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Abstract: Water quality monitoring programs yield a wealth of data. It is often unclear why a certain
substance occurs in higher concentrations at a certain location or time. In this study, substances were
considered in clusters with co-varying concentrations rather than in isolation. A total of 196 substance
clusters at 19 monitoring sites in the rivers Rhine and Meuse were identified. A total of nine clusters
were found repeatedly with a similar composition at different monitoring sites. Several environmental
conditions and substance properties could be linked to clusters. In addition, overlap with reference
substance lists was determined. These lists group multiple substances according to emission sources,
substance types, or type of use. The reference substance lists revealed that Rhine and Meuse are
similarly affected. The nine ‘repeating clusters’ were analyzed in more detail to identify drivers. For
instance, a repeating cluster with herbicides was specifically linked to high temperatures and a high
number of hours in the sun per day, e.g., summer conditions. A cluster containing polychlorinated
biphenyls, identified as persistent and with a high tendency to bind organic matter, was linked
to high river discharge and attributed to a potential release from sediment resuspension. Not all
substances could be clustered, because their concentration did not structurally vary in the same way
as other substances. The presented explorative cluster analyses, along with the obtained relations with
substance properties, local environmental conditions, and reference substance lists, may facilitate the
reconstruction of the processes that lead to the observed variation in concentrations. This knowledge
can subsequently be used by water managers to improve water quality.

Keywords: pollution; clustering; surface water; water quality; chemicals

1. Introduction

Compliance with water quality regulations requires extensive monitoring, which
results in large datasets. Since the list of monitored substances is constantly growing and
the sensitivity of analytical methods improves, the size of monitoring datasets consistently
increases. The use of these datasets is generally limited to the comparison of data on
individual substances or classes of substances with water quality criteria. Less effort is
dedicated to structurally mining data in order to retrieve patterns that can reveal underlying
trends or even mechanisms that are not immediately evident in the data.

For instance, data analysis approaches that detect specific signatures, associations,
and co-occurrence of substances can be used to investigate patterns and relationships
between substances in such datasets [1]. These approaches are particularly relevant for
environmental forensics investigations. Such data analysis approaches are most often
applied on specific case studies, e.g., specific groups of substances in a specific location.
For instance, Ref. [2] combined multivariate statistics to investigate pollution sources in
an estuarine area characterized by a complex contamination profile. Cluster analysis
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(CA)—an unsupervised pattern recognition method—has been used in combination with
Principal Component Analysis (PCA) to investigate the source apportionment of polycyclic
aromatic hydrocarbon (PAH) in sediment [3]. Other data analysis tools applied to the
environmental monitoring of data for the investigation of contaminant behaviours include
principal component regression (PCR) [4], Bayesian modeling [5] and artificial neural
network (ANN)-based regression [6,7].

Another approach to analyze and characterize monitoring data is to make a link
with indicator substances established based on prior knowledge [8-10]. Most organic
micropollutants do not naturally occur in the environment and have virtually no natural
background concentrations. As a consequence, these substances are indicators of anthro-
pogenic pollution. The occurrence of one or multiple substances, with respect to their
background concentrations, spatial, and temporal distribution, can be used to reconstruct
contamination events. Currently this is applied mostly (with some exceptions) to find
indications of wastewater influences. Sudden increases in caffeine, ibuprofen, and parac-
etamol can be used as indicators for contamination from untreated wastewater because
of their usually high removal efficiency during wastewater treatment [10]. In contrast,
the presence of substances that are generally poorly removed by wastewater treatments,
such as carbamazepine, may indicate contamination from treated as well as untreated
wastewater [11]. Iodinated X-ray contrast media, such as amidotrizoic acid, iothalamic
acid, iomeprol and iopamidol, were linked to wastewater from hospitals [12]. The con-
centration ratios of multiple pharmaceuticals can reveal more information both related to
the differences between populations using and emitting these pharmaceuticals and the
treatment efficiency of wastewater treatment plants [13]. Distinct substances can be used
as indicators for different types of agriculture [9]. Some substances such as pesticides,
personal care products (e.g., UV blockers), and pharmaceuticals (e.g., seasonal allergic
reactions and infections) can be used to identify seasonal variation [14—-17]. Tolyltriazole
and hexamethoxymethylmelamine were suggested as suitable indicators of runoff water
from roads [18].

Knowing that the occurrence of particular substances can be indicative of origin, mon-
itoring data can be compared to the presence of these substances and can be consequently
characterized [9]. However, even more extra information can be added to the monitoring
data [1,19]. The approach of adding information to data to help an interpretation is typically
taken in the domain of genomics. Here, data is often ‘enriched” with additional informa-
tion [20,21] to help explain and interpret the expression of such molecular responses. For
chemical monitoring data, similar techniques can be used [1].

In this study, we apply an exploratory large-scale clustering analysis on available
substance concentrations in historical monitoring data in the Netherlands at ten locations
in the river Rhine and nine locations in the river Meuse. We selected these rivers because
a large dataset exists, of which data have been collected over a period of 5 years. We
aim to identify groups of substances with similar concentration patterns. As a second
step, we add information to these clusters. We compare the substances in these observed
clusters as a group to a large collection of ‘reference lists” of substances that was collected
for this purpose. The reference lists consist of substances that are known to share emission
sources (such substances associated to a specific industry or agriculture type), emission
causes (such as use as an insecticide or a drug waste constituent) or coming from the
same substance group (such as bisphenols, or solvents). In addition, we statistically relate
the concentrations of substances in observed clusters to environmental conditions (such
as temperature and river discharge), and to substance properties (such as solubility and
half-life). With these analyses, we aim to explain and interpret the observed dynamics in
concentrations of substances and aid in the identification of processes, sources, or causes.
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2. Methods
2.1. Environmental Monitoring Data

Concentration (ng/L) measurement data of over 1000 substances labeled by date and
collected between 2017 and 2021 (Table 1) at monitoring locations along the Rhine and Meuse
(Table 2) were used for the exploratory data analysis. Cleaned and collated data were provided
as per request by RIWA-Rhine and RIWA-Meuse. The dataset was reshaped from a long to a
wide format with sampling date—location combinations as rows and substances in columns.
For the analyses the dataset was split into smaller datasets, per location.

Table 1. Data used for exploratory data analyses in this study (for processing steps, see Figure 1).

Rhine Meuse
Temporal spread 2551 unique sampling dates over 5 years 2323 unique sampling dates over 5 years
Spatial spread 10 locations 9 locations
Processed, weekly aggregated 1128 weekly samples over 10 locations, 2315 weekly samples over 9 locations,
data (step 2, Figure 1) 854 substances (with a CAS-number) 1008 substances (with a CAS-number)

Table 2. Overview of clusters per location after processing of data (see Figure 1) and assessing
significance. ‘Weekly samples’ refers to weekly aggregated measurement values (see step 2-6,

Figure 1).

