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Managementsamenvatting 

Evaluatie van QSAR tools in combinatie met bioassays voor transformatieproducten en 
opkomende stoffen 

Auteurs Astrid Reus, MSc., dr. Renske Hoondert, dr. Miina Yanagihara 

De drinkwatersector kent vele uitdagingen voor wat betreft de waterkwaliteit van hun bronnen als gevolg van 

chemische bedreigingen. Door een gebrek aan toxicologische informatie voor veel opkomende stoffen is het niet 

altijd mogelijk om mogelijke risico's voor de volksgezondheid en het milieu te beoordelen. In silico (computer)tools 

voor het voorspellen van de toxiciteit van stoffen bieden hiervoor een oplossing. Op basis van de chemische 

structuur kunnen de mogelijke schadelijke effecten van een stof worden beoordeeld met behulp van kwantitatieve 

structuur-activiteitsrelaties (quantitative structure-activity relationships, QSAR) of read-across naar nauw verwante 

stoffen. Uit ons onderzoek blijkt dat methoden met bacteriën of cellen (bioassays) kunnen worden gebruikt om de 

met in silico-tools verkregen resultaten te verifiëren. Deze informatie biedt perspectieven voor de preventie van 

risico's voor de menselijke gezondheid en het milieu. 

                    
Geïntegreerde teststrategieën voor de beoordeling van watermonsters (links) en afzonderlijke waterrelevante stoffen (rechts) 

Belang: beoordeling van potentiële risico's van 

stoffen in water  

In drinkwaterbronnen kunnen lage concentraties van 

veel verschillende stoffen met uiteenlopende fysisch-

chemische eigenschappen worden aangetroffen. 

Voor nieuwe, opkomende stoffen is er vaak weinig 

informatie beschikbaar over de toxische 

eigenschappen en de mogelijk schadelijke effecten 

op de volksgezondheid en het milieu. In een 

ongewone situatie of een noodgeval, wanneer water 

plotseling een hoge concentratie van een chemische 

stof bevat, is het van essentieel belang om snel de 

potentiële risico's voor de drinkwaterproductie, de 

volksgezondheid en het milieu te beoordelen.  

Een gebrek aan informatie maakt het moeilijk om de 

potentiële risico's van stoffen in water in te schatten. 

Vaak kan op basis van het concept "threshold of 

toxicological concern" (TTC) voorzichtig een veilige 

grenswaarde voor de gezondheid worden afgeleid. In 

de praktijk is het echter doeltreffender om een 

nauwkeuriger beoordeling van potentiële risico's te 

maken op basis van een in silico benadering om 

onnodige maatregelen en bezorgdheid als gevolg van 

een conservatieve beoordeling te voorkomen. 

Aanpak: combineren van resultaten van QSAR, 

read-across en bioassays 

In het huidige BTO-project werden zestien 

waterrelevante stoffen geprioriteerd voor QSAR en 

read-across op bacteriële mutageniteit met behulp 

van in silico modellen, waaronder de QSAR Toolbox, 

VEGA QSAR en CASE Ultra.   
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QSAR 

Als de identiteit of structuur van een stof in water 

bekend is, kunnen in silico modellen worden gebruikt 

om de toxiciteit te voorspellen. QSARs laten zien 

welke chemische substructuren en/of fysisch-

chemische eigenschappen een bepaald type toxiciteit 

kunnen voorspellen. Op basis van de chemische 

structuur kan worden bepaald of een nieuwe stof 

een "structural alert" heeft voor een bepaald effect. 

Een structural alert betekent dat de stof op basis van 

de chemische structuur een bepaald effect kan 

vertonen, rekening houdend met het feit dat in de 

praktijk andere eigenschappen de mate van toxiciteit 

en de potentiële risico's beïnvloeden.  

Read-across 

Voor een meer betrouwbare voorspelling kan de stof 

door middel van een zogenaamde read-across 

worden vergeleken met stoffen met een soortgelijke 

chemische structuur en fysisch-chemische eigen-

schappen. Op die manier kunnen de aannemelijke 

schadelijke effecten van een stof op de menselijke 

gezondheid en het milieu worden beoordeeld.  

Toxicologische eindpunten 

Daarnaast is voor zeven geselecteerde stoffen (een 

selectie op basis van DNA-reactiviteit en oplosbaar-

heid in water) een Ames-fluctuatietest uitgevoerd 

om de bacteriële mutageniteit te onderzoeken. Ook 

werden zes stoffen geselecteerd voor QSAR en read 

across op oestrogene activiteit in de QSAR Toolbox 

en VEGA QSAR op basis van structurele 

waarschuwingen voor oestrogene activiteit. 

Resultaten: in silico tools en bioassays in een 

geïntegreerde teststrategie 

Voor alle geselecteerde verbindingen voor 

beoordeling van bacteriële mutageniteit werd bij 

combinatie met in silico verkregen resultaten een 

negatieve of onbesliste voorspelling gedaan. De 

Ames fluctuatietest bevestigde de negatieve 

voorspellingen voor de zeven beoordeelde stoffen. 

Bevestiging van positieve voorspellingen zou de 

waarde van de combinatie van in silico tools en 

bioassays sterker hebben gemaakt, maar dergelijke 

verbindingen ontbraken in de huidige dataset. 

Niettemin werden geïntegreerde teststrategieën 

ontwikkeld voor afzonderlijke stoffen en 

watermonsters, waarbij het in het laatste geval ging 

om complexe mengsels van verbindingen in lage 

concentraties in water. In silico tools kunnen niet 

worden gebruikt zonder chemische analyse om de 

stoffen te identificeren die van belang zijn bij de 

beoordeling van de watermonsters. Een in silico 

aanpak is sneller en kosteneffectiever voor 

individuele stoffen zonder toxiciteitsgegevens dan 

het uitvoeren van toxicologische studies. Bioassays 

kunnen worden gebruikt om in silico verkregen 

resultaten te verifiëren. 

Toepassing: gecombineerd gebruik van in silico-

tools en bioassays heeft toegevoegde waarde  

In silico tools geven inzicht in welke microveront-

reinigingen in het water een risico voor de gezond-

heid en het milieu kunnen vormen. In combinatie 

met bioassays kunnen de verkregen resultaten 

worden geverifieerd. Daardoor hebben ze een 

duidelijke meerwaarde voor het oplossen van diverse 

waterkwaliteitsvraagstukken rond het prioriteren van 

vervolgonderzoek voor veiligheids- en risicobeoorde-

ling en zorgen ze ervoor dat maatregelen en besluit-

vorming om deze risico's te beperken doelgericht 

kunnen worden gekozen en ingezet. Ontwikkelaars 

van in silico tools breiden voortdurend de databan-

ken en algoritmen uit om de voorspellende capaciteit 

van hun instrumenten te optimaliseren, met name 

voor de meer complexe toxicologische eindpunten 

zoals reproductietoxiciteit, neurotoxiciteit en 

immunotoxiciteit.  

Het Rapport 

Dit onderzoek wordt gerapporteerd in Evaluation of 

QSAR tools in combination with bioassays for 

transformation products and emerging substances 

(BTO-2023.015). 

Andere relevante publicaties: 

 Toepassen van QSAR en read-across modellen 

voor waterkwaliteit, H2O online maart 2022 

 Tools for human health risk assessment of 

emerging chemicals, BTO 2018.030.  

 The Threshold of Toxicological Concern (TTC): 

refinement of the concept and application to 

drinking water, BTO 2016.069.  

 



 

BTO 2023.015 | February 2023 
Evaluation of QSAR tools in combination with bioassays for transformation products 
and emerging substances 5 

Management summary 

Evaluation of QSAR tools in combination with bioassays for transformation products and 
emerging substances 

Authors Astrid Reus, MSc., dr. Renske Hoondert, dr. Miina Yanagihara 

The drinking water sector is confronted with many challenges in terms of water quality of their sources due to 

chemical threats. Due to a lack of toxicological information for many emerging substances, assessing any possible 

risks for public health and the environment is not always possible. In silico (computer) tools aimed at predicting the 

toxicity of substances offer a solution for this. Based on the chemical structure, the potential adverse effects of a 

substance can be assessed using quantitative structure-activity relationships (QSAR) or read-across to closely 

related substances. Our research shows that cell-based methods using bacteria or cells (bioassays) can be used to 

verify the results obtained with in silico tools. This information action perspectives for preventing risks to human 

health and the environment. 

                              
Integrated testing strategies for evaluating water samples (left) and individual water-relevant substances (right) 

 

Importance: assessing potential risks of substances 

in water  

Low concentrations of many different substances 

with varying physicochemical properties can be 

found in drinking water sources. For new, emerging 

substances, there is often little information available 

on toxicological properties and potentially adverse 

effects on human health and the environment. In an 

unusual situation or an emergency, when water 

suddenly contains a high concentration of a 

chemical, it is essential to quickly assess the potential 

risks to drinking water production, human health and 

the environment.  

A lack of information makes it difficult to assess the 

potential risks of substances in water. It is often 

possible to conservatively derive a safe limit value for 

health based on the threshold of toxicological 

concern (TTC) concept. In practice, however, it is 

more effective to make a more accurate assessment 

of potential risks based using an in silico approach to 

avoid unnecessary measures and concerns due to a 

conservative assessment. 

Method: combining results of QSAR, read-across 

and bioassays 

In the current BTO project, sixteen water-relevant 

substances were prioritized for QSAR and read-

across on bacterial mutagenicity using in silico 

models including th QSAR Toolbox, VEGA QSAR and 

CASE Ultra.  

QSAR 

If the identity or structure of a substance in water is 

known, in silico models can be used to predict the 

toxicity. QSARs show which chemical substructures 

and/or physicochemical properties could predict a 

particular type of toxicity. Based on the chemical 

structure, one can determine whether a new 

substance has a 'structural alert' for a specific effect. 

A structural alert means that based on the chemical 
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structure the substance may exhibit a particular 

effect, keeping in mind that, in practice, other 

properties affect the degree of toxicity and potential 

risks.  

Read across 

For a more reliable prediction, the substance can be 

compared by a so-called read-across with substances 

with a similar chemical structure and 

physicochemical properties. In this way, it is possible 

to assess the plausible adverse effects of a substance 

on human health and the environment.  

 

Toxicological endpoints 

In addition, an Ames fluctuation test was performed 

for seven selected substances (a selection based on 

DNA reactivity and water solubility) to investigate 

bacterial mutagenicity. Also, six substances were 

selected for QSAR and read across on estrogenic 

activity in the QSAR Toolbox and VEGA QSAR based 

on structural alerts for estrogenic activity.  

 

Results: in silico tools and bioassays in an 

integrated testing strategy 

All compounds selected for assessment of bacterial 

mutagenicity were predicted negative or 

inconclusive when combining the results obtained 

with the in silico tools. The Ames fluctuation test 

confirmed the negative predictions for the seven 

substances evaluated. Confirmation of positive 

predictions would have made the value of combining 

in silico tools and bioassays stronger, but such 

compounds were lacking in the current dataset.  

Nevertheless, integrated testing strategies were 

developed for individual substances and water 

samples, the latter being complex low-level mixtures 

of compounds in water. In silico tools cannot be used 

without chemical analysis to identify the substances 

of interest when evaluating the water samples. An in 

silico approach is faster and more cost-effective for 

individual substances without toxicity data than 

conducting toxicological studies. Bioassays can be 

used to verify the results obtained with in silico tools.  

Implementation: combined use of in silico tools 

and bioassays has added value  

In silico tools provide insight into which micro-

pollutants in water may pose a risk to health and the 

environment. When combined with bioassays, the 

results obtained can be verified. As a result, they 

have a clear added value for solving various water 

quality questions around prioritizing follow-up 

research for safety and risk assessment and ensuring 

that measures and decision-making to mitigate these 

risks can be purposefully chosen and deployed. 

Developers of in silico tools are continuously 

expanding the databases and algorithms to optimize 

the predictive capacity of their tools, especially for 

the more complex toxicological endpoints such as 

reproductive toxicity, neurotoxicity and 

immunotoxicity.  

The Report 

This research is reported in Evaluation of QSAR tools 

in combination with bioassays for transformation 

products and emerging substances (BTO-2023.015). 

 

Other relevant publications: 

 Toepassen van QSAR en read-across modellen 

voor waterkwaliteit, H2O online maart 2022 

 Tools for human health risk assessment of 

emerging chemicals, BTO 2018.030.  

