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Abstract. Typically, within the context of treatment plant-wide data, the quality of data can be 

impacted by sensor faults, sensor calibration issues, fouling of and obstruction to the sensors 

and connectivity problems between sensors, actuators and the data management system, 

therefore hampering advanced data driven monitoring and control of (critical) water operations. 

Here, a smart data validation scheme is proposed that validates sensor data from a wastewater 

treatment plant and is tightly integrated with the open-source data exchange system called 

FIWARE, an EU supported framework. The data validation application and FIWARE setup are 

integrated, tested and deployed at the water utility, Waternet. The validation scheme is based 

on an anomaly detector using (statistical) threshold techniques and a data reconciliation part 

that aggregates deep learning based autoencoder model predictions whenever an anomaly is 

detected. The autoencoder models proved to have a high accuracy and good reconciliation 

performance considering the variability of the signal. Furthermore, (near) real-time validated 

and raw data signals are relayed towards a dashboard. Finally, the validated data can be used as 

a screening for data ingested by another AI-based model that enables monitoring and smart 

control of the wastewater treatment plant in order to minimise greenhouse gas emissions and 

energy consumption while meeting effluent water quality standards. 

1.  Introduction 

Wastewater treatment infrastructures get increasingly complex due to the need to meet stringent 

effluent quality standards such as the European Directive 91/271 on urban wastewater, but also due to 

resource recovery technologies and the increasing use of sensor data for advanced process monitoring 

and control of key variables. This leads to a stronger dependency on data. Therefore, ensuring high 

quality data has become even more relevant. For example, a water utility can be faced with (many) 

anomalous sensor data, i.e., missing values, outliers, irregular trend breaks in time series, bias due to 

connection errors, sensor fall-outs or wrong sensor calibrations, drifting due to sensor wear, fouling or 

obstruction. In addition, the multitude of sensors and their different characteristics and the availability 

of external data sources not only provide opportunities for intelligent data driven operation of 

wastewater treatment plants (WWTPs), but also a challenge in keeping the operability among different 

devices up-to-date. Analogously to the interconnection of smart devices as is the case in the Internet of 

Things (IoT), as IoT scales up, interoperability needs to be safeguarded in order to maintain 

operational performance and up-to-date information [1].  
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In addition, WWTPs typically rely on multiple purification and sometimes resource recovery 

technologies which in turn are characterised by multigranular, interrelated nonlinear biological, 

physical and chemical processes. Furthermore, these systems are very dependent on environmental 

and operational conditions, and often have cyclic behaviour due to recycle streams. It is recognised 

that operation of WWTPs has evolved from sensor signal processing and using statistics and process 

identification in the seventies towards knowledge-based systems where sensor data is increasingly fed 

into data mining techniques and predictive analytics in order to capture complexity with the aim to 

support, possibly multi-criteria optimised, plant-wide control and decision support [2]. However, the 

quality of data is frequently hampered by the intrinsically challenging measurement conditions of the 

aquatic environment, which makes that on-line sensors can be affected by many faults [3]. 

Hence, the reliance on validated and clean data is increasingly becoming apparent and, moreover, 

open data management platforms are becoming attractive from (i) a software lifecycle assessment 

point of view and (ii) the prospect of managing heterogeneous data sources more efficiently. 

Here, we present an automated data validation and reconciliation (DVR) framework which is 

embedded in an open data management system called FIWARE [4]. The DVR is one of the key steps 

in achieving intelligent, data-driven plant-wide control of a large WWTP called Amsterdam West, 

situated nearby Amsterdam, the Netherlands and operated by Waternet, the public water cycle utility 

of Amsterdam and surrounding areas. The Amsterdam West WWTP has a capacity of 1 million 

population equivalent and serves the city of Amsterdam. Currently, the control loops of Amsterdam 

West WWTP are for a large part locally distributed and dedicated to a single treatment process unit. 