L()chf;:n Location Name S‘: Iene;lgs Substances  Clusters i:lléslfsl:giss Clﬁ:f::g?ze River
AND Andijk 62 168 13 64 49 Rhine
LOB Lobith 52 193 18 100 5.6 Rhine
NGN Nieuwegein 63 201 22 102 4.6 Rhine
NSL Nieuwersluis 64 139 10 68 6.8 Rhine
BRI Brienenoord 62 121 8 52 6.5 Rhine
KAM Kampen 64 109 10 53 5.3 Rhine
KMW Ketelmeer-West 61 102 10 59 5.9 Rhine
MMM Markermeer-Midden 60 94 8 51 6.4 Rhine
VWZ Vrouwezand (IJsselmeer) 61 88 6 37 6.2 Rhine
HAV Stad aan ‘t Haringvliet 53 166 11 67 6.1 Rhine
BRA Brakel 53 164 16 75 47 Meuse
HEE Heel 52 163 18 76 4.2 Meuse
EYS Eijsden 60 111 6 48 8 Meuse
HEU Heusden 60 62 6 26 4.3 Meuse
NAM Nameche 64 40 3 20 6.7 Meuse
TAI Tailfer 49 39 4 21 5.3 Meuse
STV Stevensweert 62 114 10 75 75 Meuse
KEI Keizersveer 54 177 13 68 5.2 Meuse
LUI Luik 63 57 4 17 4.3 Meuse

Concentrations below the reporting limit (RL) of the applied analytical techniques
were replaced by zeros (step 1, Figure 1). Not all substances were monitored in all
sampling events at a particular date at a given location. As a result, the datasets were
populated by many ‘missing values’. To reduce the missing values, aggregation to
weekly measurement values was performed per location (step 2, Figure 1). The average
of the concentrations was taken in case a parameter was measured multiple times within
a week. This results in weekly samples that are labeled as a week—year combination (e.g.,
01-2017 up and until 52-2021).
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Per monitoring location:

Aggregate measurements to
average weekly values
(‘samples’)

Start: measurement values
per micropollutantlabeled
with dates

Set measurement values <
reporting limit to zero

Remove weekly samples /
micropollutants with missing
values

Remove micropollutants Calculate z-scores per
without values > zero micropollutant

Clustered data

Remove weekly samples with HCA (Euclidian distance,
overall high z-scores Ward linkeage)

Figure 1. Workflow for preprocessing of the data per location for hierarchical clustering analyses
(HCA), yielding substance clusters per location. A selection for ‘significant’ clusters follows after this
workflow (not shown).

2.2. Cluster Analysis

Cluster analysis is a collection of different methods that group observations (here:
concentrations of micropollutants) in clusters in such a way that the presence and concentra-
tion dynamics of micropollutants in the same cluster are more similar to each other than to
those from other clusters. Hierarchical clustering (also called hierarchical cluster analysis or
HCA) is a specific method of cluster analysis which builds a hierarchy of clusters. There is
no prior information on group membership needed for HCA. The values of the substances’
concentrations in the weekly samples are used to compute similarity.

Weekly samples contained ‘missing values” (meaning micropollutants were not ana-
lyzed in a sampling week). Missing values are not permitted in clustering, so we had to
remove missing values while maintaining as much data as possible. For this, an algorithm
was applied that automatically removed either the substance or the weekly sample with
a relatively high fraction of missing values (step 3, Figure 1). This was repeated until
the dataset no longer contained missing values. Locations that had <20 samples were
subsequently omitted from the analyses. Additionally, substances that were only found
at concentrations < RL were removed (step 4, Figure 1), as the absence of concentration
dynamics hampers clustering.

To avoid giving more weight in the HCA to substances with higher concentrations (e.g.,
the concentration range varies over 3 orders of magnitude between metals and organic
compounds), data were scaled using the Z-score (step 5, Figure 1). The Z-score is the
number of standard deviations that a given data point lies from the mean. For data points
that are below the mean, the Z-score is negative. The Z-score is calculated as:

where x is the concentration of a given substance, y it is the substances mean concentration,
and o is its standard deviation. Typically, Z-scores fall between —3 and 3.

Prior to clustering, weekly samples with exceptionally high Z-scores were excluded as
‘outliers” because such deviating samples can disrupt regular patterns in clusters (step 6,
Figure 1). This was conducted based on the visual inspection of dendrograms showing the
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hierarchical relationship between weekly samples. If a sample separated from the rest of
the samples in the top of the hierarchy in the dendrogram, it was considered an outlier.

The function ‘hclust()” in the statistical language ‘R’ was used to compute the hierar-
chical clusters (step 7, Figure 1). In this function, ‘Euclidean distance’ was used to estimate
the (dis)similarity of each pair of substances or samples in the HCA. “Ward” was used for
determining how the distances should be interpreted to form hierarchical clusters. The
Ward approach of clustering minimizes the within-cluster variance. This is in line with
approaches applied in functional genomics data (e.g., [20]). Both the observations per
micropollutant and the observations per weekly sample were clustered. Only the clusters
per micropollutant were further analyzed.

2.3. Assigning Cluster Significance

After the hierarchical clustering is computed, all substances are in a cluster at any
level in the clustering hierarchy (e.g., dendrogram). Not all clusters contain highly similar
(relative) concentrations. Therefore, a step is required to distinguish between clusters with
low and high similar relative concentrations. It is necessary to define what specific clusters
are relevant from all possible clusters. Rather than visually determining concise clusters, an
approach to objectively point out such clusters was used. This was achieved by checking
if, at a particular chosen level in the clustering hierarchy, clusters were larger than the
90 percentile in random expected cluster sizes at the given level. More details about the
method can be found in Appendix C.

2.4. Overlap of Clusters with Reference Lists

The composition of the clusters was compared to several ‘reference lists’ (Appendix A)
of substances. The reference lists were compiled using the literature data and (public)
lists of substances (Appendix A, Table Al). The reference lists are of a varying size and
specificity (from general ‘micropollutants in wastewater treatment’ to specific ‘veterinary
pharmaceuticals found in manure’).

A total of 232 separate lists were collected, including 1968 unique substances. Some of
these lists show a high degree of overlap. This complicates the interpretation. Therefore,
the lists were merged to avoid overlap. Two lists were merged if the sum of the percentage
overlap of the two lists exceeded 130%. For instance, if list A has a 40% overlap with list B,
and list B has 100% overlap with list A, together this sums up to 140% combined overlap.
All reference lists were checked for overlap against all other reference lists. The merge
resulted in a reduction to 164 separate reference substance lists. The overall similarity of
the new reference lists (expressed as the % remaining overlap of substances) is visualized
as a hierarchical clustering in Appendix A, Figure Al.

A hypergeometric test is used to quantify the significance of overlap between sub-
stances found in clusters and substances present in reference lists. This test is available
as the function ‘phyper’ in the statistical language ‘R’. This method tests for significant
overlap of two lists, resulting in a p-value for significance of the overlap (see Figure 2).
This test is frequently used in genomics research to link gene expression patterns to known
gene expression pathways [20] and is termed ‘enrichment analyses” in that domain. The
information that is required as input for this method is:

M, the total number of relevant substances (in all reference lists and monitoring data);
n, the substances in a reference substance list;

N, the number of substances in a cluster;

X, the number of substances in the overlap.
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All substances M (monitoring
data, reference lists)

Reference list
substances n

Cluster

substances N Significant?