 The Threshold of Toxicological Concern (TTC): 

refinement of the concept and application to 

drinking water, BTO 2016.069.  
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1 Introduction 

Production and supply of safe drinking water is the primary task of drinking water companies. A particular challenge 

is related to the water quality of the raw water sources. Surface water as well as groundwater contains low 

concentrations of chemical substances with diverse physical-chemical properties (Houtman et al. 2013, Rozemeijer 

and Broers, 2007, Schipper et al. 2008, Ter Laak et al. 2012). For new, emerging substances, information on 

possible adverse effects to human health and the environment is often not available. In case of an emergency, 

when the water suddenly contains a chemical substance at a high concentration, rapid assessment of possible 

consequences for drinking water production and the environment is essential. Since water sources can be 

contaminated with many different chemical substances at low concentrations, various treatment processes can be 

needed to prepare safe drinking water, especially in the case of using surface water as a source (Di Marcantionio et 

al. 2020, Kegel et al. 2010, Verliefde et al. 2007). During water treatment, byproducts can be formed for which 

toxicological properties are usually unknown and it is acknowledged that these transformation products can be 

more toxic than the parent compounds (Brunner et al. 2019, Sharma et al. 2018). In summary, at different stages in 

drinking water production it is often difficult to assess potential risks for human health and the environment due to 

lack of toxicological information.  

Effect-based monitoring using bioassays is a valuable approach to assess the potential of substances to cause 

adverse effects to human health and the environment. Bioassays are experiments with cells or bacteria (in vitro) or 

with living organisms, invertebrates such as water fleas and mussels (in vivo) and can be performed in laboratories 

or in the field (in situ) (Brack et al. 2016, Robitaille et al. 2022). Bioassays are cost-effective when a water sample is 

tested as a mixture of chemical substances and toxicity can be assessed without identifying substances by chemical 

analysis. It is possible to perform bioassays also for new, emerging substances and transformation products if the 

identity and structure is known and sufficient test material is available, however, depending on the number of 

different bioassays this can be time consuming and costly. Since many adverse effects are possible (for example, 

endocrine disruption, effects to the nervous system and DNA damage), a factorial large number of bioassays is 

needed for toxicity assessment of all water samples and all individual (emerging) compounds (Schriks et al. 2015).  

In silico (computer) models focusing on toxicity assessment offer a possible solution (Ellison et al. 2010, Simon-

Hettich et al. 2006). These models contain databases with information of different adverse effects for many 

substances. Quantitative Structure-Activity Relationship (QSAR) models can be used to indicate the presence of 

‘structural alerts’ for a certain adverse effect. These structural alerts are substructures or functional groups within 

chemical structures that are often associated with adverse effects (Benigni 2004, Benigni and Bossa 2008, Benigni 

et al. 2013, Cronin et al. 2017). In addition, the chemical structure of the target compound can be compared to 

substances with chemical similarity (read-across) to estimate possible adverse effects to human health and the 

environment (Benfenati et al. 2019, Hewitt et al. 2010). For individual substances lacking toxicological information, 

the in silico approach can be less time-consuming and more cost-effective than conducting bioassays. A 

prerequisite of using in silico models is availability of the target compound chemical identity. 

This project is a follow-up of the BTO report 2018.030 ’Tools for human health risk assessment of emerging 

chemicals’. In this report a method for structured toxicological evaluation of chemicals has been described using 

existing data and in silico tools such as QSAR, read across and the TTC concept. The report also addressed the 

functional properties of various in silico tools. The current BTO project updates this knowledge, developed manuals 

for two in silico tools and presents additional research on combining in silico tools with bioassays. 
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The aim of this BTO project was to develop an effective and practical strategy for human risk assessment of 

substances lacking toxicological information that can be used to assess new, emerging substances in drinking water 

sources and in case of emergencies. The strategy focused on two toxicological endpoints relevant for drinking 

water and distinguishes between  

1) prioritization of substances that are most relevant for human health (useful for risk assessment, 

purification effort, source tracking and lobby)  

2) rapid assessment of hazard and risks in case of emergencies.  

 

The project was focused on the implementation of the endpoint mutagenicity (a mechanism of DNA damage) and 

two different software applications, i.e. the OECD QSAR Toolbox (www.qsartoolbox.org) and VEGA QSAR (Benfenati 

et al. 2013, https://www.vegahub.eu/portfolio-item/vega-qsar/). Herewith, the added value of combining bioassays 

and in silico models was studied, resulting in availability of toxicological data of selected substances and 

information on the position of bioassays and in silico models in a strategy for hazard and risk assessment.  

  

https://www.vegahub.eu/portfolio-item/vega-qsar/
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2 In silico tools for toxicological assessment 

In silico (computational) toxicology refers to the prediction of the toxicity of a chemical from its molecular structure 

(QSAR) and assessment from the properties of similar compounds whose toxicity is known (read-across). It is rapid, 

economic and animal-free, and besides its applications in regulatory toxicology, it can also be applied to water 

relevant substances. In silico models contain databases with information of different adverse effects for many 

substances. A prerequisite of using in silico models is availability of the target compound chemical identity, as the 

CAS number, chemical name or structure is used as input for the tools. QSAR models can be used to indicate the 

presence of ‘structural alerts’ for a certain adverse effect. In addition, the chemical structure of the target 

compound can be compared to substances with chemical similarity (read across) to estimate possible adverse 

effects to human health and the environment. For individual substances lacking toxicological information, an in 

silico approach is less time consuming and thus more cost-effective than conducting bioassays (Benigni et al 2020, 

Yang et al. 1998, Wichard 2017). 

The QSAR Toolbox is a free software application which is often used in the field of in silico toxicology. The QSAR 

Toolbox is funded and co-owned by the Europen Chemical Agency (ECHA) and the Organisation for Economic 

Cooperation and Development (OECD), where OECD is leading in the updates 1-2 times a year. The multiple 

varieties and functionalities resulted in the widely acceptance of this QSAR approach in a diverse range of 

governmental organizations, research institutions and industry (www.qsartoolbox.org). The toxicological endpoint 

of interest can be selected and predicted by internationally harmonized methods, such as the use of empirical data 

of analogues and the application of trend-analysis, read-across and available QSAR data. The functionalities that the 

program offers are predicting potential hazards by profiling the target molecule and its metabolites, identifying 

analogues of a target chemical, retrieving experimental results available for those analogues, and fill data gaps by 

trend-analysis, read-across, and QSARs. Prediction of toxicity by data gap filling involves manual steps (category 

definition and subcategorization) and expert judgment. The QSAR Toolbox consists of six modules, i.e. 1) Input, 2) 

Profiling, 3) Data, 4) Category Definition, 5) Data Gap Filling and 6) Report. The first three modules can be 

considered as the workflow set up; input of the target compound, definition of the query and which data should be 

included in the query. The last three modules consist of data gathering and prediction parts, to classify the target 

chemical(s) by grouping them with analogues based on chemical properties. All modules contribute to the 

gathering of endpoint specific data of the target chemical (Dimitrov et al. 2016). Standardized, automated 

workflows have at this point been developed for three endpoints, i.e. 1) ecotoxicity, 2) skin sensitization and 3) skin 

sensitization for defined approaches. A workflow can be described as selections and preferences from start (Input) 

to end (Report). It is very likely that the workflows will be extended to other endpoints in subsequent versions of 

the QSAR Toolbox (Yordanova et al. 2019).  

 

  

http://www.qsartoolbox.org/
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Initially, the suitability of Generalized read-across (GenRA) was explored, which is a recently developed read-across 

tool of the US EPA (Shah et al. 2016) and was proposed as a simpler and more rapid alternative to the QSAR 

Toolbox for hazard and risk assessment of water relevant substances. GenRA is incorporated into the US EPA 

CompTox Chemicals Dashboard1 and is able to predict responses related to in vivo toxicity (based on ToxRefDB1,2 

(Martin et al. 2009)). A preliminary study with the GenRA revealed that its functionalities did not match the need 

for water quality assessment, as the link to water-relevant endpoint, such as genotoxicity and endocrine disruption, 

was not clear (it links to ToxRefDB and ToxCast1 (Dix et al. 2007)) and the analogue chemicals were often 

considered not relevant (no possibility to change manually). Based on a systematic comparison of other available 

software applications (Table 1), VEGA HUB was found to be the most interesting, which was therefore selected for 

further exploration instead of the GenRA.  

The VEGA HUB is a freely available platform offering a wide collection of QSAR and read-across software and 

models. All software applications presented in the VEGA HUB3 are in line with the REACH and the ICH M7 guidelines 

(ECHA 2008, EMA 2015). Similar to the QSAR Toolbox, the VEGA HUB continuously develops by feedback and 

comments from the users and evaluators. The evaluators consist of experts from companies, institutes, authorities, 

and regulators. VEGA QSAR is a comprehensive collection of QSAR models, constructed in well-known QSAR 

software tools such as CEASAR and SarPy (Benfenati et al. 2013). All the specified models contain target endpoints 

for regulatory purposes similar to the endpoints offered in the QSAR Toolbox, i.e. toxicology, ecotoxicology, 

environmental fate, and physical chemical properties. VEGA QSAR includes both expert rule-based and statistical-

based models. By using ToxRead and ToxWeight it is possible to predict the biological activity of the target 

chemicals based on known values for structurally similar substances. The algorithms in these read-across 

approaches are independent of the VEGA QSAR model algorithms and can thus be considered as two independent 

prediction software programs. The algorithms used in the read-across approaches analyze and define the role of 

fragments and descriptors for both the target chemical and the analogues. The combination of these programs 

provides the user with a potential workflow in the same line as constructed in the QSAR Toolbox. Like the QSAR 

Toolbox, in ToxRead/Toxweight read-across can be performed for one chemical at a time and it is not possible to 

view the analogues, which disables expert judgement. Therefore, the current BTO project focused on the VEGA 

QSAR only.  

 

Since VEGA QSAR has some limitations with respect to adjusting the selection of analogues (Table 1), the 

applicability of CASE Ultra4 (Chakravarti et al. 2012) was also investigated. CASE Ultra is a commercially available 

software application for building predictive models and exploring the underlying mechanisms of biological activity 

of chemicals. It has both expert rule-based and statistical-based methodologies built in for a complete ICH M7 

compliant assessment. CASE Ultra is user friendly and many of its models are fully supported by US FDA and other 

regulatory agencies around the world. CASE Ultra is quite similar to the QSAR Toolbox in terms of the general 

workflow, functionalities, and data gap filling methods. Similar to the VEGA QSAR, CASE Ultra offers expert rule-

based and statistical-based models. CASE Ultra differs from the QSAR Toolbox in completeness as it haves 

automated workflows, more extensive graphs and output results, more guidance in the selections, and more user 

friendly interfaces. In addition, CASE Ultra includes US databases with experimental data on toxicological endpoints, 

which are complementary to the European data from QSAR Toolbox.  

 

  

 
1 https://www.epa.gov/  
2 ToxRefDB provides detailed chemical toxicity data (mammalian toxicity information) in a publically accessible searchable format  
3 www.vegahub.eu  
4 http://www.multicase.com/case-ultra  

https://www.epa.gov/
http://www.vegahub.eu/
http://www.multicase.com/case-ultra
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Many more in silico tools available on toxicity prediction, including the Toxicity Estimation Software Tool (TEST)5, 

Ecological Structure Activity Relationships (ECOSAR) Predictive Model5, EPI (Estimation Program Interface) Suite5, 

Leadscope Model Applier6, ToxTree7, LAZAR8, Spartan9 and SPARC Performs Automated Reasoning in Chemistry10. 

In addition, QSAR models can be developed by institutes themselves (see Table 2). TEST, EPI Suite, ToxTree, QSAR 

Toolbox and VEGA have also been investigated previously, in which QSAR Toolbox was defined as the most 

complete tool as it had one of the largest collections of publicly available data and the most extensive range of 

analysis options of the available tools at that time (BTO 2018.030). It was also recognized that in silico tools are 

under development and that continuous inventarisation is warranted. QSAR Toolbox, VEGA and CaseUltra were 

selected for further research in the current project because of their notoriety in the field of in silico toxicity 

assessment and the possibility to perform QSAR and read-across in the same model. Nevertheless, the models 

mentioned here can be useful for chemical screening and prioritization for further study. Leadscope Model Applier 

was developed in close collaboration with the US Food and Drug Agency (FDA) and was thus primarily developed 

for pharmaceuticals (Roberts et al. 2000). The software is now commercialized via Instem5 and it has been 

expanded with compounds other than pharmaceuticals. In tems of applicability for toxicity assessment it is 

assumed that Leadscope Model Applier is comparable to CASE Ultra, but this was not verified as the software was 

not freely accessible. A comparison of the functional properties of the QSAR Toolbox, VEGA and CASE Ultra is 

shown in Table 1.  

