
Science of the Total Environment 917 (2024) 170370

Available online 26 January 2024
0048-9697/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Limitations of a biokinetic model to predict the seasonal variations of 
nitrous oxide emissions from a full-scale wastewater treatment plant 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• ASDM-N2O model setup for full-scale 
WWTP and calibrated with long dura-
tion data 

• Model predictions made for N2O sea-
sonal variations, inclusive of an emis-
sion peak 

• Insights gained on prominent N2O pro-
duction pathways during the seasonal 
peak 

• Free nitrous acid concentration can have 
a strong influence in N2O production. 

• Biokinetic model faces challenges in 
adequately simulating N2O seasonal 
variations.  
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A B S T R A C T   

A biokinetic model based on BioWin’s Activated Sludge Digestion Model (ASDM) coupled with a nitrous oxide 
(N2O) model was setup and calibrated for a full-scale wastewater treatment plant (WWTP) Amsterdam West, in 
the Netherlands. The model was calibrated using one year of continuous data to predict the seasonal variations of 
N2O emissions in the gaseous phase. This, according to our best knowledge, is the most complete full-scale data 
set used to date for this purpose. The results obtained suggest that the currently available biokinetic model 
predicted the winter, summer, and autumn N2O emissions well but failed to satisfactorily simulate the spring 
peak. During the calibration process, it was found that the nitrifier denitrification pathway could explain the 
observed emissions during all seasons while a combination of the nitrifier denitrification and incomplete het-
erotrophic denitrification pathways seemed to be dominant during the emissions peak observed during the spring 
season. Specifically, kinetic parameters related to free nitrous acid (FNA) displayed significant sensitivity leading 
to increased N2O production. The obtained values of two kinetic parameters, i.e., the FNA half-saturation during 
ammonia oxidising bacteria (AOB) denitrification and the FNA inhibition concentration related to heterotrophic 
denitrification, suggested a strong influence of the FNA bulk concentration on the N2O emissions and the 
observed seasonal variations. Based on the suboptimal performance and limitations of the biokinetic model, 
further research is needed to better understand the biochemical processes behind the seasonal peak and the 
influence of FNA.  
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1. Introduction 

As the effects of climate change and global warming are becoming 
more apparent, great efforts are being made to reduce the carbon foot-
print of industries and society. Nitrous oxide (N2O) is considered a 
potent greenhouse gas (GHG), with its increasing atmospheric concen-
trations contributing to climate change (IPCC, 2014) and the depletion 
of the ozone layer in the stratosphere (Ravishankara et al., 2009). 
Furthermore, the global warming potential of N2O is very high, 273 
times greater than that of carbon dioxide (CO2) on a 100-year time scale 
(Forster et al., 2021). Therefore, identifying and mitigating the 
anthropogenic sources of N2O is crucial in curbing its harmful envi-
ronmental effects. 

Wastewater treatment plants (WWTPs) are increasingly considered 
to be one of the main sources of N2O. The production of N2O in WWTPs 
is associated with biological nitrogen removal (BNR) processes, more 
specifically the autotrophic nitrification and heterotrophic denitrifica-
tion (Wunderlin et al., 2012). Three production pathways (as shown in 
Fig. 1) have been identified for its generation so far (Kampschreur et al., 
2009; Massara et al., 2017a). It must be noted that within the nitrifier 
denitrification pathway, the nitrite (NO2

− ) formed due to the oxidation of 
ammonium (NH4

+) by the ammonium oxidising bacteria (AOB), at 
certain pH conditions, can lead to the accumulation of free nitrous acid 
(HNO2). At this point, HNO2 can act as an electron acceptor leading to its 
reduction to nitric oxide (NO) and further to N2O. 

Given the diverse conditions and processes that induce N2O emis-
sions, detailed monitoring of N2O and related parameters is necessary to 
better understand its production pathways. A small number of long-term 
monitoring campaigns have been reported so far, for both covered and 
open bioreactors (Chen et al., 2019; Daelman et al., 2015; Gruber et al., 
2020; Gruber et al., 2021a; Kosonen et al., 2016). Higher emission 
factors (EFs), that is a percentage of influent nitrogen load emitted as 
N2O, were reported from these campaigns than from the short-term ones 
(Daelman et al., 2015; Vasilaki et al., 2019). Furthermore, long duration 
measurement campaigns have reported distinctive seasonal and diurnal 
variations of the N2O emissions (Daelman et al., 2013; Gruber et al., 
2020; Kosonen et al., 2016). A significant seasonal peak has been 
recorded, typically during the spring months, with lower emissions 
being witnessed during autumn (Gruber et al., 2021a). The EFs during 
the seasonal peak were found to be as high as 11 %, compared to the 
annual average of 2.8 % (Daelman et al., 2015). Such a high contribution 
warrants better understanding of the causes behind the emissions peak 
(Gruber et al., 2021a). 

Biokinetic models, such as ASM1 (Sin and Al, 2021) have been 
extended to also include the production pathways of N2O, to predict its 
emission and to test control and mitigation strategies (Duan et al., 

2021). The developed models include only one N2O production pathway 
(Mampaey et al., 2013; Ni et al., 2011) to all three pathways (Massara 
et al., 2017b; Ni et al., 2015; Guo and Vanrolleghem, 2013). The 
modelling investigations were mostly carried out on datasets obtained 
from a controlled environment, such as lab-scale or pilot-scale setups, 
barring a handful of cases that used data from full-scale systems 
(Blomberg et al., 2018; Mampaey et al., 2019; Ni et al., 2015; Ni et al., 
2013a; Spérandio et al., 2016). In the cases of full-scale based in-
vestigations, the duration of data used for the calibration purposes is 
typically short (often <1 month) to mid-term, missing seasonal varia-
tions hence resulting in limited predictive performance of the model 
when faced with unseen data containing the seasonal peak. To the best 
of the authors’ knowledge, no biokinetic models reported in literature 
have been validated on data containing the seasonal peak from full-scale 
WWTPs nor attempts have been made to try and explain the underlying 
processes behind the peak(s) through biokinetic modelling. 