Figure 2. Visualization of the hypergeometric test for significance of enrichment of ‘reference list’
substances of any reference list in a cluster.

The probability of drawing X substances out of N from a measurement containing n
reference substances out of all substances, M, can be computed with the phyper function in
R the following way: p-value = phyper (x — 1, M, n, N).

If the overlap between a given reference list and a given cluster is larger than what
is randomly expected, the p-value is low. The p-value is reported only if two or more
substances overlap between the cluster and the reference list.

2.5. Linking Clusters to Substance Properties

Clusters were also analyzed with respect to their link to the physicochemical properties
of the substances (e.g., solubility, Koc, Henry’s constant, etc.). Such properties of substances
were retrieved from (open source) models [22,23]. Inorganic substances were excluded
from this analysis, as their properties were not always suitable for the models used for
analysis. The retrieved properties of substances in each cluster were visualized with
boxplots. Property values of substances within a cluster were compared to the distribution
of the property value over all substances in all clusters, and the difference was tested with
a t-test. The p-values were corrected for multiple testing using a Benjamini—-Hochberg
correction for the false discovery rate. Clusters were visualized only if these contained
a minimum number of 4 organic substances. This number was chosen to avoid chance
differences while retaining sufficient clusters.

2.6. Linking Clusters to Environmental Conditions

Information on environmental conditions was also linked to the observed clusters.
These were river water conditions as reported in the RIWA datasets like oxygen, discharge,
pH, dissolved organic carbon (DOC), and temperature as well as weather conditions
that were downloaded from the Dutch Knowledge Institute for Weather, Climate, and
Seismology KNMI (precipitation, sunny hours per day, and evaporation potential). Each
monitoring location in Rhine and Meuse was linked to the closest weather station and
weather data were aggregated per week by taking the mean.

Relating environmental conditions to clusters requires a rather complex analysis.
First, normalization of the concentration values between locations was applied to account
for structurally higher or lower concentrations of a substance in locations within the
same river system. Then, per substance, it was identified which weekly samples had
relatively high (top ten percent) concentration values over all locations (for Rhine and
Meuse separately). For the identified weekly samples, the value of the environmental
condition in the corresponding week and weather station was administrated. Then, the
mean was taken of the administered environmental condition. This resulted in a single
value of the condition that is associated with high concentrations of a substance in the
cluster. In this way, per cluster, as many values were calculated as there were substances
in the cluster. In short, the environmental condition values in the clusters represent the
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conditions under which concentrations of substances in the clusters are high. Boxplots
visualize the substances” environmental condition values per cluster, for Meuse and
Rhine separately. It was tested for every cluster if the environmental condition values in
a cluster were different (p < 0.01) from the condition values over all weeks and weather
stations associated with clusters, with a t-test. The p-values were corrected for multiple
testing by a Benjamini—-Hochberg correction for the false discovery rate. Clusters were
visualized only if these values contained a minimum number of 4 (organic or inorganic)
substances to enable easy visual comparison with substance properties of clusters.

2.7. Identifying Significant Clusters That Are Recurring in Multiple Locations

Clusters are considered ‘recurring’ if they contain mostly the same substances in at
least three individual significant clusters between locations. This was evaluated by an

initial analysis of percentage overlap of the substances between clusters, and this was
doublechecked by hand.

3. Results
3.1. Clusters in Meuse and Rhine Locations

About ten significant clusters were found per location. An average significant cluster
contained six substances. An overview is presented in Table 2. All significant clusters and
the substances in them can be found in the data package associated with this paper. Some
substances never occurred in a significant cluster, such as acetaminophen (paracetamol,
painkiller) and trichloroacetic acid (among other uses, is a topical application against warts).
In contrast, other substances were (if reported) always a member of a significant cluster at
all locations, such as titanium (a metal) or indeno(1,2,3-cd)pyrene (a polycyclic aromatic
hydrocarbon (PAH)).

As an example, the results of the clustering analysis in location Nieuwegein (Rhine)
are shown in a heatmap (Figure 3). In this figure, the substances are in rows and the
weekly samples are columns. Colors in the heatmap indicate the Z-scores of the measured
concentrations per substance, from below the mean to above the mean concentration
in increasingly darker color. Dendrograms indicate the hierarchy of clusters for weekly
samples (at the top) and substances (at the left).

Some significant clusters of, in some way, similar substances were found, such as
Polychlorinated Biphenyls (PCBs) (cluster 6), Polycyclic aromatic hydrocarbons (PAHs)
(cluster 30), salts and reactive metals (cluster 34), metals (cluster 35), a cluster with mostly
X-ray contrast agents (cluster 19), and a cluster with pharmaceuticals (cluster 4). These
are indicated in Figure 3 by the boxes next to the heatmap. In Nieuwegein, some distinct
clusters occurred in only one or two weekly samples, indicating an episodic discharge
or emission. Some of these clusters are associated with agricultural applications (i.e.,
pesticides, insecticides, herbicides, and fungicides (cluster 28) or petrochemicals (cluster
2)). These example clusters are indicated in Figure 3 by the boxes next to the heatmap.
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Cluster 34 Cluster 30
sulfate benzo(b)fluoranthene
magnesium dibenzo(a,h)antracene
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=
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2,2',5,5'-tetrachlorobiphenyl (PCB.52)

2,4 4'-trichlorobiphenyl (PCB.28)
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cadmium 1,2,4-trimethylbenzene

copper 1,2-dimethylbenzene (o-xylene)
ethylbenzene

\

Cluster28
benzene
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- - - - - i — jopamidol ~] dimethenamide
- = = S m——in = amidotrizoic acid terbutylazine
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- 10,11-dihydro-10,11-dihydroxycarbamazepine

Figure 3. Heatmap obtained using monitoring data from Nieuwegein (NGN). Rows: substances.
Columns: weekly aggregated monitoring samples (see Figure 1) between 2017-2021. Some example
clusters are highlighted by a colored box. The substances are indicated attached to the box. Darker
colors indicate higher relative concentrations (Z-score).

3.2. Overlap of Clusters with Reference Lists

For the remainder of this paper, ‘clusters’ refers to significant clusters. Overall, 57
out of 164 reference lists (see Appendix A) were significantly overlapping in one or more
clusters in the Meuse and Rhine. Table 3 shows the top five significantly overlapping
reference lists in the Rhine and Meuse clusters.

Table 3. Top five significantly overlapping (‘enriched’) reference lists in clusters from both Meuse
(total 80 clusters) and Rhine (total 116 clusters). See Appendix A for an overview of all reference lists.

