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ABSTRACT

The operation of smart wastewater treatment plants (WWTPs) is increasingly paramount in improving effluent quality, facilitating resource

recovery and reducing carbon emissions. To achieve these objectives, sensors, monitoring systems, and artificial intelligence (AI)-based

models are increasingly being developed and utilised for decision support and advanced control. Key to the adoption of advanced data-

driven control of WWTPs is real-time data validation and reconciliation (DVR), especially for sensor data. This research demonstrates and

evaluates real-time AI-based data quality control methods, i.e. long short-term memory (LSTM) autoencoder (AE) models, to reconcile

faulty sensor signals in WWTPs as compared to autoregressive integrated moving average (ARIMA) models. The DVR procedure is aimed

at anomalies resulting from data acquisition issues and sensor faults. Anomaly detection precedes the reconciliation procedure using

models that capture short-time dynamics (SD) and (relatively) long-time dynamics (LD). Real data from an operational WWTP are used to

test the DVR procedure. To address the reconciliation of prolonged anomalies, the SD is aggregated with an LD model by exponential weight-

ing. For reconciling single-point anomalies, both ARIMA and LSTM AEs showed high accuracy, while the accuracy of reconciliation regresses

quickly with increasing forecasting horizons for prolonged anomalous events.
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HIGHLIGHTS

• A new methodology is proposed for the real-time validation of sensor data in wastewater treatment by the aid of anomaly detection and

the subsequent reconciliation of sensor signals using a short timescale dynamic and a long timescale dynamic model.

• LSTM-based autoencoder models are used to reconcile anomalous data.

• Deep neural network-based models are compared with conventional time series modelling.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

The design and operation of wastewater treatment plants (WWTPs) are becoming increasingly complex due to the need to (i)
improve effluent quality in order to comply with increasingly stringent standards such as the European Directive 91/271

(1991) (EEC) on urban wastewater, (ii) increase resource recovery activities and (iii) decrease the carbon footprint. To
meet these objectives and enable advanced process monitoring and the control of sewage systems and treatment processes,
data acquired from sensors are being increasingly used, and monitoring systems, software sensors, models and controllers are

added or upgraded to bridge the gap between current practice and data-driven, smart water systems (Therrien et al. 2020).
In order to resolve the operational challenges related to meeting effluent quality criteria, while also reducing the carbon

footprint and operational costs, the operation of WWTPs and, more generally, urban wastewater systems (UWS) is under-

going a transition from an industry 3.0 level where IT systems are set and process control is automated to an industry 4.0
level where the operation is getting smart and (semi) autonomous (Fernando et al. 2022). The industry 4.0 standard entails
a data-driven approach, i.e. the use of artificial intelligence (AI) and machine learning (ML) models for decision support and
advanced control. It also involves creating a strong connection between smart devices (such as Internet of Things (IoT)) and

the processing of UWS including WWTP data, weather data and other external data sources to enable such a transition. How-
ever, the transition to a fully data-driven WWTP or UWS is not without hurdles: connectivity should be guaranteed as well as
(cyber) security, management, availability and quality of data (Jagatheesaperumal et al. 2022), while UWS are inherently con-

sidered as complex, non-linear systems. More specifically, UWS are very dependent on environmental and operational
conditions, exhibit seasonal dynamics (Daelman et al. 2015; Di Marcantonio et al. 2020), extreme weather events
(Md Nor et al. 2020; Park et al. 2020) and often have cyclic behaviour due to recycling streams. Yet, it is recognised that
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the operation of WWTPs has evolved from sensor signal processing and using statistics and process identification in the sev-

enties to knowledge-based systems where sensor data are increasingly fed into data mining techniques and predictive
analytics in order to capture complexity. The aim is to support plant-wide control and decision-making that is optimized
based on possibly multiple criteria (Poch et al. 2014). In this transition phase, perhaps one of the most important, first steps

in the realisation of a smart, data-driven UWS is data validation and reconciliation (DVR) of critical sensor signals because
the quality of data is frequently hampered by the intrinsically challenging measurement conditions in wastewater. Anomalous
data stem from (Gaddam et al. 2020) either (1) intermittent sensor errors, such as communication and IT-related problems
between sensors in the data acquisition system itself, leading to sensor data loss, and duplicate data entries, or (2) inherent

sensor faults caused by fouling, aging or miscalibration, which can lead to offset, drifts, increased noise levels or freezing (fla-
tlines) in the measurements. Additionally, (3) sensor events such as process faults or irregularities in the process behaviour can
occur due to extreme weather events or maintenance activities of UWS assets. Manually curating data and ensuring its quality

would be prohibitively time-consuming and expensive; hence, automated data quality control is highly needed.
This work focuses on the development and assessment of AI-based anomaly detection techniques in combination with the

reconciliation of faulty sensor data. A comprehensive review of advanced, AI-based data validation is given in Liu et al. (2023)
where validation techniques are assessed from two points of view, i.e. the detection of process faults and instrumentation
faults, which are related to the data collection (sensors) and acquisition systems (information and communication technol-
ogies (ICT)). With respect to the use of AI, or more specifically ML and deep learning techniques in data validation

applications, quite some attention is being given to deep neural networks (DNNs), such as the long short-term memory
(LSTM), convolutional neural networks and autoencoder (AE) models as promising techniques for the detection and recon-
struction of faulty sensor signals. In Ba-Alawi et al. (2021), a denoising AE (D-AE) model is described that detects, identifies
and reconciles faulty data based on real WWTP data in South Korea. The model is compared with a conventional principal

component analysis (PCA) procedure, which is typically useful to detect process anomalies when using multiple sensor sig-
nals and is also known as being crucial in multivariate statistical process control theory. The same authors compared the
performance of a deep residual network structure-based variational AE to impute missing sensor data with other neural net-

work AE models and PCA for a WWTP data case (Ba-Alawi et al. 2022). In Pisa et al. (2020), an LSTM-based control strategy
of a WWTP is coupled with three ML-based denoising techniques, including D-AEs, and model performance was compared
to the performance of autoregressive integrated moving average (ARIMA) and PCA models using a benchmark WWTP

model. Again, the best denoising was achieved with AE models.
The main aim of this work is to demonstrate and assess anomaly detection and reconciliation procedures using real plant

data with a focus on anomalies from category 1 (faults stemming from data acquisition problems, e.g. missing data) and cat-
egory 2, i.e. faults in sensor data streams. More specifically, the research objectives are to