 

Based on Table 1, the differences between the QSAR Toolbox, VEGA HUB and CASE Ultra are limited, the most 

prominent differences are highlighted below. The interface of the QSAR Toolbox is more complicated and the 

software application requires training before use, it is considered user friendly after acquiring training. With VEGA 

QSAR it is possible to predict toxicity of multiple chemicals and multiple endpoints simultaneously, whereas the 

QSAR Toolbox only enables individual prediction of a single endpoint on a single (target) chemical. Within CASE 

Ultra it is possible to run an indefinite large number of chemicals simultaneously, with a recommended maximum 

of 10,000 chemicals at a time. Although high throughput is possible in VEGA QSAR and CASE Ultra, it is not possible 

to adjust the selection of analogous chemicals that are considered to be the most structurally similar to the target 

compounds, a feature that is possible in QSAR Toolbox. Consequently, supported by the possibility to adjust 

descriptors, the predictions of the QSAR Toolbox may be more reliable than those of the VEGA QSAR and CASE 

Ultra. However, expert judgement from a chemical background point-of-view is always needed to provide 

argumentation for acceptance or rejection of a response in any case. Out of the three tools studied, only CASE Ultra 

provides some sort of uncertainty estimate to quantify model reliability.  

The acceptance of predictions obtained with QSAR models in regulatory settings is dependent on individual 

regulatory systems in different OECD11 member counties. The International Council for Harmonisation of technical 

requirements for pharmaceuticals for human use (ICH) M7(R1) guideline on ‘Assessment and control of DNA 

reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk’ describes the rule of thumb 

of combining at least one expert rule-based model and one statistical-based model to receive a convenient toxicity 

prediction with QSARs (EMA 2015). QSAR Toolbox is an expert-rule based model and should therefore be 

supported by at least one other software application. VEGA QSAR and CASE Ultra contain both expert rule-based 

and statistical-based models and are therefore complementary to the QSAR Toolbox.  More background on the 

QSAR Toolbox, VEGA QSAR and CASE Ultra can be found in documentation of the models (www.qsartoolbox.org; 

Benfenati et al. 2013; https://www.vegahub.eu/portfolio-item/vega-qsar/; Chakravarti et al. 2012; 

http://www.multicase.com/case-ultra).  

 

5 https://www.epa.gov/ 
6 www.instem.com  
7 https://toxtree.sourceforge.net/  
8 https://lazar.in-silico.ch/predict  
9 https://www.wavefun.com/  
10 http://www.archemcalc.com/sparc.html  
11 Organisation of Economic Co-Development (www.oecd.org) 

http://www.qsartoolbox.org/
https://www.vegahub.eu/portfolio-item/vega-qsar/
http://www.multicase.com/case-ultra
https://www.epa.gov/
http://www.instem.com/
https://toxtree.sourceforge.net/
https://lazar.in-silico.ch/predict
https://www.wavefun.com/
http://www.archemcalc.com/sparc.html
http://www.oecd.org/
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Table 1: Systematic comparison of the functional properties of the QSAR Toolbox, VEGA HUB and CASE Ultra 

 

 QSAR Toolbox VEGA HUB (combination of 

VEGA QSAR and ToxRead) 

CASE Ultra 

Clear chemical input and clear 

definition of the toxicological 

endpoint? 

YES YES YES 

Adjustable descriptorsa? YES NO NO 

Adjustable selection of 

analoguesb 

YES NO NO 

Additional input of 

physicochemical parameters 

required?  

NO NO NO 

High throughput possible? NO YES YES 

Models pre-definedc in tool?  NO YES YES 

Prediction of toxicity possible 

with QSAR, read across and 

or/trend analysis? 

YES YES (read across by using 

ToxRead) 

YES 

Access to databases? YES (partly) NO YES (partly) 

Option to save the output as a 

report? 

YES YES YES 

Quantitative output options?d YES YES YES 

User friendliness (expert 

judgement on a scale from 1 

(low) to 5 (high)) 

4 4 4 

Complexity (expert judgement 

on a scale from 1 (low) to 5 

(high)) 

1 5 4 

Free availability YES YES NO 

Programming features 

available for e.g. R, KNIME, 

Windows script, Python) 

YES (direct KNIME plug ins) NO (written in C#) NO 

a
 Descriptors are the chemical characteristics of a molecule in numerical form (Danishuddin and Khan, 2016) 

b An analogue is a compound having a structure similar to that of another compound, but differing from it in respect to for example, one or 
more atoms, functional groups, or substructures, which are replaced with other atoms, groups, or substructures (https://en.wikipedia.org)  
c Either a model can be selected or it is clear which model is being used for the prediction 
d Not applicable to qualitative endpoints 

Although most in silico tools are user friendly, to generate reliable output it is essential to follow a training course 

on the application of these methods. Examples of training courses on the OECD Toolbox specifically and in silico 

toxicology generally are those organized by the REACH monitor and the International QSAR foundation (official 

organizers of OECD QSAR Toolbox trainings) and the Fraunhofer ITEM respectively. The practical skills obtained with 

the QSAR Toolbox and VEGA QSAR during the BTO project are described in manuals (Supplementary Information I). 

The manuals provide user friendly and stepwise instructions on the different modules of the software applications. 

With the help of these manuals, one can learn to click on the right buttons to obtain reliable results. The manuals 

emphasize the need for expert judgement, but do not provide details on or further instructions for data 

interpretation. For that part, it is recommended to follow an in silico toxicology training course and refer to other 

experts for peer-to-peer review and discussions on interpretation. The interest of joining an expert group was 

inventoried. Discussions are ongoing if this can be organized within the Dutch toxicology community/water sector.  

  

https://en.wikipedia.org/
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3 Literature search on the use of in silico tools 

combined with bioassays in (drinking) water 

quality practice 

A targeted literature search was performed to search for recent papers on the application of in silico tools and 

bioassays for water quality assessment. The words ‘QSAR’, ‘genotoxicity’ (or ‘mutagenicity’), ‘bioassay’ and ‘water’ 

were used as search terms. The search was performed on 27 January 2021. Several peer-reviewed papers were 

found to describe the use of in silico tools combined with bioassays in (drinking) water quality practice. These 

papers were summarized in Table 2.  

Table 2: Summary of targeted literature search on the application of in silico models in combination with bioassays for water quality 

assessment (abbreviations are listed at the end of the table).  

Author(s) In silico model(s) used Target chemical(s) Bioassay(s) Conclusion 

de Barros et 

al. 2021 

TEST TPs of herbicide 

metribuzin 

Estrogenic 

activity (YES), 

acute toxicity 

(Artemia 

salina), 

cytotoxicity 

(HepG2) 

TPs are potentially more toxic than 

the precursor metribuzin 

Carpinteiro 

et al. 2017 

ECOSAR, TEST TPs of 

pharmaceutical 

diazepam and 

related 

benzodiapines 

Not performed Some TPs could be more 

toxic/mutagenic than the precursor 

drug, confirmatory tests are needed 

Chen et al. 

2021 

Developed by laboratory 

(University of Chinese 

Academy of Sciences, 

Bejing) 

TPs of 

pharmaceutical 

levofloxacin 

Genotoxicity: 

SOS/umu  

The combination of bioassay, QSAR 

computation and chemical analysis 

would be an efficient method to 

screen toxic TPs under chlorination 

treatment 

Cvetnic et al. 

2019 

Developed by laboratory 

(University of Zagreb) 

36 aromatic 

pollutants 

(including aniline, 

phenol and 

toluene) and 

photooxidative 

intermediates 

Acute toxicity 

(V. fischeri) 

QSAR models have a significant 

potential in environmental risk 

assessment 

Li et al. 2016 QSAR Toolbox Various DBPs Not performed Chemical analysis (GC/MS) coupled 

to a QSAR model is a powerful and 

fast nontargeted screening 

technique for compounds for 

identification and prioritization of 

DBPs 
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Table 2: continued 

 

Author(s) In silico model(s) used Target chemical(s) Bioassay(s) Conclusion 

Lu et al. 2020 Developed by laboratory 

(Tongji University, 

Shanghai) 

6 plant protection 

products 

(including 

(Glyphosate and 

Paraquat)  

Not performed QSAR models can be useful to 

derive concentration limits of 

chemicals outside the criteria of 

human drinking water 

Mahmoud et 

al. 2014 

CASE Ultra, OASISa, 

Leadscope 

PhotoTPs of 

banned 

pharmaceutical 

thalidomide 

Genotoxicity 

(Ames), acute 

toxicity (V. fischeri) 

QSAR predictions were in 

contrast with Ames results, 

adverse effects of PTPs cannot be 

excluded, further research is 

warranted 

Matsushita 

et al. 2018 

ToxTree, VEGA 

(CAESAR), LAZAR, TEST 

TPs of 

intermediate 

chemical 3-

methyl-4-

nitrophenol 

Genotoxicity 

(Ames) 

A combination of regression 

analysisb, chemical analysis 

(MS/MS) and QSAR may be useful 

for prioritizing TPs for further 

study (e.g. Ames). Initial starting 

point was Ames on water 

samples 

Matsushita 

et al. 2016 

ToxTree, VEGA 

(CAESAR), LAZAR, TEST 

TPs of contrast 

agent iopamidol 

Genotoxicity 

(Ames) 

A combination of chemical 

analysis (LC/MS) and QSAR may 

be useful for prioritizing TPs for 

further study (e.g. Ames). Initial 

starting point was Ames on water 

samples 

Moon et al. 

2020 

EPI Suite™, ToxTree, 

LAZAR, VEGA (CAESAR) 

PMTs and SVHCs 

(not specified) 

Not performed ToxTree showed highest 

sensitivity for carcinogenicity in 

terms of regulatory purpose, for 

mutagenicity ToxTree is effective 

in terms of specificity and 

accuracy compared to other 

QSAR models 

Pérez-

Garrido et al. 

2008 

Developed by laboratory 

(Catholic University of 

San Antonio, Central 

University of Las Villas, 

Vigo University) 

DBPs (haloacetic 

acids) 

Not performed Predicted values were close to 

available experimental data 

Qin et al. 

2017 

Developed by laboratory 

(Guilin University of 

Technology) 

50 DBPs from 9 

classes (including 

halomethanes, 

haloacetic acids 

and nitrosamines) 

Interaction with 

DNA (E.coli +/- 

DNA), cytotoxicity 

(V. fischeri), 

interaction with 

proteins/peptides 

(E. coli +/- GSH) 

QSAR models are useful for 

toxicity prediction of DBPs 

a Model included in QSAR Toolbox 
b Regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the 'outcome' or 
'response' variable, or a 'label' in machine learning parlance) and one or more independent variables (often called 'predictors', 'covariates', 
'explanatory variables' or 'features'). https://en.wikipedia.org  

 

  

https://en.wikipedia.org/
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Table 2: continued 

 

Author(s) In silico model(s) used Target chemical(s) Bioassay(s) Conclusion 

Sanabria et 

al. 2021 

VEGA, QSAR Toolbox, 

CASE Ultra 

TPs of 

pharmaceutical 

anastrozole 

Not performed TPs were non-biodegradable and 

showed positive alerts for 

mutagenicity, some TPs required 

further study based on QSAR 

predictions on carcinogenicity 

and mutagenicity, performance 

of in vitro confirmatory tests is 

recommended 

Shao et al. 

2019 

QSAR Toolbox Chemicals 

identified with 

non-target 

screening of 

surface water 

Genotoxicity 

(Ames, MN), 

developmental 

toxicity (Zebrafish 

embryo toxicity 

test) 

In silico approaches were 

integrated with bioassays, 

literature data and chemical 

analysis to link genotoxic effects 

and hazardous compounds in 

surface water 

Stalter et al. 

2016 

Spartan, SPARC, 

literature 

50 DBPs from 9 

classes (including 

halomethanes, 

haloacetic acids 

and nitrosamines) 

Genotoxicity 

(umuC, Ames, p53-

bla), oxidative 

stress (AREc32, 

ARE-bla), DNA 

transcription (NF-

kb-bla), interaction 

with DNA (E. coli 

+/- DNA) 

cytotoxicity (V. 

fischeri), 

interaction with 

proteins/peptides 

(E. coli +/- GSH) 

In silico tools provide a 

mechanistic understanding of 

results of effect-based 

measurements, indirect 

genotoxicity (e.g. via oxidative 

stress) is more plausible than 

direct DNA damage for most 

investigated DBPs 

Wei et al. 

2020 

Developed by laboratory 

(Guanxi Medical 

University, Shenzen 

University, University of 

Illinois) 

DBPs 

(haloacetonitriles) 

Genotoxicity 

(comet assay), 

cytotoxicity (CHO-

K1) 

QSARs can detect toxicity of DBPs 

prior to effect-based methods 

Ye et al. 2014 QSAR Toolbox 39 chemicals 

identified with 

non-target 

screening of 

surface water 

(including 

atrazine, nicotine, 

pyrene, phenol) 

Genotoxicity 

(SOS/umu, MN) 

SOS/umu and MN test are a 

useful tool for evaluation and 

classification of genotoxicity of 

complex mixtures, potential 

genotoxicants can be initially 

identified with additional 

information from chemical 

analysis and the QSAR toolbox 

Zhang et al. 