Reference Lists Meuse Clusters Rhine Clusters
‘Dutch Rivers’ 29 48
‘Wastewater treatment plant’ 33 43
‘Installations for waste processing or landfills or refinery’ 19 23
‘Polycyclic aromatic hydrocarbons (PAHs)’ 12 17
‘Industrial substances (containing PCBs)’ 4 12
‘Herbicides based on a triazine group’ 9 9

Most of the clusters overlapped with wastewater processing-type reference lists. This
was expected for these rivers because they carry a high percentage of wastewater effluent.
Also, the reference list, ‘Dutch rivers’, was logically found enriched often because it contains
substances that are structurally found in the Meuse and Rhine. More specific reference
lists that are often enriched are ‘Polycyclic aromatic hydrocarbons (PAHs)’, ‘Industrial
substances (containing PCBs)’ and “Herbicides based on a triazine group’. It appears from
this analysis that both rivers are, for the larger part, similarly affected.
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Some smaller differences could be observed between the Rhine and Meuse. Some refer-
ence lists were uniquely (twice or more) overlapping significantly only with clusters of the
Meuse. These were reference lists Greenhouse-potted plants (Gerbera and Chrysanthemum,
Orchids), and Herbicides. For the Rhine, uniquely overlapping lists with clusters were
Herbicides based on anilides, organochlorine-based insecticides, and nutrients. Of course,
nutrients are present in the Meuse; however, these apparently do not cluster together to the
extent that they do in the Rhine. Overall, the impression is that the association of clusters
with reference lists is quite similar between Rhine and Meuse.

3.3. Recurring Clusters of Pollution

Some clusters are recurring in similar compositions at multiple sampling locations.
This can be expected as the sampling locations are not independent within a river catchment
and the substances in clusters can share sources, emission routes, applications, physico-
chemical properties that make them occur together, and follow similar temporal patterns.
These clusters are referred to as ‘recurring clusters’ (Table 4).

Table 4. Recurring clusters in the Meuse and Rhine. See Table 2 for abbreviations of locations. See

the data package for substances associated with each of the cluster location codes.

Recurring Cluster

3 Example Clusters in

Number Substances Locations Description
Alul'mnur.n, barium, beryllium, cadmlurp, Fesmm, LOB_20 Metals
chromium, iron, cobalt, copper, mercury, lithium, lead, . . .
RC1 manganese, rubidium, thallium, tin, titanium, vanadium, NGN_18 Sometimes combined with
ganese, ru um, thalum, tn, | um, vanadium, MMM_5 PAH substances
zingc, nickel, arsenic
Boron, calcium, chloride, potassium, lithium, magnesium, NGN_34 Salts and reactive (alkali)
RC2 molybdenum, sodium, rubidium, strontium, sulfate, BRI_1 metal
uranium, bromide, silicate as Si KAM_14 ctals
Polycyclic aromatic
benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, LOB_22 hydrocarbons (PAH) (fossil
benzo(ghi)perylene, benzo(k)fluoranthene, chrysene, .
RC3 . NGN_30 fuel burning)
dibenzo(a,h)anthracene, fluoranthene, .
indeno(1,2,3-cd)pyrene, pyrene, phenanthrene, anthracene EY5 8 In some clusters together with
somca)pyrene, pyrene, p ’ PCBs like VWZ_4, HAV_21
Cyanazine, desethyl-terbutylazine, dimethenamide, NGN_28
RC4 dimethenamide-p, metolachlor, terbuthylazine, NSL_20 Herbicides
ethofumesate, metobromuron, linuron BRA_28
2,2 3,4,4' 5'-hexachlorobiphenyl (PCB 138),
2,2 4,4’ 5,5'-hexachlorobiphenyl (PCB 153),
2,2’ 45,5 -pentachlorobiphenyl (PCB 101), NGN_6 Polychlorinated Biphenyls
RC5 2,2' 5,5'-tetrachlorobiphenyl (PCB 52), KMW_4 (PCBs) (industrial and
2,3’ 4,4’ 5-pentachlorobiphenyl (PCB 118), BRA_38 commercial applications)
2,3,4,5,2' 4’ 5'-heptachlorobiphenyl (PCB 180),
2,44 -trichlorobiphenyl (PCB 28)
1,2-dimethylbenzene (o-xylene), 1,2,4-trimethylbenzene,
KAM_2 .
RC6 Benzene, Ethylbenzene, methylbenzene (toluene), NGN 2 Aromatic hydrocarbons
1,2,3-trimethylbenzene, 1,3,5-trimethylbenzene, KEI _1 (petrol oil and fuel)
2-ethyltoluene, Ethenylbenzene, n-propylbenzene -
10,11-dihydro-10,11-dihydroxycarbamazepine, NGN_4
RC7 carbamazepine, oxazepam, primidone, sulfamethoxazole, AND_2 Pharmaceuticals
temazepam BRA_16
Amidotrizoic acid, ethylenediaminetetraethanoic acid LOB_21
RC8 . . . . . . . NGN_19 Contrast-agents
(EDTA), jopamidol, joxitalamic acid jopromide, johexol
BRA_14
. - AND_17
RCY Bisoprolol, guanylureum, sotalol, hydrochlorothiazide, BRA 21 Beta blockers, diuretics
atenolol, metoprolol LOB 18

Many of the significant clusters (Table 2) are actually recurring clusters (Table 4). In
total, 74 clusters (of which 64 clusters contain more than four substances) are identified as
one of these recurring clusters. Substance properties and conditions that are associated
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with recurring clusters are of particular interest because properties and conditions may
cause the substances to have similar concentration dynamics in different locations. In the
following paragraphs, the recurring clusters are further analyzed.

3.4. Substance Properties of Recurring Clusters

Figure 4 shows substance properties with which recurring clusters are most clearly
and often (in many clusters) associated. These are logKoc, logSolubility and logHalf-life.
Clusters of substances with significantly deviating substance property values from the
average green boxplot are indicated in orange. The results of all the considered substance
properties are in Appendix B. The recurring clusters RC1 and RC2 are not shown because
their properties cannot be calculated with the models used [22,23].

