.  

 

The percentage of annotated fragments regarding the total number of peaks is shown in figure 19, 

where a significant effect of CE mode is present for primicarb (p-value of 0.00719) and 

triphenylphosphine oxide (p-value of 3.14e-05). The effect of IT was significant for triphenylphosphine 

oxide (p-value of 0.0252). This suggests that both assisted CE modes led to a higher percentage of 

annotated fragments and higher maximum IT, at least for triphenylphosphine oxide. Figure 20 displays 

the annotated percentage of the total peak area. The effects of maximum IT and CE type were 

significant for both triphenylphosphine oxide and phenazone. The graphs show a clear difference 

between both assisted CE modes and the stepped CE mode, a higher percentage of the peak area is 

annotated when assisted CE modes are applied. 

These results suggest that more fragments can be annotated when higher maximum ITs are used, and 

when assisted CE is used instead of stepped CE. The advantage of assisted CE over stepped CE is that 

the optimal CE is determined experimentally for each precursor. The best range of assisted CE (e.g. CE 

20-50 or 20-75) could not be determined from these results as this varies between the four 

compounds. With assisted CE a parallel scan is performed in the ion trap analyzer for each CE to 

determine the remaining precursor signal. Consequently, more CEs require more ion trap scans, prior 

to the actual MS2 acquisition scan which is performed in the Orbitrap analyzer. However, due to the 

speed of the ion trap scans the use of assisted CE does not have a large impact on the overall duty 

cycle.26 This is thus not expected to cause a problem, especially in combination with the use of a 

background exclusion list and the developed method with MS1- and MS2-triggers, which allows more 

a b 

c d 
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time to focus on relevant features. Possibly, the chances of obtaining a scan on the best CE are higher 

if more CEs are included in assisted CE, but experiments are required to determine the best assisted 

CE range. Interestingly, large standard deviations were detected for some spectra from technical 

replicates (marked with large error bars in figure 18-20), possibly caused by low-intensity signals that 

lie around the detection limit. Other phenomena are the low percentage of annotated fragments and 

peak area for especially triphenylphosphine oxide and phenazone. It has to be determined whether 

these un-annotated peaks correspond to fragments originating from the compound or correspond to 

noise. In order to do so, other annotation software could be used, such as fragment annotation in 

mzCloud or spectra prediction using CFM-ID. These preliminary results from a small sample size 

indicate the need for more extensive studies on the selected acquisition parameters and their effect 

on spectral quality and fragment annotation. 

 

   
 
 

   

 

 
Figure 19 – Percentage of annotated peaks in the MS2 scan, AcquireX experiments. a) triphenylphosphine oxide, b) primicarb, 
c) DEET, d) phenazone. 
  

a b 

c d 
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Figure 20 – Percentage of annotated peak area (AUC) in the MS2 scan, AcquireX experiments. a) triphenylphosphine oxide, b) 
primicarb, c) DEET, d) phenazone. 

 

The results of the second set of AGC target experiments, in which four different AGC-targets were 

tested, are shown in figure 21. As expected, the percentage of MS2 scans reaching the AGC target 

before the maximum IT increases with lower AGC target and longer IT (see figure 21c). The decrease in 

number of MS1 spectra at higher ITs (see figure 21a) can be explained by the mass spectrometer cycle 

time which is fixed at 0.9 s in the applied top speed method. The mass spectrometer records the 

optimum number of MS2 scans which could lead to time shifts in the MS1 full scans.70 

Another visible trend is the decrease in MS2 spectra with increasing maximum IT and higher AGC 

target, illustrated in figure 21b, which was expected as well. In case ions are allowed to accumulate 

during a larger time span, less time is available for other MS2 scans within the duty cycle. Moreover, 

more accumulation time is required for higher AGC targets. 

The distributions of the eight spectral quality parameters for the different methods are shown in 

appendix I, where the red distributions correspond to the scans that reached the maximum AGC target 

before the maximum IT. Some distributions have non-normal shapes which is caused by a low sample 

size, especially for the scans at an AGC-target of 5x104 and the lower ITs (at a maximum IT of 30 ms, 

none of the MS2 scans reached the AGC target of 5x104). 

Visible trends are the increasing number of peaks with increasing AGC-target and the decrease of total 

ion current per m/z with longer maximum IT. This could indicate that more low-intensity peaks are 

generated at higher AGC-targets and longer maximum ITs, which could possibly correspond to noise. 

The standard deviation of the consecutive m/z gaps between all peaks seems to decrease with shorter 

maximum ITs, suggesting that the distance between peaks becomes more regularly. It is unknown 

whether this corresponds to more noise or not. 

a b

c d 
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Figure 21 – a) number of MS1 scans taken per AGC target and maximum IT combination, b) number of MS2 scans taken and, 
c) percentage of MS2 scans reaching the AGC target before the maximum IT.  

 

It has to be taken into account that some of these parameters are related to each other, such as the 

total ion current per m/z value and the m/z range of 95% and 50% of the total peak area. Currently it 

is unknown what values of these parameters correspond to a spectrum of high or low quality. A 

spectrum with noise only is expected to have many peaks of around the same intensity and thus a low 

standard deviation of the peak areas/intensities. But if this standard deviation is too high, it is possible 

that the spectrum consist of a high-intensity precursor signal and low-intensity fragment signals 

indicating lack of fragmentation. 

To further investigate the effects of the selected acquisition parameters, the spectral similarity of four 

features that reached their AGC-target in the most methods was compared. These high scores (max 

score possible is 1) were reached because of the most intense peaks are matching, regardless of low-

intensity peaks. Low intensity fragments are given less weight in the calculation of the spectral 

similarity score. As low intensity fragments might be the ones affected most by the acquisition 

parameters, another parameter was compared; fragment annotation by MetFrag.  

The results of this fragment annotation test for four of the spiked compounds; DEET, primicarb, 

phenazone and triphenylphosphine oxide are shown in figure 22. A type III sum of squares two-way 

ANOVA was performed and showed a significant increase in the annotated fragments with increasing 

AGC-target for phenazone and primicarb (p-valuephenazone = 2.336e-08, p-valueprimicarb = 0.0001644). The 

numbers of annotated fragments of DEET and triphenylphosphine oxide were not normally distributed 

and significance not tested. No other significant effects were found, but an important remark is that in 

the model that is generated for the ANOVA-test, ‘aliased coefficients are found’, suggesting 

singularity, which could affect the results and power of the statistical test.  

a b 

c 
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Figure 22 – Number of annotated fragments, AGC target experiments. a) triphenylphosphine oxide, b) primicarb, c) DEET, d) 
phenazone. 

 

The percentage of annotated fragments regarding the total number of peaks is shown in figure 23. A 

type-III ANOVA showed no significant effects except for DEET where the maximum IT had a significant 

effect on the percentage of annotated fragments (p-value = 0.009109). This model encountered 

aliased coefficients as well. The graphs do not show a clear increase or decrease of percentage 

annotated peaks, suggesting that the ratio between total peaks and annotated peaks remains the 

same. Together with the increase in number of annotated fragments these results are suggesting that 

with increasing AGC-targets more peaks are generated. The percentage of annotated area under the 

curve (peak area) is shown in figure 24. No significant effects were found but the percentages of 

annotated peak areas differ largely between the compounds. It would be insightful to study the peaks 

that could not be annotated to see whether it is noise or fragments that could not be annotated by 

MetFrag. In order to do so, other annotation software (such as CFM-ID or Sirius71) or library matches 

(e.g. with mzCloud) could be applied to determine the differences.  

Overall, these results suggest an increase in spectral quality with increasing AGC-targets. But further 

studies into spectral quality parameters and fragment annotation are required to be able to state this 

more confidently and to give a better indication of the change in spectral quality upon different AGC-

targets and maximum IT settings. Nevertheless, in the MS2-trigger experiments an AGC-target of 

2x104 and maximum IT of both 50 and 200 ms were used in the alternative scan events. 

a b 

c d 
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Figure 23 – Percentage of annotated peaks in the MS2 scan, AGC-target experiments. a) triphenylphosphine oxide, b) 
primicarb, c) DEET, d) phenazone. 

 

 

 

 
Figure 24 – Percentage of annotated peak area in the MS2 scan, AGC-target experiments. a) triphenylphosphine oxide, b) 
primicarb, c) DEET, d) phenazone. 

a b 

c d 

a b 

c d 
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MS1-trigger experiments 

Subsequently, the potential of MS1-triggers for the prioritization of toxic compounds was assessed 

experimentally. The MS1-triggers consisted of 5 different inclusion lists and the use of isotopic ratio 

triggers for chlorinated and brominated compounds. The results of both sample types, SW and 

WWTP-influent with a spike-in of common water relevant OMPs, are plotted in figure 25-27. No large 

differences in the number of detected features between all tested methods were visible, illustrated in 

figure 25. As expected, the WWTP-influent samples contained more features than the, much cleaner, 

SW samples. 

The two different MS1-trigger methods with and without isotopic ratio did not result in large visible 

differences in percentage MS2 scans of Cl and/or Br containing features, see figure 26. This is mainly 

due to the fact that already the regular KWR method resulted in an average of 97.8% and 89.2% of the 

Cl and/or Br containing features with MS2 spectra in SW and in WWTP-influent, respectively.  

While there was an increase in the percentage of chlorinated and/or brominated features with an 

MS2 spectrum visible in the SW and WWTP-influent samples for the method with isotopic ratio (see 

figure 26b), both differences were not significant (p-value > 0.05). However, based on the Cl/Br 

pattern, which is a parameter in Compound Discoverer stating whether a chlorine or bromine-specific 

isotopic pattern is present in the MS2, there was a significant increase in the percentage of MS2 scans 

for the SW (p-value of 0.001292), but not the WWTP-influent samples. 

A possible explanation could be that there are too many peaks in the full MS1 scan leading to 

difficulties in selecting proper isotopic ratios, in particular when low error tolerances are set. This is 

also supported by the pattern matches determined during the Compound Discoverer analysis. The 

peaks of Cl and/or Br containing features should contain a characteristic isotopic pattern due to the 

natural abundance of chlorine and bromine isotopes. Less features are selected using this approach 

than based on assigned formula (see figure 27), which could indicate that the isotopic patterns are not 

detectable by the software. Alternatively, it could indicate that the formulas assigned by Compound 

Discovered were not correct. In Compound Discoverer, formula annotation and isotopic pattern are 

independent which could lead to false elemental formula annotations. A suggestion for further 

research would be to change these acquisition parameters (ratio- and mass tolerance) of the targeted 

isotopic ratio trigger in such a way that isotopic patterns are triggered at a lower threshold. However, 

a downside of lowering this threshold is the increase in false positive triggers.  

Based on these results the isotopic ratio was implemented in the intelligent acquisition method as 

MS1-trigger as it focuses on Cl-/Br- containing features which are mostly anthropogenic and often 

toxic and the risk of triggering fragmentation of irrelevant features is low. 

 

 
Figure 25 – Number of detected features (including background) per MS1-trigger method (left) and percentage of non-
background features with MS2 (right).  
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Figure 26 – Number of detected features with Cl and/or Br per MS1-trigger method (left) and percentage of non-background 
chlorinated and/or brominated features with MS2 (right). Presence of Cl and/or Br determined based on assigned formula. 

 

 

 
Figure 27 – Number of detected features with Cl and/or Br (including background) per MS1-trigger method (left) and 
percentage of  non-background chlorinated and/or brominated features with MS2 (right). Presence of Cl and/or Br determined 
based on pattern match. 

 

As an additional MS1-trigger, the use of inclusion lists consisting of water relevant compounds was 

investigated. For both SW and WWTP-influent samples, the percentage of features that matched the 

mass of a compound in the inclusion list (with +/- 5 ppm error tolerance) with a MS2 scan was 

calculated and compared with the regular KWR method. There was a significant increase (p-value = 

0.0005877) in the average percentage of MS2 scans of these features for the SW samples in the 

method with SusDat inclusion list with retention time estimate (µ% features with MS2 = 98.8%), compared to 

the KWR method (µ% features with MS2 = 97.9%).  

In the WWTP-influent samples, a significant increase in percentage of MS2 scans taken of m/z values 

present in the inclusion list was visible for SusDat, SusDat + tR and the Sjerps list, see table 10. The 

SusDat + tR inclusion list is very long (32485 m/z values) and would also contain many compounds that 

are not relevant for water, which also accounts for the SusDat inclusion list without retention time 

estimate. Consequently, the Sjerps inclusion list was used for the MS2-trigger experiments, despite 

not showing a significant increase for the SW samples. 
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Table 10 – Comparison of percentage MS2 scans of inclusion list m/z values between methods. WWTP-influent samples. 

Inclusion list type Method with inclusion list µ% features with MS2 KWR method µ% features with MS2 p-value 

SusDat 95.86 91.76 0.01576 
UBAPMT 100.00 100.00 - 
Sjerps 98.36 93.32 0.01485 
Spike 96.41 95.60 0.3425 
SusDat + tR 97.74 92.53 0.004934 

 

In addition to the percentage of features with MS2 spectra, mzCloud and mzLogic scores were used to 

assess the performance of the different inclusion lists. mzCloud scores state how well the 

experimental MS2 spectrum matches with the spectrum available in the mzCloud library. mzLogic 

scores are similar but based on a combination of mzCloud, structural data from ChemSpider and 

selected masslists, resulting in scores for compounds that are not present in mzCloud. It turned out 

that there were no differences in the distribution of the mzCloud and mzLogic scores between the 

regular KWR method and the different methods with inclusion lists. The MS1-triggers were not 

expected to have an effect on the spectral quality as they only determine whether a MS2 spectrum is 

acquired or not. However, they could have an effect on the identification because higher identification 

and confidence levels can be reached in case a MS2 spectrum is recorded.  