2020 

Developed by laboratory DBPs 

(halogenated 

aromatics) 

Cytotoxicity (CHO-

K1) 

Major toxicity drivers among the 

target DBPs were identified, DBPs 

with the highest concentrations 

may not necessarily contribute to 

the highest proportions of overall 

toxicity.  
Abbreviations: CHO: Chinese hamster ovary cells, DBP: disinfection byproduct, ECOSAR: ecological structure activity relationships (tool), EPI 
Suite: estimation program interface Suite™ (tool), GSH: glutathione, LAZAR: lazy structure activity relationships (tool), MN: micronucleus test, 
PMT: persistent, mobile and toxic substances, PTP: phototransformation product, SVHC: substances of very high concern, TEST: toxicity 
estimation software tool, TP: transformation product, YES: Yeast Estrogen Screen. Note: SOS/umu is not an abbreviation, but refers to the 
mechanism (SOS response/umuC gene) involved in the respective bioassay. The same holds true for AREc32, p53, Nrf2. HepG2 is a human 
hepatocellular carcinoma cell line. CAESAR, CASE Ultra, OASIS, SPARC and VEGA are tradenames of in silico tools and models. 
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From this targeted literature search the following can be concluded with regards to the state of science of the 

combined application of in silico models and bioassays: 

- Target compounds studied for hazard and risk assessment were mainly disinfection byproducts (DBPs) or 

transformation products (TPs) (from pharmaceuticals and plant protection products); 

- Various models were used, either free or commercially available tools, or self-build tools; 

- In silico tools are often combined with bioassays and/or chemical analysis, in cases that: 

o QSARs tools were applied to prioritize the use of bioassays and/or chemical analysis;  

o Bioassays were applied to verify QSAR results;  

o The combination of bioassays and QSAR modelling was used to link genotoxic effects and hazardous 

compounds. responsible for the bioactivity.  
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4 Chemical and bioassay selection for 

experimental work 

In the experimental part of the project, the combined application of in silico tools and bioassays was explored using 

individual substances (i.e. not water samples). Suggestions for water relevant substances lacking toxicological 

information were identified from previous KWR research (Baken et al. 2018, Brunner et al. 2019) and proposed by 

drinking water companies having surface water as source for their drinking water production. This resulted in a 

diverse list of chemical substances, including pharmaceuticals, industrial chemicals, pesticides, metabolites, 

fragrances, contrast media, drugs of abuse, compounds of natural origin and transformation products (Appendix I). 

A priori it was defined to include ten substances for the experimental work. For the substances, selection criteria on 

which the prioritization was based were 1) commercial availability and pricing, 2) DNA reactivity (obtained by 

profiling in de QSAR Toolbox) and 3) solubility in water and organic solvents. Information on commercial availability 

and pricing was collected at a leading supplier of chemicals (SigmaAldrich.com). Adverse effects on DNA 

(genotoxicity) was selected as primary toxicological endpoint to assess, both in silico and in bioassays because the 

involved cellular mechanisms are well understood (Basu and Nohmi, 2018; Chatterjee and Walker, 2017; Friedberg 

et al. 2004), the structure-activity relationships are well known (especially for mutagenicity) (Benigni and Bossa, 

2008; Kazius et al. 2005; Plošnik et al. 2016), and a well-established in vitro testing strategy to evaluate the hazards 

of individual chemicals is available (ECHA, 2017; EFSA, 2011; EMA, 2008). In addition, it is known that potentially 

genotoxic DBPs and TPs can be generated during water treatment steps (Han et al. 2018, Mestankova et al. 2014). 

Moreover, DNA damage can eventually lead to tumour formation (Baan et al. 2019, Nohmi 2018), and thus can 

have a large impact on quality of life. DNA reactivity was determined with the QSAR Toolbox using the following 

profilers12 related to carcinogenicity and genotoxicity, i.e. 1) Carcinogenicity (genotox and nongenotox alerts by 

ISS), 2) DNA alerts for AMES, CA and MNT by OASIS, 3) DNA binding by OASIS, 4) DNA binding by OECD, 5) Protein 

binding alerts for Chromosomal aberration by OASIS, 6) Toxic hazard classification by Cramer (extended), 7) in vitro 

mutagenicity (Ames test) alerts by ISS and 8) in vivo mutagenicity (Micronucleus) alerts by ISS. Data on solubility in 

water and organic solvents were obtained from PubChem. For most substances water solubility data were 

available, whereas information on solubility in organic solvents was not readily available. Based on the combined 

selection criteria, substances for further research were prioritized (Table 3). The complete chemicals list including 

prioritization steps is available as Supplemental Information.  

Ten compounds were evaluated for their genotoxic (mutagenic) potential. From the available bioassays (Ames 

fluctuation test, UMU test, p53 CALUX, comet assay and micronucleus test), the Ames fluctuation test was selected 

for the experimental work, because of its common use for water quality assessment (including existence of an ISO 

standard) (ISO 11350:2012, Reifferscheid et al. 2012), its functional analogy to the classical Ames test, which is part 

of the regulatory testing strategy for pharmaceuticals, chemicals and food and feed ingredients (ECHA, 2017; EFSA, 

2011; EMA, 2008) and its capability to indicate mutagenicity, which may produce heritable effects (Phillips and Arlt, 

2009) for which the structure-activity relationships are well described (Benigni and Bossa, 2008; Kazius et al. 2005; 

Plošnik et al. 2016). The Ames fluctuation test is a more rapid version of the classical Ames test and requires less 

sample volume (Reifferscheid et al. 2012), which is critical for (extracted) environmental (water) samples.  

. 

  

 
12 In the QSAR Toolbox, the “Profiling” module contains all the knowledge in the system coded in profiling schemes (profilers). The profilers identify the 

affiliation of the target chemical(s) to preliminary defined categories (functional groups/alerts).The outcome of the profiling determines the most 
appropriate way to search for analogues, but they are also useful for preliminary screening or prioritization of substances (www.qsartoolbox.org).  

http://www.qsartoolbox.org/
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Table 3: Selected chemicals for mutagenicity assessment 
 

Compound CAS no. Origin 

Ames fluctuation 

test performed in 

current project? 

Nicotine 54-11-5 Natural Yes 

Trifluoroacetic acid 76-05-1 Industrial Yes 

Methocarbamol 532-03-6 Pharmaceutical Yes 

Cotinine 486-56-6 Endogenous (mammalian) 

metabolite of nicotine 

Yes 

Hydroxyatrazine13 2163-68-0 Environmental (microbial) 

metabolite of herbicide 

atrazine 

Yes 

EDTA4 60-00-4 Industrial Yes 

Dinoterb 1420-07-1 Plant protection product Yes 

Acridone 578-95-0 Endogenous (mammalian) 

metabolite of pharmaceutical 

carbamazepine 

Yes 

Levonorgestrel 797-63-7 Pharmaceutical Yes 

Cyanopropanal14 3515-93-3 Industrial Yes 

Sulpiride 15676-16-1 Pharmaceutical No 

Levocetirizine 130018-77-8 Pharmaceutical No 

Hordenine 539-15-1 Natural No 

Benzamide, 2-amino-N-(1-

methylethyl)- 

30391-89-0 Environmental (microbial) 

metabolite of herbicide 

bentazon 

No 

Clomitrazole 23593-75-1 Antimycotic No 

 

The maximum test concentration of each substance to be tested in the Ames fluctuation test was based on 

reported concentrations of in vitro (genotoxicity) studies as found in scientific literature (PubMed) with a maximum 

of 10 micromolair (mM), if not limited by solubility in water and/or dimethyl sulfoxide (DMSO). DMSO is a common 

solvent for in vitro bioassays. Water solubility was considered because of the aqueous nature of the exposure 

medium of in vitro bioassays 

In addition to mutagenicity, a pilot exercise was performed on water-relevant endpoints other than genotoxicity, 

including estrogenic activity, reproductive toxicity and developmental toxicity. These endpoints are considered 

relevant in water quality assessment because effects can occur after chronic exposure to low concentrations 

(Dingemans et al. 2019). In this pilot exercise, the chemicals of the list (Supplementary Information I) that passed 

selection criterion 1 (commercial availability and pricing) were evaluated using the QSAR Toolbox and the following 

selected profilers relevant for reproductive and developmental effects: 1) Estrogen Receptor Binding, 2) rtER Expert 

System, 3) Protein binding by OASIS, 4) Protein binding by OECD, 5) Protein binding potency GSH en 6) DART 

(Developmental and Reproductive Toxicology) scheme.  

 

Subsequently, the QSAR Toolbox was used to determine whether data were already available with respect to 

endocrine disruption (in particular estrogenic activity) and in vivo developmental and reproductive toxicity. 

Compounds for which no data were found were selected for read-across and are summarized in Tables 4 and 5. 

Some of them overlapped with the selected compounds for mutagenicity assessment (Table 3). 

 
13 Eventually not included in the experiments because of problems with solubility 
14 Eventually not included in the experiments because the wrong substance was received  
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Table 4: Selected compounds for read across on estrogenic activity 
 

Compound CAS nr. Origin 

Levocetirizine 130018-77-8 Pharmaceutical 

Hordenine 539-15-1 Natural 

Benzamide, 2-amino-N-(1-

methylethyl)- 

30391-89-0 Environmental (microbial) metabolite 

of herbicide bentazon 

Clotrimazole 23593-75-1 Antimycotic 

1H-Indene, 2,3-dihydro- 496-11-7 Industrial 

2-aminobenzoic acid 118-92-3 Industrial 

 

Table 5: Selected compounds for read across on developmental and reproductive effects 
 

Compound CAS nr. Origin 

EDTA 60-00-4 Industrial 

Metolachlor ESA 171118-09-5 Environmental TP of herbicide 

metolachlor 

Metolachlor OA 152019-73-3 Environmental TP of herbicide 

metolachlor 

Methane, bromotrichloro- 75-62-7 Industrial 

Nicotine 54-11-5 Natural 

Dinoterb 1420-07-1 Plant protection product 

1H-Benzotriazole, 5-methyl- 136-85-6 Industrial 

Diglyme 111-96-6 Industrial 

Triglyme 112-49-2 Industrial 
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5 Methods 

5.1 Ames fluctuation test 

Chemicals were dissolved in DMSO one day before use in the first Ames experiment. Three concentrations of each 

chemical were tested, i.e., the top dose and two dilutions with 2-fold spacing. Dose solutions were stored at <-18°C 

for later use. In the second Ames experiment, three concentrations of each chemical were tested, i.e., an 8-fold 

dilution, 16-fold dilution and 32-fold dilution of the top dose. Actual concentrations shown in Tables 4 and 5 were 

calculated based on the actual amount of the chemicals weighed and the volume of DMSO added.  

The Ames fluctuation test was performed according to Heringa et al (2011) with minor modifications with regards 

to cytotoxicity measurement and data interpretation. In brief, Salmonella typhymurium strains TA98 and TA100 

(Xenometrix, Switzerland) were briefly exposed to the chemicals for 90 minutes in absence and presence of an 

exogenous metabolic activation system (rat liver S9 mix), resulting in four different test conditions (TA98-S9, 

TA98+S9, TA100-S9 and TA100+S9). The final concentration of DMSO in the culture medium was 2%. Negative 

controls (Evian mineral water extract), solvent controls (DMSO) and appropriate positive controls were run in 

parallel. Two independent experiments were performed, and all experiments were carried out in triplicate cultures. 

Cytotoxicity was measured in parallel in strain TA98 by measuring optical density of the bacterial culture shortly 

before and immediately after treatment according to ISO 11350 (2012). Bacterial density of each chemical was 

normalized to the solvent control and for evaluation of the genotoxic responses, ≥50% cytotoxicity was considered 

severe and 30-50% cytotoxicity was considered moderate. The number of yellow wells per 48 wells of each 

replicate culture were counted manually as a measure of mutagenicity. A response was considered positive for 

genotoxicity if the response of the sample was different from the negative control with a certainty of 99%, based 

on a binominal distribution (Heringa et al., 2011). A chemical was considered positive for mutagenicity if at least 

one of the test conditions showed a positive response. In addition to numerical significance, biological relevance 

(e.g., comparison with concurrent negative control and/or historical control data) was taken into account.  