log Koc log Solubility (mg/L) log Half-life (d)
RC9-LOB_18 — +-{ZIt----+ RC9-LOB_18 ° -+ RC9-LOB_18
RCO-AND_17 —{ +-C4 . RCO-AND 17 - Hd_ o ___ RC9-AND_17
RC8-NGN_19 - r{ T+ RC8-NGN_19 | 3 I RC8-NGN_19
RC8-LOB_21 o [+ RC8-LOB_21 — +I0- RC8-LOB_21
RC8-BRA 14 | M-+ . RC8BRA 14 - v -4 RC8-BRA_14
RC7-NSL_17 Fl--A RC7-NSL_17 +- - [ 4 RC7-NSL_17
RC7-NGN_4 - Hl o RC7-NGN_4 — F--Ch RC7-NGN_4
RC7-LOB_8 4 H—__TH RCT7-LOB_8 | r-C3---4 RC7-LOB_8
RC7-BRA_16 — Hl o RC7-BRA_16 F--C_H RC7-BRA_16
RC7-AND_2 | _______ | I RC7T-AND_2 = _____ W4 RC7-AND_2
RC6-STV_1 = RC6-STV_1 | T RCB-STV_1
RC6-NGN_2 A RCB-NGN_2 i RC6-NGN_2
RC6-KEI_1 F-CH RC6-KEI_1 — o [H RC6-KEI_1
RC6-KAM_2 — k-4 RCB-KAM_2 — FH RC6-KAM_2
RC6-HEU_6 — -0 RCB-HEU_6 | I+ RCB-HEU_6
RC6-BRA 1 -{_________r--(oi@h _____________ RC6-BRA 1 —{_____ k. RC6-BRA_1
RC5-NGN_6 — -0+ RC5-NGN_6 — F-{od--4 RC5-NGN_6
RC5-LOB_9 4 © (I} RC5-LOB_9 | +-[J ° RC5-LOB_9
RC5-KMW_4 +-{03-+ RC5-KMW_4 - +--{I0}--+ RC5-KMW_4
RC5-KAM_4 — r- -+ RC5-KAM_4 —{ -1} --+ RC5-KAM_4
RC5-EYS_17 {4 RC5-EYS_17 - +CId-+ RC5-EYS_17
RC5S-BRA38 4 PO RC5BRA 38 - k-4 RC5-BRA_38
RC4-NSL_20 I RC4-NSL_20 18] RC4-NSL_20
RC4-NGN_28 HIH RC4-NGN_28 1+ RC4-NGN_28
RC4-MMM_18 r-{IH RC4-MMM_18 m o RC4-MMM_18
RC4-KEI_35 - +{ RC4-KEI_35 [0 RC4-KEI_35
RC4-HEU_22 2} RC4-HEU_22 I3 RC4-HEU_22
RC4-HAV_29 — o [k RC4-HAV 29 io RC4-HAV_29
RC4-BRA 28 - __________ [ RC4-BRA28 — | a__ RC4-BRA_28
RC3-VWZ_4 - r[EH RC3-vWZ_ 4 4 +CI+ RC3-VWZ_4
RC3-TAI_2 — - -4 RC3-TA2 |  +{I-4 RC3-TAI_2 |
RC3-STV_7 1) RC3-STV_7 [ m} RC3-STV_7
RC3-NSL_14 ° - - - RC3-NSL_14 |  r-[IH ° RC3-NSL_14 |
RC3-NGN_30 - RC3-NGN_30 - {4 RC3-NGN_30 I
RC3-NGN_29 -0 RC3-NGN_29 CIH RC3-NGN_29 — ° (I I
RC3-NAM_3 F-{--A RC3-NAM_3 5  +-{II-4 RC3-NAM_3 I+
RC3-MMM_8 oo M- RC3-MMM_8 o +H{[d--4 RC3-MMM_8 ° +E--+
RC3-LOB_22 T RC3-LOB 22 | (@M RC3-LOB_22 - -+
RC3-KEI_40 | = RC3-KEI 40 - (O RC3-KEI_40 -+
RC3-KAM_17 FTh RC3-KAM_17 4 @+ RC3-KAM_17 — -+
RC3-KAM_16 — k- RC3-KAM_16 CIH RC3-KAM_16 ° [
RC3-HEE_30 - (Hng RC3-HEE_ 30 -  +[I} RC3-HEE_30 -+
RC3-EYS_8 - +----- 4 RC3-EYS 8 -| +IIE--4 RC3-EYS_8 -} -4
RC3-BRI_17 F---[EH RC3-BRI_17 4 -4 RC3-BRI_17 +- -4
RC3-BRA_18 T RC3-BRA_18 -|  +EIEH-4 RC3-BRA_18 — o =
RC3-AND 22 4 k4| RC3AND 22 4 M4 RC3AND 22 < _______________________ L I
ALL — F------- T - -------- 4 ALL o F--mmmmme R - - - ----- 4 ALL | +-- - - - - - - - - -~ ===~ 1
T T T T T T T T T T T T T T T T
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Figure 4. The association of recurring clusters (Table 4) with substance properties. The green box at
the bottom indicates the average property value of all the substances in the analysis. Clusters are
indicated on the y-axis by a recurring cluster code (see Table 4), a location code (see Table 2), and a
cluster number. Orange boxplots are significantly different from the average property value (p < 0.01),
blue boxplots are not. See the data package for substances associated with each of the coded clusters.

Another property that showed, relatively, many deviations from the average value
in clusters was Henry’s constant (Appendix B). For this property, the clusters contained
substances with significantly higher-than-average Henry’s constant, and only RC8 and RC9
tended to have lower-than-average values.



Environments 2024, 11, 46 11 of 28

Other properties such as vapor pressure, average mass, atmospheric hydroxylation
rate (AOH), and density were occasionally, but not structurally, significantly different for
clusters (Appendix B). The associations of each recurring cluster with substance properties
are summarized in Table 5.

Table 5. Recurring clusters (see Table 4) with significantly overlapping reference lists, associated
substance properties and environmental conditions. Enriched reference lists are separated by “/’.

When no river name is mentioned for environmental conditions, both river systems apply.

Cluster Name Overlapping Substance Environmental
Reference Lists Properties Conditions
RC1 Dutch Rivers/ n.a.
Metals Installations for waste processing or landfills or low temperature
refinery/ high discharge (Meuse)
Wastewater treatment plant/Untreated wastewater high oxygen
Netherlands high DOC
low evaporation potential
high precipitation (Meuse)
low pH (Rhine)
RC2 Dutch Rivers/ na.
Salts, reactive Wastewater treatment plant/Installations for waste low discharge
metals processing or landfills or refinery high temperature (Meuse)
high sun hours (Meuse)
high evaporation potential (Meuse)
low precipitation (Meuse)
low oxygen (Meuse)
RC3 Polycyclic aromatic hydrocarbons

PAHs (PAHs)/Untreated wastewater Netherlands low solubility low temperature
high Koc/Kow high discharge (Meuse)
high half-life high oxygen (Meuse)
low biodegradation low evaporation potential (Meuse)
high Henry’s constant low sun hours (Meuse)

high precipitation (Meuse)
low pH

RC4 Herbicides based on a triazine group/Herbicides

Herbicides based on amides low half-life high temperature

low oxygen
high evaporation potential
low discharge (Meuse)

RC5 Industrial substances (containing PCBs)

PCBs low solubility low/medium temperature (Meuse)
high Koc /Kow low discharge (Rhine)
medium-high half-life low evaporation potential (Meuse)
low biodegradation
high Henry’s constant
low AOH

RC6 Petrol additives /Industrial solvents/Motor fuel

AHs leakage/Industrial substances low half-life low DOC (Meuse)
high biodegradation
high Henry’s constant
high Vapor Pressure
low KOA
low density/average mass
low melting point

RC7 Pharmaceuticals/Wastewater treatment
Pharmaceuticals plant/Exchange between surface and low Koc low discharge

ground_water/ Domestic . medium/high biodegradation
wastewater/Antidepressants and narcotic
RC8 Contrast agents/Domestic wastewater/Dutch
Contrast Rivers/Wastewater treatment plant low to median Koc/Kow low discharge (Meuse)
agents low henry’s constant
medium-high half-life

