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A B S T R A C T   

Bioanalytical tools can be used for assessment of the chemical quality of drinking water and its sources. For water 
managers it is important to know the probability that a bioassay response above an established health-based 
‘effect-based trigger value’ (EBT) indeed implies a harmful chemical (mixture) concentration. This study pre-
sents and applies a framework, based on Bayes’ theorem, to derive such risk probabilities for bioassay responses. 
These were evaluated under varying (in silico) chemical mixture concentrations relevant to drinking water 
(sources), with toxicity data for six in vitro assays from the ToxCast database. For single chemicals and in silico 
mixtures, the negative predictive value (NPV) was 100 % for all assays. For water managers, this means that 
when a bioassay response is below the EBT, a chemical risk is reliably absent, and no further action is required. 
The positive predictive value (PPV) increased with increasing chemical concentrations (2 µg/L) up to 40–80 %, 
depending on the assay. For in silico mixtures of increasing numbers of chemicals, the PPV did not increase until 
higher sum concentrations (>2–10 µg/L). Hence, the ability to accurately signal a harmful chemical (mixture) 
using bioassays will be lowest for highly diverse, low-concentration chemical mixtures. For water managers, this 
means in practice that further investigations after an EBT exceedance will, in many cases, not reveal chemicals at 
harmful concentrations. A solution offered is to increase the trigger value for positive responses to achieve a 
higher PPV and maintain the EBT for negative responses to ensure an optimal NPV.   

1. Introduction 

The monitoring and assessment of the chemical quality of drinking 
water and its sources can, in addition to (non–) targeted chemical 
analysis (Brunner et al., 2020; Renaud et al., 2022) be performed with 
effect-based methods (EBMs) using bioassays (Neale et al., 2021). EBMs 
can quantify effects caused by (unknown) chemical mixtures (Escher 
et al., 2015; Escher et al., 2023; Oskarsson et al., 2021). More potent or 
higher concentrations of chemicals that elicit a particular effect will 
cause a higher observed response in the specific corresponding bioassay, 
resulting in a risk-scaled assessment of mixture toxicity. 

In recent decades, the applicability of EBMs to water quality moni-
toring has been demonstrated and EBMs are becoming increasingly 
available and accessible to water quality managers, regulators, and 
policymakers (Neale et al., 2023a). Due to their ability to characterize 
the hazards of complex chemical mixtures, EBMs are now recommended 

for the diagnosis and monitoring of water quality (Brack et al., 2019). 
However, many in vitro bioassays are highly sensitive and exhibit re-
sponses to contaminants at levels well below their guideline values or 
drinking water quality standards. Therefore, the use of EBMs for 
chemical water quality assessment requires threshold values that 
distinguish between acceptable and hazardous levels of pollution (Neale 
et al., 2023b). An effect-based ‘trigger value’ (EBT) can be applied to 
assess whether an observed effect exceeds a threshold above which risks 
are not negligible (Brand et al., 2013; Escher et al., 2015; Béen et al., 
2021). Above this value, (mixtures of) chemicals may be present at 
concentrations that are harmful to human health. As such, the EBT can 
distinguish between poor and acceptable water quality and ensure the 
safety of its consumption. Hence, ideally, if the bioassay response is 
lower than the EBT, there is no risk of adverse effects on consumer 
health, while an exceedance of the EBT signifies a health risk. 

At a high rate of correctly signalled health risks, further research into 
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the identity of the causative chemicals is more easily justified. A per-
formance evaluation of bioassays can give more insight into this aspect. 
In addition, a performance evaluation can help to select the best- 
performing bioassay from several analogous alternative bioassays. An 
additional measure to evaluate bioassays on their ability to distinguish 
between background- and genuine chemical signal (not necessarily 
related to harmfulness) is the z-factor (Zhang et al., 1999). 

Previous studies have assessed the accuracy of bioassays to signal 
whether a sample containing a chemical (mixture) is harmful by 
applying the concept of true or false positives and negatives (Swanson 
and Chirmule, 2009) to quantify specificity and sensitivity in bioassay 
responses to environmental water samples (Brion et al., 2019; CIS 
working group EBM, 2021). Sensitivity is a measure of the portion of 
samples containing chemicals at harmful concentrations that are 
signalled correctly by the bioassay as ‘positive’, i.e. a response above the 
EBT. The specificity is the portion of samples containing chemicals at 
non-harmful concentrations signalled correctly by the bioassay as 
‘negative’, i.e. a response below the EBT. Hence, sensitivity and speci-
ficity are appropriate performance evaluation parameters to test how 
accurate the test (i.e. bioassay) result is when the outcome is already 
known: chemicals in the samples are harmful or not harmful at a certain 
concentration and the test is correct for a certain percentage of samples 
from either category. Although this gives a quantification of the reli-
ability of the test, it does not equate to the predictive power of the 
bioassay for chemical risks in practice. 

Instead, a more relevant question in risk quantification is what can 
be predicted about the harmfulness of a sample containing a (mixture of) 
chemical(s) when only the test result is known (Johnson, 2017). To 
answer that question, predictive values of bioassay responses are 
required. This statistical evaluation to assess test performance is very 
common in the medical domain (Webb and Sidebotham, 2020) but is 
currently not yet applied in effect-based water quality assessment. 
Bayes’ theorem (or rule) is the mathematical relationship that relates 
sensitivity and specificity to predictive values (Johnson, 2017; Webb 
and Sidebotham, 2020). In Bayes’ theorem, the prevalence of the risk is 
used to calculate a positive predictive value (PPV) and a negative pre-
dictive value (NPV). If an event (or in the case of this analysis, a 
chemical (mixture) at harmful concentrations) is very rare, false nega-
tives or true positives will seldom occur at all, compared to the number 
of true negatives and false positives. By considering this, Bayes’ theorem 
can provide the predictive values for bioassays to express risks as 
probabilities, which more accurately approaches the definition of risk in 
toxicology, i.e., the likelihood that harm from a specific hazard will 
occur. For any given test it applies that, as the prevalence of chemicals at 
harmful concentrations decreases, the PPV decreases because there will 
be more false positives for every true positive. Consequently, the prob-
ability that a response above the EBT is induced by a harmful chemical 
present in the sample, decreases. 