• illustrate statistical anomaly detection techniques that will provide a basis for tagging the data, which is to be reconciled by
data-driven models;

• demonstrate a novel reconciliation procedure, where a model that captures SD (hours) with high accuracy is combined
with a model that captures LD (day); and

• compare and evaluate the performance of an LSTM-based AE with an ARIMA model for the reconciliation of the identified

anomalous sensor data.

2. METHODOLOGY

2.1. Overview

In Figure 1, an overview of the methodology employed in this study is illustrated. Raw data of 1-min frequency acquired from
online sensors from a full-scale WWTP were used. For the purpose of calibrating the ARIMA models and training the LSTM-

based AEs, the datasets amounting to various months were pre-processed. Initially, the datasets were cleaned by addressing
anomalies that were identified using the anomaly detection methods outlined in the proposed data validation methodology.
Based on the knowledge of the processes represented in the parameters measured by the sensors, decisions were made on

handling the identified anomalies. Erratically occurring and singular erroneous values were removed and filled using
linear interpolation. For anomalous events of longer duration, for 12 h or more, the period was removed from the
dataset altogether. This pre-processing step was conducted to ensure that the datasets were representative of process
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behaviour under normal operations and were the cleanest data available for model training, considering the models would
subsequently be used within the data reconciliation process.

Furthermore, the datasets were then resampled into two granularities, which were determined based on the two most domi-
nant time constants expected from the process. Models were then individually trained for the two resampled datasets. The

computational time needed for model training was also considered. The dataset was then split into a training set and a
test set, using an 80/20 ratio, where the models were trained on the larger set and evaluated on the smaller set, which rep-
resented the unseen data.

2.2. Anomaly detection

By definition, an anomaly is a data point that is likely to be erroneous and can be caused by the process or instrumentation

irregularities. The detection of anomalies is considered as a classification problem, i.e. making the distinction between data
that are likely faulty or correct. The techniques used in this application are statistical methods to flag gross anomalies within
a dataset. Rule-based methods were developed that are generic and system-agnostic. The methods require the provision of

certain metadata on the rules that are specific to the sensor signals. The anomaly detection methods can be subdivided
into the detection of single-value anomalies and contextual anomalies. With regard to the single-value anomalies, faulty
single measured values are detected, while for the contextual anomalies, anomaly regions of data are detected, in other

Figure 1 | Overview of methodology employed in this study.
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words, consecutive faulty measured values over time. Through the execution of the anomaly detection methods, each sensor

data point is provided with a flag or label providing information on whether the data point is considered an anomaly. All
detection methods were implemented using the Python libraries pandas, Anomaly Detection Toolkit (ADTK) (Arundo Ana-
lytics Inc. 2020), and NumPy. Below is the description of the methods developed and incorporated within the data validation

scheme:

• NaN Value Detection: The detection of any NaN (not a number) values that are present.

• Zero Value Detection: The detection of zero values for variables, where it is considered unfeasible to have zero values.

• Negative Value Detection: The detection of negative values in the dataset is considered unfeasible.

• Threshold Detection: The detection of values that are above or below given thresholds. The values of the thresholds are
provided by the user (such as process operations and technologists) and are specific for a given variable and sensor.

• Flatline Detection: This method is to detect a form of contextual anomalies. It is a situation when consecutive observations
have an equal value for an unfeasible duration of time. The detection of the flatlines is conducted using a user-defined mini-
mum threshold value for the number of measurement points and a user-defined deviation. The number of data points that

have the same value, or in other words, the length of a potential flatline, is compared with the threshold length to determine
if a flatline is present.

• Spike Detection: Sudden spikes or drops with regard to previous data are detected by calculating a list of differences

between all data points and their consecutive data points and calculating the mean μ and standard deviation σ for these
differences. Should a difference value be further away than a threshold value esd from μ, in units of σ, then the value is
flagged as being anomalous. Spikes have been defined as a point that is preceded by an anomalous rise and followed by
an anomalous fall, or vice versa.

2.3. Data reconciliation

The anomaly detection methods provide prior labelling of sensor data as being faulty or good. In the proposed data validation

methodology, a data correction protocol is provided to handle the identified anomalies. This is conducted through the recon-
ciliation of the sensor data with the outputs of the trained model. The values flagged as anomalies can be removed and
replaced with the prediction values from the model. This leads to a reconciled signal, which is a combination of the original

sensor data and the replaced values containing the predictions from a model. In this study, data reconciliation is achieved by
training LSTM-based AEs. Furthermore, simpler statistical-based models called ARIMAs were used as benchmark models to
compare with the more complex AE models for the purpose of conducting data reconciliation. In the following subsections,
the ARIMA and LSTM-based AE models, along with the data reconciliation procedure, are described.