RC9 Blood pressure relievers

Beta blockers and diur.etics/ low half-life low temperature
Dutch Rivers/ high solubility high oxygen
Wastewater treatment plant low Koc low evaporation potential

low henry’s constant

low sun hours
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RC9-LOB_18
RC9-AND_17
RC8-NGN_19
RC8-LOB_21
RC8-BRA_14
RC8-AND_1
RC7-NSL_17
RC7-NGN_4
RC7-LOB_8
RC7-BRA_16
RCT7-AND_2
RC6-STV_1
RC6-NGN_2
RC6-KEI_1
RCB-KAM_2
RC6-HEU_6
RC6-BRA_1
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RC5-LOB_9
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RC5-KAM_4
RC5-EYS_17
RC5-BRA_38
RC4-NSL_20
RC4-NGN_28
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3.5. Associations of Environmental Conditions with Clusters

In Figure 5, three environmental condition values associated with high concentrations
of substances in the recurring clusters are shown for the Meuse. The results of all analyses

(Rhine and Meuse) are in Appendix B.
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Figure 5. The association of recurring clusters with conditions. The green box indicates the condition
values at high concentration of all the substances in all clusters. Clusters are indicated on the y-axis
by a recurring cluster code (see Table 4), a location code (see Table 2), and a cluster number. Orange
boxplots are significantly different from the average condition value (p < 0.01), blue boxplots are not.
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Figure 5 shows that several (indicated in orange) of the recurring clusters are associated
with the environmental conditions temperature and river discharge values. Dissolved
organic content (DOC) is less convincingly associated. A summary of all associations
of repeating clusters with environmental conditions is given in Table 5. Other (related)
conditions were associated with the clusters as well, such as high precipitation, oxygen
level, evaporation potential, and less convincingly, pH (Appendix B).

Significantly associated reference lists, substance properties, and environmental condi-
tion are summarized in Table 5 for each recurring cluster (RC1-9).

Clusters of RC1 (‘metals’) are associated with environmental conditions, high DOC,
and winter related conditions such as low temperature and high discharge. Clusters of
RC2 (‘salts and (alkali) metals’) are associated with low discharge and summer-related
conditions such as high temperature and sun hours, mainly in the river Meuse. Clusters
of RC3 (PAHSs) are associated with winter conditions, low mobility (high Koc and low
solubility), high persistence, and high volatility potential. Clusters of RC4 (herbicides)
are associated with low persistence (short half-life) and summer conditions. Clusters of
RC5 (PCBs) are associated with substance properties similar to RC3 and winter-related
conditions such as ‘low temperature’ and ‘low evaporation potential’. In the Rhine, clusters
of RC5 are associated with low discharge; however, that does not necessarily fit with the
‘low temperature’ because discharge is generally high in winter when temperatures are
low. Clusters of RC6 (‘Petrol additives/Industrial solvents/Motor fuel leakage/Industrial
substances’) are associated with substance properties, like non-persistency (short half-
life), low density, and high volatility potential (Henry’s constant and Vapor pressure)
but no specific environmental conditions. Clusters of RC7 and RC8, which consist of
pharmaceuticals and contrast agents, are associated with low discharge and high mobility
(low to median Kp¢). Clusters of RC9 (‘beta-blockers and diuretics’) are associated with
high mobility (high solubility and low Kpc) and low volatility potential (low Henry’s
constant), and with winter-like environmental conditions.

4. Discussion

In this study, unbiased statistical tools were applied on a wide variety of chemical
water quality parameters obtained from regularly monitoring activities at multiple locations
in the river Rhine and Meuse. These river systems were chosen because of the large
monitoring datasets, with frequent measurements of many different parameters. The rivers
Rhine and Meuse integrate many sources of pollution with many emission routes. The
aim was to extract valuable (and often overlooked) information from these datasets and
explain clustering of substances by their co-occurrence, association to substance properties,
environmental conditions, and possible emission.

Based on concentration dynamics in five years of monitoring data, multiple significant
clusters of substances were found for each of the nineteen locations in the Meuse and Rhine.
A large portion of such clusters could be statistically linked to a combination of substance
properties, environmental conditions, and had significant overlap with emission-related
reference lists of substances with a common application, origin, and/or chemical class.
Environmental scientists can interpret the observations, bringing the unbiased approach
and the mechanistic understanding based on prior knowledge together. Dedicated mea-
surements and experiments are needed to confirm these statistical links for the different
clusters containing (groups of) micropollutants.

Several substance properties proved to be significantly associated with clusters.
It is well known that the fate of substances in a river catchment is affected by proper-
ties [24]. Even if the associated properties are not new with regard to fate (e.g., [24]),
the found combinations of associated substance properties in clusters exemplify their
role in concerted concentration dynamics in the rivers. The solubility, Koc, half-life,
and Henry’s coefficient of substances deviated from the average value in many clusters.
Solubility provides an important indication of a contaminant’s mobility in the aquatic
environment. A high solubility makes a substance remain in the aqueous phase. The
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tendency of a substance to migrate from water to air is expressed by Henry’s law con-
stant. A high value means a high potential for volatilization. Koc is a measure for the
expected distribution of a substance between a solid phase such as soil or sediment and
water. It determines whether the substance will accumulate in sediments, travel with the
aqueous phase or travel with suspended particles (if present) in the aqueous phase. A
low Kpc implies that the substance is mobile. The octanol (oily organic solvent) water
partition coefficient (Kpw) is used as a surrogate, since it is easier to determine/available
for many substances. Lastly, the half-life of substances indicates their persistence in the
(aqueous) environment. Actual half lives in the field are very conditional, depending on
temperature, redox conditions, sorption, and presence of (micro) organisms that are able
to degrade the substance of interest. A longer half-life allows a chemical to travel further
away from its sources and increases the possibility to encounter the chemical long after
it has been emitted.

Environmental conditions affect the fate of chemicals [1] dependent on their emission
pathways and substance properties. Conditions significantly associated to a large portion
of clusters were temperature and river discharge. These associations enable the formulation
of hypotheses on the impact of environmental conditions on substance concentrations. For
instance, a positive association with temperature could simply indicate seasonal emissions,
but also could indicate an increased formation of some substances at higher temperatures or
with more intense (sun)light [25]. Similarly, a negative association may, for some substances,
be attributed to degradation [1]. At low river discharge, concentrations of chemicals that
have stable emissions increase because there is less dilution. Sewage treatment-emitted
substances are a typical example of such substances because their supply is independent
of river discharge. Some conditions are very logically interconnected with each other like
evaporation potential (based on radiation) and sun hours, or river discharge and rain.
Similarly, temperature and oxygen are connected because more oxygen can be mixed in
cold water. This means that an important next step is to find which condition actually
drives concentration differences of substances in clusters, or how these add up. This was
not investigated in this study.

Clusters of substances that simultaneously enter the water can become separated along
the traveled distance mainly by degradation, differences in solubility, volatility, or the tendency
to stick to sediment. If chemicals with a wide variety of properties such as solubility and Koc
cluster together, this might indicate that they share the same source and emission pathway
and are continuously emitted and/or the sample location is close to the source.