5.2 QSAR and read-across 

The selected compounds were evaluated for bacterial mutagenicity and estrogen receptor activity in both the QSAR 

Toolbox and VEGA QSAR. In the QSAR Toolbox, the profiling was done in the same was as done for the chemical 

selection (Chapter 4). The next step was to gather toxicologically relevant data available in the QSAR Toolbox for 

each compound individually. For seven out of the ten compounds that were selected for testing in the Ames 

fluctuation test, data on bacterial mutagenicity appeared to be available within the QSAR Toolbox. Initially, it was 

assumed that all compounds of the list were data-poor, but during the analysis it appeared that the QSAR Toolbox 

database contains data that are not easily findable or accessible in any other way. It was concluded that data 

gathering using the QSAR Toolbox is essential before selecting compounds for or continuing with read-across. This 

step was therefore implemented in the selection of six additional compounds for mutagenicity (Table 3) and in the 

selection of compounds for estrogen receptor binding activity (Table 4) and developmental and reproductive 

effects (Table 5).  
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After profiling and data gathering, chemicals were grouped by category definition15 and subcategorization16 to 

identify a set of structurally relevant analogues (mechanistically and structurally similar chemicals) for read-across. 

This categorization step starts with broad, endpoint non-specific grouping based on chemical structure, followed by 

endpoint specific subcategorization to eliminate dissimilar chemicals (Figure 1) until only representative analogues 

remain. On the one hand the analogues need to be clearly relevant based on functional groups, on the other hand 

it needs to be avoided to end up with too few datapoints for filling the data gaps of the target chemical. The 

identified analogues were used to predict the mutagenicity and estrogen receptor binding activity of the selected 

compounds. The workflow that was followed for genotoxicity assessment in the QSAR Toolbox is shown in Figure 2, 

in which profilers and databases specific for mutagenicity are marked with an asterisk (*). The workflow that was 

followed for estrogen receptor binding activity is shown in Figure 3.  

 

Figure 1: Recommended categorization phases in grouping of chemical for read across. Retrieved from: 
https://qsartoolbox.org/features/grouping/ 

 

 

 

 
15 Category definition module provides the user with several means of grouping chemicals into a toxicologically meaningful category based on the 

specifics of the target molecule.  The chemicals could be grouped according to different measures of “similarity” (structural or mechanistic similarity) so 
that, within a category data, gaps can be filled by read-across or trend analysis. This is the critical step in the workflow and several options are available 
in the Toolbox to assist the user in better definition of the category (www.qsartoolbox.org).  

16 Refinement of the category by removing the chemicals which differ mechanistically and/or structurally to the target chemical. (www.qsartoolbox.org).  

https://qsartoolbox.org/features/grouping/
http://www.qsartoolbox.org/
http://www.qsartoolbox.org/
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Figure 2: Workflow for assessment of genotoxicity in QSAR Toolbox. Profilers and databases specific for mutagenicity are marked with an 
asterisk (*). 

 

 

Figure 3: Workflow for assessment of estrogen receptor binding activity in QSAR Toolbox.   
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Following the prediction in the data gap filling phase17, analogues which showed a dissimilar response from the 

predicted response of the target compound were discussed between toxicology and chemistry experts for their 

relevance in terms of structural and mechanistic similarity (expert judgement) to support or reject the prediction of 

the software. Inclusion/exclusion of the applicability domain18 or parametric domain19 was taken into account, but 

was not leading in the acceptance or rejection of the predicted result. 

For mutagenicity assessment using the VEGA QSAR, the target chemicals were individually loaded into the 

software, followed by selection of four models relevant for bacterial mutagenicity, i.e., 1) Mutagenicity (Ames test) 

model (CAESAR), 2) Mutagenicity (Ames test) model (SarPy/IRFMN), 3) Mutagenicity (Ames test)model (ISS) and 

Mutagenicity (Ames test) model (KNN/Read-Across). The workflow that was followed for genotoxicity assessment in 

the VEGA QSAR is shown in Figure 4, in which models specific for mutagenicity are marked with an asterisk (*). 

For estrogen receptor binding activity, two relevant models were selected, i.e., 1) Estrogen Receptor Relative 

Binding Affinity (IRFMN) and 2) Estrogen Receptor-mediated effect (IRFMN/CERAPP).  

 

Figure 4: Workflow for assessment of genotoxicity in VEGA QSAR. Models specific for mutagenicity are marked with an asterisk (*). 

 

 
17 In the Data Gap Filling module the user is able to fill a data gap for their target substance using data from analogues with a trend analysis, read-across 

or existing QSAR models (www.qsartoolbox.org).  
18 The applicability domain (for both chemistry and machine learning) of a QSAR model is the physico-chemical, structural or biological space, knowledge 

or information on which the training set of the model has been developed, and for which it is applicable to make predictions for new compounds 
(en.wikipedia.org).  

19 The parametric domain is the space of possible parameter values that define a particular mathematical model (en.wikipedia.org) 

http://www.qsartoolbox.org/
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Figure 5: Workflow for assessment of estrogen receptor binding activity in VEGA QSAR. 

In addition to QSAR Toolbox and VEGA QSAR, the sixteen compounds were investigated for mutagenicity using 

CASE Ultra. For mutagenicity assessment using CASE Ultra, the target chemicals were loaded into the software as a 

batch using the SMILES codes, following by selection of three models relevant for bacterial mutagenicity, i.e., 1) an 

expert rule-based model: GT Expert Bacterial mutagenicity model, 2) a statistical-based model: GT1 BMUT OECD 

471 Bacterial mutagenicity model, and 3) a statistical-based model: PHARM BMUT Statistical OECD 471 Bacterial 

mutagenicity model. The workflow that was followed for genotoxicity assessment in CASE Ultra is shown in Figure 

6. The reliability (probability) as indicated by the software, was taken into account, but was not leading in the 

acceptance or rejection of the predicted result.  

 

Figure 6: Workflow for assessment of mutagenic activity in CASE Ultra.  
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6 Results  

6.1 Ames fluctuation test 

Tables 6 and 7 show the experimental results of the first and second Ames experiment with the selected seven 

water-relevant compounds tested at the three concentration levels, respectively. 

Table 6: Results of the first Ames experiment. Severe cytotoxicity (cell toxicity based on bacterial density) is highlighted in red and moderate 
cytotoxicity in orange. Negative cytotoxicity ≥20% was also highlighted in orange due to its relatively large deviation from 100%. 

    Mean revertants/48 wells Cytotoxicity (%) 

  Dose (mM) TA98-S9 TA98+S9 TA100-S9 TA100+S9 TA98-S9 TA98+S9 

Negative control  2 1 6 6 15 15 

Solvent control  3 2 5 6 0 0 

Positive control 1   44 48 45 39 54 0 

Positive control 2   46    50  

Nicotine 10 2 1 5 5 61 -1 

Nicotine 5 2 1 7 6 51 8 

Nicotine 2.5 3 2 6 5 31 -23 

Trifluoroacetic acid 10 3 2 7 5 29 -9 

Trifluoroacetic acid 5 3 2 6 6 39 -12 

Trifluoroacetic acid 2.5 2 1 6 7 35 7 

Methocarbamol 10 2 1 5 5 47 3 

Methocarbamol 5 3 2 7 6 39 0 

Methocarbamol 2.5 2 3 5 5 32 -4 

Cotinine 10 3 2 5 5 19 0 

Cotinine 5 3 3 7 5 23 -20 

Cotinine 2.5 1 1 3 5 35 3 

Dinoterb 0.42 3 1 5 6 48 46 

Dinoterb 0.21 3 2 5 5 37 35 

Dinoterb 0.10 1 1 6 7 36 21 

Acridone 0.53 3 2 5 6 36 -20 

Acridone 0.26 3 1 4 7 53 -5 

Acridone 0.13 1 1 3 4 36 23 

Levonorgestrel 0.54 2 1 4 8 -19 3 

Levonorgestrel 0.27 2 2 4 6 38 11 

Levonorgestrel 0.13 1 2 5 7 23 -2 
a According to ISO 11350:2012, cytotoxicity is measured in bacterian strain TA98 S9 only (both in the presence and absence of S9) due to the 

lower sensitivity of TA100. 

In the first Ames experiment, all compounds showed moderate to severe cytotoxicity at one or more tested 

concentrations in strain TA98-S9 and to a lesser extent in strain TA98+S9. Consequently, a false negative response 

of the chemicals showing moderate or severe cytotoxicity cannot be excluded. Therefore, a second experiment was 

performed using lower concentrations of the same test compounds.  
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Table 7: Results of the second Ames experiment. Severe cytotoxicity is highlighted in red, a statistically significant positive mutagenic response 
is highlighted in orange. 
 

    Mean revertants/48 wells Cytotoxicity (%) 

  Dose (mM) TA98-S9 TA98+S9 TA100-S9 TA100+S9 TA98-S9 TA98+S9 

Negative control 

       

Solvent control 

 

2 2 7 6 0 0 

Positive control 1   39 42 46 47 57 15 

Positive control 2   45       13   

Nicotine 1.25 2 1 8 7 16 14 

Nicotine 0.625 0 2 8 5 12 17 

Nicotine 0.3125 2 2 9 8 3 0 

Trifluoroacetic acid 1.25 1 1 9 8 4 6 

Trifluoroacetic acid 0.625 1 2 7 7 18 0 

Trifluoroacetic acid 0.3125 2 1 10 7 22 18 

Methocarbamol 1.25 2 1 8 7 12 7 

Methocarbamol 0.625 1 0 9 6 17 12 

Methocarbamol 0.3125 2 1 9 8 3 19 

Cotinine 1.25 1 1 10 8 -11 12 

Cotinine 0.625 2 1 9 8 16 -14 

Cotinine 0.3125 1 1 7 4 16 -12 

Dinoterb 0.0525 1 1 10 7 27 3 

Dinoterb 0.02625 1 0 8 9 22 -3 

Dinoterb 0.013125 3 1 8 7 7 -4 

Acridone 0.06625 2 1 8 6 15 0 

Acridone 0.033125 1 1 7 7 20 -7 

Acridone 0.0165625 0 2 9 6 18 6 

Levonorgestrel 0.0675 1 1 7 6 23 -18 

Levonorgestrel 0.03375 2 2 11 7 20 0 

Levonorgestrel 0.016875 1 1 7 8 0 4 
a According to ISO 11350:2012, cytotoxicity is measured in bacterian strain TA98 S9 only (both in the presence and absence of S9) due to the 

lower sensitivity of TA100. 

None of the test compounds showed severe or moderate cytotoxicity. The mid dose of Levonorgestrel was the only 

that showed a statistically significant genotoxic response. However, since the observed increase in mean number of 

revertants was not dose-related, this response may be considered not biologically relevant.  

Based on the results of the two experiments and under the conditions used, all compounds were considered 

negative for mutagenicity in the Ames fluctuation test, except for Levonorgestrel which it is recommended to 

investigate if the observed response is reproducible.  
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6.2 QSAR and read across 

6.2.1 Bacterial mutagenicity  
In total sixteen water-relevant compounds were assessed for bacterial mutagenicity in the QSAR Toolbox and VEGA 

QSAR by three experts for internal review to strengthen the conclusion. In addition, the compounds were assessed 

for bacterial mutagenicity in CASE Ultra by one expert. Table 8 shows the summarized results. Since it is 

recommended to use two different models for in silico assessment, i.e. expert rule-based and statistical (Chapter 2), 

the conclusion was always based on two software applications, either QSAR Toolbox and VEGA QSAR or QSAR 

Toolbox and CASE Ultra.  