2.3.1. ARIMA as benchmark models

In this work, predictions of time-dependent water quality data measured at an operational full-scale plant are quantified and

compared. To be able to adequately rate the predictions, a benchmark model is introduced to compare with the predictions of
different models. For this purpose, ARIMA-style models are used (Box & Jenkins 1970). These are more generalised versions
of the autoregressive moving average (ARMA) models, which are useful for predicting future values in a given time series

(Mehdizadeh 2020; Moon et al. 2021). The ARIMA model is a three-part composite model: (i) an autoregressive (AR)
part, (ii) an integrative (I) part, and (iii) a moving average (MA) part. The AR section is characterised by hyperparameter
p, which defines the amount of data points in its immediate history that this section of the model considers. This AR
model then determines, for each point i, which values in its immediate history have predictive power for target values,

and also determines coefficients that quantify their importance for the final prediction. The AR model is described as:

Yt, AR ¼ mþ b1Yt�1 þ b2Yt�2 þ . . .þ bpYt�p þ e

Yt, AR ¼ mþ eþ
Xp
i¼1

biYt�i

(1)

where Yt, AR is the time series value at time t as predicted by the AR part of the model, m is the estimated mean for this time
series (intercept), bi is the coefficient for lag time i that the AR model calculates and e is a normally distributed error function
that adds noise to the model. Model training comprises bi- and m-value determination.
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The MA section is characterised by an input parameter q that also defines the number of data points in its immediate his-

tory that the ARIMA model considers. It is a linear combination of the errors of all q historical values:

Yt, MA ¼ mþ b0
1at�1 þ b0

2at�2 þ . . .þ b0
qat�q þ e

Yt, MA ¼ mþ eþ
Xq
i¼1

b0
iat�i

(2)

where Yt, MA is the time series value at time t as predicted by the MA part of the model, and b0
i is the coefficient that the MA

model calculates. Furthermore, ai is the lagged error from the AR model:

ai ¼ Yi, AR � Yi (3)

Model training comprises b0
i- and m-value determination.

Finally, the integrative (I) part of the model is defined by the parameter d, which defines the degree of differentiation of the
data before performing the AR and MA models. With time series data, first-order differentiation (d¼ 1) is defined as:

Yt ¼ yt � yt�1 (4)

with Yt the differentiated data point at time t, and yt the original data point at time t. In higher-order differentiation, this

results in:

Y (d)
t ¼

Xd�1

i¼0

(�1)i
d� 1

i

� �
yt�i (5)

with Y (d)
t the d-order differentiated data point at time t. The full ARIMA (p, d, q) model is a linear combination of the two

AR (p) and MA (q) predictions, given that their input data were differentiated d times.

Yt, full ¼ mþ eþ
Xp
i¼1

biY
(d)
t�i þ

Xq
i¼1

b0
ia

(d)
t�i (6)

Here, Y (d)
i and a(d)i are the time series values obtained by differentiation with order d.

2.3.2. LSTM-based AEs

2.3.2.1. Model description. An AE model is a special case of a feedforward neural network, consisting of two modules: an
encoder and a decoder (Provotar et al. 2019). The encoder is trained for a given input of sensor data, learning the underlying
features that are typically represented in a reduced dimension (Bengio 2009; Provotar et al. 2019). The decoder reconstructs

the input data using the encoded outputs. Hence, the target of an AE is the input itself. Conventionally, AEs are trained using
a single layer each for the encoder and the decoder. However, the use of deep AEs or recurrent neural network (RNN)-based
layers can provide various benefits, such as yielding better compression of the data and, subsequently, better reconstruction of

the input (Provotar et al. 2019).
The AE models trained in this study contained a combination of LSTM and dense layers. LSTM layers, introduced by

Hochreiter & Schmidhuber (1997), are a subset of RNN layers that are efficient in learning long-term dependencies
within data and are used frequently in predictive modelling. An LSTM unit is more complex than a conventional dense

layer unit because it includes various gates to regulate the temporal information flow. A standard structure of an LSTM
cell can be found in Figure S1 of the Supplementary Information. An LSTM cell typically consists of a forget gate ( f ) that
determines how much information from the previous hidden and cell state will be removed, and an input gate (i) that decides
how much of the current information will be kept after the current cell state is updated using the cell update gate (C), and
finally an output gate (o) that controls the information that will be outputted based on the internal cell state. All the gates
are defined as linear relationships while considering the inputs provided, recurrent information from previous cell states,

Journal of Hydroinformatics Vol 26 No 2, 446

Downloaded from http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2024.167/1371319/jh0260441.pdf
by KWR WATERCYCLE RESEARCH, siddharth.seshan@kwrwater.nl
on 29 February 2024



weights of the gates and the corresponding bias terms. Typically, in an LSTM cell, a sigmoid activation function is used for

recurrent related information, and the hyperbolic tangent function is used when updating the cell state.

2.3.2.2. Model training. To identify trained LSTM-based AE models providing accurate predictions, an orthogonal approach
of fine-tuning hyperparameters was conducted as follows. After a training procedure is completed, first, the learning curve,

which visualises the training and test loss, is inspected. This provided information on overfitting, the training dynamics
over the epochs, and some indication of the convergence of the model to a stable state. An example learning curve for the
LSTM-based AE models is provided in Figures S2 and S3. Subsequently, the predictions from the model on the training
and test sets are visualised, and performance metrics are calculated to assess the model’s performance and generalisation

capabilities.
Initially, model trainings were done to identify the number of layers and an optimal model structure. While considering a

trade-off between computational effort and accuracy, a combination of LSTM layers and dense layers was considered. This

provided an increased number of trainable weights while reducing the number of memory-based units that could lead to over-
fitting issues. Additionally, LSTM layers required a 3D array of data as input. A key hyperparameter related to such an input is
the dimension that represents the number of timesteps, or in other words, the amount of historical data inputted into the

model to make predictions. This was determined and fixed based on the sensor signal behaviour and on prior knowledge
of the wastewater treatment process dynamics that are prevalent. Further details on the choices made for this investigation
are provided in Section 3.1.