With regard to the overlap of substances in a cluster with reference lists of substances,
the results could not distinguish between Rhine and Meuse. Sampling locations at the
lower parts of the river Rhine and Meuse are exposed to many (upstream) sources of
contamination through many emission pathways. This mixes different emissions and
makes the association of the sampling locations with very specific reference lists such as

‘insecticides’ or ‘motor fuel leakage’ less likely, whereas a more generic reference list such

as ‘Domestic wastewater’, was found significantly associated to many clusters. By working
with clusters of substances rather than all substances at once, we were able to have a
significant overlap for individual clusters with several reference lists. These were indicative
mainly of wastewater, industrial influence, and agricultural influence. Associating reference
lists to pollution might be more suitable for smaller surface water catchments with more
specific and limited emission routes and sources. This may also work well in groundwater
aquifers that are, by nature, spatially more heterogenic and likely affected by single or
limited numbers of contamination sources.

With the clusters, the substance properties, conditions, reference lists, and the actual
temporal concentration variation over the samples, hypotheses can be formed for every
cluster that is found. Some clusters reoccurred at multiple locations. Especially these
recurring clusters appeared to be determined by environmental conditions. For the
recurring clusters with metals, PAHs, and PCBs, for instance, these factors may point
to resuspension from sediment, as these substances strongly sorb to sediments and
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co-occur with a high discharge [26,27]. For the recurring cluster with Herbicides, results
point to an application in summer. The recurring cluster with pharmaceuticals and
contrast agents in combination with low river discharge point to current and continuous
emissions from sewage treatment plants [28]. This is not surprising, but it illustrates
that the data supports these well-known pathways and might also help in identifying
deviations from these trends, indicative of an event with increased pharmaceutical use
like an influenza outbreak [29]. The recurring cluster with Aromatic hydrocarbons could
not be linked to any environmental condition. This could point to an irregular incident
emission, such as an oil spill [30].

While these results are promising, changing measurements below the reporting limit
to zero may have introduced errors in the formation of clusters by changing the pattern of
varying concentrations too much from the actual concentrations. This also advocates for
the use of sensitive analytical techniques to allow studying the occurrence of substances
in their full range of environmental concentrations, not only focusing on the highest
concentrations that occasionally occur or are found at ‘hot spot” locations. An option is
to remove all measurements below RL to only maintain the accurately measured values.
Because it is necessary to remove all incomplete weekly samples or substances for the
clustering analyses, this would result in a very small dataset per location. Moreover, for
most substances the values below RL are indeed real ‘near zero’ values. Nevertheless,
especially incidentally clustering substances with many measurements, <RL should be
critically assessed. It may be that imputing values < RL or applying other statistical
techniques (e.g., [31]) may yield better clustering for such substances and this could be
investigated in follow-up research.

Based on the results obtained in this investigation, this type of large-scale environ-
mental forensic studies using statistical analysis and clustering appear to be useful for
processing existing datasets and extracting information that would otherwise remain
concealed within datasets. It can be concluded that monitoring data contain far more
information than simply concentration levels that are used for assessing compliance with
water quality guidelines. Clustering and the cooccurrence of certain types of substances
and differences and similarities of locations provide a wealth of information for building
and testing hypothesis on sources, emissions, and impact of conditions on concentrations
and loads. With that, it provides an important piece in the iterative puzzle towards un-
derstanding concentration dynamics, sources, and their contributions and can even, in the
future, support the formulation and evaluation of mitigation strategies.
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Appendix A. Reference Substance Lists

Table A1. Sources of the reference substances lists, with numbers of sub-lists and substances per source.

List Source ID List Source Name Source Sub-Lists Sub-Stances
L1 Substanc.es used in various Centraal Bureau voor de Statistiek 58 1715
agriculture types
12 Substances measured near Landelijk Meetnet gewasbeschermingsmiddelen 8 63
agriculture types (data obtained from Deltares)
Watson database (data driven, substances found
L3 Sewage treatment plants 50.1 ug/L in 25 sewages’ effluents) 1 83
14 Trans-border Meuse RIWA databfise (cyata driven, substances in samples 5 47
of location Eijsden on average >0.1 ug/L)
. RIWA database (data driven, substances in samples
L Trans-border Rhine of location Lobith on average >0.1 ug/L) 2 71
L6 Biocides per product type ECHA European Chemicals Agency database 20 656
L7 Distinguished groups (diverse) RIWA-Rijn 89 1714
18 M1cropollutanFs as source and [10] 17 71
process indicators
L9 EU emissions by industries EEA Industries Reporting Database 20 128
L10 Veterinary pharmacgutlcals in [32] 5 28
manure slurries
L11 Sources of PFAS in Dutch surface 133] 1 13
water
Watson database (data driven, substances found
Typical substances in untreated abundantly (>25 sewages’, at least 0.1 pg/L) in
L12 . . 1 9
wastewater influent, not in effluent, and are well removed
(>80%))
L13 Drug waste constituents [34] 1 62
L14 A list of substances in fertilizers CompTox lists 1 22
L15 Motor fuel leakage substances CompTox lists 1 27
L16 Natural toxins CompTox lists 1 90
L17 Veterinary drugs CompTox lists 1 124
L18 Cyanoginosins (from cyanobacteria) CompTox lists 1 7
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Figure A1. Hierarchical clustering of percentages overlap of substances between reference substance
lists. The height of the line in the dendrogram indicates the dissimilarity between clusters.

Appendix B. Substance Properties and Environmental Conditions per Cluster

In this appendix, the property values for the substances in clusters per location are
visualized. Per property, one figure is constructed for all clusters. All clusters with less
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than five substances were removed. Also, inorganic substances were omitted because the

models used could not predict the substance properties for the inorganic substances.
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Figure A2. Log Half-life values per cluster (d). Half-life values were obtained from Opera models [22].

Orange boxplots differ significantly from the average (green boxplot), blue boxplots do not.
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Figure A3. Log Solubility values per cluster (mg/L) Log Solubility values were obtained from
EpiSuite models [23]. Orange boxplots differ significantly from the average values (green boxplot),

blue boxplots do not.
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Figure A4. Henry’s constant values per cluster. Henry’s constant values were obtained from EpiSuite
models [23] and recalculated by log10 (value * 101,325). Orange boxplots differ significantly from the

average values (green boxplot), blue boxplots do not.
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Figure A5. Log Koc values per cluster. Log Koc values were obtained from EpiSuite kow models [23].
Orange boxplots differ significantly from the average values (green boxplot), blue boxplots do not.
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Figure A6. Log Kow values per cluster. Log Koy values were obtained from EpiSuite models [23].
Orange boxplots differ significantly from the average values (green boxplot), blue boxplots do not.
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Figure A7. Biodegradability values per cluster. Biodegradability values were obtained from EpiSuite
model Biowin3 [23]. Values range from very persistent (1) to very biodegradable (5). Orange boxplots

differ significantly from the average values (green boxplot), blue boxplots do not.
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Figure A8. Average mass values per cluster. Average mass values were obtained from the CompTox

Chemicals Dashboard v2.3.0. Orange boxplots differ significantly from the average values (green

boxplot), blue boxplots do not.
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Figure A9. Log vapor pressure values per cluster (mm Hg, 25 deg C). Log vapor pressure values were

obtained from EpiSuite models [23]. Orange boxplots differ significantly from the average values

(green boxplot), blue boxplots do not.
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Figure A10. Log KOA values per cluster. Log octanol air partition coefficients (KOA) values were

obtained from Opera models [22]. Orange boxplots differ significantly from the average values (green

boxplot), blue boxplots do not.
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Figure A11. Boiling point values per cluster (deg C). Boiling point values were obtained from Opera

models [22]. Orange boxplots differ significantly from the average values (green boxplot), blue

boxplots do not.
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Figure A12. Density values per cluster (g/cm?). Density values were obtained from EPA Toxicity

Estimation Software Tool (TEST) prediction models via the CompTox Chemicals Dashboard v2.3.0.

