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ABSTRACT

The world grapples with immediate crises like COVID-19, Russia’s invasion of Ukraine, floods, droughts and wildfires. However, a longer-term

crisis looms due to humanity’s overstepping of planetary boundaries and its disruptive consequences. Growing awareness of the potential

collapse of societies due to planetary boundary violations has prompted increased attention in the scientific literature. In the water sector,

where infrastructure built today might persist during a future collapse, we must therefore ask ourselves how a (basic) level of water supply

can be maintained in a collapsing society. This paper explores this question and proposes research directions to address it in the short to

medium term. Despite the seeming remoteness of a societal collapse scenario, it is imperative to incorporate it urgently into water infrastruc-

ture research and planning.
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HIGHLIGHTS

• Environmentally induced societal collapse is an ignored risk for the water sector.

• Research into potential consequences and strategies for deep adaptation are needed.

• A four-stranded approach for this research is proposed, mirroring a prior one for research on worst-case climate change and systemic

risks.
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GRAPHICAL ABSTRACT

INTRODUCTION

As the world continues to attempt to deal with short-term, high impact, crises, such as the COVID-19 pandemic, Russia’s inva-
sion of Ukraine, floods, droughts and wildfires, a longer-term crisis is arguably looming, which is associated with mankind’s
transgression of planetary boundaries (Rockström et al. 2009) and the resulting highly disruptive effects this could have on
our societies. The planetary boundary concept aims to describe the boundaries of safe operating space for humanity. To start
with the planetary boundary of our climate, forwhichweare presently considered to be in the zone of uncertainty and increasing

risk (Steffen et al. 2015), current policies are considered insufficient to meet the 2 °C or even 1.5 °C targets of the Paris Accord –

we are heading for a 2.7 (2.2–3.4) °C increase by 2100 (Climate Action Tracker 2023) instead. Other planetary (sub)boundaries –
biosphere integrity, novel entities, biogeochemical flows, land system change, green water and regionally blue water – are
already considered to be transgressed (Steffen et al. 2015; Richardson et al. 2023 and references therein).

The possibility of societal collapse resulting from planetary boundary transgressions, potentially pushing Earth-system com-
ponents beyond tipping points, is gaining serious attention in the scientific literature (Brozović 2022). Lenton et al. (2019)
examine the climate planetary boundary and assert that ‘If damaging tipping cascades can occur and a global tipping

point cannot be ruled out, then this is an existential threat to civilization.’ Recent updates to thresholds for various climate
tipping points indicate an increased likelihood of occurrence even with a 1.5 °C mean global temperature rise (Armstrong
McKay et al. 2022).

Bologna & Aquino (2020) and Aquino & Bologna (2021) look at the relationship between population growth and deforesta-
tion and conclude that a catastrophic population collapse is possible or even likely. Indeed, countless societies have collapsed in
mankind’s history (Motesharrei et al. 2014) due to stresses of varying kinds (including regional climate change) on a local or

regional scale (Brovkin et al. 2021). Planetary boundary transgressions exert pressure on societies in particular through their
impact on the availability and distribution of food production (e.g. more irregular weather, changing crop cultivation zones,
marine ecosystemcollapse; IPCC 2022), the availability of water (for drinking and irrigation; IPCC 2022), vector-borne diseases
(IPCC 2022; Kemp et al. 2022) and extremeweather (a.o. the increased incidence of deadly wet-bulb temperatures; Saeed et al.
2021). Indirectly, these stressesmay lead to conflicts and/ormassmigrations (CNAMilitary Advisory Board 2007;Unfried et al.
2022). These interdependencies have been described in a causal loop diagram by Richards et al. (2021).

Kemp et al. (2022) argue that climate change could have catastrophic consequences, even at modest levels of warming, and

understanding extreme risks is crucial for decision-making and emergency response preparation. They propose a ‘Climate
Endgame’ research agenda that offers a way to explore worst-case scenarios and systemic risks associated with climate
change.
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This paper argues that the catastrophic potential consequences of climate change need to be studied in the context of the

water industry as well. As such, it attempts to provide a translation of the ‘Climate Endgame’ research agenda to water
research. So far, the drinking water literature has failed to consider societal collapse scenarios, focusing exclusively on con-
ventional projected environmental changes – ignoring potential societal cascading effects – and addressing challenges with

established adaptation approaches (e.g. Mishra et al. 2021). Because of the long asset lifecycle and planning horizon for water
supply infrastructure, it is, however, conceivable that the infrastructure that is built today will still be in service during a poss-
ible collapse occurring sometime later this century. As our societies and indeed our livelihoods depend so strongly on the
provision of drinking water of adequate quality and in adequate quantities, and as our water supply systems continue to

become more complex and dependent on high-tech solutions, we must ask ourselves how a (basic) level of water supply
can be maintained in a collapsing society. Because of the deeply uncertain nature of the processes involved, a possibilistic
rather than a probabilistic approach is more meaningful.