In summary, a high PPV implies that, if the bioassay gives a response 
> EBT, the chemical (mixture) is in many cases present at a truly 
harmful concentration. A low PPV implies that on many of those occa-
sions, this is not the case. However, another important performance 
measure for water managers is the number of times a bioassay gives a 
response > EBT altogether when water is tested. The more frequently a 
bioassay indicates a risk, the more often a water manager must follow up 
with additional analyses to identify potentially hazardous chemicals and 
formulate mitigation measures. Hence, an ideal scenario for a water 
manager is a bioassay with a low number of ‘hits’ (responses > EBT) 
combined with a high PPV. Although the number of hits is also highly 
dependent on the water quality, it is preferable to decrease the likeli-
hood of having to further evaluate false positives. 

The present study provides a framework to analyse the performance 
of bioassays regarding their predictive power for chemical health risks in 
drinking water (sources). This framework is subsequently demonstrated 
using the ToxCast database (US EPA, 2023), which contains a large 
amount of data on individually tested chemicals for many different in 

vitro toxicity assays that can potentially be used as bioassays in water 
quality assessment. To evaluate bioassay performance, twenty of these 
assays with human-relevant endpoints and a high number of tested 
chemicals were selected. EBTs were derived and bioassay predictive 
power to signal harmful chemicals and their mixtures was evaluated in 
silico under varying chemical concentrations relevant to the practice of 
drinking water quality assessment. 

2. Methods 

2.1. Selection of in vitro assays and tested chemicals 

ToxCast data were downloaded (US EPA, 2023) and processed to 
include the concentration at which 50 % of the maximum activity is 
shown in an assay (AC50 values) for chemicals with a well-modelled dose 
response, i.e. a typical S-curve (US EPA, 2014; Ryan & Becker, 2017; 
Jonker & Van der Heijden, 2007; Groothuis et al., 2015; Feshuk et al., 
2023; Filer et al., 2014). A description of the inclusion criteria used in 
curating the dataset is given in Supplementary Information (SI) I. To 
demonstrate the proposed framework for deriving bioassay predictive 
values for chemical health risks, 20 in vitro assays with human-relevant 
endpoints and a high number of tested chemicals were selected (SI I 
Table A). The selected assay endpoints represent cellular toxicity path-
ways including hormone receptor activation, regulation of metabolism, 
oxidative stress, and genotoxicity. Chemicals can be tested more than 
once in a ToxCast assay, sometimes leading to divergent dose–response 
results. To represent the full recorded range of responses, these dupli-
cated − but varying − chemical activities in the assays were maintained 
in the dataset. 

To interpret assay responses that are indicative of human health 
risks, a link must be made between a health risk and an assay response 
(in this case the AC50). To facilitate this, available provisional guideline 
values (pGLVs) for active chemicals in the assays were collected. A pGLV 
for an individual chemical is the provisional, non-binding maximum 
advised daily dose in drinking water (Brand et al., 2013; Baken et al., 
2018). The pGLV for a chemical is established under the assumption of a 
lifelong consumption of 2 L of water a day by a person of average body 
weight (70 kg). The pGLVs used in the present study were assembled 
from Béen et al. (2021), Baken et al. (2018), the Australian drinking 
water guidelines (2023), and an unpublished project report that used 
EFSA and WHO-advised daily intake values, amongst others (van den 
Berg, 2021). This resulted in a dataset of 415 chemicals with a pGLV. For 
some chemicals, the used sources provided different pGLVs. This can 
occur if there is a difference in the data sources used to derive the pGLV. 
Also here, all duplicate values were maintained in the dataset to 
represent the spread in pGLVs in the available literature. 

The collected pGLVs were subsequently used to derive effect-based 
trigger values (EBT) for the assays according to the method described 
in Béen et al. (2021). A caveat with the pGLV in general is that this 
concentration is based on the most sensitive reported endpoint for the 
chemical in literature. This is not necessarily the target endpoint of the 
assay for which a threshold value is to be derived based on the pGLV. A 
sign that the pGLV is not relevant for the assay is if the AC50 deviates 
strongly from the pGLV. If the pGLV is very low compared to the AC50 of 
the bioassay, the pGLV is likely not valid for the activity that the 
bioassay represents. Therefore, a condition for the inclusion of the pGLV 
was applied as proposed by Béen et al. (2021): 

Select if: 

pGLVi

AC50i
> 0.1 (1) 

Here the pGLVi is the provisional guideline value of chemical i and 
AC50i is the concentration at which half of the maximum activity is 
reached in the assay for chemical i. In SI II, the result of this selection is 
visualised in plots per assay, with AC50 values for chemicals plotted 
against their pGLV for selected and excluded chemicals. The resulting 
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numbers of selected chemicals per assay are shown in SI I Table A. 

