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A B S T R A C T   

Artificial intelligence (AI) is expected to transform many scientific disciplines, with the potential to significantly 
accelerate scientific discovery. This perspective calls for the development of data-centric water engineering to 
tackle water challenges in a changing world. Building on the historical evolution of water engineering from 
empirical and theoretical paradigms to the current computational paradigm, we argue that a fourth paradigm, i. 
e., data-centric water engineering, is emerging driven by recent AI advances. Here we define a new framework 
for data-centric water engineering in which data are transformed into knowledge and insight through a data 
pipeline powered by AI technologies. It is proposed that data-centric water engineering embraces three principles 
– data-first, integration and decision making. We envision that the development of data-centric water engi-
neering needs an interdisciplinary research community, a shift in mindset and culture in the academia and water 
industry, and an ethical and risk framework to guide the development and application of AI. We hope this paper 
could inspire research and development that will accelerate the paradigm shift towards data-centric water en-
gineering in the water sector and fundamentally transform the planning and management of water infrastructure.   

1. The era of big data and artificial intelligence 

Our world is currently undergoing the most profound change in 
human history driven by big data and artificial intelligence (AI). Digital 
technologies have advanced more rapidly than any innovation in our 
history, and have moved our society into the era of big data with the 
proliferation of sensing devices and data facilities.AI technologies, in 
particular machine learning, have been developed and deployed to 
process large amounts of data for problem-solving and decision-making 
tasks, significantly improving efficiency and productivity in many sec-
tors (Russell et al., 2015). The impact of AI on industry and day-to-day 
life is just beginning, with the potential to bring unprecedented benefits 
to humanity. The development of general-purpose AI systems employing 
what we already have more effectively and at greater scale was esti-
mated to be worth a net present value of $13.5 quadrillion and produce a 
tenfold increase in global gross domestic product, which last time 
required over 190 years from 1820 to 2010 in history (Russell et al., 
2015). 

AI could potentially transform how scientific research is conducted 
in many disciplines and its impact is just emerging. Jim Gray, a pio-
neering computer scientist, described a new paradigm of scientific 
research - data-intensive science - as the fourth paradigm of science 

following empirical, theoretical and computational paradigms (Hey 
et al., 2009). A wide range of fundamental sciences, including mathe-
matics, medical science, physics, chemistry and geoscience, are already 
being affected by AI (Xu et al., 2021). For example, the success of 
AlphaFold in predicting 3D protein structures has expanded the size of 
the protein structure database by 200 times, with the potential to 
accelerate scientific discovery in biology (Hassabis, 2022). 

Water engineering is similarly poised to be significantly affected by 
AI technologies. Water engineering is a sub-field of engineering that 
addresses complex issues of sustainable water management in a 
changing world, generally covering water resources, water treatment, 
water distribution, stormwater, and wastewater systems. AI applications 
have been found in various problems including anomaly detection, 
prediction, asset condition assessment, operation, planning and main-
tenance (Fu et al., 2022; Li et al., 2023) and the development of path-
ways towards sustainable and resilient water systems (Fu et al., 2023). 
The water sector has come a long way in terms of digital transformation, 
though water utilities are at varying stages of adopting digital technol-
ogies (Boyle et al., 2022; Daniel et al., 2023). 

This perspective aims to propose a new data-centric paradigm for 
water engineering to tackle water management problems in a changing 
world. This paradigm is empowered by AI technologies focusing on how 
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they effectively extract knowledge and insight from the data pipeline to 
improve, enhance and develop water management. We will first review 
the historical evolution of water engineering, then define the data- 
centric framework and three underlying key principles, and finally 
discuss ways forward to enable the paradigm shift in water research and 
practice. This paper is positioned as a call for action to move towards 
data-centric water engineering in the water research and practice 
communities. 

2. Paradigms of water engineering 

Historically, water engineering as a research discipline and as a 
practising profession has gone through empirical, theoretical, and 
computational paradigms. In recent years, the interest in data-driven 
research and development has grown substantially in water engineer-
ing (Eggimann et al., 2017; Fu et al., 2022; Makropoulos and Savic, 
2019). This calls for the recognition of a new paradigm – data-centric 
water engineering – as a pillar of water research and development. 
Before introducing the new paradigm, the previous paradigms are 
explained briefly to understand the historical evolution of water engi-
neering (Fig. 1). 