All in all, the isotopic ratio MS1-trigger requires further testing with larger tolerance settings. The 

inclusion list MS1-trigger has shown promising results for the SusDat inclusion lists, with and without 

retention time estimate, and Sjerps inclusion list. As the Sjerps list contains water relevant compounds 

was decided to use this list in combination with the MS2-triggers.  

 

MS2-trigger experiments 

Next to MS1-triggers that trigger a MS2 scan, MS2-triggers were developed that trigger an additional 

MS2 scan if a structural alert is present. Four MS2-triggers were tested; the recurring fragments m/z 

62.99960 of e.g. alert TA344/TA362 and m/z 55.01784 of alert TA367, and the recurring deltas m/z 

17.02655 of alert TA322 and m/z 42.01056 of alert TA387/TA395. 15 spike-in compounds were 

measured (listed in appendix E, table E.2-E.7) of which acrylamide, isobornyl acrylate and 4-[2-

(Acryloyloxy)ethoxy]-4-oxobutanoic acid were not detectable with the applied LC-HRMS method. 

The diagnostic fragments were present in the MS2 spectra of all detected compounds, thereby 

confirming the in silico results generated with CFM-ID. However, the diagnostic fragment m/z 

62.99960 did not trigger an additional MS2 scan for ifosfamide in all cases. This was due to the error 

tolerance settings of +/- 5 ppm which allows in this case a deviation of +/-m/z 0.00031. A typical MS2 

scan of ifosfamide where no additional MS2 was triggered is represented by figure 28. The m/z value 

of 62.99913 is not covered with this small error tolerance, other MS2 scans of ifosfamide in ultrapure 

water contained diagnostic fragment peaks between m/z 62.99912 and m/z 62.99915. The same 

occurs in the MS2 spectra of diacetone acrylamide which has alert TA367 and should contain a 

diagnostic fragment of m/z 55.0178, with an allowed 5 ppm deviation of +/- m/z 0.00028. The MS2 

spectra of diacetone acrylamide in ultrapure water contained diagnostic fragment peaks between m/z 

55.01739 and m/z 55.01744, no additional MS2 scans were triggered. Therefore, an absolute error 

tolerance of 0.001 is suggested to use instead of a tolerance of 5 ppm.  
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Figure 28 – MS2 spectrum of ifosfamide, the diagnostic fragment that should function as MS2-trigger is marked with red. 

 

In addition to the diagnostic fragments, the use of diagnostic deltas as MS2-triggers was investigated. 

The diagnostic delta m/z 17.02650 was present in all spiked compounds in ultrapure water that 

contained this alert, thereby validating the in silico predicted spectra using CFM-ID. The diagnostic 

delta m/z 42.01060 was present in all spiked compounds except diatrizoic acid and one measurement 

of the n-acetylsulfamethoxazole spike-in. It was however present in the other two measurements of 

the triplicate.  

The diagnostic delta m/z 17.02650, corresponding to alert TA322, did trigger additional MS2 scans for 

all spiked compounds in ultrapure water. An example of this trigger is visible in the MS2 spectrum of 

desethylatrazine, see figure 29. The delta m/z 42.01060 corresponding to alert TA387 and TA395 

triggered additional MS2 scans in all compounds that were spiked in ultrapure water and where the 

diagnostic delta was detected. However, the trigger did not function for diatrizoic acid where this 

delta was not present in the MS2 spectra, and the single case of n-acetylsulfamethoxazole, in contrast 

to the in silico generated fragmentation spectra. 

 

 
Figure 29 – MS2 spectrum of desethylatrazine, the diagnostic delta that functioned as MS2-trigger is marked with red. 

 

The effect of concentration level of the spike-in on the MS2-triggers was tested as well, the results are 

illustrated in figure 30. At first, the precursor ion of the compound containing a structural alert has to 

Δm/z 17.02651 

m/z 62.99913 
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be selected for a MS2 scan, in which the MS2-trigger can be detected. Thereafter, this trigger can 

prompt the consecutive MS2 scan. Indeed, generally once a compound was detected and a MS2 scan 

recorded, an additional MS2 scan was triggered as well, indicating the sensitivity of the MS2-trigger. 

Some exceptions are marked in yellow in figure 30. In these measurements the compound was 

detected but no additional MS2 scans were triggered, probably due to the absence of the trigger in 

the MS2 scan or the low error tolerance (in case of ifosfamide). In one case no MS2 scan was 

recorded. Consequently, no additional MS2 scan could be triggered. This was the case for a single 

measurement of N(4)-acetylsulfadiazine at 1 μg/L. 

 

 
Figure 30 – Schematic overview representing the detection of the spike-in compounds, and whether an additional MS2 was 
triggered or not.  

 

The acquisition parameters of the triggered MS2 scans were varied as well to determine their effects 

on the mzCloud scores assigned to the identified features. These settings were expected to have an 

effect on the spectral quality, and should thus facilitate identification. Three different settings were 

tested: stepped CE (10, 75, 90), assisted CE (20, 35, 50) and CE (20, 35, 50) in combination with a 

longer maximum IT of 200 ms instead of the regular 50 ms. Especially assisted CE and longer 

maximum ITs were expected to have a positive effect on the spectral quality. No clear differences 

were visible in the mzCloud scores, but the scores tended to increase slightly with the additional MS2 

in assisted CE and the additional MS2 with longer IT. However, to state more confidently whether the 

additional MS2 indeed facilitates identification, spectral quality metrics or annotation studies have to 

be performed on these spectra. Moreover, the full potential of the MS2-triggers and the intelligent 

acquisition method can be reached only if spectral quality metrics are defined and the optimal 

acquisition parameters can be selected. 

 

Total performance evaluation 

The addition of MS1- and MS2-triggers to the standard LC-HRMS method applied within KWR did have 

an effect on the data acquired during the measurements. The isotopic ratio MS1-trigger did not 

improve the percentage of Cl/Br containing compounds with a MS2 spectrum. The use of an inclusion 

list increased the percentage of MS2 spectra of features with m/z values present in the inclusion list. 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Ifosfamide
NO NO NO NOTRIGNOTRIGNOTRIGNOTRIGNOTRIGNOTRIGYES YES NOTRIGYES NOTRIGYES

Acrylamide
NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO

Diacetone acrylamide
NO NO NO NO NO NO YES YES YES YES YES YES YES YES YES

Isobornyl acrylate
NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO

4-[2-(Acryloyloxy)ethoxy]-4-

oxobutanoic acid NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO

Metamitron
NO NO NO NOTRIGNOTRIGNOTRIGNOTRIGNOTRIGNOTRIGYES YES YES YES YES YES

Deethylatrazine
NO NO NO NOTRIGNOTRIGNOTRIGNOTRIGNOTRIGNOTRIGYES YES NOTRIGYES YES YES

N-acetamidoantipyrine
YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES

Sulfamethoxazole
NOTRIGNOTRIGNOTRIGNOTRIGNOTRIGNOTRIGYES YES YES YES YES YES YES YES YES

Paracetamol
NO NO NO NO NO NO NO YES YES YES YES YES YES YES YES

Trimethoprim
NO NO NO NOTRIGNOTRIGNOTRIGYES YES YES YES YES YES YES YES YES

N(4)-Acetylsulfadiazine
NO NO NO NO NO NO NOTRIGNOTRIGYES YES YES YES YES YES

N-Acetylsulfamethoxazole
NO NO NO NO NO NO YES YES YES YES YES YES YES YES YES

Sulfaquinoxaline
NO NO NO NO NO NO NOTRIGNOTRIGNOTRIGYES YES YES YES YES YES

Diatrizoic acid
NO NO NO NO NO NO NO NO NO NOTRIGNOTRIGNOTRIGNOTRIGNO

NOT

RIG
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The MS2-trigger method successfully triggered additional MS2 scans of molecules with a structural 

alert, for the four alerts that were tested. Therefore, the method could prioritize these potentially 

toxic compounds online. Next, the developed method needs to be compared with the regular KWR 

method in a NTS study to assess overall performance of the online prioritization workflow compared 

to offline prioritization. After identification it should be assessed which potentially toxic suspects lack a 

MS2 spectrum, whether this percentage is lower in the online intelligent acquisition method, and 

whether more potentially toxic compounds can be identified due to the additional scans prompted by 

the MS2-trigger. The next step would be to test the other alerts and test whether both triggers 

support the eventual data analysis in routine monitoring by online prioritization and yielding higher 

quality spectra. Despite the need for these additional tests, the new intelligent acquisition method 

based on structural alerts would be a promising method for the detection of organic micropollutants 

in drinking water sources. 

  



47 

 

5. Conclusions and future perspectives 

5.1 Conclusions 

This study shows that in silico fragmentation tools in combination with data mining in R can be used to 

find patterns in MS2 spectra of chemicals with the same structural alert. The derived patterns appear 

generally to be present in the experimental fragmentation spectra. The results of the acquisition 

parameter experiments suggested that more MS2 fragments could be annotated with increasing AGC-

targets and higher maximum ITs and that assisted CE is preferred over stepped CE. Further research 

with a larger sample size is necessary to give a better indication of the change in spectral quality upon 

different AGC-targets and maximum IT settings. 

The isotopic ratio MS1-trigger did not increase the percentage of Cl/Br containing compounds with an 

MS2 spectrum. More tolerant settings regarding the isotopic ratios might alleviate this. The inclusion 

list MS1-trigger increased the percentage of MS2 spectra of features with a mass present in the 

inclusion list. The MS2-triggers successfully triggered additional MS2 scans, for some compounds 

already at concentrations of 1 ng/L. This indicates the sensitivity of the MS2-triggers and the potential 

of online prioritization. Therefore, the intelligent acquisition method developed in this study is 

expected to be promising and should be developed further and expanded with more structural alerts 

to be able to apply it in routine monitoring eventually. 

 

5.2 Outlook 

Only a small set of structural alerts belonging to a few toxic endpoints was used in this study, as a 

proof of principle. The next step would be to find other structural alerts for other endpoints which 

could be relevant for the aquatic environment. As the in silico prediction of fragmentation spectra 

sometimes deviated from experimental results, it would also be possible to perform the pattern 

mining study on experimental results from a spectral library with good quality control and quality 

assurance.72 

The pattern mining covered only recurring fragments and recurring deltas but it is also possible that a 

combination of both or a combination of multiple deltas and/or multiple fragments, or deltas including 

a specific intensity ratio is characteristic for a structural alert. These patterns could be searched using 

other tools such as machine learning strategies like random forest or software like the R-package 

mineMS2.73 It also has to be researched what types are available to use as trigger in the acquisition 

software of the mass spectrometer. 

The outcomes of this study indicate the need for further research and development of online 

intelligent acquisition software. This method could be more powerful if it is possible to assess the 

spectral quality online, so that during the acquisition can be decided whether an additional MS2 or 

MS3 is necessary. Interpretation of MS3 is currently also challenging to include in spectral annotation, 

especially for high-throughput identification. The inclusion of a MS3-trigger would be promising once 

this data can be handled. This trigger should activate a MS3 scan of for example the most intense ion 

in the MS2 scan if no sufficient peaks are present or the intensity distribution is not as good as desired 

(see figure 5, scenario 3). Furthermore, as high-throughput assessment of spectral quality is still 

challenging, it might be helpful to combine it with machine learning approaches to generate a model 

that is able to assess the quality of spectra.  

The intelligent acquisition method described in this study is currently designed for an Orbitrap Fusion 

Tribrid mass spectrometer. Once the method is optimized and successful in prioritization of toxic 
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compounds in routine monitoring studies, the next step would be to develop comparable methods on 

other types of mass spectrometers, if possible. To cover a larger chemical space it would be fruitful to 

design a comparable method for GC-MS as well.  
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Appendix A – Examples of structural alerts 

Table A.1 – Structural Alerts list by Benigni & Bossa (2008) with respect to mutagenicity and carcinogenicity.51 
Structural Alert  Details 

SA_1 acyl halides 
 

R = any atom/group, except OH, SH 

SA_2 alkyl (C<5) or benzyl ester of 
sulphonic or phosphonic acid 

 

R = alkyl with C < 5 (potentially substituted by 
halogens), or benzyl 
R1 = any atom/group except OH, SH, O–, S– 

SA_3 N-methylol derivatives 

 

R = any atom/group 

SA_4 monohaloalkene 

 

R1,R2 (or R3) = H or CH3 
R3 (or R2) = any atom/group except halogens 

SA_5 S or N mustard  

 

R = any atom/group 

SA_6 propiolactones propiosultones 

or  

Any substance containing any of the displayed 
substructures 

SA_7 epoxides and aziridines 

 

R = any atom/group 

SA_8 aliphatic halogens 

 

R = any atom/group 

SA_9 alkyl nitrite 

 

R = any alkyl group 

SA_10 , unsaturated carbonyls 

 

R1 and R2 = any atom/group, except alkyl chains with C > 
5 or aromatic rings.  
R = any atom/group, except OH, O– 

SA_11 simple aldehyde 

 

R = aliphatic or aromatic carbon  

, unsaturated aldehydes are excluded 

SA_12 quinones 

 

Any substance containing any of the displayed 
substructures 

SA_13 hydrazine 

 

R = any atom/group 

SA_14 aliphatic azo and azoxy 

 

R1 = aliphatic carbon or hydrogen 
R2, R3 = any atom/group 
R4 = aliphatic carbon 

SA_15 isocyanate and isothiocyanate 
groups  

R = any atom/group 

SA_16 alkyl carbamate and 
thiocarbamate 

 

R = aliphatic carbon or hydrogen 
R1 = aliphatic carbon 

SA_17 thiocarbonyl (nongenotoxic) 

 

R, R1, R2 = any atom/group 
R3 = any atom/group except OH, SH, O–, S– 
carbamate and thiocarbamate are excluded 

SA_18 polycyclic aromatic hydrocarbons Three or more fused rings, not heteroaromatic 

SA_19 heterocyclic polycyclic aromatic hydrocarbons Three or more fused rings, heteroaromatic 

SA_20 (poly)halogenated cycloalkanes (nongenotoxic) 
Any cyclocalkane skeleton with three or more halogens 
directly bound to the same ring 

SA_21 alkyl and aryl N-nitroso 
groups 

 

R1 = aliphatic or aromatic carbon 
R2 = any atom/group 
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Structural Alert  Details 

SA_22 azide and triazene 
groups  

R = any atom/group 

SA_23 aliphatic N-nitro 
group 

 

R = aliphatic carbon or hydrogen 

SA_24 , unsaturated 
aliphatic alkoxy group 

 

R1 = any aliphatic carbon 
R2 = aliphatic or aromatic carbon 

SA_25 aromatic nitroso 
group  

Ar = any aromatic/heteroaromatic ring 

SA_26 aromatic ring N-oxide 
 

Any aromatic or heteroaromatic ring 

SA_27 
nitro-aromatic 

 

Ar = any aromatic/heteroaromatic ring 
Aromatic nitro groups with ortho-disubstitution or with a 
carboxylic acid substituent in ortho position should be excluded. 
If a sulfonic acid group (–SO3H) is present on the ring that 
contains also the nitro group, the substance should be excluded. 