To illustrate the context: the objective of the smart control application (not discussed in this work, see 

[5], [6] for more details) is to minimise energy consumption and N2O emissions while meeting effluent 

quality criteria. N2O has a large impact on greenhouse gas emissions and consequently, climate 

footprint.  

In the following, we demonstrate the extension and coupling of FIWARE to the existing legacy 

data management system of Waternet in order to improve the utilisation of (near) real-time plant data 

for DVR of key sensor signals. For the Amsterdam West WWTP case, the sensor data of two key 

process parameters, nitrate (NO3
-) and ammonium (NH4

+), in the aerobic tank of the research lane’s 

bioreactor unit were considered to demonstrate the prospect of using AI-based DVR and FIWARE as 

a data exchange platform. 

2.  Data management system 

2.1.  Distributed control system, information management and FIWARE4Water setup 

Amsterdam West WWTP is real-time controlled by a distributed control system (DCS). The DCS 

stores and handles measured sensor data, e.g., online water quality and flow measurements, actuator 

data from e.g., valves and pumps, control-related data such as setpoints and local control settings. It 

also logs events, alarms and operator changes. Operators and water process engineers access the DCS 

via a graphical user interface. 

Data is sent through the (legacy) Process Information Management System (PIMS) which acts as a 

historian and logs all process data, alarms and events. PIMS also hosts laboratory measurements, e.g., 

water quality and data signals manually validated by plant operators. All data and information are 

collected (near) real-time and can be accessed from office automation applications. Selected sensor 

data, i.e., NO3
- and NH4

+ concentrations, is forwarded to the FIWARE4Water setup which consists of 

FIWARE components, a dashboard and the DVR application, see Figure 1. 

In turn, the FIWARE4Water setup consists of Docker™ containers running on a Windows VM in a 

Microsoft Azure™ cloud environment, each having dedicated predefined functionalities. The Docker 

containers contain the following components and are linked as follows:  

• the IoT Agent JSON, ingests data via the DVR routines manager (see section 4.1.   for more 

details) from the legacy system into the FIWARE setup and is coupled with the Orion-LD 

context broker; 
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• the Orion-LD Context Broker routes data between the IoT agent, the DVR application and 

notifies the Cygnus NGSI-LD component when new values are available  

• the Cygnus NGSI-LD component writes all data that passes through Orion-LD to a 

PostgreSQL database;  

• a PostgreSQL database stores data which has been ingested in FIWARE, as well as data 

generated by the DVR application; 

• a Grafana dashboard queries the data from the PostgreSQL database which is visualised in 

real-time; 

• a MongoDB database is used to store data models, FIWARE devices, FIWARE subscriptions, 

and other FIWARE configuration settings;  

• a DVR docker containing the routines manager which handles FIWARE specific management 

tasks, e.g., creation and checks of data entities, subscriptions, etc. Furthermore, the routines 

manager serves as an application programming interface (API): it calls the relevant key 

components such as the anomaly detection methods, the trained autoencoder models to make a 

prediction and the reconciliation algorithm. As a final step, it outputs anomaly flags, 

predictions and reconciled data which is in turn passed through the IoT agent to the 

PostgreSQL database. 

 

  

Figure 1: Schematic overview of the integration of FIWARE with the legacy control system. 

Finally, raw, predictions from the models, and reconciled data from the DVR are visualised by the 

analytics and interactive visualisation web application Grafana by querying the PostgreSQL database. 
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2.2.  FIWARE4Water data models 

FIWARE relies on the NGSI-LD based data standard [7]. Smart data models for wastewater treatment 

have been specifically developed for this case and used in the current FIWARE setup, but have 

generic properties. Specifically, the following two NGSI-LD data models have been implemented for 

the DVR: 

• a WasteWaterTank, an entity type used to describe the physical tanks in the bioreactor unit 

within the research lane. The properties of the entity are important process parameters, e.g., 

NO3
- and NH4

+, that are measured using online sensors. 

• WasteWaterSimulationResults, a NGSI-LD entity that has been developed to describe the 

results provided from (data-driven) models. Note that this entity type represents digital-based 

solutions instead of wastewater treatment assets.  

