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Editor: Warish Ahmed Despite high vaccination rates in the Netherlands, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) con-
tinues to circulate. Longitudinal sewage surveillance was implemented along with the notification of cases as two parts
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Public health effect of interventions.

::vl:j;ejov'z Sewage samples were collected from nine neighborhoods between September 2020 and November 2021. Comparative

Surveillance analysis and modeling were performed to understand the correlation between wastewater and case trends. Using high

Early warning systems resolution sampling, normalization of wastewater SARS-CoV-2 concentrations, and ‘normalization’ of reported posi-

tive tests for testing delay and intensity, the incidence of reported positive tests could be modeled based on sewage
data, and trends in both surveillance systems coincided. The high collinearity implied that high levels of viral shedding
around the onset of disease largely determined SARS-CoV-2 levels in wastewater, and that the observed relationship
was independent of variants of concern and vaccination levels. Sewage surveillance alongside a large-scale testing
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effort where 58 % of a municipality was tested, indicated a five-fold difference in the number of SARS-CoV-2-positive
individuals and reported cases through standard testing.

Where trends in reported positive cases were biased due to testing delay and testing behavior, wastewater surveillance
can objectively display SARS-CoV-2 dynamics for both small and large locations and is sensitive enough to measure
small variations in the number of infected individuals within or between neighborhoods. With the transition to a
post-acute phase of the pandemic, sewage surveillance can help to keep track of re-emergence, but continued valida-
tion studies are needed to assess the predictive value of sewage surveillance with new variants. Our findings and model
aid in interpreting SARS-CoV-2 surveillance data for public health decision-making and show its potential as one of the
pillars of future surveillance of (re)emerging viruses.

1. Introduction

The coronavirus disease 2019 pandemic is a major challenge for society,
and to control outbreaks the largest global testing program in history was
started (Mercer and Salit, 2021). For most pathogens, there are differences
in the severity of disease between infected individuals, with a small group
experiencing symptoms that are so severe that hospital admission is war-
ranted, while a much larger group experience mild symptoms or undergo
asymptomatic infection (Sah et al., 2021; The Novel Coronavirus
Pneumonia Emergency Response Epidemiology Team, 2020). Since only
people that seek medical care will be diagnosed, an outbreak can occur rel-
atively unnoticed for some time (Munster et al., 2020; Zhu et al., 2020).
SARS-CoV-2 is an example of a viral pathogen for which the disease pyra-
mid is heavily skewed towards mild and asymptomatic cases (Munster
et al., 2020).

Wastewater can be used for population surveillance of viruses that may
spread by persons with mild or asymptomatic disease, and has been used
for common endemic pathogens, antimicrobial resistance (Hellmer et al.,
2014) and poliovirus (Hendriksen et al., 2019; Nieuwenhuijse et al.,
2020). SARS-CoV-2 can be detected in domestic wastewater, and the levels
of SARS-CoV-2 in wastewater correlate with reported cases and hospitaliza-
tions (Barrios et al., 2021; Fernandez-Cassi et al., 2021). In the Netherlands,
during the spring of 2020, SARS-CoV-2 was already detectable in city
wastewater six days before the first patients were diagnosed (Medema
et al., 2020b). Our work and that of others showed that next-generation se-
quencing (NGS) and digital droplet PCR (ddPCR) can be used to test for the
presence of SARS-CoV-2 variants of concern (VOC) and to unravel the ge-
netic characteristics of SARS-CoV-2 viruses present in sewage (Heijnen
et al., 2021; Izquierdo-Lara et al., 2021).

