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ABSTRACT: Acquisition and processing of informative tandem
mass spectra (MS2) is crucial for numerous applications, including
library-based (tentative) identification, feature prioritization, and
prediction of chemical and toxicological characteristics. However,
for environmentally relevant compounds, approaches to automati-
cally assess the quality of the MS2 spectra are missing. This work
focused on developing a machine learning-based approach to
automatically evaluate the diagnostic information of MS2 spectra
(e.g., number, distribution, and intensity of diagnostic fragments)
of environmentally relevant compounds analyzed with electrospray
ionization. For this, approximately 1400 MS2 spectra of 204
environmental contaminants, acquired with different collision energies using liquid chromatography coupled to high-resolution mass
spectrometry, were used to train a random forest classifier to distinguish between spectra providing good or poor diagnostic
information. Prior to training, validation, and testing, spectra were manually labeled based on criteria such as number, intensity,
range of fragments present, molecular ion intensity, and noise levels. Subsequently, feature engineering and selection were applied to
retrieve relevant variables from raw MS2 spectra as inputs for the classifier. The optimal set of features based on model performances
was selected and used to train a final model, which showed an accuracy of 84%, a precision of 88%, and a recall of 75%. Results show
that the combination of selected features and the machine learning model used here can effectively distinguish between MS2 spectra
providing good or poor diagnostic information according to the defined criteria. The developed model has the potential to improve a
broad range of applications that rely on MS2 data.

1. INTRODUCTION
High-resolution mass spectrometry (HRMS) coupled with
either liquid (LC) or gas chromatography (GC) has become
an essential tool to monitor emerging contaminants in the
environment.1 In particular, the acquisition of tandem mass
spectrometry (MS2) spectra combined with the ever growing
quality and comprehensiveness of spectral libraries (e.g.,
MassBankEU,2 MoNA3) have greatly expanded the possibil-
ities offered by suspect and nontarget screening analyses.4,5

Despite continuous improvements, large discrepancies still
exist between the number of potentially relevant contaminants
present in environmental samples and those for which spectral
information is available in libraries.6 Moreover, despite the
development of workflows to automatically improve the quality
of records added to these libraries,7 and the acquisition of
multiple spectra per compound to account for specific
fragmentation curves, issues regarding quality assurance and
control (QA/QC) of the information contained in these
databases still exist, including insufficiently curated tandem
mass spectra.6,8 In the field of proteomics, where database
searches and de novo sequencing approaches are used to
identify peptides from complex mixtures of proteins,9−11 the
quality of tandem mass spectra, and how to assess it, have been
the subject of various studies. In this context, spectral quality

should be understood as the amount of diagnostic information
about the structure of the parent ion provided by the MS2
spectra. Specifically, these should have sufficient diagnostic
fragments spread across the whole mass range (relative to the
mass of the parent ion) and with sufficient intensity as well as
little to no noise. In fact, for library-based peptide
identifications, poor MS2 data quality is considered to play a
major role in the occurrence of false negatives.9 For this
purpose, already in the early 2000s, algorithms have been
devised to try to automatically assess the quality of MS2
spectra acquired in proteomics experiments.12 Recently, more
advanced machine and even deep learning algorithms have
been developed to automatically assess the quality of acquired
MS2 signals, reduce the occurrence of false negatives, and
decrease overall processing time of large data sets.9,13,14 The
proposed classifiers showed very promising results. For
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instance, the approach developed by Bern et al.12 was able to
eliminate over 75% of spectra considered as being of bad
quality and, at the same time, would only lose 10% of spectra
deemed as being of good quality. Using support vector
machine (SVM) and k-means, Zou et al.14 and Ding et al.13