SA_28 
primary aromatic amine, 
hydroxyl amine and its 
derived esters  
 
or amine generating group 

 
 

 

Ar = any aromatic/heteroaromatic ring 
R = any atom/group 
Aromatic amino groups with ortho-disubstitution or with a 
carboxylic acid substituent in ortho position should be excluded. 
If a sulfonic acid group (–SO3H) is present on the ring that 
contains also the amino group, the substance should be 
excluded from the alert. 

SA_28 bis 
aromatic mono-and 
dialkylamine  

Ar = any aromatic/heteroaromatic ring 
R1 = hydrogen, methyl, ethyl 
R2 = methyl, ethyl 
Aromatic amino groups with ortho-disubstitution or with a 
carboxylic acid substituent in ortho position should be excluded. 
If a sulfonic acid group (–SO3H) is present on the ring that 
contains also the amino group, the substance should be 
excluded from the alert 

SA_28 ter 
aromatic N-acyl amine 

 

Ar = any aromatic/heteroaromatic ring 
R = hydrogen, methyl 
Aromatic amino groups with ortho-disubstitution or with a 
carboxylic acid substituent in ortho position should be excluded 
If a sulfonic acid group (–SO3H) is present on the ring that 
contains also the amino group, the substance should be 
excluded from the alert. 

SA_29 
aromatic diazo  

Ar = any aromatic/heteroaromatic ring 
If asulfonic acid group (–SO3H) is present on each of the rings 
that contain the diazo group, the substance should be not 
classified. 

SA_30 coumarins and 
Furocoumarins 

 

Any substance containing the displayed substructure. 

SA_31a halogenated 
benzene (nongenotoxic) 

 

If two halogens are present in ortho or meta positions, the 
substance should be not classified. If three or more hydroxyl 
groups are present, the substance should be not classified. 

SA_31b halogenated PAH 
(nongenotoxic) 

 

Ar = naphthalene, biphenyl, diphenyl 

SA_31c halogenated 
dibenzodioxins 
(nongenotoxic)  

X = F, Cl, Br, I  Only chemicals with at least one halogen in one of 
the four lateral positions are included. 
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Appendix B – Workflow screening with ToxAlerts and fragmentation 

1. Subtract CAS-registry numbers (CASRN) from Chemical_Summary_190708.csv (located in 

INVITRODB_V3_2_SUMMARY.zip, downloaded via 

https://epa.figshare.com/articles/ToxCast_and_Tox21_Summary_Files/6062479) and generate an 

Excel file. Use Step01_casrn_to_msreadysmiles.R and follow instructions. 

 

2. In ToxAlerts (https://ochem.eu/alerts/home.do): 

a. Select “View alerts” 

b. Select all records matching the endpoints ‘non-genotoxic carcinogenicity’, ‘genotoxic 

carcinogenicity, mutagenicity’ and ‘developmental and mitochondrial toxicity’ (only approved 

alerts). 

c. Select “Screen compounds against alerts” 

d. Upload the file containing MS-ready SMILES (ToxCast_msready_smiles.xlsx) 

e. Untick all boxes in ‘Preprocessing of molecules (Chemaxon)’ 

f. Tick the box “Only 152 selected alerts” and “Only approved alerts” 

g. Start screening. 

 

3. After screening, export results as .csv file (Structure and Descriptors) and import file in R for 

further processing. Use Step03_import_toxalerts.R 

 

4. Fragment the molecules per structural alert using CFM-ID.  
> cfm-predict.exe ToxCast\TA322.txt 0.001 metab_se_cfm\param_output0.log 

metab_se_cfm\param_config.txt 0 Output_ToxCast\TA322 0 0 

All error messages such as “Could not ionize – already charged molecule and didn’t know what to do 

here” and “SMILES Parse Error: syntax error for input: XXX” were collected on screenshots of the 

command window. 

 

5.  Fragment the molecules per structural alert using MetFrag in R. Use 

Step05_fragmentation_metfrag.R 

 

  

https://epa.figshare.com/articles/ToxCast_and_Tox21_Summary_Files/6062479
https://ochem.eu/alerts/home.do
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Appendix C – Comparison in- and output of ToxAlerts 

Table C.1 – Test of differences input and output ToxAlerts with compounds retrieved from MassBankEU. 

Input SMILES Structure Output SMILES Structure 

NC1=CC=CC2=CC=CC=C12 
 

 

NC1=C2C=CC=CC2=CC=C1 

 

NC1=CC2=CC3=CC=CC=C3C=C2C=C1 
 

NC1=CC2=CC3=C(C=CC=C3)C=C2C=C1 
 

NC1=C(C=CC=C1)C(O)=O 

 

NC1=CC=CC=C1C(O)=O 

 

NC1=C(C=CC=C1)C1=CC=CC=C1 

 

NC1=C(C=CC=C1)C1=CC=CC=C1 

 

NC1=C(O)C=CC=C1 

 

NC1=CC=CC=C1O 
 

NC1=NC=CC=C1 
 

NC1=NC=CC=C1 
 

CC(=O)NC1=C(C)C=CC=C1 

 

CC(=O)NC1=C(C)C=CC=C1 

 

CC(C)N1C(=O)C(=O)C2=CC(C)=CC=C12 

 

CC(C)N1C(=O)C(=O)C2=CC(C)=CC=C12 

 

CC(=O)C1=C2C=CC=CC2=CC2=CC=CC=C12 

 

CC(=O)C1=C2C=CC=CC2=CC2=C1C=CC=C2 

 

OC(=O)C1=C2C=CC=CC2=CC2=CC=CC=C12 

 

OC(=O)C1=C2C=CC=CC2=CC2=CC=CC=C12 

 

OC1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C
1O 

 

OC1=CC=C2C(=O)C3=C(C=CC=C3)C(=O)C2=
C1O 

 

C1=CC=C2C(C=CC3=NC4=CC=CC=C4C=C23
)=C1 

 

C1=CC2=C(C=C1)N=C1C=CC3=CC=CC=C3C
1=C2 

 

COC(=O)C1=CC=CC2=CC=CC=C12 

 

COC(=O)C1=C2C=CC=CC2=CC=C1 

 

CC(=O)C1=CC(N)=CC=C1 

 

CC(=O)C1=CC(N)=CC=C1 
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Appendix D – Assays applied for toxicity validation 

Table D.1 – ToxCast assays used for toxicity validation listed per toxic endpoint.9 

Endocrine disruption 
Non-genotoxic carcinogenicity, 
genotoxic carcinogenicity, mutagenicity 

Developmental and mitochondrial toxicity 

ACEA_T47D_80hr_Positive APR_HepG2_p53Act_1h_dn NHEERL_ZF_144hpf_TERATOSCORE_up 

ATG_ERE_CIS_up APR_HepG2_p53Act_1h_up Tanguay_ZF_120hpf_ActivityScore 

ATG_ERa_TRANS_up APR_HepG2_p53Act_24h_dn Tanguay_ZF_120hpf_AXIS_up 

NVS_NR_bER APR_HepG2_p53Act_24h_up Tanguay_ZF_120hpf_BRAI_up 

NVS_NR_hER APR_HepG2_p53Act_72h_dn Tanguay_ZF_120hpf_CFIN_up 

NVS_NR_mERa APR_HepG2_p53Act_72h_up Tanguay_ZF_120hpf_CIRC_up 

OT_ER_ERaERa_0480 ATG_Ahr_CIS_up Tanguay_ZF_120hpf_EYE_up 

OT_ER_ERaERa_1440 ATG_AP_1_CIS_up Tanguay_ZF_120hpf_JAW_up 

OT_ER_ERaERb_0480 ATG_AP_2_CIS_up Tanguay_ZF_120hpf_NC_up 

OT_ER_ERaERb_1440 ATG_BRE_CIS_up Tanguay_ZF_120hpf_OTIC_up 

OT_ERa_EREGFP_0120 ATG_C_EBP_CIS_up Tanguay_ZF_120hpf_PE_up 

OT_ERa_EREGFP_0480 ATG_CRE_CIS_up Tanguay_ZF_120hpf_PFIN_up 

TOX21_ERa_BLA_Agonist_ratio ATG_E_Box_CIS_up Tanguay_ZF_120hpf_PIG_up 

TOX21_ERa_BLA_Antagonist_ratio ATG_E2F_CIS_up Tanguay_ZF_120hpf_SNOU_up 

TOX21_ERa_LUC_BG1_Agonist ATG_EGR_CIS_up Tanguay_ZF_120hpf_SOMI_up 

TOX21_ERa_LUC_BG1_Antagonist ATG_Ets_CIS_up Tanguay_ZF_120hpf_SWIM_up 

OT_ER_ERbERb_0480 ATG_FoxA2_CIS_up Tanguay_ZF_120hpf_TR_up 

OT_ER_ERbERb_1440 ATG_FoxO_CIS_up Tanguay_ZF_120hpf_TRUN_up 

ATG_ERb_TRANS2_up ATG_GATA_CIS_up Tanguay_ZF_120hpf_YSE_up 

ATG_ERa_TRANS_dn ATG_GLI_CIS_up 
 ATG_ERE_CIS_dn ATG_HIF1a_CIS_up 
 ATG_ERRb_TRANS2_up ATG_HNF6_CIS_up 
 ATG_ERRa_TRANS_up ATG_HSE_CIS_up 
 ATG_ERRg_TRANS_up ATG_ISRE_CIS_up 
 CEETOX_H295R_ESTRADIOL_dn ATG_MRE_CIS_up 
 CEETOX_H295R_ESTRADIOL_up ATG_Myb_CIS_up 
 CEETOX_H295R_ESTRONE_dn ATG_Myc_CIS_up 
 CEETOX_H295R_ESTRONE_up ATG_NF_kB_CIS_up 
 ATG_AR_TRANS_up ATG_NFI_CIS_up 
 NVS_NR_cAR ATG_NRF1_CIS_up 
 NVS_NR_hAR ATG_NRF2_ARE_CIS_up 
 NVS_NR_rAR ATG_Oct_MLP_CIS_up 
 OT_AR_ARELUC_AG_1440 ATG_p53_CIS_up 
 OT_AR_ARSRC1_0480 ATG_Pax6_CIS_up 
 OT_AR_ARSRC1_0960 ATG_Sox_CIS_up 
 TOX21_AR_BLA_Agonist_ratio ATG_Sp1_CIS_up 
 TOX21_AR_BLA_Antagonist_ratio ATG_SREBP_CIS_up 
 TOX21_AR_LUC_MDAKB2_Agonist ATG_STAT3_CIS_up 
 TOX21_AR_LUC_MDAKB2_Antagonist ATG_TCF_b_cat_CIS_up 
 ATG_AR_TRANS_dn ATG_Xbp1_CIS_up 
 CEETOX_H295R_ANDR_dn TOX21_AhR_LUC_Agonist 
 CEETOX_H295R_ANDR_up TOX21_ARE_BLA_agonist_ratio 
 CEETOX_H295R_TESTO_dn TOX21_HSE_BLA_agonist_ratio 
 CEETOX_H295R_TESTO_up TOX21_p53_BLA_p1_ratio 
 

 
TOX21_p53_BLA_p2_ratio 

 

 
TOX21_p53_BLA_p3_ratio 

 

 
TOX21_p53_BLA_p4_ratio 

 

 
TOX21_p53_BLA_p5_ratio 

 

 
TOX21_ESRE_BLA_ratio 

 

 
TOX21_NFkB_BLA_agonist_ratio 

 

 
ATG_Ahr_CIS_dn 

 

 
ATG_AP_1_CIS_dn 

 

 
ATG_AP_2_CIS_dn 

 

 
ATG_BRE_CIS_dn 

 

 
ATG_CRE_CIS_dn 

 

 
ATG_C_EBP_CIS_dn 

 

 
ATG_E2F_CIS_dn 

 

 
ATG_EGR_CIS_dn 

 

 
ATG_Ets_CIS_dn 

 

 
ATG_E_Box_CIS_dn 

 

 
ATG_FoxA2_CIS_dn 

 

 
ATG_FoxO_CIS_dn 
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ATG_GATA_CIS_dn 

 

 
ATG_GLI_CIS_dn 

 

 
ATG_HIF1a_CIS_dn 

 

 
ATG_HNF6_CIS_dn 

 

 
ATG_HSE_CIS_dn 

 

 
ATG_ISRE_CIS_dn 

 

 
ATG_MRE_CIS_dn 

 

 
ATG_Myb_CIS_dn 

 

 
ATG_Myc_CIS_dn 

 

 
ATG_NFI_CIS_dn 

 

 
ATG_NF_kB_CIS_dn 

 

 
ATG_NRF1_CIS_dn 

 

 
ATG_NRF2_ARE_CIS_dn 

 

 
ATG_Oct_MLP_CIS_dn 

 

 
ATG_p53_CIS_dn 

 

 
ATG_Pax6_CIS_dn 

 

 
ATG_Sox_CIS_dn 

 

 
ATG_Sp1_CIS_dn 

 

 
ATG_SREBP_CIS_dn 

 

 
ATG_STAT3_CIS_dn 

 

 
ATG_TCF_b_cat_CIS_dn 

 

 
ATG_Xbp1_CIS_dn 
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Appendix E – List of chemicals 

Table E.1 – Compounds present in the LOA600 + specials spike.  