2.1. Empirical water engineering 

Water engineering can be traced back to ancient civilisations when 
many hydraulic structures were built for water supply and drainage. 
Mesopotamia built lengthy branching canals in 2950 – 2400 BCE and, a 
sophisticated network of small tanks connected by canals was built for 
irrigation in Sri Lanka about 2500 years ago (Vairavamoorthy, 2022). 
The Romans are well known for building elaborate aqueducts to trans-
port water long distances for urban water supply and artificial drains (e. 
g. cloaca maxima) to take used water away to prevent flooding. In China, 
a large-scale hydraulic complex consisting of dams, levees and ditches 
was built to support the ancient city of Liangzhu about 5100 years ago 
(Liu et al., 2017). Dujiangyan was another Chinese engineering feat 
constructed in 256 BCE to solve irrigation and flooding problems with 
three key structures - a fish mouth levee, flying sand weir and 
bottle-neck channel - working together (Zhang et al., 2013). 

At this stage, water engineering was based on rules of thumb 
developed through observation and understanding of the local envi-
ronment and natural phenomena rather than scientific principles. With 
limited knowledge of flow dynamics, however, it was not uncommon for 
projects to fail or result in unintended consequences, with examples such 
as the use of lead in water pipes resulting in public health hazard for the 
Romans. On the contrary, successful projects such as Dujiangyan 
resulted from a detailed understanding of geography and water forces. 
Advanced knowledge in hydraulic engineering was normally regarded 
as a key driver for social, political and economic developments in 

ancient civilisations. 

2.2. Theoretical water engineering 

The science of hydraulics did not advance much until Leonardo da 
Vinci summarised the state-of-the-art in a book circa 1500 (Walski, 
2006). Classic water engineering began to develop in the 17th century 
with the advances in hydraulic experiments and theories. Hydrostatics 
took shape with the discovery of Pascal’s law in 1653. With the advances 
in mathematics and physics, the 18th and 19th centuries saw the arrival 
of hydrodynamics, with some fundamental theories gradually devel-
oped, for example, Bernoulli’s theory, Chezy and Manning formulae, 
Prandtl and von Karman’s laws and Navier-Stokes equations (Chadwick 
et al., 2013). Experimentation was a key tool to determine key co-
efficients, validate theories and understand flow dynamics. Significant 
advances in instrumentation were also made, such as the Piezometer and 
Pitot tube, enabling pressure and flow velocity measurement respec-
tively. In another line of development, the activated sludge process was 
discovered by laboratory experiments in the 1910s and was quickly 
adopted to solve the water body pollution problem that caused public 
health crises in many European cities (Jenkins and Wanner, 2014). 

Hydraulic theories significantly enhanced the understanding of 
fundamental hydraulic behaviour compared to the first paradigm and 
thus enabled rapid development of large and complex water infra-
structure for growing cities. For example, in the mid-18th century, water 
in London was delivered through a network of approximately 50 km of 
wood and cast-iron pipes, pumped from rivers by water wheels and later 
steam engines (Walski, 2006; Sedlak, 2014). At this stage, however, 
water engineers had a much higher capacity in constructing systems 
than in conducting analysis to understand hydraulic behaviours as they 
relied on a combination of simplifications, rules-of- thumb, and 
conservatism (Walski, 2006). 

2.3. Computational water engineering 

A new era of water engineering began when digital computers were 
first applied to solve hydraulic problems in the early 1950s. The early 
models could only solve steady-state hydraulic problems and required 
punch-card input on large mainframe computers, but water utilities 
began to use such models (e.g., the McIlroy Network Analyzer) for flow 
simulation (Walski, 2006). With the popularity of personal computers 
from the 1970s and their rapidly increasing computational power, 
physics-based models were developed to represent more detailed pro-
cesses and higher temporal-spatial resolutions. For example, flow dy-
namics are simulated with increasing dimensions ranging from 1D and 
2D to 3D, runoff processes are represented from lumped to grid cells at 
sub-metre levels and water quality is increasingly included in water 
systems modelling for problems such as water distribution system 
design, green infrastructure planning and effluent quality consenting. As 
a result, hydroinformatics was established as a research field to focus on 
computer simulation/optimisation modelling for supporting informed 
decision-making (Makropoulos and Savic, 2019). 

Compared to the previous stage, this stage significantly improved the 
capacity of understanding detailed processes, predicting their behaviour 
and evaluating engineering solutions under various conditions before 
they were implemented in the real world. Computers were, in effect, 
used as a virtual laboratory for hydraulic experiments. However, a 
model-centric approach was generally followed with efforts focused on 
improving modelling accuracy by increasing model realism, complexity 
or choosing appropriate models. This is true even for data-driven models 
(Liu et al., 2023). The use of computer simulation models and optimi-
sation methods to support decision making has been widely accepted in 
water systems planning and management. 