CONCEIVABLE SOCIETAL COLLAPSE

Kemp et al. (2022) define societal collapse as ‘significant sociopolitical fragmentation and/or state failure along with the rela-

tively rapid, enduring, and significant loss [of] capital, and systems identity; this can lead to large-scale increases in mortality
and morbidity.’What is important here is the observation that the relapse is of a long-term nature; this contrasts with disasters
after which (re)construction takes place either to the original state or to a new state that is better adapted to changed con-

ditions (Gallopín 2006).
In many cases, (rapid) economic, (socio)political and demographic aspects of a downturn are closely related. A good

example is the Arab Spring, in which protests over food prices led to political upheaval (and in the case of Libya, a
degree of collapse). The timescale and degree of collapse and the geographical extent can vary. Several examples from

modern history show that local and regional factors often play a decisive role. A particularly relevant example is the dramatic
decline in the supply of drinking water by up to 40% in Syria over the past decade due to damaged infrastructure, mainten-
ance prevented by the circumstances, lack of spare parts and loss of technical staff (ICRC 2021).

RISK PERSPECTIVE

From a risk perspective, the argument that the societal collapse scenario should be considered seriously by the water industry

is unavoidable. The commonly used 5� 5 risk matrix approach (e.g. NASA 2017) is illustrated in Figure 1. This shows the risk
as the product of (estimated) likelihood (rows) and impact (columns). We propose to add an additional column – existential
impact – though it is questionable whether the associated numerical value suffices. Figure 1 shows that, depending on one’s
assessment of its likelihood (which we do not know), societal collapse should be considered a moderate (collapse is ‘rare’) to
extreme (beyond ‘unlikely’) risk for any water sector entity.

CONSEQUENCES OF COLLAPSE AND CONTINUATION OF WATER SUPPLY

This existential issue can only be thought of meaningfully in terms of minimizing suffering by securing the supply of water as
much as possible under difficult and deteriorating conditions. Some insight into what the impact of such a scenario might be
on water companies and their social role can be gained by studying water supply and infrastructure in fragile and conflict

areas. Bolton (2020) mentions several vulnerabilities (interpretations in the context of the stresses described above added
by the authors of the present paper):

(1) increase in water demand from displaced people: climate refugees fleeing extreme weather, sea-level rise or social decline;
or decrease in water demand as inhabitants flee extreme weather or rising seas;

(2) departure of qualified (technical) personnel: themselves fleeing from deteriorating local conditions;

(3) physical damage to the infrastructure: collateral damage or deliberate sabotage or theft;
(4) reduced availability of electricity: due to similar processes (2, 3, 5, 6, 7);
(5) erosion of the financial sustainability of water companies: increased non-payment and/or water theft; (partial) failure of

the financial system.

Further effects can be imagined by considering additional external dependencies in more high-tech water supply systems:

(6) reduced availability of (high-tech) components and chemicals: decline in production, transport, trade and financial ser-
vices, partly through similar mechanisms (2, 3, 4, 5);
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(7) (partial) breakdown of data and communication infrastructure: partly through similar mechanisms (2, 3, 4, 5, 6);
(8) contamination of sources by reduced security or containment of chemical or nuclear products or waste materials through

mechanisms (2, 3, 4, 5, 6, 7) that may consequently spread via water or wind.

An overview of these processes and their interdependencies is presented in Figure 2 in a conceptual causal loop diagram.

The elaboration of quantitative descriptions of relations and interactions, for example in a system dynamics framework
(Randers 2000), will facilitate the quantitative evaluation of the interdependencies.