To overcome the challenges of overfitting, based on the performance of the test dataset, a regularisation technique known
as Dropout (Hinton et al. 2012) was implemented. In dropout regularisation, certain neurons in a layer are randomly ignored
during training. This reduces the risk of the neurons of fully connected layers developing excess interdependencies among
each other that lead to the model overfitting to the training data. The dropout hyperparameter, p, which represents the frac-

tion of neurons within a layer that will be dropped at random, was fine-tuned. It must be noted that dropout was only
incorporated in the LSTM layers, given that these layers contain a significant amount of trainable parameters.

All model trainings were conducted using the stochastic gradient descent optimisation while using the Adam optimiser. A

fixed learning rate was incorporated with an objective to minimise the loss function. An activation function was selected for
all hidden layers. The batch size for each iteration of the gradient descent was determined based on a sensitivity analysis con-
ducted for each sensor signal used for model training. The models were trained for a fixed number of epochs, which were

selected based on visual inspection of the learning curves generated and considering the available computational capacity.
All model development and training were conducted using the Python software library of TensorFlow (Abadi et al. 2016).

2.3.3. Aggregation of model predictions using exponential weighting

Wastewater treatment processes are non-linear and dynamic, and environmental and operational factors can have influence
over the processes at varying time constants. For example, the increase in dissolved oxygen concentration can lead to a

delayed or lagged reduction of ammonium (NHþ
4 ) concentration (Rieger et al. 2006). Furthermore, operational changes

can have delayed implications on the microorganism activity within the biomass (Rolfe et al. 2012), which in turn is reflected
in some of the (online) measured parameters, such as nitrate (NO�

3 ) concentration. Hence, to aid in monitoring and control of

WWTPs, models that are developed must capture the process dynamics reflected in varying time constants. In this study,
ARIMA and LSTM-based AE models were trained to capture short-term dynamics (SD) and long-term dynamics (LD) by
a combination of resampling to lower sample frequencies while averaging. When dealing with anomalies that occur

during an extended time period, multiple model predictions should be reliable for the period of the anomalous data. It
was anticipated that models trained at a higher granularity would be sufficient to predict the real sensor signal during a
short anomaly period, which is typically shorter than the history used to train the model. Since longer anomaly periods
require recursive predictions, errors will accumulate when using a prediction as input. As a result, model predictions will

quickly diverge from the real process parameter values. This accumulation issue was addressed by utilising predictions
from the LD models, offsetting the limitations from the SD models. To combine the output of the SD and LD models, the
data reconciliation protocol includes resampling and aggregation by exponential weighting, as follows.

The predictions of a model are written as ŷn , where n denotes the sampling period in minutes, and ŷLD,nL and ŷSD,nS denote
LD predictions with an original sampling period nL and SD predictions with a sampling period nS, respectively. For the aggre-
gation of both model outputs, ŷLD, nL are up-sampled to a frequency 1=nS, resulting in ŷLD,nS using linear interpolation.
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Consequently, predictions from ŷLD,nS can be used for aggregation with ŷSD,nS . Furthermore, the total number of intermediate

values within the LD sampling period is defined as k. Weights (w) are determined using an exponential function and a user-
defined value termed as the ratio of importance (g) defined at k and the time instance tj where the index j is reset to zero if
there is no anomaly:

wj ¼ e( j�1) lng
k�1 (7)

In this case, nL is 30 min and nS is 5 min, leading to a value k¼ nL/nS¼ 6. If we define the ratio of the importance of the
5-min model as 10% (i.e. g¼ 0.1), then for this case, Equation (7) leads to g being equal to the sixth weight factor (w6).

Summarising, w determines the fractional value that should be given to ŷSD,nS at time j and can be interpreted as how much
ŷSD,nS should contribute to the reconciled value consisting of the SD and LD predictions. In case there is a prolonged anom-
alous event, it is expected that the accumulation of prediction errors in the SD model will be substantially larger than the

accumulated error in the LD model. Therefore, an exponential weighting is introduced where the importance of the SD
model is reduced while increasingly relying on the LD model with increasing j as time progresses further from the last
known non-anomalous value, i.e.

~ynS
(j) ¼ wj � ŷSD,nS (j)þ (1�wj) � ŷLD,nS (j) (8)

where ~ynS
is the reconciled signal with an nS sampling frequency. The exponential weighting is solely dependent on the value

of g at some time window length k. An alternative to the approach is illustrated in this work, and g can be set using a criterion

for the prediction error (e.g. the mean squared error (MSE)) for specified horizon lengths within a test dataset and sub-
sequently g can be chosen based on the lowest MSE.

2.4. Model performance metrics

Hyperparameter values and model structures for both the benchmark ARIMA models and the LSTM-based AEs were
selected by comparing their predictive performance on the test datasets, i.e. unseen data not used during the training process.
To this aim, the MSE is used:

MSE ¼

PN
i
(yi � byi)2

N
(9)

where byi and yi are the predicted and measured values at time instant i, respectively, and N is the number of considered data
points. Additionally, root mean squared error (RMSE), which is the root of the MSE, as shown in Equation (9), is used as a
metric to provide further assessment of model performance while penalising large errors.