In other countries, wastewater surveillance also outperformed case re-
ports as a tool to monitor SARS-CoV-2 circulation, where the detection of
SARS-CoV-2 in wastewater preceded case reports by 3 to 14 days (Barrios
et al., 2021; Claro et al., 2021; Fernandez-Cassi et al., 2021; Wu et al.,
2021). The added value of sewage surveillance, depends on multiple factors,
such as testing access and policy, healthcare access, demographics, and
compliance to policies at the community level. Therefore, we conducted a
high-resolution surveillance project in the Rotterdam Rijnmond area to as-
sess how the dynamics of the number of clinical cases within a neighborhood
are reflected in viral loads in sewage and which factors affect this correla-
tion. We further investigated the potential of sewage surveillance to monitor
SARS-CoV-2 trends, as an early warning tool, and to measure the effect of in-
terventions. For this, we designed a study to collect the following data from
different layers of the surveillance pyramid: 1) high-resolution sewage sam-
pling in nine neighborhoods of different sizes and socioeconomic status
within Rotterdam; 2) notification data based on clinical testing, with num-
ber of notifications, dates of probable day of onset of disease, and dates of
test result from the national notification database for community cases in
the same neighborhoods (OSIRIS); 3) data on total number of tests per-
formed in the testing lanes of the regional Public Health Service (PHS). All
data sources were matched to each neighborhood based on zip codes. Dur-
ing this study, sewage surveillance was carried out in real time and shared
with municipal public health experts to assess the usefulness of this type of
data for decision making on SARS-CoV-2 mitigation measures.

2. Methods
2.1. Selection of areas

For this observational study, nine catchment areas each representing be-
tween 6500 and 138,280 inhabitants were included. We first selected four
neighborhoods for which the coverage area of general practices overlapped
well with the sewer catchment areas: Katendrecht (6500 inhabitants),
Ommoord (28,434 inhabitants), Pretorialaan (71,325 inhabitants), and
Rozenburg (12,374 inhabitants). In addition, we selected four larger catch-
ment areas: influent (INF)2 Everlo-Waalhaven (27,044 inhabitants), INF3
Pretorialaan-Zuidplein (121,118 inhabitants), INF4 Wolphaertsbocht
(36,011 inhabitants) and INF5-6 Heemraadsplein (138,280 inhabitants)
for which we could collect sewage samples at the wastewater treatment
plant (WWTP) in Dokhaven (FigurelA). The sewer systems of Katendrecht,
Pretorialaan and INF3 Pretorialaan-Zuidplein are nested; they form a cas-
cade where upstream catchments discharge into larger downstream catch-
ments. We later included Bergschenhoek (18,750 inhabitants) during a
large-scale testing effort.

2.2. Sampling and analysis

Automated samplers were installed, and from September 1, 2020 to
November 9, 2021 (except for Rozenburg where it was until October 13,
2021, and Ommoord where it was until September 6, 2021), wastewater
specimens were collected three times per week as 24-h flow-dependent
composite samples from each catchment. Later, during a large-scale testing
effort to investigate an outbreak of the alpha VOC, we included the
Bergschenhoek area in the sampling process from January 11, 2021 to
October 13, 2021. The samples were processed as previously described
(Langeveld et al., 2023; Medema et al., 2020b). RT-qPCR screening was
performed on the samples using primer and probe sets targeting the
SARS-CoV-2 N2 and E-gene as well as crAssphage, as previously described
(Medema et al., 2020b; Stachler et al., 2017).

2.3. Normalization sewage

The sewage in Rotterdam consists of domestic wastewater from
households, industrial wastewater, extraneous waters, such as infiltrat-
ing groundwater or inflowing surface water, and runoff. All non-
domestic wastewater flows can dilute SARS-CoV-2 levels and vary
strongly in time and per catchment, therefore flow normalization was
applied to enable comparison over time and between catchments. The
flow normalization process of these samples is described in Langeveld
et al. (2023). The samples were normalized based on the quotient of
the measured daily volumes of sewage and the expected amount of do-
mestic wastewater (the average volume of domestic wastewater pro-
duced per person and day multiplied by the population per sewer
district). This normalization was verified using the conductivity of the
sewage and levels of crAssphage (an indicator of human fecal contami-
nation) and erroneous data points were removed (Langeveld et al.,
2023). The total inflow at WWTP Dokhaven was calculated as the
weighted mean flow of the four larger catchment areas.
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2.4. PHS SARS-CoV-2 test results