2.2. Bioassay selection criteria 

To select assays for performance analyses, their ability to give a 
response up to EBT values and the number of tested chemicals with a 
pGLV were taken into account. For bioassays to be useful in chemical 
water quality assessment they should detect chemicals at environmen-
tally relevant concentrations with activity above the EBT at harmful 
concentrations. In the practice of effect-based water quality assessment, 
a water sample is concentrated or diluted to obtain a concentration 
range (above the limit of detection and below the threshold at which any 
cytotoxic effects occur in the bioassay) for the derivation of the AC50 
value, which is expressed in bioanalytical equivalents of a reference 
chemical (Neale et al., 2021). It was calculated for how many of the 
chemicals, at a concentration of 1 µg/L, the bioanalytical equivalent 
concentration (BCA, Equation (6)) exceeds the EBT, as this value rep-
resents the signalling value for anthropogenic chemicals defined in the 
Dutch drinking water directive (2023). If chemical concentrations are 
detected above this value, further assessments of risks for human con-
sumption and/or mitigation actions are required. Since chemicals in 
drinking water sources often occur below 1 µg/L – at an average of 10 

ng/L (RIWA-Rijn, 2022) – some bioassays would expectedly rarely show 
an effect above the EBT unless highly potent chemicals are present, or a 
few chemicals are present at high concentrations. If a bioassay would 
also rarely elicit an effect at chemical concentrations of 10 µg/L, the 
bioassay may be considered too insensitive for use in the assessment of 
(sources of) drinking water. A threshold of > 6 % of tested chemicals at 
10 ug/L causing an exceedance of the EBT was used to identify assays as 
‘sensitive’. This is an arbitrary threshold and simply a means to focus on 
the topmost sensitive bioassays. Simultaneously, the selected bioassays 
should have a sufficient number of tested chemicals with a pGLV, 
otherwise the EBT and performance indicators are less reliably derived. 
If fewer than 16 chemicals (SI I Table A) with a relevant (Equation (1)) 
available pGLV were tested in the assay, it was excluded from the data 
analyses. 

2.3. Calculation of health-based trigger values 

Health-based EBTs for the selected bioassays were established using 
the method outlined in Béen et al. (2021) which is briefly explained 
below. Firstly, the effect potencies of chemicals are calculated relative to 
a (potent) reference chemical. 

Table 1 
Health-based EBTs for 20 ToxCast assays derived in the present study vs previously derived EBTs in analogous bioassays with the same reference chemical.   

Bioassay name  EBT (µg/ 
L) 

Reference chemical CAS 
number 

Reference chemical 
name 

Earlier EBT (µg/ 
L) 

1 ATG_ERa_TRANS_up Estrogen receptor alpha 
agonism 

8.4 50–28-2 17β-estradiol 0.0002 (1) 
0.0018 (1) 
0.0012 (1) 
0.00025 (2) 
0.0038 (3) 

2 TOX21_ERa_LUC_VM7_Agonist Estrogen receptor alpha 
agonism 

0.006 50–28-2 17β-estradiol 0.0002 (1) 
0.0018 (1) 
0.0012 (1) 
0.00025 (2) 
0.0038 (3) 

3 TOX21_AR_BLA_Antagonist_ratio Androgen receptor 
antagonism 

533 13311–84-7 flutamide 4.8 (2) 

4 TOX21_ARE_BLA_agonist_ratio ARE receptor agonism 908* 62–73-7 dichlorvos 284 (4) 
5 ATG_NRF2_ARE_CIS_up Nrf2 receptor agonism 354 458–37-7 curcumin No health-based 

EBT 
6 ATG_PXR_TRANS_up PX receptor agonism 314 51218–45-2 metolachlor 59 (1) 
7 TOX21_PXR_Agonist PX receptor agonism 163 51218–45-2 metolachlor 59 (1) 
8 TOX21_ERa_LUC_VM7_Antagonist_0.1nM_E2 Estrogen receptor alpha 

antagonism 
0.25* 84449–90-1 raloxifene No health-based 

EBT 
9 TOX21_AR_LUC_MDAKB2_Antagonist_0.5nM_R1881 Androgen receptor 

antagonism 
56.4* 13311–84-7 flutamide 4.8 (2) 

10 OT_AR_ARSRC1_0960 Androgen receptor agonism 1.13* 521–18-6 androstanolone 
(DHT) 

0.0045 (2) 
0.011 (4) 

11 OT_AR_ARSRC1_0480 Androgen receptor agonism 1.60* 521–18-6 androstanolone 
(DHT) 

0.0045 (2) 
0.011 (4) 

12 ATG_PPARg_TRANS_up PPARg receptor agonism 5.8* 1461–22-9 tributyltin chloride No health-based 
EBT 

13 TOX21_AhR_LUC_Agonist Ah receptor agonism 2045* 63–25-2 carbaryl 18 (1) 
14 TOX21_PR_BLA_Antagonist_ratio Progesterone receptor 

antagonism 
0.038 84371–65-3 mifepristone No health-based 

EBT 
15 TOX21_GR_BLA_Antagonist_ratio Glucocorticoid receptor 

antagonism 
0.102* 84371–65-3 mifepristone No health-based 

EBT 
16 TOX21_TR_LUC_GH3_Antagonist Thyroid hormone receptor 

antagonism 
118* 133–07-3 folpet No health-based 

EBT 
17 TOX21_p53_BLA_p2_ratio Cellular tumor antigen p53 

activation 
0.123* 50–76-0 actinomycin D No health-based 

EBT 
18 TOX21_ERa_BLA_Antagonist_ratio Estrogen receptor alpha 

antagonism 
3269* 84449–90-1 raloxifene No health-based 

EBT 
19 ATG_ERE_CIS_up Estrogen receptor alpha 

agonism 
1.97 50–28-2 17β-estradiol No health-based 

EBT 
20 ACEA_ER_80hr Estrogen receptor agonism 0.118 50–28-2 17β-estradiol 0.0002 (1) 

0.0018 (1) 
0.0012 (1) 
0.00025 (2) 
0.0038 (3)  

* Not reliable because the EBT is based on few chemicals (<16). References: (1) Escher et al., 2015 (2) Béen et al., 2021 (3) Brand et al., 2015 (4) Escher et al., 2013. 

T.E. Pronk et al.                                                                                                                                                                                                                                 



Environment International 188 (2024) 108733

4

REPi =
AC50y

AC50i
(2) 

Here REPi represents the relative effect potency of chemical i, AC50i 
is the concentration at which half of the maximum activity is reached for 
chemical i, and AC50y represents this value for the reference chemical 
(see Table 1 for an overview of reference chemicals per bioassay). 

In the second step, the health-related bioanalytical equivalent pGLV 
of each chemical is calculated. This involves determining the expected 
pGLV-related bioassay activity expressed as reference chemical equiv-
alents (based on the REP). 