Furthermore, the performance metric coefficient of determination (CoD or R2) was used:

R2 ¼ 1�

PN
i
(yi � byi)2

PN
i
(yi � �y)2

(10)

where �y is the average value of observed data calculated over N data points. The R2 for the training set is defined as R2
train, and

the R2 for the test set is R2
test, and we evaluate R2

test to account for overfitting or underfitting. For the case of the AEs, R2
train has

been used as a metric to improve the model architecture in subsequent trainings.

3. CASE STUDY

3.1. Amsterdam West WWTP

The data validation application was developed and implemented for the Amsterdam West WWTP that is owned by the water
authority Amstel, Gooi en Vecht, and is operated by Waternet, the water utility for the city of Amsterdam and surrounding
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areas. The WWTP has a capacity of 1.1 million population equivalent and seven treatment lanes. The control loops of the

WWTP are largely locally distributed and are dedicated to a single wastewater treatment unit process. Currently, efforts
are being made to upgrade the control process through the development and deployment of smart control applications
that use real-time plant data and data-driven modelling to achieve more optimal plant-wide control. This is highly desired

to achieve the goals of reducing the carbon footprint while meeting effluent quality criteria. Specifically, for the Amsterdam
West WWTP, the objective is to minimise energy consumption and nitrous oxide (N2O) emissions. N2O emissions have a
large impact on the carbon footprint of the treatment system, because N2O has a global warming potential that is 273
times higher than carbon dioxide (CO2) (Forster et al. 2021). Therefore, real-time and automated validation of sensor data

is an integral part that must be implemented to ensure high data quality is ingested by data-driven forecasting and control
tools to optimise such operational and environmentally based objectives.

3.2. WWTP data

In this data validation implementation, raw data from sensors measuring the NHþ
4 and NO�

3 concentrations in the aerobic
tank of the bioreactor unit from one treatment lane were used. These process parameters are key indicators in the control

and for the proper functioning of wastewater treatment, especially during the nitrification and denitrification process of acti-
vated sludge systems. Additionally, NHþ

4 and NO�
3 also provide information on the N2O emissions, and their concentration

levels in the system can provide indications on which production pathways are active for given process conditions. As a result,

these sensor signals are important features when developing data-driven digital twins to model the wastewater treatment pro-
cesses or key state variables within a control scheme with the objective to reduce N2O emissions. The screening of the raw
data from these signals to detect anomalies and conduct their reconciliation is therefore a crucial initial step prior to its

ingestion.
For the anomaly detection routines, thresholds were assigned for the NHþ

4 and NO�
3 data signals, specifically for the

threshold detection, flatline detection, and spike detection methods. This was conducted in consultation with process engin-

eers of the WWTP who are familiar with the process signals and extensively work with the data. The thresholds can be found
in Table S1 in the supplementary information. For model training and testing, a dataset comprising time series starting from
September 2020 until April 2021 was used. Initially, the raw data were investigated in detail to remove anomalies, resulting in
a clean and representative dataset, as detailed in Section 2.4. Furthermore, an additional dataset amounting to approximately

3 months of data, from May 2021 to July 2021, was used to assess the anomaly detection routines. In this dataset, no pre-pro-
cessing step was done, which involved the prior identification and handling of erroneous values, as the primary goal in
utilising this dataset was to test the anomaly detection routines. As mentioned in Section 2.3.3., two ARIMA and two

LSTM-based AE models were trained for each sensor signal from the WWTP to capture the SD and LD. This was achieved
by resampling the raw sensor data to a targeted granularity. Additionally, as required by both the ARIMA and LSTM-based
AEs, a fixed amount of historical input must be decided, which would be used to make forecasts. A careful investigation and

exploration of the raw data was undertaken to better understand the process dynamics behind the normal operations seen in
this system. Through this analysis, supplemented with prior knowledge of wastewater treatment and while considering the
trade-off with computation costs, it was decided that resampling the raw data to 5 min granularity would be sufficient to cap-
ture the SD and 30 min to capture the LD. Finally, the historical input that was used for the SD model was fixed to 3 h, and

for the LD model, it was fixed to 24 h, as summarised in Table 1.

4. RESULTS AND DISCUSSION

4.1. Anomaly detection routines

The anomaly detection routines (Section 2.2.) were run on three different datasets. Dataset 1 consisted of 105 data points of
non-resampled NO�

3 concentration data, of which 904 were manually identified to be anomalous (flatline-type anomalies).

Dataset 2 was the same as dataset 1, but four lengths of 250 data points were replaced with artificial flatlines. Finally, dataset
3 was the same as dataset 2, but 1,000 points were randomly chosen and replaced with artificial single-point-like anomalies.
Here, a single value was replaced with a randomly chosen value between the minimum and maximum in the dataset. The

locations of artificial anomalies were chosen such that there were no adjacent or overlapping anomalies. The random gener-
ation of artificial anomalies and subsequent anomaly detection was repeated five times, and the results are averaged and
noted in Table 2.
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The anomaly detection routines, in particular the flatline detection routines, can detect all flatline anomalies in the data.
This is independent of the flatline value. Detecting spike anomalies is, however, more difficult (see, e.g., Leigh et al. 2019).