The regional PHS provided free SARS-CoV-2 testing during the pan-
demic in the Netherlands. Starting on June 1, 2020, testing capacity was ex-
panded. All individuals experiencing symptoms, including mild symptoms,
were eligible for testing. From December 1, 2020 onwards, the scope of
testing was widened to include close contacts of positive cases who did
not exhibit any symptoms. As the pandemic progressed, negative tests
were required for travel and events, and self-testing became more common.
Consequently, testing for SARS-CoV-2 varied across locations and over time
(Fig. 1B). The testing process involved trained personnel at the PHS testing
lanes obtaining a nasopharyngeal/throat swab, followed by either an RT-
gqPCR (Corman et al., 2020) or rapid antigen test.
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We determined all zip codes within each catchment area, hereby includ-
ing 382,011 inhabitants. Next, we extracted all negative and positive SARS-
COV-2 test results from PHS testing lanes based on the residential address's
zip code. We included all test results between September 1, 2020 and
November 9, 2021, except for samples from the Bergschenhoek area, for
which we included those from January 11, 2021 to November 9, 2021. In
total, 360,086 test results (positive and negative) were included in this
study. The process of establishing the large-scale testing initiative in
Lansigerland, which encompasses Bergschenhoek, is outlined in detail by
van Beek et al. (van Beek et al., 2022). We obtained the onset dates of the
disease from the national notification database for community cases (OSI-
RIS). The Erasmus MC Medical Ethical Committee approved this study
(MEC-2020-0617).
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Fig. 1. A) Research areas within Rotterdam Rijnmond. Sample collection occurred at wastewater pumping stations Ommoord (28,434 inhabitants), Katendrecht (6500
inhabitants), Pretorialaan (71,325 inhabitants) and Bergschenhoek (18,750 inhabitants) and wastewater treatment plants (WWTP) Rozenburg (12,374 inhabitants) and
Dokhaven. At WWTP Dokhaven samples were collected from 4 sewer pipes that service the catchment areas INF2 Everlo-Waalhaven (27,044 inhabitants), INF3
Pretorialaan-Zuidplein (121,118 inhabitants), INF4 Wolphaertsbocht (36,011 inhabitants) and INF5/6 Heemraadsplein (138,280 inhabitants). B) SARS-COV-2 positive
tests per 100,000 inhabitants for all selected areas within Rotterdam-Rijnmond (excluding Bergschenhoek) and a selection of the implemented lock-down measures
(green triangles) during the period from September 2020 till November 2021. C) The time that it took for inhabitants serviced by Dokhaven, from onset of symptoms to
the result of the SARS-CoV-2 in the testing lanes. The smoothed curves were produced using cubic regression splines.
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The lag time, or time difference between trends in the number of SARS-
CoV-2 notifications per catchment area and SARS-CoV-2 levels in sewage
was explored via the application of dynamic time warping (Giorgino,
2009), where the minimum distance between the two time series was com-
puted using the Rabiner-Juang step function (Rabiner and Juang, 1993).
The PHS data also showed that the time between the onset of disease and
the notification date varied over the course of the pandemic. These delay
data were used to transpose the notification date to the disease onset data
for modeling. Since the time of onset of disease was not known for all
cases, the date of first illness was assigned to each test result using the aver-
age number of days between first day of illness and test result on each date.

2.5. Data preparation and statistical modeling

To quantify how the dynamics of the reported number of clinical cases
were corresponding with the normalized virus concentrations in sewage,
time-shifted SARS-CoV-2 case data were modeled using a generalized linear
mixed model (GLMM). The GLMM included a random effect that can ac-
count for in-group correlations since repeated observations nested within
one catchment area may be more similar than observations from other
catchment areas. The random effect captured the variation of a fixed-
effect parameter among catchments with a Gaussian distribution with
zero mean and a group variance that was estimated from the data. The se-
lection procedure for the model components followed the steps in Supple-
mentary Fig. S1 (Zuur et al., 2009).