BpGLVi = pGLVi • REPi (3) 

Here BpGLVi is the bioanalytical pGLV equivalent of chemical i, and 
REPi is the relative effect potency of chemical i. In Béen et al., BpGLV is 
referred to as pGLV BEQ. 

A minor adjustment was made in the EBT derivation for a bioassay 
compared to the study of Béen et al., in which a normal distribution was 
fitted to the available activity data for all chemicals per assay, and the 
lower 5 % of the BpGLV distribution was taken as the EBT. This approach 
was followed because few data points were available in Béen et al., and 
the caveat was acknowledged that the lowest available BpGLV may not 
be within the lowest 5 % of values. Therefore, this 5 % point was 
explicitly derived from the distribution. However, because the presently 
used ToxCast dataset has a more extensive set of data points, the lowest 
value expectedly falls within the lower 5 % of the distribution. There-
fore, the lowest BpGLV can now be used to derive the EBT instead of the 
lower 5 % limit of a distribution. 

EBT = minimum(BpGLVi− n) (4) 

The derived EBTs were compared to EBTs of analogous bioassays 
with the same endpoint and derived based on the same reference 
chemical (Table 1). 

2.4. Calculation of chemical mixture characteristics 

For the simulations of in silico mixtures, each mixture was assigned a 
fixed sum concentration and a fixed number of chemicals. For the 
selected chemicals in the in vitro assays, an additive effect is assumed 
(Cedergreen et al., 2008; Hadrup et al., 2013). Assuming concentration 
addition is reasonable because the chemicals were selected for their 
relevance to the bioassay based on their pGLV (Equation (1)) and are 
expected to act through the same mode of action within the bioassay. 
Chemicals in the in silico mixtures were selected at random from the 
tested chemicals with appropriate pGLVs. The chemicals were subse-
quently appointed a random portion of the sum concentration. All an-
alyses were automated in the statistical language ‘R’ (v. 3.6.3). 

The total equivalent concentration of the chemicals in the mixture is 
expressed as equivalents of the chemical with the lowest (i.e. most 
potent) pGLV in the mixture. 

BCHmix =
∑i

n

pGLVx

pGLVi
• Ci (5) 

Here BCHmix is the health-based bioanalytical equivalent concen-
tration of the mixture, pGLVx is the pGLV of chemical x. pGLVi is the 
pGLV of chemical i. Ci is the concentration of chemical i. 

As an example, a BCHmix is calculated for two mixtures of each two 
chemicals A and B at a sum concentration of 1 µg/L. 

A: pGLV 5 µg/L, concentration 0.9 µg/L OR pGLV 5 µg/L, concen-
tration 0.1 µg/L. 

B: pGLV 100 µg/L, concentration 0.1 µg/L OR pGLV 100 µg/L, con-
centration 0.9 µg/L. 

BCHmix =

(
5
5 • 0.9 + 5

100 • 0.1
)

= 0.905 μg/L OR BCHmix =

(
5
5 •

0.1 + 5
100 • 0.9

)

= 0.145 μg/L. 

The predicted activity of the mixture in bioanalytical equivalents is 
calculated as the bioanalytical concentration activity (BCA): 

BCAmix =
∑i

n
REPi • Ci (6) 

Here REPi is the potency of chemical i (Equation (2) and Ci is the 
concentration of chemical i. 

2.5. Statistics for bioassay performance 

The bioassay performance is evaluated by calculating the statistics 
for the assay itself (specificity, sensitivity) and the predictive values 
considering samples containing in silico mixtures of chemicals (one or 
more). 

True Positive(TP) if : pGLVx ≤ BCHmix & BCAmix > EBT (7)  

False Negative(FN) if : pGLVx ≤ BCHmix & BCAmix < EBT (8)  

False Positive(FP) if : pGLVx⩾BCHmix & BCAmix > EBT (9)  

True Negative(TN) if : pGLVx⩾BCHmix & BCAmix < EBT (10) 

From these values, the sensitivity (Sens) and specificity (Spec) of the 
assay are calculated: 

Sens =
TP

TP + FN
(11)  

Spec =
TN

TN + FP
(12) 

Prevalence (Prev) or occurrence is the number of samples with 
pGLVx ≤ BCHmix divided by the total number of samples. 

Prev =
samples pGLVx ≤ BCHmix

samples
(13) 

Then, the probabilities of a positive test (BCAmix > EBT) to signal a 
sample with a harmful chemical mixture concentration exceeding the 
pGLV (BCHmix > pGLVx) (positive predictive value; PPV) and the prob-
abilities of a negative test to signal a safe sample (negative predictive 
value; NPV) are calculated by: 

PPV =
Prev • Sens

Prev • Sens + (Prev • Sens + ((1 − Prev) • (1 − Spec) ))
OR PPV

=
TP

TP + FP
(14)  

NPV =
(1 − Prev) • Spec

(1 − Prev) • Spec + Prev • (1 − Sens)
OR NPV =

TN
TN + FN

(15) 

The added value of PPV and NPV to sensitivity and specificity can be 
illustrated with an example. Assume the sensitivity of a bioassay is 0.9, 
meaning that nine out of ten chemicals at harmful concentrations elicit a 
response above EBT in the bioassay. Similarly, assume the specificity is 
0.9 as well, indicating that nine out of ten times chemicals below the 
harmful concentration do not elicit a response above the EBT. Now, 
consider a scenario with 1100 tested samples with chemicals of which 
100 are harmful and 1000 are not, at the tested concentration. If a test 
result is positive (> EBT), this corresponds to 1000 x 0.1 (=100) false 
positives and 0.9 x 100 (=90) true positives. The positive predictive 
value is 90 out of 190 (100 + 90) resulting in a value of 0.47. This il-
lustrates that the probability that a chemical (mixture) that elicits a 
positive response is indeed harmful, is a little less than 50 % for this 
evaluated bioassay, even with a high sensitivity and specificity. 