Table 8: Summarized results of bacterial mutagenicity assessment of sixteen water relevant compounds using the QSAR Toolbox and VEGA 
QSAR. 
 

a Based on experimental data 

Compound QSAR Toolbox VEGA QSAR CASE Ultra Combined conclusion 
QSAR Toolbox/ 

VEGA QSAR 

Combined conclusion 
QSAR Toolbox/ 

CASE Ultra 

Nicotine Non-mutagenica Non-mutagenica Non-mutagenica Non-mutagenica Non-mutagenic 

Trifluoroacetic 

acid 

Non-mutagenica Likely non-

mutagenic 

Non-mutagenica Non-mutagenica Non-mutagenic 

Methocarbamol Likely non-

mutagenic 

Inconclusive Likely non-

mutagenic 

Inconclusive Likely non-mutagenic 

Cotinine Non-mutagenica Non-mutagenica Non-mutagenic Non-mutagenica Non-mutagenica 

Hydroxyatrazine Non-mutagenica Non-mutagenic Likely mutagenic Non-mutagenica Non-mutagenica 

EDTA Non-mutagenica Non-mutagenica Non-mutagenica Non-mutagenica Non-mutagenica 

Dinoterb Inconclusive Inconclusive Non-mutagenic Inconclusive Inconclusive 

Acridone Non-mutagenic Non-mutagenica Non-mutagenica Non-mutagenica Non-mutagenica 

Levonorgestrel Non-mutagenica Non-mutagenica Non-mutagenica Non-mutagenica Non-mutagenica 

Cyanopropanal Non-mutagenic Non-mutagenic Likely non-

mutagenic 

Non-mutagenic Likely non-mutagenic 

Sulpiride Likely non-

mutagenic 

Likely non-

mutagenic 

Likely non-

mutagenic 

Likely non-mutagenic Likely non-mutagenic 

Levocetirizine Likely non-

mutagenic 

Inconclusive Non-mutagenica Inconclusive Non-mutagenica 

Trospium 

chloride 

Inconclusive Likely non-

mutagenic 

Non-mutagenica Inconclusive Non-mutagenica 

Hordenine Likely non-

mutagenic 

Inconclusive Likely non-

mutagenic 

Inconclusive Likely non-mutagenic 

Benzamide, 2-

amino-N-(1-

methylethyl)- 

Likely non-

mutagenic 

Inconclusive Likely non-

mutagenic 

Inconclusive Likely non-mutagenic 

Clotrimazole Likely non-

mutagenic 

Inconclusive Non-mutagenica Inconclusive Non-mutagenica 
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For eleven out of sixteen compounds, experimental data on bacterial mutagenicity was available within at least one 

software tool. Category definition and data gap filling was discontinued for compounds for which data on bacterial 

mutagenicity was available in the QSAR Toolbox.  

6.2.2 Estrogenic activity 
In total six compounds were assessed for estrogenic activity in the QSAR Toolbox and VEGA QSAR by one expert. 

Table 9 shows the summarized results. For reference, the results of the well-known estrogenic active compound 

estradiol are also presented.  

Table 9: Summarized results of estrogenic activity  of six water relevant compounds using the QSAR Toolbox and VEGA QSAR 
 

Compound QSAR Toolbox (AC50a in mg/L) VEGA QSAR 

Levocetirizine Not predicted Likely inactive 

Hordenine 1-10 b Likely inactive 

Benzamide, 2-amino-N-(1-

methylethyl)- 

Not predicted Likely inactive 

Clotrimazaole 1-20b Inactive 

1H-Indene, 2,3-dihydro- Not predicted Likely inactive 

2-aminobenzoic acid 1-5b Likely inactive 

Reference: Estradiol 0.0001-0.025b,c Actived 

a Active concentration 50, i.e. the concentration which gives 50% activation of the reporter gene studied.  
b A range is presented based on the predicted results of different estrogen receptor bioassays 
c Experimental data 
d Conclusion on experimental result and model prediction was the same 

 

With the QSAR Toolbox is it possible to predict bioassay responses in ToxCast bioassays. For which bioassays 

responses can be predicted depends on the availability of data of activity for the analogue substances. Different 

reporter gene assays20 showed different quantitative results for the same endpoint (estrogen receptor activity), but 

AC50 values were in the same range. The variability in quantitative results can be explained by de different assay 

principles and mechanisms, further investigation was outside of the scope of the current project. For some 

chemicals there were no analogues with data on ToxCast bioassays relevant for estrogenic activity, resulting in no 

prediction. The VEGA QSAR provides qualitative responses on estrogen activity and predictions could be obtained 

for all chemicals studied.  

  

 
20 Attagene factorial cis ERE, NCGC Reporter Gene Assay ERa Agonist, Tox21_Era_BLA_Agonist_ch1, Tox21_Era_BLA_Agonist_ch2, Novascreen Human ER, 

and multiple OT_ER assays.  
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6.3 Combined results of Ames fluctuation test and read across 

For seven out of sixteen compounds, the Ames fluctuation test was performed prior to read-across. The results 

were combined with those obtained with the in silico tools and are presented in Table 10.  

Table 10: Combined results of the Ames fluctuation test and in silico models 
 

7 Based on experimental data 

The results of the Ames fluctuation test showed good concordance with the in silico predictions and where the in 

silico predictions were inconclusive, a conclusion on mutagenicity could be drawn.  

  

 
21 Based on experimental data 

Compound QSAR Toolbox/VEGA QSAR QSAR Toolbox/CASE Ultra Ames fluctuationtest 

Nicotine Non-mutagenic21 Non-mutagenic7 Non-mutagenic 

Trifluoroacetic acid Non-mutagenic7 Non-mutagenic7 Non-mutagenic 

Methocarbamol Inconclusive Likely non-mutagenic Non-mutagenic 

Cotinine Non-mutagenic7 Non-mutagenic7 Non-mutagenic 

Dinoterb Inconclusive Inconclusive Non-mutagenic 

Acridone Non-mutagenic7 Non-mutagenic7 Non-mutagenic 

Levonorgestrel Non-mutagenic7 Non-mutagenic7 Likely non-mutagenic 
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7 Discussion and conclusion 

7.1 Application of in silico predictions for water quality assessment 

During this project, three important functionalities of in silico tools for water quality assessment were identified, 

i.e.: 

1) prioritization of research needs based on structural alerts 

2) read across for hazard and risk assessment;  

3) discovery of hard-to-find experimental data on effects of substances.  

It should be noted, however, that for hazard and risk assessment of individual substances, the use of experimental 

data (if available) should always be considered prior to in silico predictions. Moreover, experimental data will 

prevail over estimated results (ECHA 2016). If no or insufficient experimental data is available, in silico tools can be 

used for data gap filling. Conclusions based on estimated values should always be interpreted with caution, as it 

remains a prediction. When in silico tools reveal experimental data that was initially not found in scientific literature 

or databases, the reliability of the data should be assessed. Different starting points and strategies for the use of in 

silico tools, including chemical analysis and bioassays, are summarized in Figures 7 and 8, and discussed below.  
 

Chemical analyses (targeted or non-targeted) are often used to assess chemical water quality (Been et al. 2021, 

Brunner et al. 2020). In addition, effect-based monitoring (bioassays) can be performed to examine biological 

effects of substances in water on living tissues and organisms. This can be done using bacteria and cell lines (in 

vitro) or living organisms such as water fleas and algae (in vivo). Important applications of in silico models for water 

quality monitoring are prioritization of substances for research and support in risk analysis of bioassay responses 

and chemical analyses (Figure 7) (Reus et al. 2022). Here, prioritization includes the selection of chemicals and/or 

locations for water quality monitoring using either (non-)targeted chemical analysis and/or bioassays. Furthermore, 

in silico data can also be used to substantiate decisions on monitoring frequencies.  

 

 
Figure 7: Schematic overview of the application of QSAR and read-across for prioritization of compounds for further research and interpretation 
of chemical analysis related to water quality monitoring. 
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When, based on effect-based measurements (bioassay responses), there is reason to further investigate possible 

risks to humans and the environment, effect-directed chemical analysis (EDA), in which water extracts are 

fractionated, can be used to specifically search for the chemical identity (substance name and chemical structure) 

of the substances that caused this response (Brekelmans et al. 2021; Houtman et al. 2020). For the identified 

substances for which toxicity data are missing, QSAR and read-across can be used to estimate the potential risks. 

Following non-target chemical screening (NTS) on a water sample, those substances that are present in high 

concentrations and for which toxicity data are lacking can be identified. QSAR and read-across can then be used to 

estimate potential risks to humans and the environment (Reus et al. 2022). Based on measured concentrations of 

chemicals in the water, the contribution to adverse effects to the human health or environment can be estimated 

for each chemical in the mixture. In this approach, the risk characterization ratio (RCR) is calculated by dividing the 

estimated daily intake of each chemical (based on measured concentrations) by the corresponding (provisional) 

drinking water guideline value ((p)GLV) (Rorije et al. 2022) or, alternatively, if a (p)GLV is not available, by the 

corresponding threshold of toxicological concern (TTC) (Kroes et al. 2005, Munro et al. 2008). Input for the TTC 

(information on whether a chemical is genotoxic and to which Cramer class it belongs) can be derived from the 

QSAR Toolbox and/or ToxTree and the relative contribution of individual chemicals can be related to the sum of the 

RCRs of all chemicals measured. 

 

                   Estimated exposure chemical 1 + estimated exposure chemical 2 + estimated exposure chemical X + … 

RCR =                       GLV chemical 1               +                GLV chemical 2              +               TTC chemical X                + … 

 

The variety of substances that emerge from EDA or NTS can thus be prioritized on this basis for quantitative 

concentration measurements (including chemical-analytical method development when necessary) and further risk 

assessment. Meekel et al (2021) developed a prioritization strategy in which fragment ion(s)/patterns of 

experimental fragmentation (MS2) spectra from NTS to structural alerts to identify the potential environmental or 

human health risk of substances in a mixture. For verification, results of the in silico tools (QSAR and read-across) 

can be subjected by testing the individual substances with bioassays (Reus et al. 2022).  

 

Another important application of in silico models for water quality monitoring is to provide information for risk 

assessment of individual substances (Figure 8). When there is a quick need for an assessment of hazard and 

potential risks, such as when a data-poor substance is unexpectedly found in high concentrations in water, a read-

across can be performed. Whereas the focus of prioritization for follow-up research needs is on the analysis and 

comparison of multiple substances simultaneously (the water sample containing a mixture), the focus of read-

across is on individual substances. By means of an integrated approach in which various results from experimental 

studies and models are taken into account (weight of evidence), statements can be made about possible hazard 

and risks of a specific substance (Reus et al. 2022). 
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Figure 8: Schematic overview of the application of QSAR and read-across for safety and risk assessment of individual water relevant 
compounds. 

7.2 Applicable in silico tools for water quality assessment  

The QSAR Toolbox is suitable for collecting existing data of multiple endpoints, enabling rapid prioritization of 

individual or lists of chemicals based on existing data or structural alerts. The application is also suitable for hazard 

and risk assessment of individual chemicals that lack toxicological data using read across. It was concluded that the 

QSAR Toolbox has the advantage of manual grouping and offering many possibilities in terms of endpoints, but it 

has the disadvantage that it consequently induces variability among users and working with the software can be 

laborious. Compared to the QSAR Toolbox, working with the VEGA QSAR was found much more practical. The VEGA 

QSAR is suitable for rapid prioritization by simultaneous toxicity assessment of multiple endpoints for individual or 

lists of chemicals lacking toxicological data. CASE Ultra has more functionalities than the VEGA QSAR, but has the 

disadvantage of not being freely available. For all software applications, expert judgment based on toxicological and 

chemical background is needed to provide argumentation to accept or reject a toxicity prediction, especially when 

the data are being used for risk assessment (e.g. in case of emergencies).  

Since most in silico models are user friendly, working with these models is not complicated. The interpretation of 

the results, however, requires expert judgement and basic knowledge on (organic) chemistry and toxicological 

mechanisms is essential. Justification is needed for acceptance or rejection of the prediction generated by the 

model and to verify if the model did select appropriate candidates for read across. For prioritization purposes, 

expert judgement may be limited, but it should be emphasized that the presence of structural alerts and the ‘quick-

and-dirty’ hazard assessment does not necessarily mean that a substance indeed exerts this toxicological response 

in humans or in the environment. Moreover, even with expert judgement, a prediction does not necessarily mean 

that it is the truth. In silico toxicology can, however, conclude whether or not there is evidence for (absence of) a 

certain toxicological response or whether a certain response can (not) be excluded, based on the models applied.  
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Registration of all steps and choices is essential for transparency and for verification of the results (QC/QA). In line 

with the ICH M7 guideline (EMA 2015), for robust predictions it is recommended to include at least one expert rule-

based and one statistical-based model for the toxicity prediction of water relevant substances. Although the QSAR 

Toolbox was considered the most robust in silico model studied, it only provides an expert-rule based model and 

using the QSAR Toolbox only is therefore not sufficient for hazard and risk assessment. VEGA QSAR and CASE Ultra 

provide statistical-based models that can support and confirm the prediction from QSAR Toolbox. In case of 

emergencies, it is recommended to use the QSAR Toolbox for a robust toxicity prediction of the chemical(s) of 

interest. The VEGA QSAR can be used as a quick-scan and second model. To increase the robustness of the 

prediction, it is however recommended to use CASE Ultra as second model as it includes more complete databases 

than VEGA QSAR. 

The current research focused on the endpoints mutagenicity and estrogenic activity. Although the QSAR Toolbox 

has proven its applicability for prediction of bacterial mutagenicity, the applicability for prediction of estrogenic 

activity was considered limited due to lack of analogues with data on ToxCast ERα reporter gene assays for several 

of the water-relevant chemicals studied. VEGA QSAR was able to predict estrogenic activity in a qualitative manner, 

but not all analogues suggested by VEGA QSAR were considered equally relevant. Taken these limitations and 

uncertainties into account, the relevance of prediction of estrogenic activity using the current in silico tools used is 

questionable. Further development of the tools, including more chemicals with data is needed for reliable 

predictions on estrogenic activity.  