Chemical name Bruto formula 
CAS Registry 
Number 

Ionization 
(+/-) 

Accurate mass 
[M+H]+ or [M-H]- 

RT 
(min) 

(4-chloro-2-methylphenoxy)acetic acid 
(MCPA) 

C9H9ClO3 94-74-6 [M+H]- 199.01675 15.31 

1-(3,4-dichlorophenyl)-3-methylurea C8H8Cl2N2O 3567-62-2 [M+H]+ 219.00864 14.28 

1-(3,4-Dichlorphenyl)-urea C7H6Cl2N2O 2327-02-8 [M+H]+ 204.99299 13.29 

10,11-dihydro-10,11-
dihydroxycarbamazepine 

C15H14N2O3 35079-97-1 [M+H]+ 271.10771 7.55 

1-H-benzotriazool C6H5N3 95-14-7 [M+H]+ 120.05562 7.92 

2-(methylthio)benzothiazool C8H7NS2 615-22-5 [M+H]+ 182.00926 17.38 

2,4-Dichloroaniline C6H5Cl2N 554-00-7 [M+H]+ 161.98718 16.77 

2,4-Dichlorophenoxyacetic acid (2,4-D) C8H6Cl2O3 94-75-7 [M+H]- 218.96212 15.25 

2,6-dichlorobenzamide (BAM) C7H5Cl2NO 2008-58-4 [M+H]+ 189.98210 8.18 

2.4.6-trichlorophenol C6H3Cl3O 88-06-2 [M+H]- 194.91766 17.77 

2.4-dichlorophenol C6H4Cl2O 120-83-2 [M+H]- 160.95664 16.52 

2.4-dinitrophenol C6H4N2O5 51-28-5 [M+H]- 183.00474 13.21 

2-aminoacetophenone C8H9NO 551-93-9 [M+H]+ 136.07569 11.93 

2-aminobenzothiazool C7H6N2S 136-95-8 [M+H]+ 151.03244 6.43 

2-hydroxybenzothiazool C7H5NOS 934-34-9 [M+H]+ 152.01646 11.59 

2-methyl-4.6-dinitrophenol (DNOC) C7H6N2O5 534-52-1 [M+H]- 197.02039 19.64 

4-methyl-1H-benzotriazool  C7H7N3 29878-31-7 [M+H]+ 134.07127 9.94 

5,6-dimethyl-1H-benzotriazool C8H9N3 4184-79-6 [M+H]+ 148.08692 11.52 

5-chloor-1H-benzotriazool C6H4ClN3 94-97-3 [M+H]+ 154.01665 11.3 

5-methyl-1H-benzotriazool C7H7N3 136-85-6 [M+H]+ 134.07127 10.07 

atrazin C8H14ClN5 1912-24-9 [M+H]+ 216.10105 14.54 

atrazin-d5 C8H9 2H5ClN5 163165-75-1 [M+H]+ 221.13243 14.46 

azinphos-methyl C10H12N3O3PS2 86-50-0 [M+H]+ 318.01305 17.17 

bentazon C10H12N2O3S 25057-89-0 [M+H]- 239.04958 14.44 

bentazone-d6 C10H6 2H6N2O3S n/a [M+H]- 245.08725 14.38 

Benzotriazole-d4 C6H 2H4N3 n/a [M+H]+ 124.08073 7.86 

bezafibrate C19H20ClNO4 41859-67-0 [M+H]+ 362.11536 15.95 

bromacil C9H13BrN2O2 314-40-9 [M+H]+ 261.02332 12.43 

caffeine C8H10N4O2 58-08-2 [M+H]+ 195.08765 6.83 

candesartan C24H20N6O3 139481-59-7 [M+H]+ 441.16696 14.37 

carbamazepin C15H12N2O 298-46-4 [M+H]+ 237.10224 13.27 

carbendazim C9H9N3O2 10605-21-7 [M+H]+ 192.07675 6.38 

cetirizine C21H25ClN2O3 83881-51-0 [M+H]+ 389.16265 14 

Chlooroxuron C15H15ClN2O2 1982-47-4 [M+H]+ 291.08948 17.37 

chloridazon C10H8ClN3O 1698-60-8 [M+H]+ 222.04287 9.79 

Chlorpyrifos-ethyl C9H11Cl3NO3PS 2921-88-2 [M+H]+ 349.93356 23.34 

chlortoluron C10H13ClN2O 15545-48-9 [M+H]+ 213.07892 14.31 

DEET C12H17NO 134-62-3 [M+H]+ 192.13829 14.83 

desethylatrazin C6H10ClN5 6190-65-4 [M+H]+ 188.06975 9.78 

Desfenylchloridazon C4H4ClN3O 6339-19-1 [M+H]+ 146.01156 2.25 

desisopropylatrazin C5H8ClN5 1007-28-9 [M+H]+ 174.05410 7.69 

dichlorprop (2.4-DP) C9H8Cl2O3 120-36-5 [M+H]- 232.97777 16.52 

diclofenac C14H11Cl2NO2 15307-86-5 [M+H]+ 296.02396 18.37 

dimethenamid-P C12H18ClNO2S 163515-14-8 [M+H]+ 276.08195 17.37 

dimethoate C5H12NO3PS2 60-51-5 [M+H]+ 230.0069 10.29 

Dimethomorph (isomer 1) C21H22ClNO4 110488-70-5 [M+H]+ 388.13101 16.18 

Dimethomorph (isomer 2) C21H22ClNO4 110488-70-5 [M+H]+ 388.13101 16.59 

diuron C9H10N2OCl2 330-54-1 [M+H]+ 233.02429 15.07 

Ethofumesate C13H18O5S 26225-79-6 [M+H]+ 287.09477 18.48 

fenuron C9H12N2O 101-42-8 [M+H]+ 165.10224 9.43 

Gabapentine C9H17NO2 60142-96-3 [M+H]+ 172.13320 6.45 

Gabapentine-lactam C9H15NO 64744-50-9 [M+H]+ 154.12264 11.22 

HMMM C15H30N6O6 3089-11-0 [M+H]+ 391.22996 13.24 
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Hydrochlorothiazide C7H8ClN3O4S2 58-93-5 [M+H]- 295.95719 7.2 

irbesartan C25H28N6O 138402-11-6 [M+H]+ 429.23974 14.13 

isoproturon C12H18N2O 34123-59-6 [M+H]+ 207.14919 14.93 

Lamotrigine C9H7Cl2N5 84057-84-1 [M+H]+ 256.01512 9.36 

Linuron C9H10Cl2N2O2 330-55-2 [M+H]+ 249.01921 17.24 

mecoprop (MCPP) C10H11ClO3 93-65-2 [M+H]- 213.03239 16.53 

metazachlor C14H16ClN3O 67129-08-2 [M+H]+ 278.10547 15.87 

Metazachlor ESA C14H17N3O4S 172960-62-2 [M+H]+ 324.10125 9.19 

metazachlor OA C14H15N3O3 1231244-60-2 [M+H]+ 274.11862 9.32 

Metobromuron C9H11BrN2O2 3060-89-7 [M+H]+ 259.00767 15.60 

metolachloor ESA C15H23NO5S 171118-09-5 [M+H]+ 330.13697 11.24 

metolachlor C15H22ClNO2 51218-45-2 [M+H]+ 284.14118 18.92 

Metolachlor OA C15H21NO4 152019-73-3 [M+H]+ 280.15433 17.1 

Metoprolol C15H25NO3 37350-58-6 [M+H]+ 268.19072 9.46 

metoxuron C10H13ClN2O2 19937-59-8 [M+H]+ 229.07383 11.94 

metribuzin C8H14N4OS 21087-64-9 [M+H]+ 215.09611 13.19 

monuron C9H11ClN2O 150-68-5 [M+H]+ 199.06327 12.66 

N-acetyl-4-aminoantipyrine C13H15N3O2 83-15-8 [M+H]+ 246.12370 7.08 

N-acetylsulfamethoxazole C12H13N3O4S 21312-10-7 [M+H]+ 296.06995 11.06 

neburon C12H16Cl2N2O 555-37-3 [M+H]+ 275.07125 19.30 

N-formyl-4-aminoantipyrine C12H13N3O2 1672-58-8 [M+H]+ 232.10805 7.12 

nicosulfuron C15H18N6O6S 111991-09-4 [M+H]+ 411.10813 12.24 

oxypurinol C5H4N4O2 219-570-9 [M+H]- 151.02615 2.27 

p,p-sulfonyldiphenol C12H10O4S 98388-00-2 [M+H]- 249.02270 11.21 

pentoxifylline C13H18N4O3 6493-05-6 [M+H]+ 279.14517 9.46 

Phenazone C11H12N2O 60-80-0 [M+H]+ 189.10224 8.66 

pirimicarb C11H18N4O2 23103-98-2 [M+H]+ 239.15025 9.11 

sebutylazine C9H16ClN5 7286-69-3 [M+H]+ 230.11670 16.2 

simazin C7H12ClN5 122-34-9 [M+H]+ 202.0854 12.50 

sitagliptine C16H15N5OF6 486460-32-6 [M+H]+ 408.12536 10.27 

sulfadimidine C12H14N4O2S 57-68-1 [M+H]+ 279.09102 8.38 

sulfamethoxazole C10H11N3O3S 723-46-6 [M+H]+ 254.05939 10.69 

telmisartan C33H30N4O2 144701-48-4 [M+H]+ 515.24415 14.07 

terbutylazin C9H16ClN5 5915-41-3 [M+H]+ 230.1167 16.85 

tetraglyme C10H22O5 143-24-8 [M+H]+ 223.154 7.78 

Tri-(2-chloroisopropyl)phosphate C9H18Cl3O4P 13674-84-5 [M+H]+ 327.00811 17.24 

triethylphosphate C6H15O4P 78-40-0 [M+H]+ 183.07807 10.94 

tri-n-butyl-phosphate C12H27O4P 126-73-8 [M+H]+ 267.17197 20.52 

Triphenylphosphineoxide C18H15OP 791-28-6 [M+H]+ 279.09333 15.34 

Tris(2-chloroethyl)phosphate (TCEP) C6H12Cl3O4P 115-96-8 [M+H]+ 284.96116 14.26 

valsartan C24H29N5O3 137862-53-4 [M+H]+ 436.23432 16.51 

valsartanzuur C14H10N4O2 164265-78-5 [M+H]+ 267.08765 11.78 

 
Table E.2 – Chemicals and concentrations for sample TA344/TA362 (used in MS2-trigger experiment). 

sample name: TA344/ TA362 
spiked in: ultrapure water 
concentration: 10 µg/L 
filtrated: no 

Chemical name CASRN formula MW (g/mol) 

Ifosfamide 3778-73-2 C7H15Cl2N2O2P 260.02482 

 
Table E.3 –Chemicals and concentrations for sample TA367 (used in MS2-trigger experiment). 

sample name: TA367 
spiked in: ultrapure water 
concentration: 10 µg/L 
filtrated: no 

Chemical name CASRN formula MW (g/mol) 

4-[2-(Acryloyloxy)ethoxy]-4-oxobutanoic acid 50940-49-3 C9H12O6 216.06339 

Acrylamide 79-06-1 C3H5NO 71.03711 

Diacetone acrylamide 2873-97-4 C9H15NO2 169.11028 

Isobornyl acrylate 5888-33-5 C13H20O2 208.14633 
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Table E.4 – Chemicals and concentrations for sample TA322 (used in MS2-trigger experiment). 

sample name: TA322 
spiked in: ultrapure water 
concentration: 10 µg/L 
filtrated: no 

Chemical name CASRN formula MW (g/mol) 

Trimethoprim 738-70-5 C14H18N4O3 290.13789 

Deethylatrazine  6190-65-4 C6H10ClN5 187.06247 

Metamitron  41394-05-2 C10H10N4O 202.08546 

Sulfamethoxazole  723-46-6 C10H11N3O3S 253.05211 

Sulfaquinoxaline  59-40-5 C14H12N4O2S 300.06810 

 
Table E.5 – Chemicals and concentrations for sample TA387/TA395 (used in MS2-trigger experiment). 

sample name: TA387/TA395 
spiked in: ultrapure water 
concentration: 10 µg/L 
filtrated: no 

Chemical name CASRN formula MW (g/mol) 

Acetaminophen 103-90-2 C8H9NO2 151.06333 

Diatrizoic acid 117-96-4 C11H9I3N2O4 613.76965 

N(4)-Acetylsulfadiazine 127-74-2 C12H12N4O3S 292.06301 

N-Acetyl sulfamethoxazole 21312-10-7 C12H13N3O4S 295.06268 

N-Acetylaminoantipyrine 83-15-8 C13H15N3O2 245.11643 

 
Table E.6 – Chemicals and concentrations for sample Total MQ (used in MS2-trigger experiment). 

sample name: Total MQ 
spiked in: ultrapure water 
concentration: 10 µg/L 
filtrated:  yes 

Chemical name CASRN formula MW (g/mol) 