Our presented research addressed the above knowledge gaps via the 
following research objectives. The first objective was to determine 
whether the accuracy of N2O emissions predictions from an activated 
sludge/digestion model (ASDM) complemented with N2O biokinetic 
equations can be improved, including a prediction of the seasonal peak 
(s). Any limitations of the biokinetic model preventing accurate pre-
dictions of the seasonal variations were identified. The second objective 
was to identify the kinetic parameters and their values that led to the 
prediction of the N2O seasonal emission peak. The key elements of 
novelty in pursuing these objectives are as follows:  

• Calibration of the biokinetic model using one year of observed N2O 
emissions data from a full-scale WWTP. This, according to our best 
knowledge, is the most complete full-scale data set used to date for 
this purpose; 

• Simulating the seasonal emissions peak to assess the model’s capa-
bility in performing such predictions. This, according to our best 
knowledge has not been attempted so far;  

• Improved understanding of the seasonal peak by identifying possible 
underlying biokinetic processes that trigger this peak. 

2. Methodology 

2.1. Overview 

In Fig. 2, the methodology followed in this study is summarised. 
First, a comprehensive sampling campaign was conducted to obtain data 
required for the characterisation of the municipal wastewater into its 
fractions. These were entered in the simulation software, BioWin® 
(EnviroSim, Canada). Historical laboratory and online sensor data, ac-
quired from the utility’s data management system, was used for the 
calibration of the biokinetic model. Initially, the model was calibrated 
for the effluent quality and then subsequently for N2O emissions. 
Finally, the calibrated model parameters and predictions related to 
effluent quality and N2O emissions were analysed and interpreted. In the 
below sub-sections, an explanation on the model used and calibration 
methodology is provided. 

2.2. Biokinetic model to predict N2O emissions 

2.2.1. N2O emissions model 
The simulation software BioWin was used here to conduct the bio-

kinetic modelling of the wastewater treatment processes and the pro-
duction of N2O emissions (Elawwad et al., 2019). BioWin makes use of 
ASDM, which is divided into six main models that cover the main pro-
cesses in wastewater treatment: activated sludge modelling, anaerobic 
digestion model, settling models, chemical precipitation modelling, pH 
modelling, and an aeration and gas transfer model (Elawwad et al., 
2019). We used here the built-in N2O model available in the BioWin 
ASDM model. N2O production appears to be driven by elevated levels of 

Fig. 1. The three production pathways of N2O emissions associated with bio-
logical nitrogen removal in WWTPs. 
Figure modified from Massara et al. (2017a). 
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NO2
− concentration and therefore, its occurrence as an intermediate 

product in nitrification and denitrification forms a basis for modelling 
the N2O generation (Houweling et al., 2011). Over the years, the N2O 
model in BioWin has been updated to include the above-described three 
pathways of N2O production (EnviroSim: Personal communication), as 
compared to the previous version reported in Houweling et al. (2011). 
The two pathways associated with AOB activity during the nitrification 
process were individually included. The third pathway, associated to 
incomplete heterotrophic denitrification, was also updated. In Fig. 3, an 
outline of the AOB growth processes is described, which lead to N2O 
production via these pathways. 

The base AOB growth rate expression when not considering N2O 
production during the first stage of nitrification has been modelled as, 

AOBBaseRate = μmax,AOB ×XAOB ×
SNH+

4

SNH+
4
+ KNH+

4

×
SO2

SO2 + KO2 ,AOB
(1) 

where, μmax,AOB is the maximum growth rate of AOB, XAOB is the 
concentration of AOB in the biomass, SNH+

4 
is the concentration of 

ammonia nitrogen, KNH+
4 

is the half-saturation concentration for NH4
+ as 

AOB growth substrate, SO2 is the concentration of dissolved oxygen 
(DO), and KO2 ,AOB is the half-saturation concentration of DO for the 
growth of AOB. The hydroxylamine pathway is directly modelled based 
on the concentrations of NH4

+, that serves as the reductant in the con-
version to NH2OH, and is henceforth stated as the nitrification by-product 
pathway. A logistic switching function is defined for this pathway, 
which takes the form: 

SWAOB,N2O =
1

(

1 + e

(
SWAOB,ByProd×

(
SNH+

4
− SNH+

4 ,MaxByProd

) ) (2)  

where, SWAOB,N2O is referred to as the fraction of AOB producing N2O 
from NH4

+. SWAOB,ByProd is a kinetic parameter referred to as the by- 
product of NH4

+ logistic slope, which determines the transition between 
the production of the N2O by-product from NH4

+ and the absence of this 
by-product. When no N2O by-product is produced, NH4

+ is subsequently 
further oxidised to NO2

− . The kinetic parameter SNH+
4 ,MaxByProd, is referred 

to as the by-product NH4
+ inflection point, or as the NH4

+ level that will 
result in half of the maximum NH4

+ substrate becoming N2O, as a by- 
product of nitrification. The approach to this production pathway is 
an adaptation of the kinetics proposed in Houweling et al. (2011). 

During the oxidation of NH4
+ to NH2OH and finally NO2

− , high energy 
electrons are made available that are used either in the regular aerobic 
electron transport chain, or alternatively, through a denitrifying elec-
tron transport chain (Houweling et al., 2011). The latter is defined as the 
nitrifier denitrification pathway and has been modelled based on the 
presence of HNO2 (FNA). FNA is the unionised form of NO2

− and its 
concentration is pH dependent. Additionally, FNA is toxic in nature, 
causing mutagenic effects to cellular DNA (Houweling et al., 2011). 
Therefore, its accumulation may compel the AOB to reduce FNA. In both 
cases, FNA then behaves as the terminal electron acceptor (TEA), lead-
ing to its reduction to N2O. For this pathway, a switching function is 
used, 

SWAOB,Denite =
SHNO2

SHNO2 + KHNO2 ,Denite
×

KO2 ,Denite

KO2 ,Denite + SO2

(3)  

where, SWAOB,Denite is the fraction of NH4
+ oxidised by AOB that is 

denitrified and hence, could lead to the production of N2O due to HNO2 
being consumed as TEA, instead of N2O directly being produced from 
the hydroxylamine pathway. SHNO2 is the concentration of FNA, 
KHNO2 ,Denite is the FNA half-saturation concentration for the AOB 
biomass denitrification. An inhibition function due to the presence of DO 
is also included, where KO2 ,Denite is the SO2 inhibition parameter below 
which AOB biomass denitrifies. Such a kinetic approach for AOB deni-
trification aligns with previous models reported (Guo and Vanrolle-
ghem, 2013; Ni et al., 2011) and is recommended to be included to 
describe N2O production by AOB denitrification during low DO con-
centrations (Ni et al., 2013b). 