were able to develop binary classifiers having true positive rates
(TPR) of 92% and 90% while keeping the true negative rate
(TNR) at 90% and 92%, respectively. These methods often
rely on a range of “features” (to be understood here as
descriptors, or independent variables, rather than HRMS-based
features) derived from peptide fragmentation patterns, such as
b- and y-ion peaks15 or amino acid sequence tags.11 Only more
recently, a deep learning method was developed which takes
the entire MS2 spectrum (after preprocessing and normal-
ization) to assess spectral quality.9 The fact that most models
developed so far used features derived from specific peptide
fragmentation patterns, combined with the difficulty to
objectively establish criteria to define an MS2 spectrum
providing diagnostic information, might explain why these
approaches have not yet been implemented in other fields. In
fact, in the specific case of (small) environmentally relevant
molecules, the issue of MS2 diagnostic information has not
been addressed thoroughly, besides in the general context of
curating spectral libraries and the development of search and
matching algorithms.6 Yet, obtaining MS2 spectra providing
diagnostic information could improve both feature annotation
and reduce overall (post)processing time in environmental
analyses. However, the importance of obtaining high-quality
MS2 spectra is not limited to annotations or library searches.
In fact, in recent years, an increasing number of computational
tools have been reported that make use of MS2 data to
improve postprocessing and prioritization (e.g., molecular
networking strategies16,17), predict molecular structures,18 or
even in vivo toxicity end points of unknowns.19,20 Given that
these methods rely on MS2 spectra, their performances would
most likely benefit from having input data of high(er) quality.
Furthermore, algorithms used to determine the quality of MS2
spectra could in the future be integrated into data-dependent
acquisition (DDA) methods and used to determine if acquired
spectra provide sufficient diagnostic information or if addi-
tional ones (e.g., different collision energy (CE)) should be
recorded. While for data-independent acquisition (DIA), such
information could be useful during postprocessing to prioritize
MS2 spectra rich in diagnostic information.
The goal of this work was hence to develop a machine

learning pipeline to automatically assess the diagnostic
information of electrospray ionization (ESI) MS2 spectra of
environmentally relevant compounds. For this purpose, a data
set of 204 reference standards of environmental contaminants
acquired with different CEs, corresponding to almost 1400
MS2 spectra, was used. Initially, the focus was set on finding
relevant features (i.e., descriptors used for modeling purposes)
that could be used for machine learning purposes and that
provided a sufficiently accurate representation of the raw input
data. Specifically, three different feature sets were computed,
and their performances were evaluated using a random forest
(RF) classifier with cross-validation. Computed descriptors
were then further filtered to select those that explained most of
the available data. Finally, the optimized feature sets were
evaluated against the test set and the model’s classification
threshold was set to favor precision and reduce false positives.

2. EXPERIMENTAL SECTION
2.1. Data Set. The data set used in this work consisted of

fragmentation mass spectra (MS2) of 204 reference standards
of known environmental contaminants (see the Supporting
Information for a complete list) which were analyzed by liquid
chromatography (LC) coupled to an Orbitrap Fusion Tribrid
high-resolution mass spectrometry instrument (HRMS,
Thermo Fisher Scientific) equipped with a heated electrospray
ionization source. Separation was achieved using a generic
chromatographic method using an XBridge BEH C18 (2.5 μm,
2.1 × 100 mm Column XP, Waters) column as described in
Been et al.21 Acquisition was performed in data-dependent
acquisition (DDA) mode with high collision dissociation
(HCD) and graded collision energy (CE) of 10, 20, 35, 50, 65,
80 and 100%. MS2 spectra obtained were then searched using
the retention time of each reference standard and by retrieving
the scan corresponding to each of the CEs used. Spectra were
acquired in profile mode but were then converted to centroids
to facilitate comparison with existing spectra libraries. The final
data set consisted of 1399 MS2 spectra.
2.2. Initial Labeling of MS2 Spectra. Initially, labeling of

acquired MS2 spectra was carried out automatically. More
specifically, matching spectra were searched in MassBankEU22

using the SpectrumSimilarity function from the OrgMassSpecR
package developed by Dodder and Mullen.23 This was done
after preliminary filtering of spectra based on precursor masses.
Spectra eliciting a high score (≥0.75) were initially labeled as
being good while spectra with lower scores were labeled as
poor. However, due to the differences in both fragmentation
approaches and collision energies (CEs) used, inconsistencies
were observed in the labeling. In particular, spectra were
incorrectly labeled. Because of the difficulty of defining
quantitative criteria which could be used to automatically
label MS2 spectra, it was decided to rely on expert judgment
and to manually label all spectra. To mitigate the subjectivity of
the labeling step, a set of qualitative criteria that spectra had to
satisfy to be labeled as good was defined:

(i) Number of diagnostic fragments: at least 2 diagnostic
fragments are present in the spectrum. Diagnostic
fragments should provide relevant structural informa-
tion, for instance, losses of specific structures/function-
alities (e.g., carboxylic acid or ester [M+H+-44 or
aromatic groups [M+H+-77]) in contrast to nonspecific
ones (e.g., loss of water [M+H+-18] or a methyl group
[M+H+-15]).

(ii) Intensity of diagnostic fragments: diagnostic fragments
should be present at an intensity >5% of the base peak in
the MS2 spectrum.