No other endpoints than bacterial mutagenicity and estrogenic activity were studied because the current project 

focused on the combination of using in silico tools and bioassays, and these were the in vitro bioassays available for 

water quality assessment that showed the most prominent link to toxicological endpoints in the software. The in 

silico tools are mainly focused on endpoints required for hazard and risk assessment in a regulatory context. 

Implementation of the in vitro micronucleus test for water quality assessment (ISO 21427-2:2006, Reifferscheid et 

al. 2008), however, can be considered as a second bioassay for assessment of DNA damage other than 

mutagenicity. The micronucleus test detects chromosomal aberrations such as loss of complete chromosomes or 

parts thereof, which result in a small nucleus (micronucleus) in addition to the main nucleus. This type of DNA 

damage is different to mutagenicity as detected with the Ames fluctuation test. Both the QSAR Toolbox and VEGA 

QSAR allow prediction of genotoxicity using the micronucleus test. The Umu test (ISO 13829:2000, Oda et al. 1985) 

can be used to predict genotoxicity as part of water quality assessment, but neither in the QSAR Toolbox nor in the 

VEGA QSAR there is an endpoint that exactly matches with the Umu test. The p53 CALUX (van der Linden et al. 

2014) could be linked to ToxCast bioassays based on the assay principle, however the availability of data for 

analogue chemicals may yet be limited. Alternatively, p53 CALUX and Umu test results can be linked to the 

genotoxicity tests available in the QSAR Toolbox and VEGA QSAR (i.e. bacterial mutagenicity, mammalian cell 

mutagenicity, micronucleus test, comet assay and chromosomal abberation test), but the concordance of the 

results and thus reliability of the prediction warrants further investigation.  

Other water relevant toxicological endpoints, such as neurotoxicity and reproductive toxicity, are complex 

processes in which many different pathways are involved. If all those pathways would be incorporated in an in silico 

tool this might be an interesting application, since investigation of all those pathways with bioassays is difficult, 

time-consuming and labour-intensive. Moreover, at the moment there are no standardized bioassays (in vitro or 

using non-vertebrates) available for neurotoxicity (BTO 2020.035). In addition, the lack of available experimental 

data on regulatory animal studies, hampers reliable applicability of in silico tools for the prediction of neurotoxicity 

and reproductive toxicity. The same holds true for carcinogenicity. Further development of the in silico tools, 

including more chemicals with data is needed for reliable predictions on these endpoints.  
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7.3 Discussion of experimental results 

In the current research, the predicted responses on bacterial mutagenicity showed good concordance with the 

Ames fluctuation experimental results. It should be noted, however, that this conclusion is based on a limited 

number of compounds and that only negative responses were obtained. At this point it cannot be excluded that the 

prediction of positive bioassay responses induced by mutagenic substances is equally reliable. It is thus needed to 

investigate additional compounds, including chemicals for which positive responses are expected. The current 

chemical list did not include such chemicals.  

 

For some chemicals, it was not possible to reliably predict the mutagenic response especially with VEGA QSAR. In 

these cases, the prediction was regarded as inconclusive for the specific model, most often due to lack of relevant 

analogues for read-across. Since it is recommended to use at least two different models (i.e., expert rule-based and 

statistical-based), it is possible that an inconclusive prediction in one model results in an overall inconclusive 

prediction for the chemical. It is also possible that the results of different models are contradictory. In case of 

inconclusive or contradictory results, experimental studies on the endpoint of interest are needed to draw 

conclusions on hazard assessment.  

 

Since some compounds require metabolic activation to exert their genotoxic effects (Guengerich, 2008; Nebert et 

al. 2006), the formation of metabolites can be predicted in the QSAR Toolbox using the following profilers relevant 

to mammalian metabolism (hydrolysis and microbial metabolism were not take into account): 1) Observed 

mammalian metabolism, 2) Observed Rat In vivo metabolism, 3) Observed rat liver metabolism with quantitative 

data, 4) Observed Rat Liver S9 metabolism, 5) In vivo Rat metabolism simulator, 6) Rat liver S9 metabolism 

simulator.  

Investigation of metabolites is in principle only required for compounds that were subjected to the read-across (i.e., 

the compounds for which experimental data was lacking). For a comprehensive risk assessment, all (predicted) 

metabolites of the target compound should be assessed individually for the endpoint of interest (not part of the 

present study).  

 

The results of the Ames fluctuation experiments show that it is not easy to select appropriate dose levels. In this 

research, maximum concentrations of the first experiment were selected based on either limit concentrations 

generally used for in vitro assays or limited by solubility, but the selected concentrations appeared to be cytotoxic. 

The advantage of observing cytotoxicity is that it can be assumed that the concentration levels were sufficiently 

high to induce a genotoxic response, but the disadvantage is that excessive cytotoxicity may lead to false negative 

responses and that consequently no conclusion on mutagenicity can be drawn, resulting in the need for a repeat 

experiment. Performance of a dose-range finding experiment and/or increasing the number of concentration levels 

in the initial experiment reduce the risk of the need for repeating an experiment, yet it is less time-efficient than 

the pragmatic approach used in this study.  

7.4 Dempster Shafer Theory (DST) 

In the previous chapters we showed that we used multiple sources of evidence (in silico tools) to predict 

mutagenicity for compounds lacking toxicological data. Each of these computational tools relies on approaches 

such as QSAR and read-across. However, most of these tools lack information on the uncertainty of the model 

outcomes resulting from limitations in the model itself. Although each model may work well to predict 

mutagenicity of compounds, each model has its own limitations and therefore may lack reliability on its own. 

Weight-of-evidence approaches combining predictions from various methods (not solely including in silico tools) 

have become commonly accepted (ECHA, 2023; EFSA, 2017).  

  



 

 

BTO 2023.015 | February 2023 
Evaluation of QSAR tools in combination with bioassays for transformation products 
and emerging substances 37 

One of such weight-of-evidence approaches is the Dempster Shafer Theory (DST). A technical explanation on the 

DST theory is provided in Appendix II. 

Future research on how toxicological predictions with varying uncertainty can be combined by using DST is ongoing 

(Rathman et al., 2018). The main challenge is to reliably estimate prediction uncertainty based on results from 

multiple models, information on the uncertainty of each model prediction is required. Although both VEGA QSAR 

and CASE Ultra provide information on the reliability of each model predictions, only CASE Ultra provides 

statistically derived probability values, which makes this model particularly useful when applying DST. To account 

for uncertainties and variability in the different model outcomes, more research into application and acceptance of 

DST in (in silico) toxicological assessment is required (Benigni et al., 2019).   

 

  

Conclusion 
In silico tools provide insight into which micropollutants in water pose a potential risk to 
health and the environment. Therefore, they have a clear added value as a solution for 
different water quality questions around prioritization for research needs and safety and risk 
assessment. Practical measures and decision-making to mitigate any risks can thus be 
purposefully chosen and deployed. Further development of in silico tools with regards to 
endpoints other than genotoxicity is needed.  
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8 Knowledge gaps and recommendations for 

future research 

The current project focused on the application of in silico models in combination with bioassays on individual water 

relevant chemicals. A next step would be to integrate in silico toxicology in a strategy for hazard assessment of 

water samples with advanced chemical analysis and identification using high resolution mass spectrometry to 

demonstrate the applicability of in silico toxicology in practice. Ideally, this is done in a multidisciplinary 

collaboration such as proposed in a pending research proposal called Waterpatroon (Efficient risk identification of 

water quality by integrating chemical and toxicological data, risk-based prioritization based on MS2 spectra) and/or 

in connection to other (BTO) projects in which non-target screening and/or bioassays are performed.  

For ongoing projects and hazard and risk assessment activities, the knowledge obtained in the current project on 

the use of in silico models is already being applied. Recently, substances for studies on treatment efficiency were 

prioritized based on the presence of structural alerts for water-relevant toxicological endpoints derived from 

profiling in the QSAR Toolbox. In addition, in silico tools are being used to support toxicological risk assessments for 

contaminants found in drinking water sources and to evaluate toxicological risk assessments based on in silico 

predictions (peer-review). However, more in depth knowledge on the use and acceptance of in silico models in a 

regulatory context is needed for a more accurate hazard and risk assessment in a water-relevant context. This can 

be achieved by systematically reviewing and summarizing existing guidance documents from the European Food 

Safety Authority (EFSA), ECHA and OECD, and by discussing this with external experts.  

Xenobiotic metabolism was considered only to a limited extent in the current project because the selected 

compounds overall showed negative responses, both in the presence and absence of metabolic enzymes (S9). 

Nevertheless, it is known that metabolism is an important aspect in genotoxicity assessment as some compounds 

are progenotoxins, i.e., these compounds become genotoxic after metabolic activation. In follow-up research, 

consideration of metabolism can be integrated in the in silico strategy, and the opinion of authorities should also be 

included.  

The Dempster Shafer Theory (paragraph 7.4) was explored in the current project, but further elaboration on the 

application in hazard assessment using in silico toxicology and experimental data is warranted. It is recommended 

that the applicability of DST or other weight-of-evidence approaches is further evaluated.  

Automatization, e.g., using workflows or programming, was not part of the current project. However, 

automatization was explored and it is foreseen that this can be expanded in follow-up research. For VEGA QSAR, 

this can be done using KNIME22. For the QSAR Toolbox, programming features are not embedded in the software 

application itself. However, output of the QSAR Toolbox can be generated in Excel and Excel files can be coupled to 

R scripts for further data processing.  

The Ames fluctuation test result of Levonorgestrel was equivocal. With additional experiments the conclusion may 

become more definitive.  

  

 
22 Konstanz Information Miner (KNIME) is a free and open-source data analytics, reporting and integration platform. KNIME integrates various 

components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept. A graphical user interface 
and use of JDBC allows assembly of nodes blending different data sources, including preprocessing (ETL: Extraction, Transformation, Loading), for 
modeling, data analysis and visualization without, or with only minimal, programming (en.wikipedia.org).   
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9 Dissemination 

The developed strategies on application of in silico tools for water quality assessment have been published in H2O 

in March 2022 (Reus et al. 2022). A scientific publication on the combined application of in silico tools and bioassays 

for water quality assessment is foreseen after investigating water samples in addition to individual substances. It is 

foreseen that chemical analysis (non-targeted) is also included in this follow-up research.  

Combined results of the Ames fluctuation test and the read-across, as well as the proposed strategies for water 

quality assessment are presented and discussed at the International Congress on Toxicology (ICT 2022), held in 

Maastricht, September 18-21. This included both a short oral communication and an e-poster.  
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I Water relevant compounds of interest for toxicological evaluation 

Name  CAS SMILES  Origin Reference  

1-(2-benzaldehyde)-(1H, 3H)-

quinazoline-2,4-dione  

unknown unknown transformation product Brunner et al. 2019 

1-(2-benzoic acid)-(1H, 3H)-

quinazoline-2,4-dione  

unknown unknown transformation product Brunner et al. 2019 

1-(2-benzoic acid)-4-hydro(1H, 3H)-

quinazoline-2-one 

unknown unknown transformation product Brunner et al. 2019 

1,3-Propanedione, 1,3-diphenyl- 120-46-7 O=C(CC(=O)C1=CC=CC=C1)C1=CC=CC=C1 industrial Baken et al. 2018 

1H-Benzotriazole, 5,6-dimethyl- 4184-79-6 CC1=CC2=NNN=C2C=C1C  industrial Baken et al. 2018 

1H-Benzotriazole, 5-methyl- 136-85-6 CC1=CC2=C(NN=N2)C=C1  industrial Baken et al. 2018 

1H-Indene, 2,3-dihydro- 496-11-7 C1CC2=CC=CC=C2C1 industrial Baken et al. 2018 

2-(Diethylamino)ethanol 100-37-

8         

CCN(CC)CCO transformation product Unpublished data KWR  

2-Aminobenzoic acid 118-92-3 / 

1321-11-5 

/ 93762-

40-4 

Nc1ccccc1C(O)=O        transformation product Unpublished data KWR  

2-Isopropoxy-1,3-cyclohexadiene 98677-91-

9 

CC(C)OC1=CC-CC=C1  transformation product Unpublished data KWR  

2-Propenoic acid/2-acrylamido-2-

methyl-1-propanesulfonic acid 

copolymer natriumzout met CAS nr 

77019-71-7 

40623-75-

4 

OC(=O)C=C.CCC(C)(N=C(O)C=C)S(O)(=O)=O industrial Present in drinking water 

sources 

3-Pyrazolpropanoic acid 89532-73-

0 

OC(=O)CCN1C=CC=N1 industrial Present in drinking water 

sources 
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Name  CAS SMILES  Origin Reference  