Fig. 1. Four paradigms of water engineering.  
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2.4. The need for data-centric water engineering 

As discussed above, data has been playing a central role in the history 
of water engineering: from activities related to observing and measuring 
water processes, through extracting physical laws from experiments to 
building computer models which could be used for design and opera-
tional purposes. In an age of big data and AI, however, what is funda-
mentally different from the past is our ability to gather, manage and 
analyse data in resolutions, scales and volumes that have grown beyond 
our imagination. Data-centric water engineering is emerging as the 4th 
paradigm of water engineering and represents a radical change in the 
use of data for water system planning, management and operation. 

In particular, the advance of physics-based models has been gradual 
in recent years and met with many challenges such as complex in-
teractions, large numbers of model parameters, intensive computing 
resources, and limited human resources and skills (Fu et al., 2022; 
Nearing et al., 2021). AI could be just the right technology to help 
develop the next-generation models of water systems, as demonstrated 
by an increasing number of AI-based or hybrid models of water systems, 
e.g., flood models (Zhang et al., 2023) and water distribution models (Li 
et al., 2024). The huge potential of AI has started to be realised as one of 
the most useful technologies for advancing scientific research and 
practical adoption in the real world. 

Building on the previous paradigms, this paradigm will significantly 
improve the speed and efficiency of the data-to-knowledge trans-
formation process for water system planning and management. It will 
also lead to higher levels of automation in decision making compared to 
previous paradigms. 

3. Defining data-centric water engineering 

Data-centric engineering is emerging as a new research field sitting 
at the interface of data science and engineering (Butler et al., 2019). It is 
the systematic fusion of fundamental physical and chemical laws with 
data-enabled and empirically derived laws (Girolami, 2021). 
Data-centric engineering has gained significant recognition in recent 
years due to the increasing availability of data in many industries and AI 
advances, which enable the leverage of large amounts of data to un-
derstand complex system behaviours and make informed decisions. 
Water engineering, as a branch of the engineering discipline, charts a 
similar development pattern of data-centric engineering. The framework 
and key principles for data-centric water engineering are discussed 
below. 

3.1. New framework 

At its most fundamental level, a water system can be thought of as an 
information processing system, albeit an extraordinarily complex and 
dynamic one, as it handles a range of diverse data related to flow, water 
quality, assets, socioeconomic systems, and interdependent environ-
ment and engineering systems. Data-centric water engineering is used 
here as a term to describe the paradigm for designing and managing 
water systems that focus on the handling and management of data as the 
primary concern. Data-centric water engineering can be viewed as an 
interdisciplinary academic discipline of integrating water research with 
cutting-edge AI technologies to provide meaningful insight, actionable 
knowledge and high-performing interventions for sustainable and 
resilient management of water systems in the face of social and envi-
ronmental changes. 

Fig. 2 shows a new framework of data-centric water engineering in 
which the data pipeline plays a central role in water infrastructure 
planning and management and stakeholder engagement. In the pipeline, 
data and information are collected from water infrastructure, its envi-
ronment and interdependent systems, and various stakeholders. They 
are fed into the computational core of the framework – an integrated 
data-driven (i.e., machine learning) and physics-based modelling engine 
– for new knowledge and insight extraction. Knowledge and insight are 
applied to water infrastructure systems and fed back to stakeholders. 
This process is iterated to meet the needs of the society and environment 
that are fed into the data pipeline through stakeholder engagement. 

The integrated modelling approach in the data pipeline, empowered 
by AI technologies, is thought to be fundamentally different from 
traditional modelling approaches. ChatGPT has demonstrated the ability 
to automate modelling and coding tasks, with its application in hy-
drology and earth sciences (Foroumandi et al., 2023) and water re-
sources management (Egbemhenghe et al., 2023). It can be envisioned 
that the modelling process could be automated so that the trans-
formation from data to knowledge and insight through the data pipeline 
could be highly efficient concerning human resources and cost re-
quirements, enabling effective decisions for water system management. 

3.2. Fundamental principles 

We propose the following key principles of data-centric water engi-
neering, which make it fundamentally distinct from the previous 
paradigms. 