(iii) Fragment distribution: diagnostic fragments should be
spread over the whole m/z range (i.e., from the lower
limit up to the m/z of the precursor ion/adduct).

(iv) Precursor intensity: the precursor intensity should not
exceed the 25th percentile of the intensity distribution of
diagnostic fragments.

(v) Noise level: diagnostic fragments should be clearly
distinguishable from the noise.

Following the labeling process, a subset of spectra was
randomly selected to verify the correctness of the labeling
procedure. The final data set consisted of 1399 MS2 spectra, of
which 615 (44%) and 784 (56%) were labeled as containing
good and poor diagnostic information, respectively.
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2.3. Preprocessing. Prior to calculating features (i.e.,
descriptors), MS2 spectra were scaled with respect to both
their intensity and the m/z range. Relative intensities (i.e.,
range [0, 1]) were computed by dividing individual intensities
by the intensity of the base peak. Similarly, the m/z range of
each spectrum was normalized by dividing individual m/z
values by the m/z value of the precursor. Finally, noise was
removed by filtering all m/z whose intensity was ≤5% of the
base peak. An overview of the distribution of the preprocessed
MS2 spectra is shown in Figure 1.
2.4. Feature Transformation. 2.4.1. Distance Features.

The first set of features which were computed consisted of
statistics derived from the calculation of Euclidean distance
between the centroid of each spectrum and the remaining m/z
after preprocessing. The centroid c was defined as follows:
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where mj are the m/z values in the spectrum, ij are the
corresponding intensities, and n is the number of m/z values in
the spectrum. For every m/z value (p) in the spectrum, the
Euclidean distance d to the centroid c is calculated by the
formula

d m m i i( ) ( )c p c p
2 2= + (2)

where mp and ip are the m/z and corresponding intensity of the
pth m/z value in the spectrum, while mc and ic are the m/z and
intensity of the centroid. Using the distance vector, the count;
mean; standard deviation; minimum; maximum; and first,
second, and third quartiles were calculated and used as distance
features for modeling purposes (see Table S1).
2.4.2. Handcrafted Features. The second set of features

computed from MS2 spectra consists of a collection of
common features found in the literature, together with some
empirically selected features. Specifically, the number of m/z
values in the spectrum,11,12,14,24 the average,11 sum24 and
standard deviation of intensities in each spectrum were
computed. Additionally, the dot product between m/z and
intensity values was also used as a feature. The number of
peaks with relative intensity greater than 0.114 and 0.2 were
also considered. The standard deviation of the difference in m/

z between consecutive fragments and the average number of
fragments in a 2 Dalton (Da) interval11 were also used. The
intensity balance, calculated by dividing the m/z axis into a
number of bins of equal width and subtracting the total
intensity of the first bin from the sum of the intensities of the
remaining bins,12 the entropies for the m/z and intensity
vectors were also used (see Table S1).

2.4.3. Grid Features. Inspired by previous work from Logan
et al.,25 the last feature set consisted of dividing the spectra into
1- or 2-dimensional (1D or 2D) grids and counting the
number of points (i.e., m/z) in each grid cell. In 1D-grids,
between 1 and 20 bins were unevenly distributed along the
intensity (y) axis to have more granularity (i.e., more frequent
bins) at lower intensities compared to higher ones. In the case
of 2D-grids, between 1 and 20 bins were considered both for
the m/z (x) and the intensity (y) axis (i.e., yielding N × N
matrices; see Table S1).
2.5. Statistical Modeling. In the context of this work, a

random forest (RF) algorithm26 was used given its widespread
use in the context of binary classification,27,28 and the fact that
it is often considered the method of choice with expected
highly nonlinear relationships. The RF was trained using the
RandomForestClassif ier function from the sklearn.ensemble
module in Python. The training involved bootstrapping,
“balanced” class_weights, a “fixed” random_state and max_fea-
tures = “sqrt”, while the function GridSearchCV was used to
tune n_estimators: [50, 100, 200], max_depth: [None, 10, 20,
30], min_samples_split: [2, 5, 10], and min_sample_leaf: [1, 2,
4]. The CE and precursor m/z were added to each of the
above-mentioned feature sets. Prior to training, validation, and
testing, features were centered and scaled. Features’
importance was retrieved for each set using the feature_im-
portances_ (i.e., impurity-based) property of the Random-
ForestClassif ier function. The raw MS2 data used and Python
code used to compute the feature sets and RF models can be
found at https://github.com/svetlanacodrean/HRMS-Quality-
assessment. Readers interested in additional information about
the developed algorithms should contact the authors directly.
2.6. Validation and Testing. The initial data set of 1399