Following Fig. 3, the total AOB growth rate can be subdivided to AOB 
aerobic growth at high DO concentrations and AOB denitrification 
growth at low DO concentrations. Therefore, the fraction of AOB 
growing via the nitrifier denitrification pathway can be calculated using 
the AOBBaseRate provided in Eq. (1) and the switching function provided 
in Eq. (3), 

AOBDenitrification = AOBBaseRate × SWAOB,Denite (4) 

The total AOB growth under aerobic conditions comprises biokinetic 
processes resulting in the fractions of AOB growth that lead to no N2O 
production or to N2O production from the nitrification by-product 
pathway. To maintain mass balance, the processes can be described as 
below, 

AOBAerobic = AOBBaseRate ×
(
1 − SWAOB,Denite

)
(5)  

AOBGrowth,NoN2OProd = AOBBaseRate ×
(
1 − SWAOB,Denite

)
×SWAOB,N2O (6)  

AOBGrowth,N2OProd = AOBBaseRate ×
(
1 − SWAOB,Denite

)
×
(
1 − SWAOB,N2O

)

(7) 

Using the above equations that describe the fractions of AOB biomass 
growing via the N2O production pathways, the mass of N2O is calculated 
as per the stoichiometry in BioWin’s Gujer Matrix. Finally, the third 
production pathway of N2O due to incomplete heterotrophic denitrifi-
cation was incorporated in the modelling of the denitrification sub-
processes. In BioWin ASDM, the denitrification processes have been 
modelled similar to the four step denitrification models reported pre-
viously (Ni et al., 2015; Schulthess and Gujer, 1996). Here, the ordinary 
heterotrophic organisms (OHOs) are described in a manner that allows 
for the acceptance of multiple substrates (NO−

3 or NO−
2 ) from the bulk 

concentration in the liquid. The substrates are then processed internally 
leading to either intermediate outputs or the end-product N2. With 
respect to N2O production during the heterotrophic denitrification 
processes, the amount of N2O produced from either substrates NO−

3 or 
NO−

2 is modelled using a switching function, 

SWOHO,FNA =
[HNO2]

[HNO2] + KiHNO2

(8)  

where, SWOHO,FNA controls the amount of NO−
3 or NO−

2 that is not 
completely denitrified to N2, due to the inhibition caused by the pres-
ence of FNA. FNA expressed as [HNO2] is the molar concentration pre-
sent in the bulk liquid, and KiHNO2 is a kinetic parameter that represents 
FNA inhibition, in mol/L. FNA inhibition of denitrification then leads to 

Fig. 2. Overview of the methodology employed in this study.  
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the accumulation of N2O. KiHNO2 signifies a threshold concentration, 
where if the bulk concentration is above this threshold, heterotrophic 
denitrification is inhibited due to FNA. To provide an example, if KiHNO2 

is reduced, this leads to lower FNA bulk concentrations causing inhibi-
tory conditions. Following Eq. (8), SWOHO,FNA becoming larger and 
therefore, a larger fraction of NO−

3 or NO−
2 is converted to an end product 

of N2O, instead of its reduction to N2. 

2.2.2. Gas–liquid mass transfer of dissolved N2O concentration 
The Aeration and Gas Transfer Model implemented in BioWin was 

used for the interphase transfer of N2O, from the liquid to the gaseous 
phase. The mass transfer model is based on the fundamental theory of 
surface renewal and is formulated as a mass balance. Furthermore, the 
BioWin mass transfer model adopts certain assumptions in its imple-
mentation — (i) the gas and liquid phases are completely mixed with 
uniform concentrations; and (ii) the gas holdup is considered constant. 
In applying the mass balance, the saturation concentration and overall 
mass transfer coefficient of each specie undergoing the gas transfer, 
including N2O, is determined. The saturation concentration is calculated 
using Henry’s Law expression which is implemented with a temperature 
dependency to account for local environmental conditions. 

2.3. ASDM-N2O emissions model calibration methodology 

Initially, the process configuration of the treatment process of the 
full-scale WWTP Amsterdam West (the Netherlands) was mimicked in 
BioWin by using the physical dimensions of the process units. Using the 
data from the sampling campaign, a list of the wastewater characteris-
tics specific to the full-scale WWTP’s wastewater were mapped into the 
BioWin ASDM inputs. In addition, long-term laboratory and online 
sensor data were prepared to be used in the biokinetic model, as detailed 
in Section 3.2. Data quality control was performed on the datasets. The 
data was filtered to identify any extreme anomalous/unfeasible values, 
which were then removed. Gaps in the dataset were filled using a 
combination of interpolation and by calculating the concentration of the 
missing days, using the previously available day’s mass values and the 
influent flowrate value available from the online sensor of the specific 
missing day. For the operating and environmental conditions, available 
online sensor data for key process parameters were used. The datasets 
were resampled to daily values for its input into the model. During the 
calibration procedure, the model fit was evaluated by comparing visu-
ally predictions with observed data. More specifically, the assessment 
involved visual inspection of time series plots of laboratory measure-
ments of effluent quality (Table 5) and online N2O emissions data. This 
was conducted to determine the model’s capability to accurately capture 
trends and magnitude of the corresponding variables being predicted. 