4-[2-(Acryloyloxy)ethoxy]-4-oxobutanoic acid 50940-49-3 C9H12O6 216.06339 

Acetaminophen 103-90-2 C8H9NO2 151.06333 

Acrylamide 79-06-1 C3H5NO 71.03711 

Deethylatrazine 6190-65-4 C6H10ClN5 187.06247 

Diacetone acrylamide 2873-97-4 C9H15NO2 169.11028 

Diatrizoic acid 117-96-4 C11H9I3N2O4 613.76965 

Ifosfamide 3778-73-2 C7H15Cl2N2O2P 260.02482 

Isobornyl acrylate 5888-33-5 C13H20O2 208.14633 

Metamitron 41394-05-2 C10H10N4O 202.08546 

Trimethoprim 738-70-5 C14H18N4O3 290.13789 

N(4)-Acetylsulfadiazine 127-74-2 C12H12N4O3S 292.06301 

N-Acetyl sulfamethoxazole 21312-10-7 C12H13N3O4S 295.06268 

N-Acetylaminoantipyrine 83-15-8 C13H15N3O2 245.11643 

Sulfamethoxazole 723-46-6 C10H11N3O3S 253.05211 

Sulfaquinoxaline 59-40-5 C14H12N4O2S 300.06810 
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Table E.7 – Chemicals and concentrations for samples Total OW (used in MS2-trigger experiment). 

sample names: Total OW 10 µgL, Total OW 1 µgL, Total OW 100 ngL, Total OW 10 ngL, Total OW 1 ngL 

spiked in: surface water 

concentrations: 10 µg/L, 1 µg/L, 100 ng/L, 10 ng/L, 1 ng/L 

filtrated: yes 

Chemical name CASRN formula MW (g/mol) 

4-[2-(Acryloyloxy)ethoxy]-4-oxobutanoic acid 50940-49-3 C9H12O6 216.06339 

Acetaminophen 103-90-2 C8H9NO2 151.06333 

Acrylamide 79-06-1 C3H5NO 71.03711 

Deethylatrazine 6190-65-4 C6H10ClN5 187.06247 

Diacetone acrylamide 2873-97-4 C9H15NO2 169.11028 

Diatrizoic acid 117-96-4 C11H9I3N2O4 613.76965 

Ifosfamide 3778-73-2 C7H15Cl2N2O2P 260.02482 

Isobornyl acrylate 5888-33-5 C13H20O2 208.14633 

Metamitron 41394-05-2 C10H10N4O 202.08546 

Trimethoprim 738-70-5 C14H18N4O3 290.13789 

N(4)-Acetylsulfadiazine 127-74-2 C12H12N4O3S 292.06301 

N-Acetyl sulfamethoxazole 21312-10-7 C12H13N3O4S 295.06268 

N-Acetylaminoantipyrine 83-15-8 C13H15N3O2 245.11643 

Sulfamethoxazole 723-46-6 C10H11N3O3S 253.05211 

Sulfaquinoxaline 59-40-5 C14H12N4O2S 300.06810 
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Appendix F – Sequence lists 

Table F.1 – Sequence list of AcquireX experiments. 

 File Name Sample Name Instrument Method 

202002017non_target_pos-01 Blank MQ filtered NTS dda stepped 20 35 50 

202002017non_target_pos-02 Blank MQ filtered NTS dda stepped 20 35 50 

202002017non_target_pos-03 Blank MQ filtered NTS dda stepped 20 35 50 

202002017non_target_pos-04 Blank MQ filtered stepped 1 NTS dda stepped 20 35 50 

202002017non_target_pos-05 Blank MQ filtered stepped 2 NTS dda stepped 20 35 50 

202002017non_target_pos-06 Blank MQ filtered stepped 3 NTS dda stepped 20 35 50 

202002017non_target_pos-07 Blank MQ filtered ACE 1 NTS dda ACE 20 35 50 

202002017non_target_pos-08 Blank MQ filtered ACE 2 NTS dda ACE 20 35 50 

202002017non_target_pos-09 Blank MQ filtered ACE 3 NTS dda ACE 20 35 50 

202002017non_target_pos-10 Blank OW filtered stepped 1 NTS dda stepped 20 35 50 

202002017non_target_pos-11 Blank OW filtered stepped 2 NTS dda stepped 20 35 50 

202002017non_target_pos-12 Blank OW filtered stepped 3 NTS dda stepped 20 35 50 

202002017non_target_pos-13 OW + spike dda stepped 20 35 50  1 NTS dda stepped 20 35 50 

202002017non_target_pos-14 OW + spike dda stepped 20 35 50  2 NTS dda stepped 20 35 50 

202002017non_target_pos-15 OW + spike dda stepped 20 35 50  3 NTS dda stepped 20 35 50 

202002017non_target_pos-16 OW + spike dda ace 20 35 50  1 NTS dda ACE 20 35 50 

202002017non_target_pos-17 OW + spike dda ace 20 35 50  2 NTS dda ACE 20 35 50 

202002017non_target_pos-18 OW + spike dda ace 20 35 50  3 NTS dda ACE 20 35 50 

202002017non_target_pos-19 OW + spike dda ace 5 20 35 50 75  1 NTS dda ACE 5 20 35 50 75 

202002017non_target_pos-20 OW + spike dda ace 5 20 35 50 75  2 NTS dda ACE 5 20 35 50 75 

202002017non_target_pos-21 OW + spike dda ace 5 20 35 50 75  3  NTS dda ACE 5 20 35 50 75 

202002017non_target_pos-22 Blank MQ filtered bgexcl stepped 1 NTS bgexcl stepped 20 35 50 

202002017non_target_pos-23 Blank MQ filtered bgexcl stepped 2 NTS bgexcl stepped 20 35 50 

202002017non_target_pos-24 Blank MQ filtered bgexcl stepped 3 NTS bgexcl stepped 20 35 50 

202002017non_target_pos-25 Blank MQ filtered bgexcl ACE 1 NTS bgexcl ACE 20 35 50 

202002017non_target_pos-26 Blank MQ filtered bgexcl ACE 2 NTS bgexcl ACE 20 35 50 

202002017non_target_pos-27 Blank MQ filtered bgexcl ACE 3 NTS bgexcl ACE 20 35 50 

202002017non_target_pos-28 OW + spike bg excl 30 ms it stepped 20 35 50  1 NTS bgexcl stepped 20 35 50 it 30 ms 

202002017non_target_pos-29 OW + spike bg excl 30 ms it stepped 20 35 50  2 NTS bgexcl stepped 20 35 50 it 30 ms 

202002017non_target_pos-30 OW + spike bg excl 30 ms it stepped 20 35 50  3 NTS bgexcl stepped 20 35 50 it 30 ms 

202002017non_target_pos-31 OW + spike bg excl 30 ms it  ace 20 35 50  1 NTS bgexcl ACE 20 35 50 it 30 ms 

202002017non_target_pos-32 OW + spike bg excl 30 ms it  ace 20 35 50  2 NTS bgexcl ACE 20 35 50 it 30 ms 

202002017non_target_pos-33 OW + spike bg excl 30 ms it  ace 20 35 50  3 NTS bgexcl ACE 20 35 50 it 30 ms 

202002017non_target_pos-34 OW + spike bg excl 30 ms it  ace 5 20 35 50 75 1 NTS bgexcl ACE 5 20 35 50 75 it 30 ms 

202002017non_target_pos-35 OW + spike bg excl 30 ms it  ace 5 20 35 50 75 2 NTS bgexcl ACE 5 20 35 50 75 it 30 ms 

202002017non_target_pos-36 OW + spike bg excl 30 ms it  ace 5 20 35 50 75 3 NTS bgexcl ACE 5 20 35 50 75 it 30 ms 

202002017non_target_pos-37 OW + spike bg excl 50 ms it stepped 20 35 50  1 NTS bgexcl stepped 20 35 50 it 50 ms 

202002017non_target_pos-38 OW + spike bg excl 50 ms it stepped 20 35 50  2 NTS bgexcl stepped 20 35 50 it 50 ms 

202002017non_target_pos-39 OW + spike bg excl 50 ms it stepped 20 35 50  3 NTS bgexcl stepped 20 35 50 it 50 ms 

202002017non_target_pos-40 OW + spike bg excl 50 ms it  ace 20 35 50  1 NTS bgexcl ACE 20 35 50 it 50 ms 

202002017non_target_pos-41 OW + spike bg excl 50 ms it  ace 20 35 50  2 NTS bgexcl ACE 20 35 50 it 50 ms 

202002017non_target_pos-42 OW + spike bg excl 50 ms it  ace 20 35 50  3 NTS bgexcl ACE 20 35 50 it 50 ms 

202002017non_target_pos-43 OW + spike bg excl 50 ms it  ace 5 20 35 50 75 1 NTS bgexcl ACE 5 20 35 50 75 it 50 ms 

202002017non_target_pos-44 OW + spike bg excl 50 ms it  ace 5 20 35 50 75 2 NTS bgexcl ACE 5 20 35 50 75 it 50 ms 

202002017non_target_pos-45 OW + spike bg excl 50 ms it  ace 5 20 35 50 75 3 NTS bgexcl ACE 5 20 35 50 75 it 50 ms 

202002017non_target_pos-46 OW + spike bg excl 100 ms it stepped 20 35 50  1 NTS bgexcl stepped 20 35 50 it 100 ms 

202002017non_target_pos-47 OW + spike bg excl 100 ms it stepped 20 35 50  2 NTS bgexcl stepped 20 35 50 it 100 ms 

202002017non_target_pos-48 OW + spike bg excl 100 ms it stepped 20 35 50  3 NTS bgexcl stepped 20 35 50 it 100 ms 

202002017non_target_pos-49 OW + spike bg excl 100 ms it  ace 20 35 50  1 NTS bgexcl ACE 20 35 50 it 100 ms 

202002017non_target_pos-50 OW + spike bg excl 100 ms it  ace 20 35 50  2 NTS bgexcl ACE 20 35 50 it 100 ms 

202002017non_target_pos-51 OW + spike bg excl 100 ms it  ace 20 35 50  3 NTS bgexcl ACE 20 35 50 it 100 ms 

202002017non_target_pos-52 OW + spike bg excl 100 ms it  ace 5 20 35 50 75 1 NTS bgexcl ACE 5 20 35 50 75 it 100 ms 

202002017non_target_pos-53 OW + spike bg excl 100 ms it  ace 5 20 35 50 75 2 NTS bgexcl ACE 5 20 35 50 75 it 100 ms 

202002017non_target_pos-54 OW + spike bg excl 100 ms it  ace 5 20 35 50 75 3 NTS bgexcl ACE 5 20 35 50 75 it 100 ms 
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Table F.2 – Sequence list of first set of AGC target experiments.  

File Name Sample Name Instrument Method 

202002027non_target_pos-01 Blank MQ filtered NTS bgexcl stepped it 30 ms AGC 5e4 

202002027non_target_pos-02 Blank MQ filtered NTS bgexcl stepped it 30 ms AGC 5e4 

202002027non_target_pos-03 Blank MQ filtered NTS bgexcl stepped it 30 ms AGC 5e4 

202002027non_target_pos-04 OW + spike bg excl stepped 30 ms it  AGC 5e4 NTS bgexcl stepped it 30 ms AGC 5e4 

202002027non_target_pos-05 OW + spike bg excl stepped 30 ms it  AGC 5e4 NTS bgexcl stepped it 30 ms AGC 5e4 

202002027non_target_pos-06 OW + spike bg excl stepped 30 ms it  AGC 5e4 NTS bgexcl stepped it 30 ms AGC 5e4 

202002027non_target_pos-07 OW + spike bg excl stepped 50 ms it  AGC 5e4 NTS bgexcl stepped it 50 ms AGC 5e4 

202002027non_target_pos-08 OW + spike bg excl stepped 50 ms it  AGC 5e4 NTS bgexcl stepped it 50 ms AGC 5e4 

202002027non_target_pos-09 OW + spike bg excl stepped 50 ms it  AGC 5e4 NTS bgexcl stepped it 50 ms AGC 5e4 

202002027non_target_pos-10 OW + spike bg excl stepped 100 ms it  AGC 5e4 NTS bgexcl stepped it 100 ms AGC 5e4 

202002027non_target_pos-11 OW + spike bg excl stepped 100 ms it  AGC 5e4 NTS bgexcl stepped it 100 ms AGC 5e4 

202002027non_target_pos-12 OW + spike bg excl stepped 100 ms it  AGC 5e4 NTS bgexcl stepped it 100 ms AGC 5e4 

202002027non_target_pos-13 OW + spike bg excl stepped 200 ms it  AGC 5e4 NTS bgexcl stepped it 200 ms AGC 5e4 

202002027non_target_pos-14 OW + spike bg excl stepped 200 ms it  AGC 5e4 NTS bgexcl stepped it 200 ms AGC 5e4 

202002027non_target_pos-15 OW + spike bg excl stepped 200 ms it  AGC 5e4 NTS bgexcl stepped it 200 ms AGC 5e4 

202002027non_target_pos-16 OW + spike bg excl stepped 30 ms it  AGC 2e4 NTS bgexcl stepped it 30 ms AGC 2e4 

202002027non_target_pos-17 OW + spike bg excl stepped 30 ms it  AGC 2e4 NTS bgexcl stepped it 30 ms AGC 2e4 

202002027non_target_pos-18 OW + spike bg excl stepped 30 ms it  AGC 2e4 NTS bgexcl stepped it 30 ms AGC 2e4 

202002027non_target_pos-19 OW + spike bg excl stepped 50 ms it  AGC 2e4 NTS bgexcl stepped it 50 ms AGC 2e4 

202002027non_target_pos-20 OW + spike bg excl stepped 50 ms it  AGC 2e4 NTS bgexcl stepped it 50 ms AGC 2e4 