MS2 spectra was divided into two parts, namely, 949 (67.8%)
observations for training and 450 (32.2%) observations were
kept for final testing. Both sets had 44% instances labeled as
good and 56% labeled poor. Feature groups were evaluated

Figure 1. Distribution of normalized m/z and intensities in MS2 spectra labeled as good (left) and poor (right). m/z values were normalized
according to the m/z of the precursor. Intensities were normalized through the most intense/base peak in the MS2 spectrum.
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individually, and then results were compared. Feature groups
were evaluated by applying a stratified 10-Fold Cross-
Validation29 over the 949 instances provided for training,
resulting in 10 training iterations with 854 instances for fitting
and 95 samples for prediction. Metrics used to evaluate model
performances were the iteration accuracy, average precision,
Area Under the Receiver Operating Characteristic Curve
(ROC AUC) score, and log loss of the model. In the context of
this work, particular attention was given to precision given that
it was considered that the impact of misclassifying a poor
spectrum as good would be greater than vice versa. In fact, such
a misclassification could lead to unfruitful and time-consuming
(tentative) identification of features (referred to here as a
“chemical feature” resulting from HRMS analysis) having poor
MS2 data or performing any other type of statistical analysis
based on an MS2 spectrum of insufficient quality. Similarly,
should this kind of classification algorithm be implemented
during acquisition (i.e., determining whether an additional
MS2 spectrum needs to be acquired in a DDA experiment), a
conservative strategy would entail recording an additional MS2
spectrum, even if the existing one already contained valuable
diagnostic information, rather than relying on a spectrum of
lower quality. For Grid features, feature selection focused on
finding the optimal number of 1D and 2D bins. Handcraf ted
and Distance feature sets were evaluated individually and
combined. A Spearman rank correlation test was applied to the
combined set, and features having a dissimilarity ≥0.3 were
marked as uncorrelated and evaluated once more separately.
Grid features were not included in the correlation testing
because their structure is inherently different, while both
Distance and Handcraf ted features are based on heuristics and
are likely going to contain similar information because criteria
for computing them were partially similar. Handcraf ted and
Distance features (and the combination thereof) were also
evaluated using cross-validated recursive feature elimination
(RFECV).30 Finally, during the testing phase, a simple baseline
model (i.e., a random forest classifier trained with only the
number of fragments present in the MS2 spectrum) was used
to evaluate the described feature extraction methods and get an
idea of the expected model performance.

3. RESULTS AND DISCUSSION
3.1. Grid Feature Selection. Prior to evaluating model

performances on the holdout (test) set, the optimal number of
bins in both the 1D (unevenly distributed) and the 2D grids
were evaluated. First, the optimal grid specification was
searched, namely, the number of bins per axis (m/z and
intensity) from which the 2D distribution of the m/z-intensity
pairs is obtained. From this distribution, specified by the
number of bins on each axis, N × N features were derived as
described previously. Combinations of m/z and intensity bins
from 1 to 20 were evaluated. It is worth mentioning that pair
(1, 1) means that there is only one bin for the m/z values and
one bin for the intensity values and hence corresponds to the
number of fragments in a spectrum. The heatmaps in Figure 2
show the results for all metrics. From a first observation, it
appears that the use of a highly granular grid does not provide
particularly good results, as lower performances are obtained
when a large number of bins are used to divide the y- and x-
axes (Figure 2). A closer look reveals an almost identical
pattern in all four metrics. Areas with highest scores (i.e.,
darkest shades) are in two locations in the 2D space. In the
case of log loss, it is the opposite, as one seeks to obtain the

smallest metric. Visual inspection indicates that the best-
performing pairs are (m/z, 1), ∀× ∈ {8, 9,···, 20}, but also the
pairs (m/z, intensity), m/z ∈ {1,2}, intensity ∈ {11,12}. These
results suggest that the use of 1D histograms is preferable to
that of 2D histograms. One possible explanation could be that
the more granular the space becomes, the sparser the grid cells
(i.e., most values are equal to zero). The four best bin
combinations for the 2D grid, namely, (19,1), (10,1), (12,1),
and (2,11), were selected for further comparisons (see Table
S2 for all details). Results obtained using the 1D unevenly
distributed grid are shown in Figure S1. In this specific case, no
difference was observed as the number of bins was increased
up to 20, suggesting that the granularity of the lowest layers
does not play an important role, likely because noise (i.e., m/z
values having an intensity <5% of the maximum) was removed
during preprocessing. Nevertheless, the best-performing bin
dimension was 14 (i.e., accuracy of 71%, average precision of
68%, ROC AUC 77% and log loss of 9.93).
3.2. Feature Selection and Validation. A Spearman rank