Necessary adjustments to calibrated kinetic parameter values were 
made manually to increase the accuracy of predictions. Specifically, the 
calibration procedure unfolded in two distinct stages:  

• Model Calibration to Predict Effluent Quality: The model was firstly 
calibrated to field data representing typical influent wastewater 
characteristics (such as influent nitrogen load), operating conditions 
and system performance (such as DO and MLSS concentrations) of 
the WWTP. Following best practices, steady-state modelling was 
conducted where physical characteristics of processing units such as 
the removal efficiency of the primary and secondary settlers, were 
fine-tuned. This was followed by conducting dynamic simulations 
where the biokinetic model performance on biological nitrogen 
removal was assessed. These simulations were conducted using the 
default BioWin kinetic and stoichiometric parameters. A summary of 
these parameters can be found in Tables S1–2, in the Supporting 
Information (SI). Based on the effluent quality predictions assessed in 
visual plots, specific kinetic parameters were fine-tuned to match the 
observed effluent quality. Additionally, the sludge retention time 
(SRT), and hence the wasting of sludge, was controlled. The SRT was 
calculated by the model, based on the predicted mixed liquor sus-
pended solids (MLSS) concentrations which were very close to the 
observed values.  

• Model Calibration to Predict N2O Emissions: The above model was 
further calibrated with a goal to achieve accurate predictions of N2O 
emissions. Table 1 lists the summary of the N2O model specific ki-
netic parameters in BioWin (described in Section 2.2.2) along with 
their default values that were subject to calibration. As it is not 
known a priori which N2O production pathways are active during the 
seasonal peak, the calibration procedure was conducted on a trial- 
and-error basis, where the N2O specific kinetic parameters of each 
pathway, as provided in Table 1, were individually altered. The ki-
netic parameters were modified with a goal of triggering the pro-
duction and emissions of N2O to match the seasonal peak. The 
predictions for all four seasons were compared with the available 
field data using visual plots to assess which N2O production pathway 
could provide accurate predictions. The range for alteration of the 
kinetic parameters was based on expert judgement and values 
available from limited previous investigations reported in literature. 
However, careful considerations were given to assess the feasibility 
of the values that would lead to a reasonable fit with the observed 
data. 

Fig. 3. Flowchart outlining the AOB growth processes while considering the N2O production pathways associated with AOB where SW represents the various 
switching functions implemented by BioWin as described in Eq. (2) and (3). 
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3. Case study 

3.1. Description of WWTP 

As mentioned earlier, the case study for this modelling investigation 
is the Amsterdam West WWTP which has a capacity of 1.1 million 
population equivalent (168 MLD) (Fig. 4). The raw influent wastewater 
is initially fed into a grit chamber which is followed by primary settlers. 
The settled wastewater is distributed to seven treatment lanes to conduct 
the activated sludge (AS) process for biological nitrogen and phospho-
rous removal. Due to the availability of the N2O data in a single lane 
only, this modelling study was restricted to 1 treatment lane as depicted 
in Fig. 5. The process configuration applied for the AS is the modified 
University of Cape Town (mUCT) process. The treatment lane is 
equipped with a bioreactor, having an anaerobic-anoxic-facultative- 
aerobic tank in series. The aeration control is executed by establishing 
the DO setpoint through a table that includes minimum and maximum 
NH4

+ concentration setpoints. The DO setpoint rate changes have been 
defined by the operators of the WWTP. Based on within which NH4

+

setpoint range the actual NH4
+ concentrations in the aerobic tank falls 

within, the DO setpoint is adjusted automatically in (near) real-time. 
The facultative tank serves the role of a swing tank and is used to in-
crease the denitrification or nitrification potential, based on the treat-
ment requirement. The biologically treated wastewater is then fed into 
secondary settlers, with decanters being present per treatment lane. 
Amsterdam West WWTP also possesses an extensive sludge treatment 
works that was not considered in the modelling and is beyond the scope 
of this study. However, the flowrate and quality characteristics of the 
reject water comprised of filtrates from the primary and secondary 
sludge thickeners and filtrate from the digested sludge thickener after 
the anaerobic digestor are included in the model (labelled as return 

streams in Fig. 5). This stream can influence the N2O emissions due to its 
relatively high load of N. 

3.2. Data 

3.2.1. Sampling campaign for wastewater characterisation 
The comprehensive sampling campaign in Amsterdam West WWTP 

was conducted between 11.07.2021–18.07.2021, inclusive. Flow pro-
portional daily composite samples for the raw influent and effluent 
wastewater were collected using an autosampler. The duration of eight 
days was deemed sufficient to give multiple data points and provide 
redundancy of measurements. Furthermore no drastic changes, such as 
special discharges of wastewater from industries, occurred during the 
duration of the dataset used for calibration. Therefore, it is expected that 
the composition and fractions of the wastewater will remain relatively 
constant (Chen et al., 2023). The following variables were analysed — 
total chemical oxygen demand (COD), filtered COD, total biological 
oxygen demand (BOD), filtered BOD, total Kjeldahl nitrogen (TKN), 
NH4

+, NO3
− , total phosphorous (TP), ortho phosphate (Ortho-PO4

3− ), total 
suspended solids (TSS), inorganic suspended solids (ISS) and volatile 
suspended solids (VSS). All water quality parameter analyses were 
conducted according to international and Dutch standard methods and 
protocols, as summarised in Table S3. This data was used to calculate the 
wastewater fractions relevant to Amsterdam West WWTP’s influent 
wastewater. In Fig. S1, the values entered in the Influent Specifier func-
tionality of the BioWin software, are depicted, which provided the 
characterisation of the domestic wastewater. The resulting list of the 
wastewater fractions as compared to BioWin’s default values can be 
found in Table S4. Based on the acceptable values obtained, the ASDM 
model in BioWin was successfully set up to conduct both steady state and 
dynamic simulations using historical data of the influent and the 

Table 1 
N2O model specific kinetic parameters and their associated N2O production pathways.  