Lastly, the proportion of samples for which a bioassay responds 
above the EBT (‘hit’) is calculated as 
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HitB =
FP + TP

FN + TN + FP + TP
(16) 

Here HitB is the proportion of samples with responses above the EBT 
relative to all possible samples for assay B. The term ‘hit’ as it is used in 
this study should not be confused with the term ‘hit call’ in ToxCast, 
where it refers to a label for (in)active tested chemicals in the bioassay. 

2.6. Experiments with bioassay performance 

Three in silico experiments were executed to evaluate the perfor-
mance of the selected bioassays. First, performance was assessed for 
single tested chemicals at concentrations ranging from 0.01-10 μg/L. 
Chemical concentrations influence the outcome of equations (5)–(16). 
The higher the BCAmix, the likelier an EBT exceedance, which will in-
crease the number of both false and true positives. Simultaneously, the 
chemical mixture concentration BCHmix (in pGLV equivalents) will 
surpass its human health-relevant pGLV leading to a higher number of 
true positives. The maximum sum concentration of 10 μg/L is relatively 
high in a drinking water context, which was intentionally chosen to 
cover the complete range of possible PPVs and NPVs for the investigated 
bioassays. 

Second, performance based on single chemicals tested in ToxCast 
was evaluated for a range of ‘hit-thresholds’ of 0.1-10x the EBT. The hit- 
threshold is an alternative trigger value (also see Leusch & Snyder, 
2015). Whereas the EBT was derived based on health-based values 
(Equation (4)) the hit-threshold represents an assignable level for 
follow-up action (like analysing mixture composition) to bioassay re-
sponses, which can be used to tailor assay performance. If the hit- 
threshold is lower than the EBT, more hits (Equation (16)) are ex-
pected, and vice-versa. The range of 0.1-10x EBT for hit thresholds was 
based on a Dutch study, in which the risk of chemicals at harmful con-
centrations was categorized into classes ranging from a response < EBT 
(low-risk class) to a response > 10x EBT (high-risk class) (de Baat et al., 
2021). For this second experiment, the concentration of chemicals was 
fixed at 10 µg/L. At lower (more realistic) concentrations, the number of 
bioanalytical responses > EBT was in some cases too low to calculate 
performance. 

Third, performance was evaluated for in silico mixtures randomly 
generated from all chemicals with a relevant pGLV for each bioassay. 
Each time, 50 in silico mixtures were randomly generated for a range of 
sum concentrations (0.01–10 μg/L) and a fixed number of chemicals in 

the mixture (1, 2, 5, 10). The concentrations of the individual chemicals 
were randomly assigned within the mixture, adding up to the fixed sum 
concentration. Chemicals could be selected more than once per mixture 
(i.e. sampling was done with replacement). 

3. Results 

3.1. EBT derivation 

Human-relevant health-based EBTs were derived for the 20 assays 
selected from the ToxCast database (See Methods section). If the EBTs 
were derived based on fewer than 16 chemicals, the EBT was flagged (*) 
as less reliable (Table 1). 

3.2. Selection of assays for performance analysis 

Relatively few of the tested chemicals (regardless of their pGLV) 
showed an expected bioanalytical response (BCA, Equation (6)) above 
the EBT at a concentration of 1 µg/L. This percentage ranges from 0 to 
19 % depending on the assay (Table 2). At 10 µg/L, this percentage 
increased for all assays and ranged from 1 to 42 % (Table 2). 

Six of the evaluated assays were identified as the most sensitive for 
detecting harmful chemicals in drinking water (sources) (Table 2) and 
are supported by enough tested chemicals with appropriate pGLVs (SI I 
Table A). To illustrate the findings and applicability of the derived EBTs, 
the remainder of the current study is focused on only two of the inves-
tigated assays. To cover the range from worst to best case scenario, one is 
a relatively poorly performing assay (TOX21_PR_BLA_Antagonist_ratio) 
and the other is a well-performing assay (TOX21_ERa_LUC_VM7_Agonist). 
The figures for the other four selected assays can be found in SI II-V. 

3.3. Bioassay performance with data for single tested chemicals 

At any assumed chemical (mixture) concentration a response in the 
bioassay is either TP, TN, FP, or FN (Equations (7)–(10)). This is 
depicted for a concentration of 1 µg/L of the tested chemicals for both 
example assays (Fig. 1) as an illustration. Chemicals that were included 
in the derivation of the pGLV (dark blue), as well as chemicals that were 
not (light blue) (Equation (1)), are shown. Most of the selected (dark 
blue) chemicals that do not elicit an effect in the bioassay are indeed not 
harmful at that concentration (i.e., do not exceed their pGLV) and are 

Table 2 
Selected ToxCast assays with derived EBTs and sensitivity to signal chemical health risks (>EBT) in water.   

Assay name % chemicals with effect >
EBT at 1 µg/L 

% chemicals with effect >
EBT at 10 µg/L 

Sensitive for drinking 
water (sources)? 

Selection for 
performance analysis 

1 ATG_ERa_TRANS_up 5 11 Yes Selected 
2 TOX21_ERa_LUC_VM7_Agonist 10 15 Yes Selected 
3 TOX21_AR_BLA_Antagonist_ratio 4 11 Yes Selected 
4 TOX21_ARE_BLA_agonist_ratio 1 3 No # * No 
5 ATG_NRF2_ARE_CIS_up 0 3 No # No 
6 ATG_PXR_TRANS_up 0 1 No # No 
7 TOX21_PXR_Agonist 0 1 No # No 
8 TOX21_ERa_LUC_VM7_Antagonist_0.1nM_E2 1 5 No # * No 
9 TOX21_AR_LUC_MDAKB2_Antagonist_0.5nM_R1881 1 5 No # * No 
10 OT_AR_ARSRC1_0960 16 25 Yes * No 
11 OT_AR_ARSRC1_0480 16 31 Yes * No 
12 ATG_PPARg_TRANS_up 1 2 No # * No 
13 TOX21_AhR_LUC_Agonist 0 2 No # * No 
14 TOX21_PR_BLA_Antagonist_ratio 2 7 Yes Selected 
15 TOX21_GR_BLA_Antagonist_ratio 3 7 Yes * No 
16 TOX21_TR_LUC_GH3_Antagonist 2 6 No # * No 
17 TOX21_p53_BLA_p2_ratio 5 12 Yes * No 
18 TOX21_ERa_BLA_Antagonist_ratio 3 5 No # * No 
19 ATG_ERE_CIS_up 6 12 Yes Selected 
20 ACEA_ER_80hr 19 42 Yes Selected  