4.2. Performance of ARIMA models

ARIMA models were trained to capture the SD and LD for the NO�
3 and NHþ

4 sensor signals. As highlighted in Section 3.2.,
the chosen granularity for SD and LD is 5 and 30 min, and the historical input used to make predictions is 3 h (36 steps) and

24 h (48 steps), respectively. As a result, the ARIMA-based hyperparameters p and q were set to the historical inputs assigned
for a given granularity. Initially, a minor search was conducted to identify the optimal value for the hyperparameter, d. In all
cases, it was found that d ¼ 0 is optimal, indicating that the underlying data do not have a significant upward or downward

trend.
For process technical reasons, the hyperparameters for the SD ARIMA model were set at p, d, q ¼ 36, 0, 36; and the LD

ARIMA models were set at p, d, q ¼ 48, 0, 48. In Figure 2, predictions from the SD ARIMA models for (a) the NO�
3 and (b)

NHþ
4 sensor signal are shown, respectively, on a section of the test set using the green dashed line. Both models provide highly

accurate one-step-ahead predictions, with the models following the trends of the signal with minimal errors. This is also
reflected in the high R2 values, which are equal to 0.99, calculated for both the training and test sets for the SD ARIMA
models, as summarised in Table 3. This can primarily be attributed to the fact that Xi is highly correlated with Xi�1,

which is corroborated by the fact that lower R2 values are found if the resampling rate is raised in the LD ARIMA models.
Figure 3 shows the predictions from the LD ARIMA models on a section of the test set along with the observed data. Here,

and in Table 3, it can be seen that the accuracy of the one-step model predictions has reduced as compared to the SD ARIMA

model predictions. The LD ARIMA model predictions are less accurate even though a higher amount of historical input has
been provided.

4.3. LSTM-based AE models’ performance

Based on the model training procedure detailed in Section 2.3.2., hyperparameters were fine-tuned to increase the prediction
accuracy of the model for the given training and test datasets. In Table S2, detailed information is provided on the various
model structures and hyperparameter combinations that were investigated. After the detailed search, a summary of the result-
ing choices of the hyperparameters used for training the best-performing model has been provided in Table 4. With respect to

the dropout rate hyperparameter, it was seen that NHþ
4 required a slightly higher value (6%) as compared to NO�

3 (3%), given
that the models were overfitting to the NHþ

4 data.
This can be explained by the fact that the NHþ

4 dataset contained various extreme peaks, where high concentration values

are observed, particularly during rainfall events. However, during dry weather conditions and regular operating conditions,
the NHþ

4 concentrations are relatively low and stable, followed by the incoming influent nitrogen trends. This proved challen-
ging for the AEs to learn, as compared to the NO�

3 sensor data, which possess lesser extreme peaks and more gradual trends.

Table 1 | Amount of historical input to capture short-term and long-term dynamics for both NHþ
4 and NO�

3 sensor signals, as used by the
ARIMA and LSTM-based autoencoder models

Model (ARIMA and LSTM-based AE) Granularity (min) Historical input (h) Historical input (no. of timesteps)

Short-term dynamics 5 3 36

Long-term dynamics 30 24 48

Table 2 | Confusion matrices for three different datasets

True positives False positives True negatives False negatives

Uncleaned data 904 0 99,096 0

Uncleaned data, with four flatline anomalies 1,904 0 98,096 0

Uncleaned data, with four flatline anomalies and 1,000 spike anomalies 2,883 7 97,083 27

Note: The first row depicts a matrix for 105 data points of non-resampled NO�
3 data, the second row depicts the matrix for the raw data with four 250-point long flatline anomalies

inserted, and the third row depicts the matrix for the raw data with four 250-point long flatline anomalies and 1,000 point-like anomalies added.
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In Table 3, a summary of the SD and LD model performances from the LSTM-based AEs is provided. In Figure 2(a), the
orange line represents the predictions obtained during a section of the test from the best-performing SD AE model to recon-

struct the NO�
3 data signal. As shown, a fit was achieved with R2 values of 0.97 (training set, as depicted in Figure S4 in the

Supplementary Information) and 0.95 (testing set). Similarly, for the reconstructing of the NHþ
4 data signal, Figure S5 and the

orange line in Figure 2(b) show the results obtained during the training and testing of the best-performing SD AE model,

Figure 2 | Short-term dynamics (5-min) predictions from ARIMA and LSTM-based AE models for (a) NO�
3 and (b) NHþ

4 sensor data on the
test set.

Table 3 | ARIMA and LSTM-based AE models MSE (mg/l), RMSE (mg/l), and R2 values for NO�
3 and NHþ

4 data signal

Model

Short-term dynamics (5-min) Long-term dynamics (30-min)

R2 MSE RMSE R2 MSE RMSE

NO�
3

ARIMA

Train 0.99 0.018 0.13 0.97 0.24 0.49

Test 0.99 0.015 0.12 0.95 0.25 0.50

LSTM-based AE s

Train 0.97 0.24 0.49 0.99 0.048 0.22

Test 0.95 0.28 0.53 0.99 0.056 0.24

NHþ
4

ARIMA

Train 0.99 0.010 0.10 0.96 0.12 0.12

Test 0.99 0.015 0.12 0.95 0.098 0.31

LSTM-based AEs

Train 0.90 0.30 0.55 0.98 0.05 0.22

Test 0.90 0.19 0.43 0.98 0.04 0.21
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respectively, where an R2 value of 0.90 was achieved for both datasets. For the LD AE models to reconstruct the NO�
3 data

signal, the results of the testing set are provided in the orange line in Figure 3. The results obtained in the training set are
provided in Supplementary Material, Figure S6. A high-performance and prediction accuracy with an R2 score of 0.99 was

achieved for both during training and testing. Similarly, reconstruction NHþ
4 using the LD AE model, an R2 score of 0.98

was achieved.
Additionally, the model architectures for the four AE models trained for NHþ

4 and NO�
3 are provided in Tables S3–S6 in the

Supplementary Information. An interesting insight when comparing the SD AE model architectures (Tables S3 and S4) is the
added complexity needed to capture the SD of NHþ

4 . The need for an additional hidden layer to increase the prediction accu-
racy could potentially be attributed to the diurnal loads of NHþ

4 that the WWTP receives. These loads are based on

Figure 3 | Long-term dynamics (30-min) predictions from ARIMA and LSTM-based AE models for (a) NO�
3 and (b) NHþ

4 sensor data on the
test set.