correlation test was applied to the combined Handcraf ted and
Distance features sets. As expected, the number of peaks and
the count of distances are fully correlated (Figure 3). The two
least correlated features were precursor m/z and CE Most
distance features were all highly correlated and were clustered
together. Features showing a dissimilarity score ≥0.3 were
labeled as uncorrelated and were tested separately during the
next step.
After correlation testing, the feature importance was

computed for each set (Figure 4). For Distance features, the
most important were the count (i.e., number of fragments in
the MS2), standard deviation of measured distances, and the
precursor. For Handcraf ted features, the most important were
the dot product between m/z and intensities, the entropy of
intensities, and the standard deviation of the differences
between all m/z in the MS2. These features were also among
the most important when considering the Combined set,
although individually, Distance features seemed to have a
higher importance compared to Handcraf ted ones. Interest-

Figure 2. Metrics for each combination of numbers of m/z (x-axis)
and intensity (y-axis) bins in 2D. Each value represents the average
metric score (together with the standard deviation) obtained from a
stratified 10-fold cross-validation for a given (#m/z, #intensity)
combination. A Gaussian blur filter (σ = 1) was applied to the
heatmap to facilitate the visualization of the results.
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ingly, the dot product was found to be the most important
feature, suggesting that the alignment between m/z and the
intensity is an important predictor of MS2 diagnostic
information. Regarding 1D- and 2D-Grids, the precursor and
CE were among the most important features, in particular for
the 2D-Grid. Interestingly, for the 2D-Grid, features C0 and
C18 were the most important features after the precursor and
the CE, suggesting that the number of fragments at the
extremities of the (normalized) MS2 is an important predictor
of diagnostic information. For 1D-Grid, only bins correspond-

ing to higher intensities appeared to play a role in the
classification, which is to be expected considering that the
occurrence of intense (diagnostic) fragments was among the
criteria used to discriminate between good and poor MS2
spectra.
Subsequently, RFECV was used for feature selection. While

this method depends heavily on the model’s estimate of feature
importance and is generally not safe as a feature selector alone,
it is useful for creating new subsets of features that are
evaluated in a separate procedure. In total, ten different feature

Figure 3. Hierarchical clustering dendrogram based on outcomes of the Spearman rank correlation test. The y-axis represents the degree of
dissimilarity between the features, which is D = 1 − |ρ|, where ρ is the pairwise rank correlation coefficient. See Table S1 for all features.

Figure 4. Mean feature importance for each set considered in the validation step. For 1D and 2D Grids, feature importance was calculated only for
the optimum number of bins determined earlier (i.e., (14) and (19, 1), respectively). See Table S1 for all features.
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groups were selected for evaluation (Figure 5), including the
original feature sets, the Combined set, and the results of
correlation testing and RFECV (applied together or
separately). 2D- and 1D-Grid feature sets were computed
using the number of bins giving the best performances (see
Grid Feature Selection). Uncorrelated refers to feature subsets
that passed through the correlation analysis (i.e., dissimilarity
≥ 0.3). Eventually, recursive feature elimination (RFE) was
applied only to the Combined set given that none of the
features were discarded for the other sets. As can be seen from
Figure 5, the best performances were obtained for the
Combined (i.e., Handcraf ted + Distance) and Handcraf ted
feature sets, although overall performances were quite similar
between all sets (detailed performances are reported in Table
S3).
3.3. Testing Results. The most promising sets of features

from each category (Handcraf ted, Distance and their
combination, 1D and 2D-Grid) based on validation results
were compared using the holdout (test) set. For this purpose,
all models were retrained using both training and validation
sets. Results are reported in Table 1 and Figure S2. As can be

seen, all feature sets perform reasonably well, achieving an
average accuracy of about 83%, an average precision of 85%,
and an ROC AUC of almost 91%. It is interesting to note that
the baseline (i.e., number of peaks) had approximately 10%
lower performances compared to the other feature sets. This
might suggest that the number of peaks in MS2 spectra after
normalization and noise removal is a rather good predictor of