Kinetic parameter Abbreviation Unit BioWin default value N2O production pathway 

By-product NH4
+ logistic slope SWAOB,ByProd – 50 Nitrification by-product 

By-product NH4
+ inflection point SNH+

4 ,MaxByProd mg N/L 1.4 Nitrification by-product 
Denitrification DO inhibition parameter KO2 ,Denite mg O2/L 0.1 Nitrifier denitrification 
Denitrification HNO2 half-saturation KHNO2 ,Denite g N/L 5.00 × 10− 6 Nitrifier denitrification 
Free nitrous acid inhibition concentration KiHNO2 mol N/L 1.00 × 10− 7 Heterotrophic denitrification  

Fig. 4. Amsterdam West WWTP (Source: Waternet).  

S. Seshan et al.                                                                                                                                                                                                                                  



Science of the Total Environment 917 (2024) 170370

6

operational conditions at the Amsterdam West WWTP. 

3.2.2. Treatment process data 
Historical laboratory measurements and online sensor data 

amounting to one year for the period 11/2020–10/2021 was used for 
model calibrations. Laboratory data on the influent and effluent quality, 
measured on the total volume of water entering and exiting the plant, 
respectively, and quality data on the sludge reject water streams were 
used. The following parameters were measured — COD, BOD, TKN, total 
nitrogen (TN), TP and TSS. The laboratory measurements are based on 
flow proportional composite samples collected every 3 days by an 
autosampler. In Table 2 and Table 3, statistics on the raw influent 
wastewater and treated effluent can be found, respectively. In the 
investigated treatment lane, installed online sensors, providing high 
resolution 1 min data on key process parameters was accessed. For the 
same 1-year period, the influent flowrate, MLSS in the bioreactor, 
recirculation flowrates, temperature of the mixed liquor, DO concen-
tration in the aerobic tank and facultative tank, return activated sludge 
(RAS) flowrate, waste activated sludge (WAS) flowrate and the sludge 
reject water streams flowrate were utilised as input to the biokinetic 
model. The measured data for the influent COD and TKN, aerobic tank 
DO and MLSS concentrations, and mixed liquor temperature are pro-
vided in Fig. S2. 

3.2.3. N2O emissions data 
The bioreactor units of Amsterdam West WWTP are covered, 

allowing for the capture of the off-gas emissions from the bioreactor and 
the direct measurements of N2O concentrations in the gaseous phase 
from the captured off-gas. Off-gas samples were fed into a non-dispersive 
infrared gas analyser (X-stream, Emerson, St. Louis, MO, US), which 
provided measurements every 15 min as a volume fraction (ppmv). 
These measurements were further processed using off-gases flow mea-
surements to calculate the mass of N2O emitted from the sampled 
treatment lane. Further information can be found in Section S.3. By 

exploring the N2O data for one year, covering all four seasons, a 
distinctive seasonal peak was found to be occurring during the spring 
months, as shown in Fig. 6. It was seen that during the months of March 
and April, 54 % of the yearly emitted mass of 6247 kg of N2O was 
emitted from the WWTP. In contrast, low N2O emissions were seen 
during the winter and summer seasons. The distinctive peak and the 
seasonal variations in the N2O emissions measured in Amsterdam West 
WWTP were in line with what was observed in other long-term moni-
toring campaigns (Gruber et al., 2021a). 

4. Results 

4.1. Model calibration results for effluent quality 

Dynamic simulations were performed using the plant operating data 
while maintaining the default kinetic parameter values, listed in 
Table S1. The SRT was controlled to 14 days, providing an accurate 
MLSS prediction in the various bioreactor compartments. However, 
initial simulations suggested a poor fit for NO2

− effluent concentration, 
which was caused by nitrite oxidising bacteria (NOB) biomass, predic-
tively being washed out. Therefore, certain NOB related kinetic pa-
rameters were adjusted to better fit the observed data, as shown in 
Table 4. 

Conventionally, the DO half saturation constant of AOB (KO,AOB) is 
considered lower than KO,NOB, suggesting that AOB have a higher af-
finity for oxygen than NOB. In BioWin, the default value for KO,AOB is 
0.25 mg O2/L. However, certain experimental and modelling studies 
have reported KO,AOB to be higher than KO,NOB (Daebel et al., 2007; 
Manser et al., 2005; Regmi et al., 2014), corroborating the adjustments 
necessary during the calibration process of this model. The switch in the 
DO half saturations between AOB and NOB (i.e., KO,AOB > KO,NOB) was 

Fig. 5. Amsterdam West WWTP process configuration of 1 treatment lane.  

Table 2 
Statistics on Amsterdam West WWTP’s raw influent wastewater.  

Parameter Unit Average Yearly Value Median Yearly Value 

Flowrate (1 treatment lane) m3/h  989  885 
COD mg COD/L  543  550 
BOD mg BOD/L  247  250 
TKN mg N/L  55  58 
TP mg P/L  7  7 
TSS mg/L  311  300  

Table 3 
Statistics on the treated effluent quality from Amsterdam West WWTP.  

Parameter Unit Average yearly value Median yearly value 

COD mg COD/L  37.0  37.0 
BOD mg BOD/L  2.8  3.0 
TKN mg N/L  3.4  3.0 
NH4

+ mg N/L  1.5  1.0 
NOx mg N/L  4.2  4.2 
TN mg N/L  7.6  7.3 
PO4

3− mg P/L  0.4  0.2 
TP mg P/L  0.7  0.5 
TSS mg/L  6.3  6.0  
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particularly found when measurements were made in the floc (Picior-
eanu et al., 2016). A potential explanation for this switch is due to NOB 
having a lower oxygen yield and smaller average colony sizes, when 
compared with AOB (Picioreanu et al., 2016). In Table 5, the yearly 
averaged results and standard deviations from the dynamic simulations 
on the effluent quality and MLSS in the aerobic tank are provided and 
compared with the observed values. The model predictions for COD, TN, 
TSS and MLSS as compared with observed values can be found in Fig. S3. 
The dynamic simulations provided satisfactory predictions of the 
effluent quality values, confirming that the model was successfully 

calibrated to dynamic conditions. Accordingly, the next stage of cali-
bration to predict the N2O emissions was started. 