Table 4 | Hyperparameters tuned during model training and choices for the final model trainings

Hyperparameter Value/choice Comment

No. of epochs 35 Decision made based on results obtained from a learning curve

Optimiser Adam

Learning rate 0.00001 –

Loss function Mean squared error –

Activation
function

ReLU Same activation function used for all hidden layers

Batch size 112 (5-min AE) and 14
(30-min AE)

Based on a sensitivity analysis, it was concluded that a batch size representing 2 weeks
of data yielded the best results

Dropout rate (p) NHþ
4 sensor signal – 0.06 Dropout regularisation only applied to LSTM layers

NO�
3 sensor signal – 0.03
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consumption trends that influence the nitrification process in the aerobic tank. Additional observations can be deduced from

the results regarding the LD AE models. Firstly, the predictive performance from the LD AE models was higher than the per-
formance from the SD model predictions. This could be expected, considering that more historical data were used, where
timesteps amounting to 24 h were entered for the LD AE models as compared to 3 h for the SD models. LSTM layers are

known to adequately learn the long-term trends when provided with a long history. Secondly, the LD AE model for NO�
3

required more hidden layers in both the encoder and decoder components of the model, leading to the model becoming
‘deeper’ compared to the SD AE model for NO�

3 (as shown in Tables S3 and S5). This was not the case when reconstructing
the NHþ

4 data signal while capturing the long-term dynamics, as shown in Table S6. This could be explained due to seasonal

variations affecting the nitrification and denitrification processes. Should the nitrification process be affected (e.g., due to
lower temperatures), the amount of NO�

3 in the aerobic tank could be influenced. Similarly, if the denitrification process
is affected, an indirect influence of the NO�

3 in the aerobic tank could occur, given the Amsterdam West WWTP bioreactor

is completely mixed with internal recycles. It is, therefore, hypothesised that the modelling of long-term dynamics of the NO�
3

data signal through the LD AE is affected more by seasonal effects, which therefore require more complex model architec-
tures. Note that several authors, such as Do et al. (2022) and Yadav et al. (2023), have attempted to include seasonal effects of

wastewater inflow behaviour with SARIMA, an extension of ARIMA models to capture seasonal effects.

4.4. Comparing reconciliation using recursive predictions and aggregation

During longer anomalous events, such as flatlines in raw data, the trained models used for reconciliation will be required to
perform recursive predictions (inputting predictions as input) to increase the forecasted steps provided by the model. The
recursive predictive power of the ARIMA and LSTM-based AE was compared for both the SD and LD models using the

same fixed time horizon. This was conducted for two windows within the NO�
3 sensor test set with a forecasting horizon

of 4 h. In Figure 4, the recursive performance within the forecasting horizon of the different models can be seen.
Furthermore, the combined MSE values calculated during the 4-h forecasting horizon are provided in Table 5. As can be

seen, the SD models performed more accurate predictions compared to the LD models. With respect to the SD models
(Figure 4(a) and 4(c)), the LSTM-based AE performed better than the ARIMA model, where the predictions from the
former can be seen to follow the trends and have a reasonable fit to the observed data. The SD ARIMA model follows the

general trend by having a poorer fit. This can be seen in the MSE values, as well as shown in Table 5. For the LD models
(Figure 4(b) and 4(d)), both the ARIMA and LSTM-based AE models can be considered unsatisfactory in performing recur-
sive predictions. The LD ARIMA model is seen to follow the general trend of the observed data but has a poor fit to the
observed data. The LD LSTM-based AE model seems to struggle to follow the trend and fit the observed data. This highlights

a limitation in modelling LD using the ARIMA and LSTM-AE. The use of lower granularity and increased historical input was
found to be insufficient. Based on results obtained in these example cases, it can be deduced that the SD LSTM-AE model has
the potential of accurately reconciling for an anomaly event in nitrate data that is up to 3 h long. However, this result is based

on a limited analysis conducted on a fraction of samples. In-depth analysis by testing the models on various scenarios is
warranted.

To mitigate the accumulation of errors when predicting future values, a methodology described in Section 2.4. uses an

aggregation of the SD and LD models with exponential weighting. For the Amsterdam West WWTP use case, based on
prior knowledge of the biological treatment process, certain choices were made for the parameter values used to calculate
the exponential weights, as defined in Equation (8). The value for the parameter ratio of importance (g) was set to be 0.1,

and the value for k was set to 6. This means that the sixth prediction made by the 5-min SD model in a forecasting horizon
will be weighted 10%, and therefore, the contribution from the 30-min model, which is up-sampled to 5 min, will be 90%. To
test this methodology, two synthetic flatlines were created in the same windows in the NO�

3 test set that were demonstrated
earlier for the recursive prediction results. In Figure 5, a comparison is shown between the aggregated ARIMA (maroon line)

and AE (grey line) models’ performance during synthetic flatlines (red line) generated. The aggregated results are also com-
pared with the actual data observed (blue line) from the nitrate sensor signal. As expected, the aggregation of the LSTM-based
AE models resulted in a poor fit to the observed data. This can be attributed to the lower-performing LD model with respect to

the recursive predictions. The aggregated results from the ARIMA models performed marginally better than the AE aggrega-
tion, which can also be attributed to the better-performing recursive predictions by the LD ARIMA model, as can be seen in
the performance metrics in Table 5.
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4.5. Limitations and future perspectives