MS2 diagnostic information, yet the addition of other features
substantially improves the classification. Regarding newly
introduced Distance and Grid features, these showed results
similar to the Handcraf ted features derived from previous
studies. These findings are also visible in Figure S2, which
shows both the ROC and precision−recall curves. Unlike the
baseline approach, the selected feature sets provided similar
performances, especially with regard to the ROC curve. It is
noteworthy that even though obtaining relevant features in the
field of small molecules is more complex compared to
proteomics, where one can rely on additional information/
patterns due to the occurrence of repeating units (i.e., amino
acids and peptides), results obtained here are consistent with
performances reported in the literature. For instance, in the
recent approach proposed by Gholamizoj and Ma,9 ROC AUC
ranging from 68% to 89% were obtained for the classification
of MS2 spectra of peptides.
3.4. Optimized Model. Based on the outcomes of the

testing step, the model with the best performance, namely, the
one computed using the Handcraf ted feature set, was further
investigated and optimized. For this purpose, the confusion
matrix of the RF classifier was directly examined instead of
assessing the metrics derived from it. Using a standard
threshold of 0.5, a precision of 77% was obtained. However,
as discussed previously, it was decided to favor precision above
the other performance parameters to minimize the chance of
having a poor spectrum being mislabeled as good. For this
purpose, the f-beta score31 was evaluated to find an optimal
threshold for probability predictions. Using a beta parameter of
0.5, corresponding to a threshold of 0.666 and allowing a final
accuracy of 84% to be obtained, a higher precision of 88%
could be attained with a recall of 75%. Considering the
purpose for which this model was developed, namely, to allow
the selection of MS2-data providing diagnostic information for
various applications, these results were in line with results from
other quality prediction models developed in the field of
proteomics.

4. CONCLUSION
Acquisition and processing of high-quality tandem mass
spectra has clear advantages, both for identification and

Figure 5. Validation performance results for combinations of feature sets. Either all features in the set were used or a subset thereof depending on
the outcomes of the RFE and/or correlation analysis. n = number of features used. Combined = Handcrafted + Distance features combined.
Uncorrelated = only features whose dissimilarity score was ≥0.3 were included. RFE = Feature set following recursive feature elimination (RFE).
Feature sets were ordered from left to right by decreasing Log Loss value (not shown here, see Table S3).

Table 1. Performances (in %) of the Selected Models on the
Test Set

Features Accuracy
Average
precision

ROC
AUC

Number of
Features

Handcrafted 84 87 92 14
Distance 83 87 91 10
Combined + RFE 83 84 90 8
1D Grid (14) 83 85 90 16
2D Grid (19, 1) 80 85 90 21
Baseline
(no. peaks)

74 65 78 1
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predictive modeling purposes. However, an automated
approach to assess the diagnostic information on MS2 spectra
in the field of (small) environmentally relevant molecules was
still missing. In the context of this work, an RF classifier was
trained to be capable of attaining comparable if not superior
performances compared to approaches previously reported in
the field of proteomics. The best performing model obtained in
this work provided very similar results compared to the deep
learning model recently developed by Gholamizoj and Ma9

(92% and 89% ROC AUC). Similar to the work done by
Nesvizhskii et al.,11 the classifier was not affected by the
presence of potentially correlated features. With respect to
results obtained using the Grid features-based model, the RF
classifier obtained here using a 1D grid outperformed the
Gaussian Mixed model developed by Logan et al.25 (89%
versus 76% ROC AUC, respectively). Similarly, the model
developed here also performed slightly better compared to the
one obtained through boosting when using a 2D grid (87%
versus 85% ROC AUC, respectively). Despite being developed
on a rather small data set, results suggest that the tested
features and the optimized classifier could be a very useful tool
to automatically classify MS2 spectra of environmentally
relevant compounds based on the quality of their diagnostic
information. Applications could range from improving and
automating spectral library curation and identification,
prioritization of features for further identification in NTS
applications, improve performances of MS2-based computa-
tional methods, and even acquisition, should these approaches
become part of acquisition parameters in DDA methods for
instance. In the future, the model’s performances should be
evaluated on a larger data set and/or develop more advanced
models (e.g., deep learning). For instance, convolutional neural
network could be trained using images of MS2 spectra
obtained using the proposed 1D- or 2D-Grids. Moreover, the
proposed model should be evaluated to determine whether it
allows increasing identification/discovery rates in non-target
screening applications for environmental analysis. Finally,
moving away from a binary approach by introducing multiple
classes or developing a continuous score based on the model’s
outputs could be promising directions to further advance this
approach.
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