202002027non_target_pos-21 OW + spike bg excl stepped 50 ms it  AGC 2e4 NTS bgexcl stepped it 50 ms AGC 2e4 

202002027non_target_pos-22 OW + spike bg excl stepped 100 ms it  AGC 2e4 NTS bgexcl stepped it 100 ms AGC 2e4 

202002027non_target_pos-23 OW + spike bg excl stepped 100 ms it  AGC 2e4 NTS bgexcl stepped it 100 ms AGC 2e4 

202002027non_target_pos-24 OW + spike bg excl stepped 100 ms it  AGC 2e4 NTS bgexcl stepped it 100 ms AGC 2e4 

202002027non_target_pos-25 OW + spike bg excl stepped 200 ms it  AGC 2e4 NTS bgexcl stepped it 200 ms AGC 2e4 

202002027non_target_pos-26 OW + spike bg excl stepped 200 ms it  AGC 2e4 NTS bgexcl stepped it 200 ms AGC 2e4 

202002027non_target_pos-27 OW + spike bg excl stepped 200 ms it  AGC 2e4 NTS bgexcl stepped it 200 ms AGC 2e4 

202002027non_target_pos-28 OW + spike bg excl stepped 30 ms it  AGC 1e4 NTS bgexcl stepped it 30 ms AGC 1e4 

202002027non_target_pos-29 OW + spike bg excl stepped 30 ms it  AGC 1e4 NTS bgexcl stepped it 30 ms AGC 1e4 

202002027non_target_pos-30 OW + spike bg excl stepped 30 ms it  AGC 1e4 NTS bgexcl stepped it 30 ms AGC 1e4 

202002027non_target_pos-31 OW + spike bg excl stepped 50 ms it  AGC 1e4 NTS bgexcl stepped it 50 ms AGC 1e4 

202002027non_target_pos-32 OW + spike bg excl stepped 50 ms it  AGC 1e4 NTS bgexcl stepped it 50 ms AGC 1e4 

202002027non_target_pos-33 OW + spike bg excl stepped 50 ms it  AGC 1e4 NTS bgexcl stepped it 50 ms AGC 1e4 

202002027non_target_pos-34 OW + spike bg excl stepped 100 ms it  AGC 1e4 NTS bgexcl stepped it 100 ms AGC 1e4 

202002027non_target_pos-35 OW + spike bg excl stepped 100 ms it  AGC 1e4 NTS bgexcl stepped it 100 ms AGC 1e4 

202002027non_target_pos-36 OW + spike bg excl stepped 100 ms it  AGC 1e4 NTS bgexcl stepped it 100 ms AGC 1e4 

202002027non_target_pos-37 OW + spike bg excl stepped 200 ms it  AGC 1e4 NTS bgexcl stepped it 200 ms AGC 1e4 

202002027non_target_pos-38 OW + spike bg excl stepped 200 ms it  AGC 1e4 NTS bgexcl stepped it 200 ms AGC 1e4 

202002027non_target_pos-39 OW + spike bg excl stepped 200 ms it  AGC 1e4 NTS bgexcl stepped it 200 ms AGC 1e4 

202002027non_target_pos-40 Blank MQ filtered NTS bgexcl stepped it 200 ms AGC 1e4 
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Table F.3 – Sequence list of second set of AGC target experiments.  

File Name Sample Name Instrument Method 

AGC_NTS_20200501_pos-01 Blank MQ filtered NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-02 Blank MQ filtered NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-03 OW + spike  NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-04 OW + spike  NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-05 OW + spike  NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-06 OW + spike NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-07 OW + spike NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-08 OW + spike  NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-09 OW + spike bg excl stepped 30 ms it  AGC 5e3 NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-10 OW + spike bg excl stepped 30 ms it  AGC 5e3 NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-11 OW + spike bg excl stepped 30 ms it  AGC 5e3 NTS bgexcl stepped it 30 ms AGC 5e3 

AGC_NTS_20200501_pos-12 OW + spike bg excl stepped 50 ms it  AGC 5e3 NTS bgexcl stepped it 50 ms AGC 5e3 

AGC_NTS_20200501_pos-13 OW + spike bg excl stepped 50 ms it  AGC 5e3 NTS bgexcl stepped it 50 ms AGC 5e3 

AGC_NTS_20200501_pos-14 OW + spike bg excl stepped 50 ms it  AGC 5e3 NTS bgexcl stepped it 50 ms AGC 5e3 

AGC_NTS_20200501_pos-15 OW + spike bg excl stepped 100 ms it  AGC 5e3 NTS bgexcl stepped it 100 ms AGC 5e3 

AGC_NTS_20200501_pos-16 OW + spike bg excl stepped 100 ms it  AGC 5e3 NTS bgexcl stepped it 100 ms AGC 5e3 

AGC_NTS_20200501_pos-17 OW + spike bg excl stepped 100 ms it  AGC 5e3 NTS bgexcl stepped it 100 ms AGC 5e3 

AGC_NTS_20200501_pos-18 OW + spike bg excl stepped 200 ms it  AGC 5e3 NTS bgexcl stepped it 200 ms AGC 5e3 

AGC_NTS_20200501_pos-19 OW + spike bg excl stepped 200 ms it  AGC 5e3 NTS bgexcl stepped it 200 ms AGC 5e3 

AGC_NTS_20200501_pos-20 OW + spike bg excl stepped 200 ms it  AGC 5e3 NTS bgexcl stepped it 200 ms AGC 5e3 

AGC_NTS_20200501_pos-21 OW + spike bg excl stepped 30 ms it  AGC 1e4 NTS bgexcl stepped it 30 ms AGC 1e4 

AGC_NTS_20200501_pos-22 OW + spike bg excl stepped 30 ms it  AGC 1e4 NTS bgexcl stepped it 30 ms AGC 1e4 

AGC_NTS_20200501_pos-23 OW + spike bg excl stepped 30 ms it  AGC 1e4 NTS bgexcl stepped it 30 ms AGC 1e4 

AGC_NTS_20200501_pos-24 OW + spike bg excl stepped 50 ms it  AGC 1e4 NTS bgexcl stepped it 50 ms AGC 1e4 

AGC_NTS_20200501_pos-25 OW + spike bg excl stepped 50 ms it  AGC 1e4 NTS bgexcl stepped it 50 ms AGC 1e4 

AGC_NTS_20200501_pos-26 OW + spike bg excl stepped 50 ms it  AGC 1e4 NTS bgexcl stepped it 50 ms AGC 1e4 

AGC_NTS_20200501_pos-27 OW + spike bg excl stepped 100 ms it  AGC 1e4 NTS bgexcl stepped it 100 ms AGC 1e4 

AGC_NTS_20200501_pos-28 OW + spike bg excl stepped 100 ms it  AGC 1e4 NTS bgexcl stepped it 100 ms AGC 1e4 

AGC_NTS_20200501_pos-29 OW + spike bg excl stepped 100 ms it  AGC 1e4 NTS bgexcl stepped it 100 ms AGC 1e4 

AGC_NTS_20200501_pos-30 OW + spike bg excl stepped 200 ms it  AGC 1e4 NTS bgexcl stepped it 200 ms AGC 1e4 

AGC_NTS_20200501_pos-31 OW + spike bg excl stepped 200 ms it  AGC 1e4 NTS bgexcl stepped it 200 ms AGC 1e4 

AGC_NTS_20200501_pos-32 OW + spike bg excl stepped 200 ms it  AGC 1e4 NTS bgexcl stepped it 200 ms AGC 1e4 

AGC_NTS_20200501_pos-33 OW + spike bg excl stepped 30 ms it  AGC 2e4 NTS bgexcl stepped it 30 ms AGC 2e4 

AGC_NTS_20200501_pos-34 OW + spike bg excl stepped 30 ms it  AGC 2e4 NTS bgexcl stepped it 30 ms AGC 2e4 

AGC_NTS_20200501_pos-35 OW + spike bg excl stepped 30 ms it  AGC 2e4 NTS bgexcl stepped it 30 ms AGC 2e4 

AGC_NTS_20200501_pos-36 OW + spike bg excl stepped 50 ms it  AGC 2e4 NTS bgexcl stepped it 50 ms AGC 2e4 

AGC_NTS_20200501_pos-37 OW + spike bg excl stepped 50 ms it  AGC 2e4 NTS bgexcl stepped it 50 ms AGC 2e4 

AGC_NTS_20200501_pos-38 OW + spike bg excl stepped 50 ms it  AGC 2e4 NTS bgexcl stepped it 50 ms AGC 2e4 

AGC_NTS_20200501_pos-39 OW + spike bg excl stepped 100 ms it  AGC 2e4 NTS bgexcl stepped it 100 ms AGC 2e4 

AGC_NTS_20200501_pos-40 OW + spike bg excl stepped 100 ms it  AGC 2e4 NTS bgexcl stepped it 100 ms AGC 2e4 

AGC_NTS_20200501_pos-41 OW + spike bg excl stepped 100 ms it  AGC 2e4 NTS bgexcl stepped it 100 ms AGC 2e4 

AGC_NTS_20200501_pos-42 OW + spike bg excl stepped 200 ms it  AGC 2e4 NTS bgexcl stepped it 200 ms AGC 2e4 

AGC_NTS_20200501_pos-43 OW + spike bg excl stepped 200 ms it  AGC 2e4 NTS bgexcl stepped it 200 ms AGC 2e4 

AGC_NTS_20200501_pos-44 OW + spike bg excl stepped 200 ms it  AGC 2e4 NTS bgexcl stepped it 200 ms AGC 2e4 

AGC_NTS_20200501_pos-45 OW + spike bg excl stepped 30 ms it  AGC 5e4 NTS bgexcl stepped it 30 ms AGC 5e4 

AGC_NTS_20200501_pos-46 OW + spike bg excl stepped 30 ms it  AGC 5e4 NTS bgexcl stepped it 30 ms AGC 5e4 

AGC_NTS_20200501_pos-47 OW + spike bg excl stepped 30 ms it  AGC 5e4 NTS bgexcl stepped it 30 ms AGC 5e4 

AGC_NTS_20200501_pos-48 OW + spike bg excl stepped 50 ms it  AGC 5e4 NTS bgexcl stepped it 50 ms AGC 5e4 

AGC_NTS_20200501_pos-49 OW + spike bg excl stepped 50 ms it  AGC 5e4 NTS bgexcl stepped it 50 ms AGC 5e4 

AGC_NTS_20200501_pos-50 OW + spike bg excl stepped 50 ms it  AGC 5e4 NTS bgexcl stepped it 50 ms AGC 5e4 

AGC_NTS_20200501_pos-51 OW + spike bg excl stepped 100 ms it  AGC 5e4 NTS bgexcl stepped it 100 ms AGC 5e4 

AGC_NTS_20200501_pos-52 OW + spike bg excl stepped 100 ms it  AGC 5e4 NTS bgexcl stepped it 100 ms AGC 5e4 

AGC_NTS_20200501_pos-53 OW + spike bg excl stepped 100 ms it  AGC 5e4 NTS bgexcl stepped it 100 ms AGC 5e4 

AGC_NTS_20200501_pos-54 OW + spike bg excl stepped 200 ms it  AGC 5e4 NTS bgexcl stepped it 200 ms AGC 5e4 

AGC_NTS_20200501_pos-55 OW + spike bg excl stepped 200 ms it  AGC 5e4 NTS bgexcl stepped it 200 ms AGC 5e4 

AGC_NTS_20200501_pos-56 OW + spike bg excl stepped 200 ms it  AGC 5e4 NTS bgexcl stepped it 200 ms AGC 5e4 

AGC_NTS_20200501_pos-57 Blank MQ filtered NTS bgexcl stepped it 200 ms AGC 5e4 
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Table F.4 – Sequence list of MS1-trigger experiments with surface water samples. 