* The EBT is not reliable because it is based on too few chemicals (<16) (see SI I Table A). 
# At 10 µg/L, 6 % or less of the tested chemicals induced a bioanalytical response above the EBT. 
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thus true negatives (TN) (Fig. 1). None of the selected chemicals are FN 
at 1 µg/L. In the remaining analyses, only selected chemicals (Equation 
(1)) were considered. 

The sensitivity and specificity of the bioassays were calculated 
(considering only selected chemicals) for a range of concentrations be-
tween 0.01–10 µg/L. Specificity and sensitivity are comparable in the 
two assays (Fig. 2a,c). The sensitivity in both bioassays is 1 (i.e., ‘per-
fect’) at all concentrations. In other words, when a chemical is present at 

a harmful concentration, the bioassay elicits a response above the EBT (i. 
e. no ‘false negative’). With regards to the specificity, a portion of the 
chemicals at a concentration below their respective pGLV elicit a false 
positive bioanalytical response (above EBT). 

The PPV is variable along the assumed concentrations (Fig. 2 c,d). 
For the TOX21_ERa_LUC_VM7_Agonist, PPV has a steep increase at lower 
concentrations, starting from 0.2 and increasing to 0.4–0.9 around 2 µg/ 
L, implying an increase in the number of true positives compared to the 

Fig. 1. The bioanalytical concentration activity (BCA) of chemicals at 1 µg/L (Equation (6)) versus pGLV and their status as true/false positive/negative in two 
example bioassays for selected (dark dots) and non-selected (light dots) chemicals (Equation (1)). Axes are on a natural log-scale. The horizontal line depicts 1 µg/L 
and the vertical line depicts the derived EBT. 

Fig. 2. Sensitivity, Specificity (a,c), Positive, Negative Predictive Value (b,d) for two example bioassays with individually tested chemicals. See Fig. 1 for an explicit 
visualization of FN, FP, TN, TP for the selected (Equation (1)) chemicals in these assays at 1 ug/L. 
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number of false positives, followed by a gradual decline at increasing 
concentrations. At the lowest concentrations, there are no true positives 
(not shown). Consequently, the sensitivity and the PPV cannot be 
calculated for those low concentrations. The PPV for the TOX21_ER-
a_LUC_VM7_Agonist is generally higher than for the TOX21_PR_-
BLA_Antagonist_ratio, and the PPV and NPV broadly follow a similar 
pattern for both bioassays. Similar results were obtained for the other 
selected bioassays (SI III). 

The change in PPV with increasing chemical concentration can be 
explained as follows. At higher concentrations, chemicals approach, and 
in some instances exceed, their pGLV. Concurrently, the bioassay 
response increases with concentration and more frequently exceeds the 
EBT. The sharp increase in PPV is therefore caused by an increase in true 
positive (TP) chemicals (exceedance of the EBT and pGLV) compared to 
false positive (FP) chemicals (exceedance of the EBT but not pGLV). A 
comparison of the results with random assigned pGLV to chemicals can 
be found in SI IV. 

The proportion of ‘hits’ (Equation (16)) increases with increasing 
chemical concentration. This is caused by the combined higher number 
of TP and FP. The proportion of hits is similar in both bioassays. Because 
the PPV is higher in the TOX21_ERa_LUC_VM7_Agonist, the bioassay ‘hits’ 
are more likely to appropriately signal a sample containing a harmful 
chemical. 

3.4. Bioassay performance at different hit-thresholds 

The bioassay performance was also assessed for variable ‘hit- 
threshold’ values of 0.1 up to 10 times the EBT (x-axis, Fig. 3). The 
difference between the EBT and the hit-threshold values is that the EBT 
is derived based on health-based values (Equation (4)), while the hit- 

thresholds are other values of the bioassay response used for calcula-
tion of the bioassay performance. 

At higher hit-thresholds (>1 x EBT), the sensitivity drops whereas 
the specificity increases (Fig. 3a,c). This is reflected in a drop in NPV, 
whereas the PPV increases (Fig. 3b,d). This increase in PPV can be 
explained by the decrease in the number of false positives at higher hit- 
thresholds. False positives are chemicals for which concentrations 
exceed the hit-threshold but not their respective pGLV. At higher hit- 
thresholds, this phenomenon is negated. True positives also decrease 
slightly when higher hit-thresholds are applied but less strongly than the 
decrease in false positives. 

The NPV decreases with increasing hit-thresholds because false 
negatives start to appear, caused by chemicals for which concentrations 
exceed their pGLV but do not trigger an effect > hit-threshold. The NPV 
is only slightly impacted because there are many more true negatives 
compared to false negatives. The true negatives increase with a higher 
hit-threshold, mostly attributable to a decrease in false positives 
(Fig. 3b,d). 

In addition, higher hit-thresholds decrease the ratio of positives 
(above threshold responses or ‘hits’) in the assays (Fig. 3b,d). This means 
a water manager will be required to follow up less frequently based on 
the bioanalytical response at higher hit-thresholds. And, especially for 
the TOX21_ERa_LUC_VM7_Agonist, these sparse hits are increasingly 
worthwhile to follow up (high PPV) (Fig. 3b). Similar results were ob-
tained for the other selected bioassays (SI V). 