In this study, a methodology to validate dynamic sensor data from a full-scale WWTP was demonstrated. The reconciliation
of the data signals requires high-performance data-driven models where the predictions can be used to replace the anom-
alous values observed in the raw dataset. In the case of one-step-ahead predictions, it was seen that traditional time series

regression models such as the ARIMA as well as more complex AI-based neural networks provide high [�0.95 for nitrate
and� 0.90 for ammonium] R2 values and would be sufficient in reconciling single-value-based anomalies. In more challen-
ging tasks of reconciling long anomalous events such as flatlines, highly accurate model predictions are needed to mitigate

the accumulation of residual errors. However, certain limitations in the models identified to perform this task were seen.
Although LSTM-based AE models have the potential to show superior performance as compared to ARIMA models
(Siami-Namini et al. 2019), the results in this study tell a different story. Firstly, AEs are designed to provide a

Figure 4 | Comparing recursive predictions made on two windows in the NO�
3 test set by the 5-min or SD models (a and c) and 30-min or LD

models (b and d).

Table 5 | MSE values (mg/l) calculated for the two windows used within the NO�
3 test set to assess the recursive predictive performance

Model type 5-min/SD model 30-min/LD model

ARIMA 3.86 2.19

LSTM-based AE 0.73 3.77
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reconstruction of a dataset, and the approach used for training and selection here might not be optimal for training models
with good forecasting ability. The training process can be set up in such a way as to steer the model to learn to improve the

recursive prediction accuracy by employing a multi-step-ahead loss function, which measures the accumulated error for con-
secutive time steps (Bentivoglio et al. 2023). Alternatively, more conventional neural networks tuned at forecasting
performance is a direction worth investigating, considering the decreased amount of the complexity of the model structures

compared to LSTM-AE. Furthermore, only univariate models were considered in this study, where predictions for a sensor
signal were made while only considering its own history. More data or information, such as inputting other correlated
sensor signals that influence the nitrification and denitrification processes, can help in improving the recursive predictive,

i.e. forecasting performance as well as capturing seasonal effects by, e.g., SARIMA models (Do et al. 2022; Yadav et al.
2023). Finally, the calculation of a prediction interval of (autoregressive) models can be an interesting addition (Hill &
Minsker 2010). A prediction interval can provide valuable information on the increasing level of uncertainty that a user

can expect when making predictions over a future horizon. Therefore, future research will be targeted at improving the
reliability of the forecasting performance by assessing models of intermediate complexity, e.g. SARIMA and neural network
models.

The aggregation methodology introduced in this study is a straightforward method to utilise two different models. In this

case, models have differently trained parameters and sample time durations. The methodology can further be refined by mini-
mising (for example) the MSE with the aid of the weighting parameter g. Furthermore, calibration of the reconciliation
procedure can be improved further by minimising (for example) the MSE with the aid of the weighting parameter g and

the fixed parameter k. Finally, the methods are being tested in a real production environment of the water utility Waternet,
while connections to the legacy system of the water company are preserved using a similar procedure as described in Seshan
et al. (2023).

Figure 5 | Comparing the aggregated ARIMA (maroon dashed line) and AE models (grey dashed line) for two examples where synthetic
flatlines (red dashed-dot line) were added. The aggregated results were compared with observed NO�

3 concentrations (blue line).
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5. CONCLUSIONS

In this paper, a detection and reconciliation procedure has been described where the reconciliation accuracy of data tagged as
anomalous has been successfully assessed. For reconciliation, the performance of LSTM-AE models that were identified after
an extensive hyperparameter search was compared with the performance of ARIMA models using a training procedure that

captures SD and LD timescale dynamics. The following conclusions are drawn:

• For the detection of sensor signal faults, the performance of the statistical and heuristic methods is flawless for single-point

anomalies, and only 2.7% of the points were incorrectly classified due to spike anomalies.

• One-step-ahead predictions from the SD and LD models are used for reconciling single-value-based anomalies, which are
provided highly accurate predictions for both NO�

3 (SD: R2� 0.95, RMSE� 0.53 mg/l; LD: R2� 0.95, RMSE� 0.50 mg/l)

and NHþ
4 (SD: R2� 0.90, RMSE� 0.55 mg/l; LD: R2� 0.95, RMSE� 0.31 mg/l) sensor data. When performing recursive

predictions where residual errors accumulate, the accuracy of the SD AE model was significantly higher than the perform-
ance of the SD ARIMA model, whereas the performance metrics were in the same order of magnitude for the LD models

and the ARIMA model proved to be slightly more accurate. However, the structure of ARIMA models is less complex, and
the model selection is relatively straightforward compared to that of LSTM AEs.

• The proposed aggregation method of the SD and LD model predictions allows the user to tune the accuracy of the recon-

ciled signal by aggregating the outputs of both models with time-weighted importance.

Hence, the DVR procedure proposed in this work shows that it is possible to detect a large number of single-point

anomalies and correct these with high accuracy, where the accuracy of AE models surpasses the accuracy obtained by
ARIMA models. For contextual anomalies, especially when dealing with environmental sensor data subject to (sudden)
environmental events, the current univariate modelling approach reaches its performance limits in reconciling the real
sensor signal with increasing forecasting horizon due to, most probably, ‘unknown’ influent dynamics. As a next step, a

multi-step-ahead loss function during the training process should be able to improve the prediction accuracy for long(er)
time horizons. Finally, it is hypothesised that inputting other correlated sensor signals and including the calculation of pre-
diction intervals will benefit the usability of the DVR approach by increasing its accuracy for longer contextual anomaly

events and by showing the uncertainty involved in forecasting, respectively.
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