2.5.1. Linear predictor
The linear predictor 7 is a linear function of the explanatory variables
given by

Ny = Bo + BiXuij + BoXoij

where i represents day number, j the catchment, j3 refers to the weight
assigned to the explanatory variables, and f3, is the intercept. The first ex-
planatory variable x; is the normalized SARS-CoV-2 concentrations in
wastewater. The second explanatory variable, the reported total number
of tests per 100,000 x5, represents the testing intensity and served as a mea-
sure of the willingness to test. All continuous variables were standardized to
avoid numerical estimation problems. The final structure of the linear pre-
dictor was obtained by applying backward selection based on the 95 %
highest probability density interval. Initial visual data exploration revealed
no outliers in the variables and a maximum variance inflation factor of
1.06, which is well below the threshold of 5-10 for correlation between in-
dependent variables (Montgomery and Peck, 1992).

2.5.2. Distribution of the response variable

The reported number of positive tests per 100,000 on day i in catchment
J, time-shifted towards the first day of illness served as response variable y;;.
Several candidate distributions were considered, such as the Gaussian dis-
tribution, Poisson distribution and the negative-binomial distribution.
The Gaussian distribution was specified by:

y ~ N(n,ZGZ’ + 0°I)

E(y) = n and var(y) = ZGZ + 01

where design matrix Z provides the values of random effects for each obser-
vation and G provides a diagonal matrix with variance component ojz.

In addition to the random noise term o2 to account for observation
noise, other structures were considered to meet the underlying assumptions
of linear regression models. One of the main underlying assumptions was a
constant variance, or homogeneity. Another assumption was indepen-
dence, while successive observations from the same catchment were ex-
pected to be similar compared to observations from other catchments.
Therefore, two extensions of the random part were considered. First was
a random effect that imposes a correlation structure on all observations
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from the same catchment. Second was an auto-regressive process of order
1 (AR1) to account for any temporal dependency present in the time series
and is given by:

&ij = Pei—1j + wjj
Wijj = N(O, 02)

where ¢ is the strength of the time-dependent correlation and wj is the
noise term. The different model structures were compared using the
Watanabe—Akaike information criterion (WAIC) and conditional predictive
ordinate (CPO) as metrics. WAIC is a generalized version of the AIC and
limits the risk of over or underfitting by incorporating the goodness of fit
while adding a penalty for model complexity (Watanabe, 2013). CPO is a
cross-validatory metric given by

- Z log(f(yulyi-1))
k=1

Residual plots were used to validate the model and investigate the assump-
tions for homogeneity of variance, independence, and normality.

2.5.3. Bayesian modeling

This study adopted a Bayesian approach for estimating the model vari-
able weights 8, hyperparameters for the variance parameters and ¢ from the
autoregressive correlation term in the model structure. Within the Bayesian
framework unknown parameters are considered as random variables for
which a posterior distribution is estimated, based on observed data and a
prior distribution. Since no prior information on the parameter values
was available uninformative priors were specified. An advantage of the
Bayesian approach over the maximum likelihood estimates is that it is
more robust with respect to the bias of the derived intervals in the case of
a random effect with limited number of levels (Stegmueller, 2013). We
sampled from posterior marginal distributions using Integrated Nested La-
place Approximations (INLA) as implemented in the R-INLA package in R
Version 4.2.1 (Dessau and Pipper, 2008; Martins et al., 2013).

3. Results
3.1. Trends in SARS-CoV-2 notifications per catchment area

Positive cases per 100,000 inhabitants over time were plotted for
Rotterdam Rijnmond (Fig. 1B) and for each area (Fig. 2). Peaks are observed
for October 2020, December 2020, April 2021, July 2021, and a rise in infec-
tions can be seen for October 2021. In September 2020, the time from onset
of symptoms to reporting a positive test took an average of 4-6 days and this
gradually reduced to an average of 3 days after ramping up test capacity
(Fig. 1C).