Fig. 2. Proposed framework of data-centric water engineering.  
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3.2.1. Data-first 
Data should be treated as a first-class citizen in the planning, design, 

operation and management of water systems. This means that the data 
pipeline should be maintained and updated at every stage along with the 
infrastructure. This approach is in contrast to traditional systems ap-
proaches in the 3rd computational paradigm, which tend to focus on the 
functionality of the system and the processes it will support, rather than 
the data itself. The data-first principle requires the consideration of data- 
related activities: capture, transmission, storage, curation, and analytics, 
and the design and management of data infrastructure should become an 
integrated part of water infrastructure management. 

Water systems are now recognised as cyber-physical systems (CPS) 
that integrate sensors, controllers, data management and computational 
capabilities to control and monitor physical processes. The cyber system 
should be planned and managed together with the physical system in an 
integrated way in the whole life cycle. This involves many problems 
such as optimal sensor placement, data quality assurance, sensor 
anomaly detection, security, proactive maintenance and interdepen-
dency with other systems (e.g., communication), and thus affects in-
vestment decisions. In addition to data collected from water systems, 
data from other sources such as weather and geo-spatial data from sat-
ellites, radars, unmanned aerial vehicles and social media should be 
included in the data pipeline, and they can be of varying scales and 
shapes, such as text and videos. 

3.2.2. Integration 
Data-centric water engineering should be regarded as an integrating 

framework that not only unifies the previous empirical, theoretical and 
computational paradigms but also provides a new approach for them to 
interact and improve. This is primarily exhibited by how the data and 
information are processed and learned to form new knowledge and in-
sights for water system planning and management. 

AI-human integration is fundamental in knowledge and insight 
generation. In the previous paradigms, the generation of knowledge and 
insight predominantly relies on humans: physical theories and laws are 
developed and tested based on observations and experiments to under-
stand water systems, and then used to build physics-based models for 
predictions of environmental changes and human interventions. How-
ever, many processes and properties of water systems are still under-
stood less or are highly heterogeneous in space and time, in particular 
with changing environment and increasing scales. This is reflected in 
assumptions and empirical relationships in physics-based models. 
Physics-based models often have limitations in high computational de-
mands and require high human resources and skills in transferability 
across systems and scales. The advances in machine learning provide a 
new (often automated) way to understand the behaviour of water sys-
tems directly from growing amounts of data collected, though it still has 
challenges in improving explainability and extrapolation. Thus inte-
gration of physics-based and machine learning models can effectively 
improve our ability to develop a digital representation of natural and 
engineered water systems that can be used for planning and manage-
ment decisions. 

The integration of physics-based and machine learning models can 
take different forms. Various terminologies and approaches have been 
proposed, such as physics-informed or theory-guided machine learning, 
hybrid modelling, and differentiable modelling (Shen et al., 2023). 
However, a key challenge is to identify synergies between physical and 
data-driven models and suitable ways to leverage the AI power for ac-
curate system modelling. Most importantly, AI advances could signifi-
cantly improve the efficiency of model development and reduce the 
human efforts required. One example is the development of foundation 
models such as the Geospatial AI Foundation Model (Jakubik et al., 
2023), which could be used to re-train deep learning models for a spe-
cific region or be integrated with hydrodynamic models for flood 
simulations. 

3.2.3. Decision making 
AI enables automation of decision making inherently. In data-centric 

water engineering, a move from decision support to higher levels of 
automation in decision making is inevitable. 

In the 3rd paradigm, computer simulation and optimisation models 
have been playing an increasingly significant role in water management 
involving hydraulics, hydrology and environmental engineering. How-
ever, these models are generally regarded as a tool to support informed 
decision making by improving understanding of water systems, esti-
mating potential impacts of interventions or exploring decision space, 
though their scope is not limited to water systems but also embraces 
social-economic issues that are linked to water systems. This is referred 
to as the ‘human in the loop’ approach in which human does the decision 
making and AI provides only decision support (Ross and Taylor, 2021). 

Compared to the human-in-the-loop approach, there are higher 
levels of automation in decision-making approaches driven by AI (Ross 
and Taylor, 2021): 1) human in the loop for exceptions where most 
decisions are automated but human intervention is required for excep-
tional conditions which could be extreme events or AI systems of high 
uncertainty; 2) human on the loop where AI is assisted by humans in 
automated decision making but humans review decision outcomes and 
adjust parameters for future decisions; 3) human out of the loop where 
AI makes every decision but humans intervene only by setting new 
constraints and objectives, for example, in response to evolving needs of 
stakeholders. 