3.5. Bioassay performance for chemical mixtures 

For the subsequent analysis, 50 mixture compositions were gener-
ated in silico (Equations (5) and (6)) per total mixture concentration and 

Fig. 3. Performance for two example assays at chemical concentrations of 10 µg/L, at varying hit-thresholds from 0.1 up to 10 times the health-based EBT (Table 1) 
(vertical red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the NPVs, PPVs, and hits were calculated for assays exposed to each 
mixture concentration in steps of 0.01 µg/L (Fig. 4). Because the 
chemical composition of the 50 mixtures is different for each mixture 
concentration and the concentration steps are small, results appear like a 
cloud of values. The leftmost subfigures in Fig. 4 are comparable with 
the results in Fig. 2b,d with the only difference between the figures being 
the calculations: Fig. 2b,d is based on concentrations of all individual 
chemicals with relevant pGLVs whereas in the leftmost panels in Fig. 4, 
50 simulations are with compositions of randomly selected individual 
chemicals with relevant (Equation (1)) pGLVs. 

The NPV is 1 (‘perfect’) for all mixtures at all concentrations while 
the PPV generally starts low and rises with increasing mixture concen-
trations (Fig. 4). The higher the number of chemicals in the mixture, the 
higher the total mixture concentration at which PPVs start to increase. 
The variability in NPV and PPV becomes lower with a higher number of 
mixture constituents. This is, however, a consequence of the mixtures 
becoming more alike with more chemicals selected from the same group 
of selected, tested chemicals in the bioassay. 

Compared to single chemicals, the number of hits is highest for the 
most diverse (i.e. including the most chemicals) mixtures and the PPV is 
lower. This is caused by the combined high number of TP and (more) FP 
(see SI VI). For the most diverse mixtures at the higher concentrations, 
almost all bioanalytical responses are a ‘hit’. For the TOX21_PR_-
BLA_Antagonist_ratio this means that, at low chemical mixture concen-
trations (<5 µg/L), the required follow-ups by water managers (i.e., 
chemical analysis of target chemicals and comparison of the detected 
concentrations to pGLVs) in most cases would not yield pGLV exceed-
ances and thus human health risks. For the other assays, the same ap-
plies, but to a lesser extent (not shown). 

4. Discussion 

Determining positive and negative predictive values (PPV and NPV) 
(Johnson, 2017) is common practice in assessing test performance in the 
medical domain (Webb and Sidebotham, 2020). However, it has not 
been applied to assess the performance of bioassays until now. The 
calculation of PPV and NPV provides important additional information 

on bioassay interpretation and performance. The PPV statistics quantify 
the probability that a tested sample containing a chemical (mixture) 
actually exceeds its safe pGLV if the bioanalytical response exceeds the 
EBT. Similarly, the NPV quantifies the probability that a sample con-
taining a chemical (mixture) concentration is indeed safe if the bioassay 
response remains below the EBT. 

To perform these analyses, we utilised data on single tested chem-
icals in six human-relevant in vitro assays from the ToxCast database (US 
EPA, 2023). Additionally, we derived in silico chemical mixtures based 
on the single chemical data. Six assays were selected to simulate their 
use as bioassays for effect-based drinking water (source) quality 
assessment. Among the selected assays, the best-performing bioassay at 
different chemical concentrations was TOX21_ERa_LUC_VM7_Agonist 
while the least-performing bioassay was TOX21_PR_BLA_Antagonis-
t_ratio. Some assays were excluded due to a potential lack of sensitivity 
or an insufficient number of tested chemicals with a pGLV. With more 
pGLVs and data on individual tested chemicals becoming available, 
additional bioassays can undergo a similar analysis of their performance 
in effect-based water quality assessment. The required assay perfor-
mance for effective use can be decided by water managers, depending on 
the expected chemical mixtures, the expected levels of pollution, and the 
intended use (e.g. drinking water, irrigation). The minimum required 
performance will depend on a preferred balance between the effort to 
further investigate the identity and concentrations of chemicals in the 
mixture versus the probability that a bioassay correctly signals a harmful 
chemical (mixture) concentration. For example, if the follow-up inves-
tigation requires little effort, and the proportion of ‘hits’ (responses >
EBT) is low, the PPV can be allowed to be low. The framework presented 
here allows for the derivation of the values that are required for water 
managers to make these informed decisions. 

The analyses required the derivation of health-based EBTs (Brand 
et al., 2013; Escher et al., 2015; Béen et al., 2021) for the assays. To 
recap, the EBT is established based on a health-based safety threshold. 
Above this threshold, health risks cannot be excluded (Brand et al., 
2013; Escher et al., 2015; Béen et al., 2021). This way, the EBT allows 
the evaluation of assay performance in signalling harmful compound 
concentrations. In some cases, the derived EBTs deviated from 

Fig. 4. The positive predictive value (PPV) (red circles), negative predictive value (NPV) (orange circles), and ‘hits’ (grey circles) at increasing concentrations for 
each time 50 in silico samples containing random mixtures of 1, 2, 5, or 10 chemicals. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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analogous bioassays with the same reference compound. It can be ex-
pected that analogous bioassays may not have exactly the same EBT as 
bioassays may differ in their sensitivity (e.g. observed effect size in 
response to a given chemical) to the specific reference compound or 
other compounds (Neale et al., 2023b). E.g. if an assay is less sensitive to 
the reference compound, relative effect potencies of other compounds 
are higher, leading to a higher EBT value. Moreover, EBTs of different 
analogous assays may be based on a different set of tested compounds 
and the lowest combination of pGLV and REP could have been absent in 
any analogous assay. 