More details can be found in the smart data model repository available on GitHub [8]. In practice, 

the raw data as received from the legacy system is initially translated to NGSI-LD and then relayed to 

the IoT Agent JSON and the Orion-LD Context Broker. The data values specific to NGSI-LD entities 

are then accessed by the DVR routines manager. Similarly, once the DVR routines manager receives 

the output of the various DVR analytics, the data is once again transformed into the NGSI-LD data 

models, which are then sent back to the IoT Agent JSON. 

3.  Data Validation and Reconciliation  

3.1.  Procedure 

The data validation consists of two components, first being the anomaly detection step where the raw 

data values are assessed as to being faulty or correct, and the second component includes the 

reconciliation of the anomalous values using predictions from trained, deep neural network models. 

The handling of data from and to the FIWARE4Water setup is taken care of by the FIWARE enabled 

DVR Routine Manager (FW-DVR). While streaming data is near real-time being ingested into 

FIWARE, the FW-DVR Routines Manager regulates when to trigger a given data validation routine, 

based on the availability of new data in FIWARE. 

DVR follows a sequence of steps (Figure 2): 

• The selected raw sensor data (NO3
- and NH4

+) is inputted initially into the anomaly detector to 

specifically flag faulty single values. The anomaly detector consists of two autoencoder 

models for each sensor signal, one representing short-term dynamics (5-minute) and one for 

long-term dynamics (30-minute). Furthermore, (historical) time series are inputted into the 

autoencoder models to conduct predictions that will be used in the reconciliation process. The 

autoencoder models are further explained in section 3.2.   

• The single value anomaly detection is followed by flatline detection and flagging.  

• The anomaly flags aid the data reconciliation process. Reconciliation is preceded by 

aggregation of predictions from the autoencoder models using exponential smoothening.  

• Finally, three data outputs are provided by the data validation application, i.e., the raw sensor 

data, the autoencoder model predictions and reconciled data. The reconciled data constitutes 

raw sensor data during anomaly-free periods as well as aggregated, predicted values by 

autoencoder models during anomaly events. 

3.2.  Autoencoder models 

Feedforward neural network models known as autoencoders were used for the purpose of data 

reconciliation. Autoencoders consists of two modules, an encoder and a decoder, where the encoder is 

trained for a given input of sensor data, to learn the underlying features and is represented in a reduced 

dimension. The decoder then reconstructs the input data, which is also the target variable [9], [10]. 

Conventionally, autoencoders are trained using only a single layer for the encoder and decoder each, 

however utilising deep autoencoders have known to yield better performance in the cases of non-linear 

and complex systems. Within wastewater treatment, autoencoder models are used for the purpose of 
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reconstructing the input data which allows for such models to be used as soft sensors to predict the 

sludge volume index [11] and key effluent parameters such as biological oxygen demand [12].  

Additionally, autoencoders have been used to denoise data from WWTPs, prior to its ingestion to data-

driven based control strategies [13]. For the purpose of data validation, stacked denoising 

autoencoders have been used to detect faulty data and perform reconciliation for influent wastewater 

quality parameters [14] and additionally, deep autoencoders been used to reconcile missing or faulty 

values in wastewater treatment operations data [15]. In both cases, the prediction error between the 

reconstruction from the autoencoder model and the data evaluated was used for the fault detection. 

 

 

Figure 2: AI-based FIWARE enabled DVR Routines Manager. 