Orange boxplots differ significantly from the average values (green boxplot), blue boxplots do not.
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Figure A13. AOH values per cluster (cm3 /molecule * sec). Atmospheric hydroxylation rate (AOH)

values were obtained from Opera models [22]. Orange boxplots differ significantly from the average

values (green boxplot), blue boxplots do not.

Below, two figures with clusters per location (Rhine and Meuse) are shown for each
environmental condition. This gives extra information and an opportunity to check whether
the substances in a cluster from one river system have a similar response to environmental
conditions in the other river system. The values on the y-axes are the values of the local

(Rhine or Meuse) condition in samples in which the concentration of a substance in the

cluster is high. “High’ refers to the top 10 percent of measured concentrations of substances

in the cluster.
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Figure A14. Temperature values per cluster (C). Temperature values were obtained from the RIWA

datasets. Orange boxplots differ significantly from the average values (green boxplot), blue boxplots
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Figure A15. Discharge values per cluster (m3/s). Discharge values were obtained from the RIWA

datasets. Orange boxplots differ significantly from the average values (green boxplot), blue boxplots

do not.
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Figure A17. Evaporation potential values per cluster (Makkink reference crop evaporation in 0.1 mm).
Evaporation values were obtained from Dutch weather data (KNMI). Orange boxplots differ signifi-

cantly from the average values (green boxplot), blue boxplots do not.
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Figure A18. pH values per cluster. pH values were obtained from the RIWA datasets. Orange

boxplots differ significantly from the average values (green boxplot), blue boxplots do not.
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Figure A19. DOC values per cluster (mg/L). DOC values were obtained from the RIWA datasets.

Orange boxplots differ significantly from the average values (green boxplot), blue boxplots do not.
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Figure A20. Sun hour values per cluster. Sun hour values were obtained from Dutch weather data

do not.
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Figure A21. Precipitation values per cluster (0.1 mm/day). Precipitation values were obtained from
Dutch weather data (KNMI). Orange boxplots differ significantly from the average values (green

boxplot), blue boxplots do not.
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Appendix C. Cluster Significance

To determine the significant clusters that are larger than can be expected for a random
cluster, a distribution of random clusters was made. For each level of number of clusters,
a number that represents a cluster is randomly drawn (as many times as there are sub-
stances). This produces different sized clusters. For example, at a level of four clusters with
120 substances we draw the numbers 14, 120 times. To ensure there is never an empty
cluster (as in a real HCA) we initialize the draw with the numbers 1-4 and randomly draw
the remaining 116 numbers between 1 and 4. A result could be that 10 times ‘1" was drawn,
35 times ‘2’, 45 times ‘3" and 30 times ‘4’ (total 120). These are the randomly drawn clusters
for the substances. For each level of cluster numbers, we repeated this 1000 times. A distri-
bution of cluster sizes emerges for each level. Some cluster sizes emerge very frequently.
These are logically the average cluster size for that level. Some are rare (very small or very
big). We express the distribution of sizes for each level as a ‘quantile’. A cluster size at the
90th quantile means that only 10% of all randomly drawn clusters have a bigger size. Then,
we compare the actual cluster sizes at a level in the HCA with monitoring data with that
of the calculated quantiles. Every substance in a cluster at different levels is assigned that
quantile. Clusters at any level with a quantile size >90 are considered ‘significant’ (bigger
than random). This quantile level of 90 was selected by comparing the clusters that could be
identified visually and via the cluster significance method. One difficulty remains, and that
is to determine the optimal cluster number level at which to regard the ‘significance’ of the
clusters. We argue that substances that remain in a cluster at lower levels in the hierarchy
are very consistently clustered. At the same time, good-sized, useable clusters will occur at
a level at which many substances are in a high-quantile cluster. This is determined by the
sum of quantiles at each level. These two arguments lead to the selection of an ‘optimal
level’ where the sum of quantiles start to decline towards the bottom of the hierarchy. This
is a ‘bending point’. All clusters that are significant at the level of the bending point, or
become significant at any level below, are considered ‘significant’ clusters.

Determine remarkable
Hierarchical clustering (HC) large (>0.9 quantile)

‘optimal level’

L}

For each cluster level x,
with x clusters

Start with 1 to x,
additionally draw n-x times Assign quantiles to actual
cluster numbers 1 to x. cluster sizes HC
Repeat 1000 times

Distribution of cluster Assign quantiles (0-1) for
sizes for number of each cluster size at level
clusters at level x X

Sum quantiles for each

level x, select the lowest

level with a high sum as
‘optimal level”

Figure A22. Flow diagram for determining significant clusters in the cluster significance method.

In short, the cluster significance method works with the assumption that any large
cluster compared to an expected size is extraordinary and significant.

This method is less sophisticated than the methods in the statistical language ‘R’,
Pvclust [35] and Sigclust2 [36]. Ref. [36] basically test at every junction of the dendrogram
if the values of elements in the cluster follow a single Gaussian distribution stronger
than a random simulated cluster of that size with an imposed Gaussian distribution,
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and deciding if that indicates a single cluster. Ref. [35] use a bootstrap method to make
many instances of the hierarchical cluster under investigation and count how many
times a cluster appears from random sampled elements. If it appears often, it is a
robust cluster. So, both use the actual calculated values of elements by the clustering
methods in the hierarchy whereas the cluster significance method uses only expected
size distributions. The use of the cluster significance method instead of the established
methods is preferred in this study because of the simplicity of the approach and, most
importantly, the flexibility to test and adjust it. We compared the outcome of the three
methods in assigning significance to clusters. Pvclust [35] tends to assign significance
to small clusters in the data. Sigclust2 [36] assigns significance to both the larger and
smaller dense clusters. Unfortunately, the predefined functions in Sigclust2 are very
limited. This made the use of Sigclust2 unpractical even though a very nice visualization
was possible, and significance seemed accurate. The cluster significance method in this
study generally performed as well as the two methods (not shown), compared to the
clusters that were assigned based on the visual inspection of the heatmap. With that, the
method is a reasonable and simple alternative to assign cluster significance.

There is a positive link between the number of substances in a location and the number
of clusters identified. This is logical because there is more chance for substances to follow
a similar concentration pattern. However, another trend that is observed is that the more
clusters, the smaller on average the cluster size (from 6.5 to 4.5 substances). This may
indicate that the ‘optimal level of cluster number” in the cluster significance method is
chosen more towards the bottom of the hierarchy when a lot of substances are involved.
Determining the ‘optimal level” will have to be reevaluated in future applications.
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