Overall, all nine catchment areas show similar trends in incidence of re-
ported SARS-CoV-2 cases over time (Fig. 2). For the (smaller) catchment
areas of Katendrecht, Ommoord, and Rozenburg, the signal was noisier com-
pared to the other catchment areas. This was most likely related to the size of
the catchment population, as the noise was reduced between the cascading
datasets of Katendrecht, Pretorialaan and INF3 Pretorialaan-Zuidplein.
While overall trends were similar, the communities around the perimeter of
the city, “Rozenburg” and “Ommoord”, had lower average levels of reported
positive tests. Additionally, the rise in infections after the reopening of the
Dutch nightlife in July 2021, leading to a massive spike in cases among
young adults, was not observed in Rozenburg, which has an older population,
while this increase was largest for the inner-city areas, such as “Katendrecht”
and “center of Rotterdam” (INF5-6). The total number of tests varied over
time (Supplementary Fig. S2), related to changes in testing policy, behavior,
and availability.
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Fig. 2. SARS-COV-2 positive tests per 100,000 inhabitants for all ten areas for the period from September 2020 till November 2021.The areas are ordered based on population
size. The areas from Katendrecht to Pretorialaan and INF3 (bold) overlap but are increasing in size. The smoothed curves were produced using cubic regression splines.

3.2. Validation of sewage surveillance by comparison with case notification data

The measured concentrations of SARS-CoV-2 in sewage were normal-
ized for the flow of non-domestic wastewater (Langeveld et al., 2023).
SARS-CoV-2 levels in wastewater were highest in October 2020 for all
areas except for Rozenburg where it was highest in April 2021. SARS-
CoV-2 levels were relatively low in Rozenburg and Bergschenhoek.

The initial plotting and calculation of the time-dependent correlation
between the reported SARS-CoV-2 cases and viral loads in wastewater
showed that, in the period from September to December 2020, the highest
correlation was observed for a time lag of 6 days between an increase or de-
crease in the level of SARS-CoV-2 in sewage and reported SARS-CoV-2 cases
(Supplementary Fig. S3). However, with increasing testing capacity, this
time delay became shorter. After correcting the reported case data for the
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time of symptom onset, the incidence and concentrations of SARS-CoV-2 in illness onset, implies that high viral shedding in the sewer around the
sewage were highly collinear, especially during the rise of the October 2020 onset day of new cases largely determines the SARS-CoV-2 concentration
wave (Fig. 3). This high collinearity, observed when correcting for day of in wastewater, even though fecal shedding can last for more than two
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Fig. 3. Levels of normalized SARS-CoV-2 genome copies per ml of domestic wastewater in Rotterdam-Rijnmond (blue) and the number of SARS-CoV-2 positive tests per
100,000 corrected for first day of illness (red). The total inflow at WWTP Dokhaven is calculated as the flow averaged mean of the four larger catchment areas. The areas
are ordered based on population size. Cubic regression splines were used to produce the smoothed curves.



M. de Graaf et al.

weeks (Cevik et al., 2021; Chen et al., 2020; Holm-Jacobsen et al., 2021;
Zhang et al., 2021). There were two discrepancies: a peak in incidence
when the nightlife reopened (July 2021), and a peak in December 2020,
possibly reflecting increased testing ahead of seasonal festivities (Fig. 3,
Supplementary Fig. S4).

To investigate these differences, we applied a Bayesian approach to
model the expected incidence of reported positive cases by first day of illness
based on the normalized SARS-CoV-2 concentrations in wastewater (Fig. 4).

3.3. Model selection

Several nested model structures were defined and compared. Each
model included a full set of explanatory variables and a random effect by
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design. Table 1 shows the WAIC and CPO values for the three models.
The Gaussian GLMM with AR1 component and different variances per
catchment outperformed the other models. A model validation revealed
that the models without an AR1 correlation structure suffered from a signif-
icant time-dependent correlation, thus violating the assumption of indepen-
dence. This is confirmed by the sample variogram shown in Supplementary
Fig. S5 that revealed a time-dependent correlation of up to 20 days. The de-
rived standard deviations per catchment depicted in Fig. 5 show a reduction
in residual noise associated with an increasing catchment population. In
agreement with statistical theory, noise reduction was roughly proportional
to the square root of the population sampled. Differences between consec-
utive observations of the sewage surveillance data did not increase with a
decreasing populations size. This suggests the model fit was predominantly
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Fig. 4. Modeling of the expected incidence of reported cases based on wastewater. Reported SARS-CoV-2 positive tests over time are shown in red, along with the predicted
incidence of reported SARS-CoV-2 positive tests based on the normalized SARS-CoV-2 concentrations in sewage for each of the areas.
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Table 1
Model comparison with the Watanabe-Akaike information criterion (WAIC) and the
Conditional predictive ordinate (CPO) as metrics.