3-Pyrazolpropionitrile 88393-88-

8 

N#CCCN1C=CC=N1 industrial Present in drinking water 

sources  

4-OH-omeprazole sulfide 103876-

98-8 

COC1=CC2=C(C=C1)N=C(N2)SCC1=C(C)C(=O)C(C)=CN1 pharmaceutical metabolite Present in drinking water 

sources 

9-Hydroxy-acridine     transformation product Brunner et al. 2019 

Acridone 578-95-0 O=C1C2=CC=CC=C2NC2=CC=CC=C12 transformation product Brunner et al. 2019 

Adenosine 5 -(tetrahydrogen 

triphosphate) [ATP] 

56-65-5 NC1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP(O)(=O)O

P(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O 

natural origin Baken et al. 2018 

Alpha-hydroxyisobutyric acid 594-61-6 CC(C)(O)C(O)=O transformation product Brunner et al. 2019 

Amantadine 768-94-5 NC12CC3CC(CC(C3)C1)C2 pharmaceutical Present in drinking water 

sources 

Anabasine 40774-73-

0 

- natural origin Present in drinking water 

sources 

Antraquinone 84-65-1 O=C1C2=C(C=CC=C2)C(=O)C2=C1C=CC=C2 industrial Present in drinking water 

sources 

Benzamide, 2-amino-N-(1-

methylethyl)- 

30391-89-

0 

CC(C)NC(=O)C1=C(N)C=CC=C1 pesticide metabolite Baken et al. 2018 

Benzyl butyrate  103-37-

7         

CCCC(=O)OCC1=CC=CC=C1 transformation product Unpublished data KWR  

Bis(4-ethylbenzylidene)sorbitol            79072-96-

1 

CCC1=CC=C(C=C1)C1OCC2OC(OC(C(O)CO)C2O1)C1=CC=

C(CC)C=C1 

transformation product Unpublished data KWR  

Clotrimazole 23593-75-

1 

ClC1=C(C=CC=C1)C(N1C=CN=C1)(C1=CC=CC=C1)C1=CC=

CC=C1 

pharmaceutical Present in drinking water 

sources 

Cotinine 486-56-6 CN1[C@@H](CCC1=O)C1=CN=CC=C1 nicotine metabolite Present in drinking water 

sources 

Cyaanureum 2208-89-1 OC(=N)NC#N industrial Present in drinking water 

sources 

Cyanopropanal 3515-93-3 O=CCCC#N industrial Present in drinking water 

sources  

Cyanopropanalcyanohydrin 2478-49-1 OC(CCC#N)C#N industrial Present in drinking water 

sources  
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Name  CAS SMILES  Origin Reference  

Cyclohexane 110-82-7 C1CCCCC1  industrial Baken et al. 2018 

Deschlormetolachlor 126605-

22-9 

CCC1=CC=CC(C)=C1N(C(C)COC)C(C)=O transformation product Brunner et al. 2019 

Desmetramadol 73986-53-

5 

CN(C)CC1CCCCC1(O)C1=CC(O)=CC=C1 pharmaceutical metabolite Present in drinking water 

sources 

Diglyme 111-96-6 COCCOCCOC industrial Present in drinking water 

sources 

Dinoterb 1420-07-1 CC(C)(C)C1=CC(=CC(=C1O)[N+]([O-])=O)[N+]([O-])=O  pesticide Baken et al. 2018 

EDTA 60-00-4 OC(=O)CN(CCN(CC(O)=O)CC(O)=O)CC(O)=O industrial Present in drinking water 

sources 

Estrone 53-16-7 [H][C@@]12CCC(=O)[C@@]1(C)CC[C@]1([H])C3=C(CC[C

@@]21[H])C=C(O)C=C3 

natural origin Baken et al. 2018 

Ethyldimethylcarbamaat 687-48-9 CCOC(=O)N(C)C industrial Present in drinking water 

sources 

exo-1,2,7,7-

Tetramethylbicyclo[2.2.1]heptan-2-ol 

2371-42-8 - natural origin Baken et al. 2018 

F53B 73606-19-

6 

[K+].[O-

]S(=O)(=O)C(F)(F)C(F)(F)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(

F)C(F)(F)Cl 

industrial Present in drinking water 

sources 

Fenoprofen 31879-05-

7 

CC(C(O)=O)C1=CC(OC2=CC=CC=C2)=CC=C1 pharmaceutical Baken et al. 2018 

Fexofenadine 83799-24-

0 

CC(C)(C(O)=O)C1=CC=C(C=C1)C(O)CCCN1CCC(CC1)C(O)(C

1=CC=CC=C1)C1=CC=CC=C1 

pharmaceutical Present in drinking water 

sources 

Flecaïnide 54143-55-

4 

FC(F)(F)COC1=CC(C(=O)NCC2CCCCN2)=C(OCC(F)(F)F)C=C

1 

pharmaceutical Present in drinking water 

sources 

Gadolinium compounds - - contrast medium Baken et al. 2018 

Hordenine 539-15-1 CN(C)CCC1=CC=C(O)C=C1 natural origin Present in drinking water 

sources 

Hydroxyatrazine 2163-68-0 CCNC1=NC(O)=NC(NC(C)C)=N1 pesticide metabolite Present in drinking water 

sources 
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Name  CAS SMILES  Origin Reference  

Hydroxysimazine 2599-11-3 CCNC1N=C(O)NC(NCC)=N1 pesticide metabolite Present in drinking water 

sources 

Iodopropinyl butylcarbamaat 55406-53-

6 

CCCCNC(=O)OCC#CI fungicide Present in drinking water 

sources 

Ioxaglic acid 59017-64-

0 

CNC(=O)C1=C(I)C(N(C)C(C)=O)=C(I)C(C(=O)NCC(=O)NC2=

C(I)C(C(=O)NCCO)=C(I)C(C(O)=O)=C2I)=C1I 

contrast medium Baken et al. 2018 

Ioxitalamic acid 28179-44-

4 

CC(=O)NC1=C(I)C(C(=O)NCCO)=C(I)C(C(O)=O)=C1I contrast medium Baken et al. 2018 

Ketamine 6740-88-1 CNC1(CCCCC1=O)C1=C(Cl)C=CC=C1 pharmaceutical Present in drinking water 

sources 

Levocetirizine 130018-

77-8 

OC(=O)COCCN1CCN(CC1)[C@H](C1=CC=CC=C1)C1=CC=C

(Cl)C=C1 

pharmaceutical Present in drinking water 

sources 

Levonorgestrel 797-63-7 [H][C@@]12CC[C@@](O)(C#C)[C@@]1(CC)CC[C@]1([H]

)[C@@]3([H])CCC(=O)C=C3CC[C@@]21[H] 

pharmaceutical Present in drinking water 

sources 

Levopropylhexedrine 6192-97-8 - pharmaceutical Present in drinking water 

sources 

Maleonitril 928-53-0 - industrial Present in drinking water 

sources  

MDA 4764-17-4 CC(N)CC1=CC=C2OCOC2=C1 illicit drug Present in drinking water 

sources 

Melamine, hexa(methoxymethyl)- 68002-20-

0 

- industrial Baken et al. 2018 

Methane, bromotrichloro- 75-62-7 ClC(Cl)(Cl)Br  industrial Baken et al. 2018 

Methocarbamol 532-03-6 COC1=CC=CC=C1OCC(O)COC(N)=O pharmaceutical Present in drinking water 

sources 

Metolachlor ESA 171118-

09-5 

CCC1=CC=CC(C)=C1N(C(C)COC)C(=O)CS(O)(=O)=O pesticide metabolite Baken et al. 2018 

Metolachlor OA 152019-

73-3 

CCC1=CC=CC(C)=C1N(C(C)COC)C(=O)C(O)=O pesticide metabolite Baken et al. 2018 

MTDC 3013-02-3 CSC(=O)N(C)C pharmaceutical Baken et al. 2018 
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Name  CAS SMILES  Origin Reference  

N-ethylperfluoroctaan-

sulfonamidoazijnzuur 

2991-50-6 CCN(CC(O)=O)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)

C(F)(F)C(F)(F)C(F)(F)F 

industrial Present in drinking water 

sources 

Nicotine 54-11-5 CN1CCC[C@H]1C1=CN=CC=C1 natural origin Present in drinking water 

sources 

Octahydro tetramethyl 

naphthalenylethanone (OTNE) 

54464-57-

2 

CC1CC2=C(CC1(C)C(C)=O)C(C)(C)CCC2 fragrance Present in drinking water 

sources 

Oxcarbazepine 28721-07-

5 

NC(=O)N1C2=CC=CC=C2CC(=O)C2=CC=CC=C12 pharmaceutical Present in drinking water 

sources 

Pyridoxine 65-23-6 CC1=C(O)C(CO)=C(CO)C=N1 pharmaceutical Present in drinking water 

sources 

Ritalinezuur 19395-41-

6 

OC(=O)C(C1CCCCN1)C1=CC=CC=C1 pharmaceutical metabolite Present in drinking water 

sources 

Sulfamic acid 5329-14-6 NS(O)(=O)=O industrial Present in drinking water 

sources 

Sulfamide, N,N-dimethyl- 3984-14-3 CN(C)S(N)(=O)=O pesticide metabolite Baken et al. 2018 

Sulpiride 15676-16-

1 

CCN1CCCC1CNC(=O)C1=C(OC)C=CC(=C1)S(N)(=O)=O pharmaceutical Present in drinking water 

sources 

Tetraglyme 143-24-8 / 

70992-84-

6 

COCCOCCOCCOCCOC industrial Present in drinking water 

sources 

Traseolide 68140-48-

7 

CC(C)C1C(C)C(C)(C)C2=CC(C)=C(C=C12)C(C)=O fragrance Present in drinking water 

sources 

Trifluoroacetic acid 76-05-1 OC(=O)C(F)(F)F industrial Present in drinking water 

sources 

Triglyme 112-49-2 / 

70992/85-

7 

COCCOCCOCCOC industrial Present in drinking water 

sources 

Triphenylphosphine oxide 791-28-6 O=P(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 industrial Present in drinking water 

sources 



 

 

BTO 2023.015 | February 2023 
Evaluation of QSAR tools in combination with bioassays for transformation products 
and emerging substances 50

Name  CAS SMILES  Origin Reference  

Trospium chloride 10405-02-

4 

[Cl-

].OC(C(=O)O[C@@H]1C[C@@H]2CC[C@H](C1)[N+]21CC

CC1)(C1=CC=CC=C1)C1=CC=CC=C1 

pharmaceutical Present in drinking water 

sources 

unknown unknown CCC1=C(C(=CC]C1)C)N(C(C)CO)C(=O)CCl  transformation product Unpublished data KWR  

Urea, N,N'-dicyclohexyl- 2387-23-7 O=C(NC1CCCCC1)NC1CCCCC1 pharmaceutical Baken et al. 2018 

Vigabatrin 60643-86-

9 

- pharmaceutical Present in drinking water 

sources 
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II Dempster Shafer Theory 
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The models in the VEGA QSAR use number of stars could indicate possibility. 

Assuming 1 star = 0.3, 2 star = 0.6, 3 star = 0.9, although in reality this may be >0.3, >0.6 etc. 

There can be multiple scenarios, we either: 

- Consider Mutagenic/ possible mutagenic/ non mutagenic as categories (Bel(A), Pl(A), Bel(not A)), excluding 

information on the stars. 

- Within the models, we assume 1 star 1-Pl(), 2 star Pl(), 3 star Bel(). However there are four models, so 

there are four dimensions, instead of two. Per model: 

 

 

 

 

 

m1 m5 m9 m13 

m2 m6 m10 m14 

m3 m7 m11 m15 

m4 m8 m12 m16 

 

When a model reports that a compound is mutagenic (reliability for instance is 0.6), based on assumptions Bel(not 

mutagenic) = 0.1? Then this means that Bel(mutagenic) = 0.6, Pl(mutagenic) = 0.3+0.6. 

 

 

 

A 

Bel(A) Bel(not A) 

Pl(A) 
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Four models (A, B, C and D) with two categories so: 

Chance that compound is mutagenic based on all models: 

  Bel(A and B and C and D) = Bel(A) * Bel(B) * Bel(C) * Bel(D) – Basically multiplying all probabilities 

Change that compound is likely/maybe mutagenic based on all models: 

Pl(A and B and C and D) = Pl(A)*Pl(B)* Pl(C)*Pl(D) 

In a scenario in which only mutagenic results are reported this is 0.9*0.9*0.9*0.9 
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