In this study, over 70 different deep autoencoder models with varying architecture and 

hyperparameter combinations were investigated prior to model selection. The most relevant model 

structures (48 models) and the tuned hyperparameters are provided in [16]. The Python library 

TensorFlow was applied for development and training of the models. Initially, the model training was 

conducted to identify the type of layers that will be required within the model architecture, to be able 

to reconstruct the sensor behaviour with some degree of accuracy, where complexity was added with 

every iteration if deemed necessary. An architecture with only dense layers could not capture the non-

linear effects present in the data. Hence, the model architecture was extended with layers that contain 

memorising units, i.e. more specifically, Long Short-Term Memory (LSTM) units. The use of LSTM 

layers resulted in an instant increase in prediction accuracy, which seems to confirm the autoregressive 

nature of the process. To mitigate the computational time involved when training LSTM models, the 

following was taken into account: (i) LSTM layers followed by dense layers in order to increase the 

depth of a model but keep the number of trainable parameters as small as possible, (ii) length of the 

input sequences, and (iii) use of dropout regularisation [17]. 

The resulting model structure settings are shown in Table 1 and training settings in  

Table 2. More details are provided in [16]. 

4.  Real-time FIWARE-based data validation 

4.1.  Implementation of anomaly detection and reconciliation  

For the purpose of recovering and reconciling anomalous NH4
+ and NO3

- signals, two granularities of 

5-minute and 30-minute resolutions were chosen to perform the developed analytics. As a result, the 
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FW-DVR routines manager triggers the data validation methods every five or thirty minutes. Initially, 

the single value anomaly detection step is triggered, where the last available five or thirty data points 

are resampled and then assessed for being a faulty data point, thereby providing a flag for the current 

data point. Subsequentially, the flatline detection is triggered. For this use case, a minimum length of 3 

consecutive data points has been used as a threshold (as available in the metadata for the sensor signal) 

to determine whether the points are part of a flat line.  To perform this method, the manager therefore 

queries raw data points from the last 1.5 hours, that are resampled to the required resolutions 

separately, and inputted into the flat line detection. The method will provide a flag as an output which 

assesses the current data point to be part of a flat line, based on the values of the previous data points. 

The flags combined are used to judge whether the raw values should be reconciled using the 

predictions from the autoencoder models. 

 

Table 1: Amount of historical input used for training of the autoencoder models. 

Autoencoder Model 
Resolution 

(minutes) 

Historical Input 

(hours) 

Historical Input 

(no. of timesteps) 

5 minutes 5 3 36 

30 minutes 30 24 48 

 

Table 2: Model training settings. 

Hyperparameter Value Comment 

# of epochs 35 
Decision made based on results obtained from a 

learning curve. 

Optimiser Adam - 

Learning rate 0.00001 - 

Loss Function Mean Squared Error - 

Activation Function ReLU Same activation function used for all layers 

Batch size 

112 (5 min. 

autoencoder), 14 (30 

min. autoencoder) 

Based on a sensitivity analysis, it was concluded 

that a batch size representing 2 weeks of data 

yielded the best results. 

Dropout rate (p) 
NO3

- – 0.06 

NH4
+ – 0.03 

- 

 

Faulty raw data values are reconciled by the predictions of autoencoder models. To perform a 

prediction with the autoencoder models, a certain period of historical data is necessary as input, in 

order to make a one-step ahead prediction. For the case of the 5-minute autoencoder, the last 3 hours 

of data are needed (36 data points) and for the 30-minute autoencoder, the last 24 hours of data (48 

data points). The FW-DVR Routines Manager queries the historical data which are needed for the 

model predictions. Model predictions are then pushed back into FIWARE via the IoT Agent, which 

are then subsequently stored in the database under the relevant table. The autoencoder models make 

use of recursive predictions in case an anomaly is detected to prevent recursive propagation of 

anomalous data. The procedure is as follows: raw data values flagged as non-faulty and model 

predictions which would replace faulty data points are stored in intermediate processed data streams 

and pushed into the IoT Agent. Each (5-minute and 30-minute) data stream is linked to its own 

intermediate processed data stream, and the data stream is used as an input to the autoencoder models. 

In the final step, predictions from both the autoencoder models are used in the reconciliation of the 

data stream per sensor signal, via exponential smoothing and resampling to a targeted resolution of 15 

minutes. Finally, the calculated reconciled data points are pushed to the IoT Agent and stored in the 

PostgreSQL database. The various outputs from the data validation application, namely the predictions 

from the autoencoder models and the reconciled signals are (near) real-time visualised in the Grafana 

dashboard. 