Model WAIC CPO
Gaussian GLMM 3416.6 1.19
Gaussian GLMM with variance structure 2962.4 1.00
Gaussian GLMM with AR1 11,216.9 0.96
Gaussian GLMM with AR1 and variance structure 1386.5 0.47

limited by noise in the incidence data and not in the sewage
surveillance data.
The structure of the final model is:

Vi = [31X11j + (132 +uj)xzij + €ij
uj ~ N(O, sz)
g = dej—1j + wj
L 2
w;j = N(0,0)

where the y;; is the reported number of positive tests per 100,000 on day i in
catchment j, time-shifted towards the first day of illness. The explanatory
variable x; is the normalized SARS-CoV-2 concentration in wastewater,
and x is the reported total number of tests per 100,000, representing test-
ing intensity and serving as a measure of the willingness to test. Since the
effect of the latter variable may differ per catchment j, the random slope
u; was added to capture the variability. A sensitivity analysis revealed
that the addition of a random slope improved model performance as the
WAIC decreased by 26.2. Weights f for the explanatory variables x; and
X are shown in Table 2 and the marginal distributions for each weight
are depicted in Supplementary Fig. S6A. The positive median values in
Table 2 mean that both high SARS-CoV-2 levels in wastewater and a large
number of total tests are associated with a large number of positive tests.
The intercept was not significantly different from 0 at a 5 % significance
level and was subsequently omitted from the model. The parameter ¢ for
the correlation was strong, indicating a high sampling frequency through-
out the time course of the project.

A model validation revealed no problems with homogeneity, indepen-
dence, or normality. A plot of the model residuals is provided in Supple-
mentary Fig. S7 and showed that the choice of the Gaussian distribution

1.54 T
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Fig. 5. Model estimated standard deviations per catchment area. The dashed line

represents the theoretical relation of the residual spread in a catchment being
proportional to the square root of the population size.
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Table 2

Summary statistics for the selected model.
Parameter Mean Median SD 25 % 97.5 %
By 0.056 0.056 0.016 0.024 0.088
By 0.117 0.116 0.029 0.060 0.176
& 0.784 0.789 0.065 0.645 0.896

was appropriate given the absence of negative fitted values and signs of
none-normality in the scaled residuals.

Using this model, the December 2020 peak of reported cases that was
not evident from sewage surveillance (Fig. 3), could now be modeled
based on a small increase in sewage and a large increase in clinical tests.
However, at the height of the outbreak in July 2021, the values predicted
via sewage surveillance were still significantly lower than the reported inci-
dence of SARS-CoV-2 positive individuals, after this outbreak the fit be-
tween wastewater and positive cases was restored.

During the sampling period, the initial circulating SARS-CoV-2 strains
were replaced by alpha and later by the delta VOC. As differences in viral
characteristics can lead to changes in tropism or shedding rates, these re-
placements could affect the ratio of SARS-CoV-2 levels in wastewater versus
the incidence of cases. This was investigated by dividing the data in three
different time periods based on VOC circulation; September 1, 2020 till
December 31, 2020 (non-VOC), February 26, 2021 till June 13, 2021
(alpha VOC) and July 23, 2021 till November 9, 2021 (delta VOC)
(coronadashboardrijksoverheid, 2022). Next, the final model was extended
with interaction terms between SARS-CoV-2 levels in wastewater and the
VOC time periods. This showed that the ratio of SARS-CoV-2 levels in
wastewater versus the incidence of cases was not affected by VOC since
the parameters did not significantly differ between the different time pe-
riods (Table 3 and Supplementary Fig. S6B).