Automated decision making is already happening in the water in-
dustry. For example, control systems of varying automation levels are 
implemented throughout the urban water and wastewater system 
mainly for the control of process units in water and wastewater treat-
ment plants. With data-centric water engineering, it is envisioned that 
automated system control becomes more prolific in water systems, in 
particular for real-time control problems such as pump scheduling, 
stormwater control, and green infrastructure control. Further, decisions 
related to planning, design and maintenance tasks can also be auto-
mated, though human intervention may be required at different levels 
and through different means. One example is predictive maintenance 
where investment plans are developed and implemented from monitor 
systems using machine learning. All these examples of higher levels of 
automation mean that different training of personnel involved with 
water systems is needed, thus may require even more training to 
embrace AI and automation of the water cycle (Savic, 2022). 

4. Ways forward 

An interdisciplinary research community is needed to develop a 
common vision and enable a paradigm shift to data-centric water en-
gineering which is, by its nature, interdisciplinary (Ley et al., 2020). For 
water engineering, combined knowledge from many disciplines such as 
water engineering, data and computer sciences, and social sciences is 
needed to tackle increasingly complex water challenges. The interdis-
ciplinary approach has already been widely recognised in the context of 
hydroinformatics (Makropoulos and Savic, 2019). In the era of AI, 
however, developing interdisciplinary collaborations between data sci-
entists and water researchers becomes more important for solving highly 
complex water problems with increasing amounts of data. Further, 
collaborative partnerships with big IT companies could play a key role in 
leveraging AI to tackle water challenges as they are increasingly driving 
AI advances as demonstrated by recent successes such as AlphaGo, 
ChatGPT and the Geospatial AI Foundation Model (Jakubik et al., 2023). 

A shift in mindset and culture in academia and the water industry is 
required. The focus on data and the development of the data pipeline 
requires significant changes to the way that organisations work and 
water infrastructure is managed, including the adoption of new tools 
and processes. A key challenge is to improve the level of data literacy 
within organisations, which means that engineers and researchers must 
be trained to reach a deeper understanding of data and how it can be 
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used to drive value for improved water management (Wagener et al., 
2021). Developing sufficient sensing systems and data infrastructure 
could be challenging due to significant investments required, in partic-
ular for the Global South. 

An ethics and risk management framework is needed to address 
important concerns related to the use of AI systems and related data. 
This is a fundamental prerequisite for the successful implementation of 
data-centric water engineering. Risks could arise in many respects 
including data privacy, security, bias and discrimination, inequity and 
social injustice, design errors and misuse. Failures or design errors in AI 
systems could generate direct impacts on water system operations, 
cascading water system failures and even impacts across other interde-
pendent systems and wider society (Richards et al., 2023). For example, 
unintended consequences on global climate change mitigation may 
occur when an AI system optimises urban wastewater treatment pro-
cesses but does not consider both direct and indirect carbon emissions 
(Sweetapple et al., 2014). However, progress is being made to manage 
AI risks, such as, published guidelines for secure AI system design, 
development, deployment, operation and maintenance published (UK 
National Cyber Security Centre, 2023), and the EU AI Act - the world’s 
first comprehensive AI law to regulate the use of AI. Notwithstanding the 
above, specific guidelines for robust data management and curation 
protocols as well as responsible, trustworthy AI systems in the water 
sector are still needed to achieve the widespread adoption of 
data-centric water engineering. 

Data-centric water engineering is emerging as a new paradigm for 
water research and development. The data pipeline through which 
knowledge and insight are extracted from data could be a fundamental 
feature of this new paradigm and it could be powered by AI advances for 
significant improvements in efficiency and productivity. Though chal-
lenges may arise from dimensions of cyber-physical infrastructure, 
institutional governance, social-economic systems and technological 
development in wider society (Eggimann et al., 2017; Fu et al., 2022, 
2023), we envision that the new paradigm will transform the way water 
systems are planned and managed to allow for more effective knowledge 
and insight extraction from data at scale and thus the creation of more 
sustainable and resilient water systems. 

5. Conclusions 

• Data-centric water engineering is emerging as a new research para-
digm for water research, development and practice, following the 
historical evolution of empirical, experimental and computational 
paradigms.  

• The fundamental feature of data-centric water engineering is the 
data pipeline empowered by AI for knowledge and insight extraction 
from data.  

• Data-centric water engineering should embrace three key principles 
– data-first, integrated modelling and automated decision making.  

• The development of data-centric water engineering calls for an 
interdisciplinary research community, a shift in mindset and culture 
in academia and the water industry, and an ethical framework to 
guide the development and application of AI. 
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