4.2. Model calibration results for N2O emissions 

4.2.1. Inactivity of nitrification by-product pathway 
Fig. S4, shows the emissions prediction results for several cases. The 

black line corresponds to the baseline predictions made, using the 
default N2O kinetic parameter values listed in Table 1. Results showed 
that the model is unresponsive to the seasonal peak observed during the 
spring months leading to the necessity of adjusting the kinetic param-
eters associated with the N2O production pathways. Initially, adjust-
ments were made to the kinetic parameters related to the nitrification 
by-product pathway. The by-product NH4

+ logistic slope (SWAOB,ByProd) 
was changed from its default value of 50 to a range of 25–75. This 
resulted in minimal effects on the predictions. The second kinetic 
parameter in this pathway, by-product NH4

+ inflection point 
(SNH+

4 ,MaxByProd), was then adjusted. Based on the definition of the 
parameter within the pathway’s kinetic expression, the reduction of this 
parameter was likely to predict more N2O. In Fig. S4, the model pre-
dictions with adjusting SNH+

4 ,MaxByProd to 0.7 mg N/L are shown, depicted 
as the orange line. Despite a considerable adjustment of this kinetic 
parameter (from 1.4 to 0.7 mg/L), there was little effect on the predic-
tion accuracy. 

4.2.2. Seasonal peak predictions due to multiple production pathways 
In the nitrifier denitrification pathway, two kinetic parameters are 

present in the model to allow for N2O production; first being the deni-
trification DO inhibition parameter (KO2 ,Denite) and second, the denitri-
fication HNO2 half-saturation constant (KHNO2 ,Denite). Initially, the 
KO2 ,Denite was increased to ensure that a higher fraction of NH4

+ oxidised 
by the AOB was denitrified and therefore, produced more N2O. In 
Fig. S4, the green line shows the results obtained by adjusting the 
parameter to 0.7 mg O2/L, which is a 7-fold increase compared to the 
default value of 0.1 mg O2/L. This adjustment resulted in a moderate fit 
for the summer and fall seasons, when compared to the simulation 

Fig. 6. Seasonal variations of N2O emissions (kg/d) from 1 treatment lane in Amsterdam West WWTP. A significant seasonal peak between the months 03-2021 and 
05-2021 is prevalent. 

Table 4 
NOB kinetic parameters adjusted to increase fit with observed NO2

− effluent 
concentrations.  

Kinetic parameter BioWin default 
value 

Calibrated 
Value 

NO2
− substrate half-saturation constant 

(mg N/L)  
0.10  0.05 

DO half saturation constant – KO,NOB (mg 
O2/L)  

0.50  0.12 

Arrhenius value for maximum specific 
growth rate  

1.06  1.04  

Table 5 
Effluent quality and aerobic MLSS results from the steady state simulations for 
Amsterdam West WWTP.  

Variable Yearly averaged observed 
values 
(±standard deviation) 

Yearly averaged model 
predictions 
(±standard deviation) 

COD-T (mg/L) 37.0 ± 4.96 30.7 ± 4.61 
TN (mg N/L) 7.6 ± 2.40 8.7 ± 2.78 
TKN (mg N/L) 3.4 ± 1.50 4.0 ± 1.52 
NOx (mg N/L) 4.3 ± 1.78 4.7 ± 2.25 
NH4

+ (mg N/L) 1.5 ± 1.39 2.2 ± 1.46 
TSS (mg/L) 6.3 ± 2.59 4.6 ± 0.83 
Aerobic tank MLSS 

(mg/L) 
4164 ± 347.98 4388 ± 385.71  
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performed with default kinetic parameter values (Fig. S4). However, like 
the kinetic parameters of the nitrification by-product pathway, the 
change yielded no response with respect to the observed seasonal peak. 

Subsequently, the kinetic parameter KHNO2 ,Denite, was adjusted, and 
the model’s predictions were assessed for all seasons. The KHNO2 ,Denite 

was reduced from 50.00 × 10− 7 g N/L to 6.00 × 10− 7 g N/L, based on 
the ASMG1 model developed by Guo and Vanrolleghem (2013), that 
includes a modified version of the AOB denitrification model developed 
by Mampaey et al. (2013). As depicted in Fig. 7, this modification led to 
a satisfactory fit for the winter, summer and fall seasons. However, the 
change was insufficient to adequately predict the seasonal peak, 
observed in spring. Therefore, the KHNO2 ,Denite was further decreased to a 
value of 2.25 × 10− 8 g N/L, which is an ~96 % decrease to the 
parameter value proposed by Guo and Vanrolleghem (2013). This 
further modification led to an increase in N2O production although not 
fully reflecting the observed seasonal peak. 

A further decrease of this parameter is non-justifiable based on the 
uncertainty classification reported in the study conducted by Boiocchi 
et al. (2017). The authors ranked all kinetic parameters related to the 
AOB denitrification, including KHNO2 ,Denite, to CLASS 4 which is defined 
as 100 % uncertainty, suggesting that the modelling of such processes is 
still subject to very high uncertainties. This was attributed to the fact 
that the AOB denitrification kinetic parameters are related to newly 
identified processes that have been recently introduced to biokinetic 
models. Therefore, for the prediction of the seasonal peak, the third 
pathway of incomplete heterotrophic denitrification pathway was 
considered. 

In the model, the production of N2O emissions due to an incomplete 
heterotrophic denitrification pathway is influenced by the HNO2 (FNA) 

inhibition concentration (KiHNO2 ). This parameter prevents the conver-
sion of NO3

− and NO2
− to N2, hence leading to the accumulation of N2O. 

To facilitate the production of more N2O from the model during the 
seasonal peak and to achieve a better fit with the observed values, this 
parameter was adjusted by lowering the inhibition concentration to a 
value of 5.50 × 10− 9 mol/L. In Fig. 7, the prediction of the seasonal peak 
due to the modification of the KHNO2 ,Denite from the nitrifier denitrifica-
tion pathways as well as the KiHNO2 is shown in the dark grey region. The 
combination of these adjustments provided a reasonable prediction for 
the seasonal peak. However, the modification of the KiHNO2 to the value 
of 5.50 × 10− 9 mol/L, while providing a better fit for the seasonal peak, 
lacks scientific justification. Similar to the adjustment of the KHNO2 ,Denite, 
the KiHNO2 was reduced by ~94 %, when compared to the BioWin 
default FNA inhibition concentration value (Table 6). A further reduc-
tion in this parameter is questionable and unjustified without appro-
priate scientific evidence. This signifies that the current biokinetic 
model has limitations in accurately predicting the N2O seasonal peak. 