3.4. Sewage surveillance to address public health questions, and to monitor the
effect of interventions

In December 2020 there was an outbreak of the alpha VOC in the village
Bergschenhoek within municipality of Lansingerland (van Beek et al.,
2022). During this outbreak a large-scale testing effort was carried out for
Lansingerland and a sampling cabinet was placed in Bergschenhoek for
parallel wastewater surveillance. In Lansingerland between the 11th and
22nd of January 36,534 of 63,338 (58 %) residents were tested. For
Bergschenhoek, 118 positive SARS-CoV-2 tests were reported (629 per
100,000 inhabitants). The average normalized concentration of SARS-
CoV-2 in Bergschenhoek wastewater in this period was 66 genome copies
(GC)/ml of domestic wastewater, indicating that 1,/100.000 positive tests
would corresponded to 66/629 = 0.10 GC/ml of domestic wastewater.
The larger catchment areas in Rotterdam (INF3 and INF5/6) where only
symptomatic individuals were tested (1.9-2.7 % of the residents) in that
same time period, reported lower incidences of 269 and 293 positives per
100,000 inhabitants. The corresponding average concentrations in sewage
in these catchment areas were higher: 151-164 GC/ml of domestic waste-
water. This would compute to 0.53-0.56 GC/ml per 1/100.000 positive
tests, yielding a fivefold difference between large-scale population testing
(Bergschenhoek) and symptomatic case testing (INF3 and 5/6). With com-
parable shedding rates between symptomatic and asymptomatic cases (Lee
et al., 2020). This suggested a five-times-higher incidence than that re-
ported in INF3 and 5/6.

During the large-scale testing effort levels SARS-CoV-2 in wastewater
declined for Bergschenhoek but increased for INF3 and INF5/6 indicating
that this intervention potentially had an effect on SARS-CoV-2 circulation.

4. Discussion

Sewage surveillance is now widely used in parallel to testing for
suspected SARS-CoV-2 cases, and several groups showed a correlation
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Table 3

Summary statistics for the variant of concern (VOC).
VOC Mean Median SD 2.5 % 97.5 %
None 0.079 0.079 0.045 —0.009 0.167
Alpha —0.070 —0.070 0.049 —0.166 0.026
Delta 0.005 0.005 0.058 —0.109 0.119

between the number of reported cases and SARS-CoV-2 levels in wastewa-
ter (Barrios et al., 2021; Fernandez-Cassi et al., 2021; Medema et al., 2020b;
Peccia et al., 2020; Wu et al., 2021). Our high-resolution data in well-
matched populations along the surveillance pyramid clearly show that
wastewater surveillance was ahead of clinical testing at the start of the sec-
ond wave in Rotterdam in October 2020, and that this was due to the delay
between disease onset with a high virus shedding, and the time a case was
reported. Over time, the ramping up of clinical testing has reduced this
delay, and thus the lead-time of sewage testing for early warning in this set-
ting. Similar results were found for a 14-month-long wastewater surveil-
lance time series in Massachusetts where wastewater data served as an
early warning system for the first wave but not during the second, also
most likely due to the ramping up of testing availability (Aberi et al.,
2021; Xiao et al., 2021).

Our model allowed us to investigate which variables in clinical testing
affect the relation between clinical and sewage surveillance, such as testing
intensity and testing delay. When including these variables, a peak of re-
ported cases that was not evident from sewage surveillance, could be
modeled based on a small increase in sewage combined with a large in-
crease in clinical testing. While trends based on sewage testing and the
modeled incidence of reported cases were highly colinear, there was a
clear delineation in July 2021, after the re-opening of the Dutch nightlife
and events. Starting from June 18, 2021 events were accessible after a neg-
ative test and many more (young) people were tested during this period via
an antigen test. We hypothesized that a high percentage of individuals were
tested in the testing-street after a positive antigen test, while the negative
antigen tests do not show up in the testing street results. This was supported
by the strong increase in the percentage of positive tests at that time. It also
showed that with standard testing a sudden increase in a niche group can
quickly be discovered, while this is not possible with sewage surveillance.