 File Name Sample Name Instrument Method 

20200414non_target_pos-01 Blank MQ NTS_pos_ method 1_KWR 

20200414non_target_pos-02 Blank MQ  NTS_pos_ method 1_KWR 

20200414non_target_pos-03 OW + spike  NTS_pos_ method 1_KWR 

20200414non_target_pos-04 OW + spike  NTS_pos_ method 1_KWR 

20200414non_target_pos-05 Method 1 Blank MQ  NTS_pos_ method 1_KWR 

20200414non_target_pos-06 Method 1 OW + spike 1 NTS_pos_ method 1_KWR 

20200414non_target_pos-07 Method 1 OW + spike 2 NTS_pos_ method 1_KWR 

20200414non_target_pos-08 Method 1 OW + spike 3 NTS_pos_ method 1_KWR 

20200414non_target_pos-09 Method 2 OW + spike 1 NTS_pos_ method 2_isotopic ratio 

20200414non_target_pos-10 Method 2 OW + spike 2 NTS_pos_ method 2_isotopic ratio 

20200414non_target_pos-11 Method 2 OW + spike 3 NTS_pos_ method 2_isotopic ratio 

20200414non_target_pos-12 Method 3 OW + spike 1 NTS_pos_ method 3_susdat 

20200414non_target_pos-13 Method 3 OW + spike 2 NTS_pos_ method 3_susdat 

20200414non_target_pos-14 Method 3 OW + spike 3 NTS_pos_ method 3_susdat 

20200414non_target_pos-15 Method 1 Blank MQ NTS_pos_ method 1_KWR 

20200414non_target_pos-16 Method 4 OW + spike 1 NTS_pos_ method 4_UBAPMT 

20200414non_target_pos-17 Method 4 OW + spike 2 NTS_pos_ method 4_UBAPMT 

20200414non_target_pos-18 Method 4 OW + spike 3 NTS_pos_ method 4_UBAPMT 

20200414non_target_pos-19 Method 5 OW + spike 1 NTS_pos_ method 5_Sjerps 

20200414non_target_pos-20 Method 5 OW + spike 2 NTS_pos_ method 5_Sjerps 

20200414non_target_pos-21 Method 5 OW + spike 3 NTS_pos_ method 5_Sjerps 

20200414non_target_pos-22 Method 6 OW + spike 1 NTS_pos_ method 6_susdat_tR 

20200414non_target_pos-23 Method 6 OW + spike 2 NTS_pos_ method 6_susdat_tR 

20200414non_target_pos-24 Method 6 OW + spike 3 NTS_pos_ method 6_susdat_tR 

20200414non_target_pos-25 Method 1 Blank MQ NTS_pos_ method 1_KWR 

20200414non_target_pos-26 Method 7 OW + spike 1 NTS_pos_ method 7_isotopic_ratio_UBAPMT 

20200414non_target_pos-27 Method 7 OW + spike 2 NTS_pos_ method 7_isotopic_ratio_UBAPMT 

20200414non_target_pos-28 Method 7 OW + spike 3 NTS_pos_ method 7_isotopic_ratio_UBAPMT 

20200414non_target_pos-29 Method 8 OW + spike 1 NTS_pos_ method 8_isotopic_ratio_susdat 

20200414non_target_pos-30 Method 8 OW + spike 2 NTS_pos_ method 8_isotopic_ratio_susdat 

20200414non_target_pos-31 Method 8 OW + spike 3 NTS_pos_ method 8_isotopic_ratio_susdat 

20200414non_target_pos-32 Method 9 OW + spike 1 NTS_pos_ method 9_isotopic_ratio_susdat_tR 

20200414non_target_pos-33 Method 9 OW + spike 2 NTS_pos_ method 9_isotopic_ratio_susdat_tR 

20200414non_target_pos-34 Method 9 OW + spike 2 NTS_pos_ method 9_isotopic_ratio_susdat_tR 

20200414non_target_pos-35 Method 1 Blank MQ NTS_pos_ method 1_KWR 

20200414non_target_pos-36 Method 10 OW + spike 1 NTS_pos_ method 10_isotopic_ratio_Sjerps 

20200414non_target_pos-37 Method 10 OW + spike 2 NTS_pos_ method 10_isotopic_ratio_Sjerps 

20200414non_target_pos-38 Method 10 OW + spike 3 NTS_pos_ method 10_isotopic_ratio_Sjerps 

20200414non_target_pos-39 Method 11 OW + spike 1 NTS_pos_ method 11_Spike inclusion 

20200414non_target_pos-40 Method 11 OW + spike 2 NTS_pos_ method 11_Spike inclusion 

20200414non_target_pos-41 Method 11 OW + spike 3 NTS_pos_ method 11_Spike inclusion 

20200414non_target_pos-42 Method 12 OW + spike 1 NTS_pos_ method 12_isotopic_ratio_Spike inclusion 

20200414non_target_pos-43 Method 12 OW + spike 2 NTS_pos_ method 12_isotopic_ratio_Spike inclusion 

20200414non_target_pos-44 Method 12 OW + spike 3 NTS_pos_ method 12_isotopic_ratio_Spike inclusion 

20200414non_target_pos-45 Method 1 Blank MQ  NTS_pos_ method 1_KWR 
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Table F.5 – Sequence list of MS1-trigger experiments with wastewater treatment plant influent samples. 

File Name Sample Name Instrument Method 

20200501_MS1trigger_pos-01 Blank MQ NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-02 Blank MQ  NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-03 Method 1 RWZI inf + spike 1 NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-04 Method 1 RWZI inf + spike 2 NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-05 Method 1 RWZI inf + spike 3 NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-06 Method 2 RWZI inf + spike 1 NTS_pos_ method 2_isotopic ratio 

20200501_MS1trigger_pos-07 Method 2 RWZI inf + spike 2 NTS_pos_ method 2_isotopic ratio 

20200501_MS1trigger_pos-08 Method 2 RWZI inf + spike 3 NTS_pos_ method 2_isotopic ratio 

20200501_MS1trigger_pos-09 Method 3 RWZI inf + spike 1 NTS_pos_ method 3_susdat 

20200501_MS1trigger_pos-10 Method 3 RWZI inf + spike 2 NTS_pos_ method 3_susdat 

20200501_MS1trigger_pos-11 Method 3 RWZI inf + spike 3 NTS_pos_ method 3_susdat 

20200501_MS1trigger_pos-12 Blank MQ NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-13 Method 4 RWZI inf + spike 1 NTS_pos_ method 4_UBAPMT 

20200501_MS1trigger_pos-14 Method 4 RWZI inf + spike 2 NTS_pos_ method 4_UBAPMT 

20200501_MS1trigger_pos-15 Method 4 RWZI inf + spike 3 NTS_pos_ method 4_UBAPMT 

20200501_MS1trigger_pos-16 Method 5 RWZI inf + spike 1 NTS_pos_ method 5_Sjerps 

20200501_MS1trigger_pos-17 Method 5 RWZI inf + spike 2 NTS_pos_ method 5_Sjerps 

20200501_MS1trigger_pos-18 Method 5 RWZI inf + spike 3 NTS_pos_ method 5_Sjerps 

20200501_MS1trigger_pos-19 Method 6 RWZI inf + spike 1 NTS_pos_ method 6_susdat_tR 

20200501_MS1trigger_pos-20 Method 6 RWZI inf + spike 2 NTS_pos_ method 6_susdat_tR 

20200501_MS1trigger_pos-21 Method 6 RWZI inf + spike 3 NTS_pos_ method 6_susdat_tR 

20200501_MS1trigger_pos-22 Blank MQ NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-23 Method 7 RWZI inf + spike 1 NTS_pos_ method 7_isotopic_ratio_UBAPMT 

20200501_MS1trigger_pos-24 Method 7 RWZI inf + spike 2 NTS_pos_ method 7_isotopic_ratio_UBAPMT 

20200501_MS1trigger_pos-25 Method 7 RWZI inf + spike 3 NTS_pos_ method 7_isotopic_ratio_UBAPMT 

20200501_MS1trigger_pos-26 Method 8 RWZI inf + spike 1 NTS_pos_ method 8_isotopic_ratio_susdat 

20200501_MS1trigger_pos-27 Method 8 RWZI inf + spike 2 NTS_pos_ method 8_isotopic_ratio_susdat 

20200501_MS1trigger_pos-28 Method 8 RWZI inf + spike 3 NTS_pos_ method 8_isotopic_ratio_susdat 

20200501_MS1trigger_pos-29 Method 9 RWZI inf + spike 1 NTS_pos_ method 9_isotopic_ratio_susdat_tR 

20200501_MS1trigger_pos-30 Method 9 RWZI inf + spike 2 NTS_pos_ method 9_isotopic_ratio_susdat_tR 

20200501_MS1trigger_pos-31 Method 9 RWZI inf + spike 3 NTS_pos_ method 9_isotopic_ratio_susdat_tR 

20200501_MS1trigger_pos-32 Blank MQ NTS_pos_ method 1_KWR 

20200501_MS1trigger_pos-33 Method 10 RWZI inf + spike 1 NTS_pos_ method 10_isotopic_ratio_Sjerps 

20200501_MS1trigger_pos-34 Method 10 RWZI inf + spike 2 NTS_pos_ method 10_isotopic_ratio_Sjerps 

20200501_MS1trigger_pos-35 Method 10 RWZI inf + spike 3 NTS_pos_ method 10_isotopic_ratio_Sjerps 

20200501_MS1trigger_pos-36 Method 11 RWZI inf + spike 1 NTS_pos_ method 11_Spike inclusion 

20200501_MS1trigger_pos-37 Method 11 RWZI inf + spike 2 NTS_pos_ method 11_Spike inclusion 

20200501_MS1trigger_pos-38 Method 11 RWZI inf + spike 3 NTS_pos_ method 11_Spike inclusion 

20200501_MS1trigger_pos-39 Method 12 RWZI inf + spike 1 NTS_pos_ method 12_isotopic_ratio_Spike inclusion 

20200501_MS1trigger_pos-40 Method 12 RWZI inf + spike 2 NTS_pos_ method 12_isotopic_ratio_Spike inclusion 

20200501_MS1trigger_pos-41 Method 12 RWZI inf + spike 3 NTS_pos_ method 12_isotopic_ratio_Spike inclusion 

20200501_MS1trigger_pos-42 Method 1 Blank MQ  NTS_pos_ method 1_KWR 
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Table F.6 – Sequence list of MS2-trigger experiments. 

File Name Sample Name Instrument Method 

20200520_MS2trigger_pos-01 Blank MQ water NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-02 Blank MQ water NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-03 Method 1 TA344/TA362 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-04 Method 1 TA344/TA362 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-05 Method 1 TA344/TA362 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-06 Method 2 TA344/TA362 NTS_pos_ method 2_TA344-362 

20200520_MS2trigger_pos-07 Method 2 TA344/TA362 NTS_pos_ method 2_TA344-362 

20200520_MS2trigger_pos-08 Method 2 TA344/TA362 NTS_pos_ method 2_TA344-362 

20200520_MS2trigger_pos-09 Blank MQ water NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-10 Method 1 TA367 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-11 Method 1 TA367 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-12 Method 1 TA367 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-13 Method 3 TA367 NTS_pos_ method 3_TA367 

20200520_MS2trigger_pos-14 Method 3 TA367 NTS_pos_ method 3_TA367 

20200520_MS2trigger_pos-15 Method 3 TA367 NTS_pos_ method 3_TA367 

20200520_MS2trigger_pos-16 Blank MQ water NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-17 Method 1 TA322 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-18 Method 1 TA322 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-19 Method 1 TA322 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-20 Method 4 TA322 NTS_pos_ method 4_TA322 

20200520_MS2trigger_pos-21 Method 4 TA322 NTS_pos_ method 4_TA322 

20200520_MS2trigger_pos-22 Method 4 TA322 NTS_pos_ method 4_TA322 

20200520_MS2trigger_pos-23 Blank MQ water NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-24 Method 1 TA387/TA395 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-25 Method 1 TA387/TA395 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-26 Method 1 TA387/TA395 NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-27 Method 5 TA387/TA395 NTS_pos_ method 5_TA387-395 

20200520_MS2trigger_pos-28 Method 5 TA387/TA395 NTS_pos_ method 5_TA387-395 

20200520_MS2trigger_pos-29 Method 5 TA387/TA395 NTS_pos_ method 5_TA387-395 

20200520_MS2trigger_pos-30 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-31 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-32 Method 1 Total MQ, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-33 Method 1 Total MQ, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-34 Method 1 Total MQ, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-35 Method 6 Total MQ, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-36 Method 6 Total MQ, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-37 Method 6 Total MQ, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-38 Method 7 Total MQ, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-39 Method 7 Total MQ, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-40 Method 7 Total MQ, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-41 Method 8 Total MQ, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-42 Method 8 Total MQ, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-43 Method 8 Total MQ, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-44 Method 9 Total MQ, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-45 Method 9 Total MQ, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-46 Method 9 Total MQ, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-47 Method 10 Total MQ, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-48 Method 10 Total MQ, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-49 Method 10 Total MQ, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-50 Method 11 Total MQ, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-51 Method 11 Total MQ, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-52 Method 11 Total MQ, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-53 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-54 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-55 Method 1 OW, filtrated (no spike) NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-56 Method 1 OW, filtrated (no spike) NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-57 Method 1 OW, filtrated (no spike) NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-58 Method 6 OW, filtrated (no spike) NTS_pos_ method 6_all_alerts 
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20200520_MS2trigger_pos-59 Method 6 OW, filtrated (no spike) NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-60 Method 6 OW, filtrated (no spike) NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-61 Method 7 OW, filtrated (no spike) NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-62 Method 7 OW, filtrated (no spike) NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-63 Method 7 OW, filtrated (no spike) NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-64 Method 8 OW, filtrated (no spike) NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-65 Method 8 OW, filtrated (no spike) NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-66 Method 8 OW, filtrated (no spike) NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-67 Method 9 OW, filtrated (no spike) NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-68 Method 9 OW, filtrated (no spike) NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-69 Method 9 OW, filtrated (no spike) NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-70 Method 10 OW, filtrated (no spike) NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-71 Method 10 OW, filtrated (no spike) NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-72 Method 10 OW, filtrated (no spike) NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-73 Method 11 OW, filtrated (no spike) NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-74 Method 11 OW, filtrated (no spike) NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-75 Method 11 OW, filtrated (no spike) NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-76 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-77 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-78 Method 6 Total OW 1 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-79 Method 6 Total OW 1 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-80 Method 6 Total OW 1 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-81 Method 6 Total OW 10 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-82 Method 6 Total OW 10 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-83 Method 6 Total OW 10 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-84 Method 6 Total OW 100 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-85 Method 6 Total OW 100 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-86 Method 6 Total OW 100 ng/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-87 Method 6 Total OW 1 ug/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-88 Method 6 Total OW 1 ug/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-89 Method 6 Total OW 1 ug/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-90 Method 6 Total OW 10 ug/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-91 Method 6 Total OW 10 ug/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-92 Method 6 Total OW 10 ug/L, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-93 Method 1 Total OW 10 ug/L, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-94 Method 1 Total OW 10 ug/L, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-95 Method 1 Total OW 10 ug/L, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-96 Method 7 Total OW 10 ug/L, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-97 Method 7 Total OW 10 ug/L, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-98 Method 7 Total OW 10 ug/L, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-99 Method 8 Total OW 10 ug/L, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-100 Method 8 Total OW 10 ug/L, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-101 Method 8 Total OW 10 ug/L, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-102 Method 9 Total OW 10 ug/L, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-103 Method 9 Total OW 10 ug/L, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-104 Method 9 Total OW 10 ug/L, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-105 Method 10 Total OW 10 ug/L, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-106 Method 10 Total OW 10 ug/L, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-107 Method 10 Total OW 10 ug/L, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-108 Method 11 Total OW 10 ug/L, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-109 Method 11 Total OW 10 ug/L, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-110 Method 11 Total OW 10 ug/L, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-111 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-112 Blank MQ water, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-113 Method 1 LOA600 OW, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-114 Method 1 LOA600 OW, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-115 Method 1 LOA600 OW, filtrated NTS_pos_ method 1_KWR 