14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012055

IOP Publishing
doi:10.1088/1755-1315/1136/1/012055

7

 

 

 

 

 

 

4.2.  Performance of the anomaly detection method 

The performance of the autoencoder models is discussed in detail in [16]. The accuracy of the 

methods, as well as the autoencoder prediction performance are summarised below.  

The determination scores of the autoencoder models (Table 3) show that a very high prediction 

accuracy was achieved, indicating the sensor data signals can accurately be reconstructed. Such a 

performance subsequently provides adequate confidence to use the predictions as provided by the 

autoencoder models for the purpose of reconciling anomalous values and to therefore realise validated 

NO3
- and NH4

+ data signals. 

The predictions of the 30-minute NH4
+ autoencoder for the test set are shown in Figure 3 for 

illustration purposes. 

 

Table 3: R2 Score of autoencoder models for NO3
- and NH4

+ signals. 

 NO3
- autoencoder model NH4

+ autoencoder model 

 Train Test Train Test 

5 Minutes 0.97 0.95 0.90 0.90 

30 Minutes 0.99 0.99 0.98 0.98 

 

 

Figure 3: 30-minute autoencoder model predictions for the NH4
+ signal (orange) and measured data 

(blue). 

4.3.  Visualisation 

The DVR application has been running successfully near real-time. Yet, further tests are needed with 

synthetically generated anomalies and by running the DVR for an extended period of time to further 

test the reliability of the method. Early results indicate that reconciliation of long duration (more than 

2 hours) anomalous events fail because of error propagation. Possible improvements are (i) extending 

the DVR with another autoencoder specifically trained on slow dynamics by using a larger than 30-

minute time resolution, (ii) and/or including other sensor data signals. Future directions in 

development are to extend the DVR with a technique for classification of anomalies, and to deploy the 

DVR as a screening layer for soft sensors of key wastewater process variables [5] and the control 

agent for minimising the climate footprint while meeting regulatory effluent standards [6]. 

Measurement data of NO3
- and NH4

+, as well as predictions and reconciled values, are shown in 

Figure 4 where the DVR is running in production in real-time at Waternet. 
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Figure 4: Grafana dashboard of the DVR of NO3- (left) and NH4+ (right). Upper panels: raw signal, 

second row: 5-minute autoencoder predictions, third row: 30-minute autoencoder predictions, bottom 

row: reconciled data. 

5.  Concluding remarks 

In this work, crucial sensor data for monitoring the performance of a WWTP, i.e., ammonium and 

nitrate, are checked for errors and anomalous data values are reconciled by model predictions using an 

advanced data validation and reconciliation (DVR) method which makes use of recurrent neural 

network (RNN) models and exponential smoothing. The DVR application is deployed in a cloud 

environment where sensor data is retrieved from the (legacy) WWTP’s process information 

management system and relayed towards a setup using the open data exchange platform FIWARE. 

The FIWARE setup is extended to allow wastewater treatment specific data and data is successfully 

communicated, stored and processed near real-time to a DVR application. 

The following can be concluded: 

• The RNN autoencoder models are able to detect extreme or unexpected sensor values, as well 

as flatlines with differing duration;  
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• Reconciliation is successful for short to medium (i.e. approximately less than 2 hours) horizon 

lengths, but performance is dependent on the amplitude of the signal; 

• The DVR provides a robust and accurate screening and correction layer for further use of 

sensor data in the monitoring and control applications – especially for anomaly events with a 

short duration;  

• The DVR procedure can be used for other sensor signals using standardised data models. 

In order to improve the performance and usability of the DVR, it is proposed to: (i) improve the 

accuracy of predictions, thereby extending the duration of reconciliation possible, by extending the 

DVR with another autoencoder specifically trained on slow dynamics, and/or by inclusion of other 

sensor data signals, (ii) extend the DVR with a technique for classification of anomalies 
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