We selected multiple neighborhoods and areas within Rotterdam to in-
vestigate if SARS-CoV-2 dynamics can vary within a city and if these differ-
ences would be evident through wastewater surveillance. The comparison
of smaller areas enclosed in larger areas showed similar dynamics. How-
ever, in smaller areas relatively few infected individuals can have a large
impact on SARS-CoV-2 trends and a large spread was observed between re-
ported and predicted SARS-CoV-2 cases for the smallest catchment areas.
Our model showed that this was mostly caused by noise in the above
ground data, rather than noise in the sewage data, meaning that sewage
testing even for small catchment areas (serving 6500 individuals) can be
used to identify trends in SARS-CoV-2 circulation. Trends of reported
SARS-CoV-2 positives and sewage were similar for each area except
Rozenburg and Bergschenhoek. This was supported by our model
which showed that wastewater surveillance can be used to compare
neighborhoods.

From our results we deduced that peak shedding of SARS-CoV-2 in feces
occurs around the time of symptom onset. This correlates with the viral
load in respiratory samples, as the highest levels of virus shedding occurred
around onset of symptoms (Cevik et al., 2021; He et al., 2020; Lewis et al.,
2021). Available human fecal shedding data on SARS-CoV-2 does not show
a high initial peak shedding, but most studies do not include data around
symptom onset (Medema et al., 2020a). However, animal studies showed
that shedding kinetics in the feces were similar or slightly delayed com-
pared to the respiratory tract (Gaudreault et al., 2020; Richard et al.,
2020; Sia et al., 2020).

This study showed the sensitivity of sewage surveillance in relation to
the dynamics in case-based surveillance: when the wastewater concentra-
tions were just above the limit of detection in the larger catchments in
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June 2021, the reported incidence was around 2 per 100.000. During the
large-scale surveillance of Bergschenhoek, the ratio between reported inci-
dence and normalized wastewater concentration was around fivefold lower
than in the large catchment areas in Rotterdam where only a small percent-
age of the population was tested, which is indicative of significant
undertesting. Not surprisingly, differences in testing behavior affect the re-
lationship between sewage and clinical surveillance, highlighting that the
value of sewage surveillance is independent from testing behavior. Another
potential variable is the emergence of SARS-CoV-2 variants since variant-
specific phenotypical changes could result in differences in tropism, fecal
shedding, age range, symptoms, or vaccine breakthrough infections
which could affect the correlation between the incidence of reported
cases and wastewater surveillance. For example, 1000-fold higher viral
loads were reported for patients infected with the delta VOC compared to
the 19A/19B strain (Li et al., 2021), and 10-fold higher viral loads for the
alpha VOC compared to previous non-VOC strains. Whether these VOC
strains also result in higher fecal shedding is unknown. Nevertheless, the
model parameter for wastewater concentrations during the period when
non-VOC SARS-CoV-2 was predominant were not significantly different
from the periods when VOC alpha and beta were predominant, indicating
that for wastewater concentrations, there was no measurable effect of the
emergence of these VOC. During this study SARS-CoV-2 vaccination was
rolled out in the Netherlands, but the effect on SARS-CoV-2 levels in waste-
water appears to be limited. SARS-CoV-2 breakthrough infections after vac-
cination could result in lower levels of shedding, but only a 2.8-4.5-fold
decrease in respiratory viral load in vaccinated compared to non-
vaccinated individuals was reported (Levine-Tiefenbrun et al., 2021).

5. Conclusions

This study shows that wastewater surveillance can, independently of
testing behavior, accurately display SARS-CoV-2 dynamics within a city
and is sensitive enough to measure small variations in the number of in-
fected individuals within or between neighborhoods. Sewage surveillance
alongside the large-scale testing effort at Lansingerland indicated that
many SARS-CoV-2 cases go unreported and that sewage surveillance can
be used to monitor the effect of interventions. This is especially relevant
at times and in locations where the willingness to test is lower, testing facil-
ities have scaled down or when home antigen testing is applied as an alter-
native to clinical tests. As clinical test data provides insights into patient
characteristics, sewage data supplement this with insights into the overall
infection pressure in a specific catchment area. Sewage surveillance com-
bined with NGS or ddRT-PCR can also provide rapid insight in the spread
of new SARS-CoV-2 variants without the need to analyze thousands of pa-
tient samples. We anticipate that wastewater testing should be considered
as one of the pillars of future surveillance for (re) emerging viruses.
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