20200520_MS2trigger_pos-116 Method 6 LOA600 OW, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-117 Method 6 LOA600 OW, filtrated NTS_pos_ method 6_all_alerts 

20200520_MS2trigger_pos-118 Method 6 LOA600 OW, filtrated NTS_pos_ method 6_all_alerts 
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20200520_MS2trigger_pos-119 Method 7 LOA600 OW, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-120 Method 7 LOA600 OW, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-121 Method 7 LOA600 OW, filtrated NTS_pos_ method 7_all_alerts_ACE 

20200520_MS2trigger_pos-122 Method 8 LOA600 OW, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-123 Method 8 LOA600 OW, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-124 Method 8 LOA600 OW, filtrated NTS_pos_ method 8_all_alerts_IT 

20200520_MS2trigger_pos-125 Method 9 LOA600 OW, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-126 Method 9 LOA600 OW, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-127 Method 9 LOA600 OW, filtrated NTS_pos_ method 9_all_alerts_MS1trig 

20200520_MS2trigger_pos-128 Method 10 LOA600 OW, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-129 Method 10 LOA600 OW, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-130 Method 10 LOA600 OW, filtrated NTS_pos_ method 10_all_alerts_MS1trig_ACE 

20200520_MS2trigger_pos-131 Method 11 LOA600 OW, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-132 Method 11 LOA600 OW, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-133 Method 11 LOA600 OW, filtrated NTS_pos_ method 11_all_alerts_MS1trig_IT 

20200520_MS2trigger_pos-134 Blank MQ water, filtrated NTS_pos_ method 1_KWR 
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Appendix G – Chlorine and bromine distribution 

 
Figure G.1 – Distribution of the number of chlorine atoms in all chlorinated compounds (n = 1286500) in the CompTox 
Chemistry dashboard. Note the logarithmic scale of the y-axis. The vertical red dotted line marks the 99% quantile (1 Cl atom 
up to 6 Br atoms). 

 

 
Figure G.2 – Distribution of the number of bromine atoms in all brominated compounds (n = 53258) in the CompTox Chemistry 
dashboard. Note the logarithmic scale of the y-axis. The vertical red dotted line marks the 99% quantile (1 Br atom up to 5 Br 
atoms). 
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Appendix H – Compound Discoverer workflow parameters 

LOA-600 NTS workflow cd 3.1 RP Pos adjusted 20200309 
Select Spectra 
1. General Settings 

Precursor Selection:     Use MS(n-1) Precursor 
Use Isotope Pattern in Precursor Reevaluation:  True 
Provide Profile Spectra:     Automatic 
Store Chromatograms:     False 

2. Spectrum Properties Filter 
Lower RT Limit:     2 
Upper RT Limit:     27 
First Scan:      0 
Last Scan:      0 
Ignore Specified Scans:     - 
Lowest Charge State:     0 
Highest Charge State:     0 
Min. Precursor Mass:     80 Da 
Max. Precursor Mass:     5000 Da 
Total Intensity Threshold:    0 
Minimum Peak Count:     1 

3. Scan Event Filters 
Mass Analyzer:     (Not specified) 
MS Order:      Any 
Activation Type:     (Not specified) 
Min. Collision Energy:     0 
Max. Collision Energy:     1000 
Scan Type:      Any 
Polarity Mode:      (Not specified) 

4. Peak Filters 
S/N Threshold (FT-only):     1.5 

5. Replacements for Unrecognized Properties 
Unrecognized Charge Replacements:   1 
Unrecognized Mass Analyzer Replacements:   ITMS 
Unrecognized MS Order Replacements:   MS2 
Unrecognized Activation Type Replacements:  CID 
Unrecognized Polarity Replacements:   + 
Unrecognized MS Resolution@200 Replacements:   60000 
Unrecognized MSn Resolution@200 Replacements:   30000 

 
Align Retention Times 
1. General Settings 

Alignment Fallback:     Use Linear Model 
Mass Tolerance:     5 ppm 
Maximum Shift [min]:     1 
Remove Outlier:     True 
Shift Reference File:     True 
Alignment Model:     Adaptive curve 

 
Detect Compounds 
1. General Settings 

Ions:  2M+H], [M+2H], [M+ACN+H], [M+H], [M+H+MeOH], [M+H-H2O], [M+K], [M+Na], [M+NH4] 
Base Ions:       [M+H], [M-H] 
Intensity Tolerance [%]:     30 
Mass Tolerance [ppm]:     3 ppm 
Max. Element Counts:     C90 H190 Br3 Cl4 F6 K2 N10 Na2 O18 P3 S5 
Min. Element Counts:     C H 
Min. Peak Intensity     50000 
S/N Threshold:      3 

2. Peak Detection 
Filter Peaks:      True 
Min. # Isotopes:     1 
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Min. # Scans per Peak:     5 
Max. Peak Width [min]:     0.8 
Remove Singlets:     False 

 
Group Compounds 
1. Compound Consolidation 

Mass Tolerance:     3 ppm 
RT Tolerance [min]:     0.1 

2. Fragment Data Selection 
Preferred Ions:      [M+H], [M-H] 

 
Merge Features 
1. Peak Consolidation 

Mass Tolerance:     3 ppm 
RT Tolerance [min]:     0.1 

 
Predict Compositions 
1. Prediction Settings 

Mass Tolerance:     3 ppm 
Max. Element Counts:     C90 H190 Br3 Cl4 F6 K2 N10 Na2 O18 P3 S5 
Max. H/C:      3.5 
Max. # Candidates:     10 
Max. # Internal Candidates:    500 
Max. RDBE:      40 
Min. Element Counts:     C H 
Min. H/C:      0.1 
Min. RDBE:      0 

2. Pattern Matching 
Intensity Threshold [%]:     0.1 
Intensity Tolerance [%]:     30 
Min. Pattern Cov. [%]:     80 
Min. Spectral Fit [%]:     30 
S/N Threshold:      3 
Use Dynamic Recalibration:    True 

3. Fragments Matching 
Mass Tolerance:     5 ppm 
S/N Threshold:      3 
Use Fragments Matching:    True 

 
Pattern Scoring 
1. General Settings 

Intensity Tolerance [%]:     30 
Isotope Patterns:     S, Cl, Br 
Mass Tolerance:     3 ppm 
Min. Spectral Fit [%]:     0 
SN Threshold:      3 

 
Search Mass Lists 
1. Search Settings 

Mass Lists: KWRWater_1_8214.massList, KWRWater_8215_18363.massList, 
KWRWater_18364_26808.massList, KWRWater_26809_35517.massList, 
KWRWater_35518_end.massList, LOA-600 suspects structures.masslist 

Mass Tolerance:   3 ppm 
RT Tolerance [min]:   0.5 
Use Retention Time:   False 

 
Search ChemSpider 
1. Search Settings 

Result Order (for. Max # of results per compound):  Order By Reference Count (DESC) 
Database(s): ACToR: Aggregated Computational Toxicology Resource, EAWAG 

Biocatalysis/Biodegradation Database; EPA DSSTox; EPA Toxcast; FDA UNII 
– NLM 

Mass Tolerance:   3 ppm 
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Max. # of Predicted Compositions to be searched per Compound: 3 
Max. # of results per compound:    20 
Search Mode:      By Formula or Mass 

2. Predicted Composition Annotation 
Check All Predicted Compositions:    True 

 
Assign Compound Annotations 
1. General Settings 

Mass Tolerance:     3 ppm 
2. Data Sources 

Data Source #1:     mzCloud Search 
Data Source #2:     mzVault Search 
Data Source #3:     MassList Search 
Data Source #4:     ChemSpider Search 
Data Source #5:     Predicted Compositions 

3. Scoring Rules 
SFit Range:      20 
SFit Threshold:      20 
Use mzLogic:      True 
Use Spectral Distance:     True 

  
Search mzVault 
1. Search Settings 

Apply Intensity Threshold:    True 
Compound Classes:     All 
FT Fragment Mass Tolerance:    10 ppm 
mzVault Library:     Massbank – Fiehn HILIC.db; Massbank all.db 
IT Fragment Mass Tolerance:    0.4 Da 
Ion Activation Energy Tolerance:    20 
Match Analyzer Type:     False 
Match Ion Activation Energy:    Any 
Match Ion Activation Type:    False 
Match Ionization Method:    False 
Match Factor Threshold:     50 
Max. # Results:     10 
Precursor Mass Tolerance:    10 ppm 
Remove Precursor Ion:     True 
RT Tolerance [min]:     2 
Search Algorithm:     HighChem DP 
Use Retention Time:     False 

 
Fill Gaps 
1. General Settings 

Mass Tolerance:      3 ppm 
S/N Threshold:      1.5 
Use Real Peak Detection:    True 

 
Mark Background Compounds 
1. General Settings 

Hide Background:     False 
Max. Blank/Sample:     0 
Max. Sample/Blank:     10 

 
Search mzCloud 
1. General Settings 

Compound Classes:     All 
FT Fragment Mass Tolerance:    10 ppm 
IT Fragment Mass Tolerance:     0.4 Da 
Library:      Autoprocessed; Reference 
Max. # Results:     10 
Post Processing:     Recalibrated 
Precursor Mass Tolerance:    10 ppm 
Annotate Matching Fragments:    False 
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2. DDA Search 
Activation Energy Tolerance:    20 
Apply Intensity Threshold:    True 
Match Activation Energy:    Match with Tolerance 
Match Activation Type:     True 
Match Factor Threshold:     60 
Identity Search:     Cosine 
Similarity Search:     Confidence Forward 

3. DIA Search 
Activation Energy Tolerance:    100 
Apply Intensity Threshold:    False 
Match Activation Energy:    Any 
Match Activation Type:     False 
Match Factor Threshold:     20 
Max. Isolation Width [Da]:    500 
Use DIA Scans for Search:    False 

 
Apply mzLogic 
1. Search Settings 

FT Fragment Mass Tolerance:    10 ppm 
IT Fragment Mass Tolerance:    0.4 Da 
Match Factor Threshold:     30 
Max. # Compounds:     0 
Max. # mzCloud Similarity Results to consider per Compound: 10 

 
Apply Spectral Distance 
1. Pattern Matching 

Intensity Threshold [%]:     0.1 
Intensity Tolerance [%]:     30 
Mass Tolerance:     5 ppm 
S/N Threshold:      3 
Use Dynamic Recalibration:    True 
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Appendix I – Spectral quality parameters acquisition experiments 

 
Figure I.1 – Kernel density plots of the number of peaks, square root-transformed. Data from the AcquireX experiments. 
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Figure I.2  – Kernel density plots of the arithmetic mean of the peak areas, log-transformed. Data from the AcquireX experiments. 
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Figure I.3  – Kernel density plots of the standard deviation of the peak areas, log-transformed. Data from the AcquireX experiments. 
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Figure I.4 – Kernel density plots of the smallest m/z range containing 95% of the total peak area. Data from the AcquireX experiments. 
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Figure I.5 – Kernel density plots of the smallest m/z range containing 50% of the total peak area. Data from the AcquireX experiments. 
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Figure I.6 – Kernel density plots of the total ion current per m/z, log transformed. Data from the AcquireX experiments. 
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Figure I.7 – Kernel density plots of the standard deviation of the consecutive m/z gaps between all peaks, log-transformed. Data from the AcquireX experiments. 
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Figure I.8 – Kernel density plots of the average number of neighbor peaks within a 2-Da interval around any peak. Data from the AcquireX experiments. 
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Figure I.9 – Kernel density plots of the number of peaks, square root-transformed. The red distributions correspond to the scans that reached the AGC-target before the maximum injection time. 
Data from the second set of AGC-target experiments. 
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Figure I.10– Kernel density plots of the arithmetic mean of the peak areas, log-transformed. The red distributions correspond to the scans that reached the AGC-target before the maximum 
injection time. Data from the second set of AGC-target experiments. 
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Figure I.11  – Kernel density plots of the standard deviation of the peak areas, log-transformed. Note the divergent scales of graph it50_agc5e4. The red distributions correspond to the scans that 
reached the AGC-target before the maximum injection time. Data from the second set of AGC-target experiments. 
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Figure I.12 – Kernel density plots of the smallest m/z range containing 95% of the total peak area. Note the divergent scales of graph it200_agc1e4. The red distributions correspond to the scans 
that reached the AGC-target before the maximum injection time. Data from the second set of AGC-target experiments. 
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Figure I.13 - Kernel density plots of the smallest m/z range containing 50% of the total peak area. Note the divergent scales of graph it50_agc1e4. The red distributions correspond to the scans 
that reached the AGC-target before the maximum injection time. Data from the second set of AGC-target experiments. 
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Figure I.14 – Kernel density plots of the total ion current per m/z, log transformed. The red distributions correspond to the scans that reached the AGC-target before the maximum injection time. 
Data from the second set of AGC-target experiments. 
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Figure I.15 – Kernel density plots of the standard deviation of the consecutive m/z gaps between all peaks, log-transformed. The red distributions correspond to the scans that reached the AGC-
target before the maximum injection time. Data from the second set of AGC-target experiments. 
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Figure I.16 – Kernel density plots of the average number of neighbor peaks within a 2-Da interval around any peak. The red distributions correspond to the scans that reached the AGC-target 
before the maximum injection time. Data from the second set of AGC-target experiments. 
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