5. Discussion 

5.1. Insights on active production pathways during seasonal variations 

The calibration of the biokinetic model by modifying certain kinetic 
parameters indicated which of the proposed N2O production pathways 
prevailed in the full-scale WWTP. In Table 6, a summary of the kinetic 
parameter modifications is given, compared with the default values. 
During the winter, summer and fall seasons, a modification of the 
KHNO2 ,Denite parameter resulted in a better fit with the observed N2O 
emissions. This suggests that in the current biokinetic model approach, 

Fig. 7. Predicting the seasonal variations of N2O emissions with adjustments made to the AOB denitrification HNO2 half-saturation constant (KHNO2 ,Denite) and the 
HNO2 concentration (KiHNO2 ) leading to the inhibition of the heterotrophic denitrification. The blue dots represent the observed N2O emissions and the orange line 
the predictions from the biokinetic model. In the light grey region (winter, summer and fall seasons having low N2O emissions), the KHNO2 ,Denitewas adjusted to 6.00 
× 10− 7 g N/L and in the dark grey region (spring season, presence of seasonal peak), KHNO2 ,Denite was modified to 2.25 × 10− 8 g N/L and KiHNO2 to 5.50 × 10− 9 mol/L. 

Table 6 
Summary of N2O specific kinetic parameters modified in model calibration to predict the seasonal variations of the N2O emissions from the full-scale Amsterdam West 
WWTP.  

Kinetic parameter BioWin default value Modified value N2O production pathway 

Denitrification HNO2 half-saturation (KHNO2 ,Denite) 5.00 × 10− 6 g N/L Seasonal peak: 2.25 × 10− 8 g N/L 
Other seasons: 6.00 × 10− 7 g N/L 

Nitrifier denitrification 

Free nitrous acid inhibition concentration (KiHNO2 ) 1.00 × 10− 7 mol N/L Seasonal peak: 5.50 × 10− 9 mol N/L Heterotrophic denitrification  
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the nitrifier denitrification pathway was prominent during the seasons 
when low N2O emissions were observed. Furthermore, the required 
additional modification of the parameter during the seasonal peak also 
suggested an increased activation of the nitrifier denitrification pathway 
during spring, thereby contributing to significant N2O emissions. The 
dominance of the nitrifier denitrification pathway corroborates the 
outcomes reported in earlier investigations (Ni et al., 2013b, 2015). In 
both cases of low and high N2O emissions during the various seasons, a 
reduction in the KHNO2 ,Denite parameter was needed. This suggests that a 
greater fraction of the AOB biomass switches to the denitrifying electron 
transport chain at lower FNA concentrations than previously perceived. 
This could be attributed to certain operating conditions such as subop-
timal DO concentrations. Alternatively, the AOB might attempt to 
remove the toxicant FNA itself. Consequently, a greater fraction of the 
ammonia oxidised by AOB is denitrified at relatively low FNA concen-
tration thresholds, resulting in incomplete nitrification and higher N2O 
production. 

However, the isolated modifications to the KHNO2 ,Denite kinetic 
parameter of the nitrifier denitrification pathway was insufficient to fit 
the seasonal peak. Therefore, in the current biokinetic model approach, 
the additional modification to the FNA inhibition concentration, KiHNO2 , 
suggested the prominence of the incomplete heterotrophic denitrifica-
tion pathway, that causes further production of N2O. This suggested that 
the OHOs were required to be more sensitive to FNA and inhibition of 
the denitrification process is occurring at lower FNA concentrations than 
previously expected (as set in the default value of the KiHNO2 kinetic 
parameter). 

The modelling of this WWTP case study highlights the increased 
presence of FNA as a driving factor in the activation of both prominent 
pathways, particularly during the seasonal peak. Unfortunately, data on 
the FNA and NO2

− concentrations in the mixed liquor of the bioreactor 
was not available to confirm such a conclusion. However, the avail-
ability of NO2

− data of the total treated effluent from the WWTP, as 
shown in Fig. 8, provided certain inferences for corroboration. Fig. 8 
depicts a clear increase in the NO2

− concentration in the treated effluent 
during the N2O seasonal peak. This suggested an accumulation of the 
NO2

− concentration potentially occurring in the bioreactor, which could 
lead to an accumulation of FNA, based on the pH conditions of the mixed 
liquor. 

It could be hypothesised that during the seasonal peak, AOB deni-
trification occurs due to increased FNA concentrations and the high 
sensitivity to FNA. Additionally, the increased FNA concentrations 
resulted in increased inhibition of the last step of heterotrophic deni-
trification, which in turn can lead to further increase in N2O production. 
While, there is limited understanding as to the causes of the increased 
NO2

− or FNA concentrations prior to the seasonal peak, certain hypoth-
eses have been made, such as the disappearance of the NOB population 
during the peak and its re-establishment, being associated with a pop-
ulation shift (Gruber et al., 2021b). The washout of the NOB population 
could explain the accumulation of NO2

− , however for a more solid sup-
port of this hypothesis, increased data collection is required on FNA 
concentrations and microbial population dynamics during a seasonal 
peak. 

5.2. Limitations of ASDM-N2O biokinetic model 

Results from model calibration indicated various limitations in the 
current biokinetic model. For instance, the model predictions were 
inaccurate and unresponsive to varying operating and environmental 
conditions when using the default values of the N2O model specific ki-
netic parameters (Fig. S4). Such a result might be attributed to the fact 
that the default values available in BioWin were calibrated on datasets 
obtained from bench-scale studies conducted under controlled envi-
ronments with summer-like conditions, without the occurrence of an 
identified peak (Houweling et al., 2011; Shiskowski, 2004). However, 
the increased use of data in our current research was insufficient to 
acquire accurate predictions of the N2O emissions covering all seasons. 