Diep et al. (2017) draw lessons from various crises in the Middle East and North Africa. They advise water companies to

build their resilience, which is characterized by flexibility, resourcefulness and responsiveness, redundancy, modularity and
safe failure. These are already part of existing approaches for disaster resilience but obtain a new dimension when considered
from the perspective of a conceivable societal collapse. As an example of this, we mention the ongoing upscaling and digi-
talization of the water industry and water supply systems. While these in themselves can bring many gains in efficiency,

insight and resilience of water supply systems, the entailing of increased complexity and interdependencies also seem to con-
stitute a vulnerability of water supply from the perspective of a conceivable societal collapse.

RESEARCH TOWARDS A COLLAPSE-RESILIENT WATER SUPPLY SYSTEM

Kemp et al. (2022) propose a four-strand research strategy for catastrophic climate change:

1. understanding extreme climate change dynamics and impacts in the long term;
2. exploring climate-triggered pathways to mass morbidity and mortality;
3. investigating social fragility: vulnerabilities, risk cascades and risk responses;
4. synthesizing the research findings into ‘integrated catastrophe assessments.’

How can this agenda be translated to water supply systems research? We propose the following:

1. The water industry needs to recognize that there is a significant amount of uncertainty that is explicitly stated in climate
projections, but also a significant amount of uncertainty that is not, including climate tipping points (for which the major
mechanisms are currently not well resolved in global circulation models; Hewitt et al. 2022; Stocker 2023). A good

example is the possible shutdown of the Atlantic Meridional Overturning Circulation, which would make northwestern
Europe significantly colder and redistribute precipitation (Jackson et al. 2015). Though stable in many models (Liu
et al. 2017), evidence is overwhelming for its historical variations and mounting for its possible current instability

(Boers 2021; Ditlevsen & Ditlevsen 2023). Therefore, in addition to considering the IPCC’s RCP/SSP (Representative Con-
centration Pathways/Shared Socioeconomic Pathways) scenarios or their derivatives, we need to construct together with
climate scientists an informed set of additional scenarios of high impact and unknown (rather than the commonly used

Figure 1 | Risk matrix approach to conceivable societal collapse.
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Figure 2 | Causal loop diagram for the effects of partial societal collapse on water services. Exogenous root causes are indicated by yellow
boxes. Blue/solid arrows indicate effects within the water industry. Red/dashed arrows indicate relevant parallel effects outside the water
industry that may impact the water industry (non-exhaustive).

Figure 3 | Simplified web of dependencies for water supply systems.
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adjective low) likelihood and use these to develop and test water supply system resilience associated with all known cli-

mate tipping points (Armstrong McKay et al. 2022) with a non-stationary response of the hydrological cycle (Burgan et al.
2017; Chebana & Ouarda 2021).

2. Research should be formulated to address the question of how the direct effects of climate change, in particular famine and

undernutrition, extreme weather events, conflict and vector-borne diseases (Kemp et al. 2022), affect both the demand for
water and the capacity of the water industry to provide basic services (drinking water and sanitation) at a sufficient level
(quality and quantity). Observations and understanding derived from current and historical conflict and disaster areas can
provide a basis for extrapolation.

3. Complementary to these issues, research should also be directed at understanding how cascading effects potentially result-
ing in systemic crises affect the capacity of the water industry to provide basic services. This means that in addition to the
expanded set of physical scenarios mentioned under the first point, we need to develop a comprehensive set of social scen-

arios that present a range of plausible societal outcomes from these physical scenarios.
4. When we map out the dependencies of our water supply systems in terms of materials, components, energy, data, skills,

etc. (qualitative illustration of the different external dependencies of water supply systems is shown in Figure 3), including

the nature and quantification of different interactions, these social scenarios can be used to analyze the vulnerabilities that
stem from these (an overview of suitable approaches is provided by Ouyang (2014)). Deep adaptation strategies can be
devised to mitigate these vulnerabilities.

CONCLUSIONS

A (partial) societal collapse as a consequence of mankind’s continuing transgression of planetary boundaries has started to

receive serious consideration in the scientific literature. Our paper argues that consideration of this scenario in long-term
planning by the water industry is essential. Because of the long asset lifecycle and planning horizon for water supply infra-
structure, it is conceivable that the infrastructure that is built today will still be in service during a possible collapse

occurring sometime later this century. Research into the potential consequences and strategies for deep adaptation, for
which we propose an agenda, is both necessary and timely.
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