The role of FNA requires better understanding with respect to its 
effect on nitrification and denitrification processes and subsequent N2O 
production. Furthermore, there is not yet a consensus on what the 
boundary values of the FNA inhibition concentration (KiHNO2 ) parameter 
should be, when considering the seasonal variations. Limited in-
vestigations on the inhibition of heterotrophic denitrification due to 
FNA and related N2O production, have been conducted (Miao et al., 
2018; Zhou et al., 2008, 2011). Previous studies have indicated that FNA 
likely inhibits N2O reduction more than NO2

− (Zhou et al. 2008). The 
results of this modelling study and limited previous research indicated 
that FNA could be a main triggering factor in N2O production. This 

Fig. 8. N2O emissions from the bioreactor of treatment lane 2 (blue line) and NO2
− concentration of the overall treated effluent (maroon crosses). During the seasonal 

peak of N2O, an increase in effluent NO2
− concentration is visible. 
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hypothesis requires in-depth data collection and analysis which in-turn 
can feed further development and refinement of biokinetic models for 
N2O production and emissions. 

The current model setup regarding N2O production kinetics is 
inflexible to long-term seasonal variations and could be missing key 
biochemical processes that govern the seasonal variations, such as 
population dynamics or the presence of other key intermediate com-
pounds as model parameters. Furthermore, the changes to the kinetic 
parameters specific for the seasonal peak resulted in a bad fit for the 
other seasons. However, the seasonal peak is a prominent phenomenon 
in many WWTPs, and therefore the modelling of N2O emissions must be 
capable of capturing such dynamics. Furthermore, current biokinetic 
model implementations group the microorganisms, and do not account 
for sub-populations of a given bacterial community (such as Nitro-
somonas, Nitrosospira, Nitrosococcus and Nitrosolobus), which could be a 
limiting factor. Overall, for the biokinetic model to be improved, more 
understanding on the causes of the N2O seasonal peak is warranted. 

6. Conclusion 

In this study, a biokinetic model based on BioWin’s ASDM coupled 
with an N2O model was setup and calibrated for a treatment lane of a 
full-scale WWTP in Amsterdam. The model was calibrated using a full 
year of continuous N2O emissions data available in the gaseous phase. 
Based on the results obtained, the key findings are as follows: 

• Despite utilising long-term full-scale observed data the current bio-
kinetic model yielded unsatisfactory predictions during the seasonal 
peak of N2O emissions. The unsuitability of the default kinetic 
parameter values provided in the BioWin software became evident 
during calibration;  

• The modelling analysis suggests that for the case of Amsterdam West 
WWTP, the nitrification by-product production pathway did not 
contribute to predicting the N2O emissions. This was despite all the 
changes made to the pathway specific kinetic parameters during the 
calibration process. Opposite to this, the nitrifier denitrification 
pathway was dominant and active, as evidenced in the acceptable 
model fit achieved during the winter, summer and autumn (i.e. non- 
emission peak) seasons; 

• It was found that the nitrifier denitrification pathway was not unilat-
erally active during high emissions period, as evidenced in the sub-
optimal fit obtained for the spring seasonal peak of N2O emissions. 
Incomplete heterotrophic denitrification emerged as a significant 
contributor during this period, as evidenced in a better fit achieved 
for the seasonal peak when additional modifications were made to 
the FNA inhibition concentration kinetic parameter (reducing it from 
1.00 × 10− 7 mol N/L to 5.50 × 10− 9 mol N/L); and  

• In the current biokinetic model setup the FNA bulk concentration in 
the mixed liquor influenced the production of N2O. In this case study, 
results indicated that the AOB switched to the denitrifying electron 
chain at lower FNA concentration than initially perceived, to remove 
the toxic substance, leading to increased N2O emissions. Similarly, 
increased FNA concentrations during the seasonal peak, as hypoth-
esised given observed increased effluent NO2

− concentrations, led to 
the inhibition of heterotrophic denitrification process causing N2O 
production;  

• The highlighted limitations of the current biokinetic model are likely 
stemming from gaps in the understanding and representation of 
relevant biochemical processes such as the influence of FNA and 
threshold bulk concentration that leads to the triggering of the N2O 
production pathways, and the relation of such processes to temper-
ature and seasonal dependencies. 

7. Recommendations 

Given the current limitations that biokinetic modelling of N2O 

emissions face, we propose that future work should focus on gaining an 
improved understanding on the causes of the N2O seasonal peak. 
Experimental investigations and multi-disciplinary research should be 
conducted to identify, a feasible range of values for the FNA half- 
saturation constant and the FNA inhibition concentration, particularly 
during the N2O seasonal peak. The identified values of these kinetic 
parameters will provide an improved understanding on how the increase 
in FNA concentration results in increased AOB denitrification as well as 
increased inhibition of the denitrification process. This can be of valu-
able input to further biokinetic modelling calibration studies that can 
lead to more accurate predictions of the N2O emissions. 

Furthermore, the current biokinetic models are potentially missing 
key N2O production pathways and relevant biokinetic parameters. 
Moreover, the results of this study suggest that using one year of data 
was not sufficient to increase the prediction accuracy, even though it 
was a distinct increase in data duration as compared to previous in-
vestigations. As a result, it is recommended that multi-year data for good 
calibration of biokinetic models should be considered. This is also of 
importance as the seasonal N2O emissions peak can shift in time (such as 
from spring to winter). Alternatively, the use of new technologies such 
as Artificial Intelligence (AI) modelling could be considered when large 
amounts of data is available. Preliminary investigations of the use of 
data-driven modelling have shown promising results for the prediction 
of N2O (Hwangbo et al., 2021; Vasilaki et al., 2020). However, while 
data-driven models could lead to better N2O emissions predictions, the 
aforementioned fundamental research will improve our understanding 
and knowledge of the processes behind the emissions, which is crucial 
for mitigation strategies. 
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