In all six selected bioassays, the PPV increased sharply with 
increasing concentrations of the tested single chemicals, reaching a 
gradually declining plateau from approximately 2 µg/L onwards. This 
means that an EBT exceedance at low concentrations does not neces-
sarily signify a chemical risk, but that this becomes a more reliable in-
dicator of pGLV exceedances at concentrations at or above 2 µg/L, as 
true positives start to increase. Contrastingly, the NPV was perfect at all 
concentrations (evaluated up to 10 µg/L), which is perhaps even more 
important from a risk assessment perspective, as chemical concentra-
tions labelled as harmless truly are. With a perfect NPV, it can be 
assumed that there is no chemical present at a harmful concentration in 
the sample if the bioanalytical response remains below the EBT. In other 
words, a ‘safe’ bioanalytical response reliably signifies the absence of a 
chemical risk. This underlines the added value of EBM in addition to 
chemical analyses for chemical risk screening of (drinking) water. 

Replacing the EBT with a higher (non-health-based) hit-threshold 
decreased the ratio of positive (above hit-threshold, ‘hits’) to negative 
(below hit-threshold) responses in the assay. This results in fewer false 
positives and thus fewer instances in which water managers are required 
to do follow-up analyses based on the assay outcomes. Alongside this 
decrease in ‘hits’, there is a higher PPV. However, the NPV is no longer 
perfect, which means that some chemical concentrations lead to false 
negative bioanalytical responses and a harmful chemical (mixture) 
could go unnoticed, which is undesirable. Hence, a threshold higher 
than the EBT can be used to achieve a higher PPV, making investigating 
harmful chemical concentrations after a hit more worthwhile. Yet, this 
also renders the bioanalysis unable to definitively rule out risk, as false 
negatives start to occur. 

Follow-up actions to bioanalytical EBT exceedances constitute mul-
tiple options. Further investigations to identify chemicals at harmful 
concentrations include chemical analytical target, suspect, and non- 
target analyses (Brunner et al., 2020; Hollender et al., 2023; Renaud 
et al., 2022). Furthermore, more elaborate effect-based approaches can 
provide insight into chemical mixture hazards such as the application of 
a more expansive bioanalytical test battery or the identification of 
causative compounds using effect-directed analysis (EDA) (Tian et al., 
2023; Brack et al., 2016; Zwart et al., 2018). Once concentrations of 
potentially harmful chemicals have been detected, these can be 
compared to health-based guideline values or used to calculate the 
contribution to the observed effects. Ultimately, chemical mixture risks 
detected by EBT exceedances may result in a requirement for optimi-
zation of the water treatment process or mitigation of pollution at the 
source. To guide water managers in these follow-up actions, Neale et al., 
(2023a) developed an interpretation framework in which the magnitude 
of the response is moderated by the magnitude of the exceedance. 

The bioassay PPV decreases with increasingly diverse mixtures of 
chemicals and the number of hits increases. This may seem counterin-
tuitive but results from the disproportionate influence of potent chem-
icals in a mixture. A collection of mixtures with even a small portion of a 
highly potent chemical has inherently higher induced bioanalytical re-
sponses than a collection of individual chemicals at the same concen-
tration, leading to a higher proportion of false positives. Simultaneously, 
mixtures are inherently more toxic due to the disproportionally high 
contribution of potent hazardous (low pGLV) chemicals, increasing the 
number of true positives. Together, the false and true positives result in 
more hits. This can be illustrated with a thought experiment: suppose 

there are five chemicals that, when individually tested, yield four 
negative (< EBT) and one positive (> EBT) bioanalytical response. The 
positively tested chemical is 100 times more potent than the other 
chemicals. If the chemicals form a mixture, this mixture is around 20 
times more potent than four of the five tested chemicals individually and 
will cause a positive (> EBT) response. The positive rate is thus replaced 
from 20 % to 100 % for the same five compounds when present in a 
mixture rather than individually. 

Combined with the finding that the PPV is low at lower chemical 
concentrations, this leads to the conclusion that the ability of the bio-
assays to accurately signal a harmful chemical (mixture) at responses >
EBT is lowest at highly diverse low mixture concentrations. This pro-
vides a less optimal scenario for water managers, considering that most 
samples of drinking water (sources) will contain low-level mixtures with 
diverse chemical constituents. For instance, the median concentration of 
individual chemicals in the river Rhine is about 0.01 µg/L (10 ng/L) 
when considering chemicals measured above the limit of quantification 
(RIWA-Rijn, 2022), and many chemicals are detected at this low con-
centration. The implications for risk assessment of drinking water 
(sources) with bioassays is that it is to be expected that in many cases a 
positive response (> EBT) in a bioassay will not yield chemicals at 
harmful concentrations after further investigation. Nonetheless, most 
bioassays hold some positive predictive value even at these low 
concentration-diverse mixtures and the negative predictive power is 
100 %, highlighting the value of EBM for chemical risk screening pur-
poses. Evaluating the mixtures only at higher exceedances of the EBT 
can be expected to yield harmful concentrations more often in further 
investigations because the PPV increases, and a pragmatic solution may 
lie in the application of increased hit-thresholds for follow-up in-
vestigations as was explored in the present study. 

A caveat in the presented results is the assumption that the chemicals 
with relevant pGLVs tested in the ToxCast database are a representative 
sample of all relevant chemicals, with no selection for water-relevant 
chemicals. Additionally, results are based on in silico mixtures at fixed 
sum concentrations. In practice, it is unknown exactly which and how 
many chemicals induce the effect and at which concentrations they are 
present. Therefore, water managers additionally need knowledge of the 
nature and concentrations of chemicals to estimate the expected 
bioassay performance in their water systems. 

5. Conclusions 

The positive predictive value of bioassays for chemical health-based 
guideline value exceedances may be low, especially when exposed to 
highly diverse low-concentration mixtures. Nevertheless, some predic-
tive power is maintained, and the negative predictive power is perfect. 
This means that the bioassays can still identify potential risks even if the 
probability is small, and the absence of a bioanalytical response reliably 
confirms that no individual- or mixture-pGLV is exceeded. Replacing the 
EBT with a higher hit-threshold will increase the PPV as well as lower 
the proportion of positive bioanalytical responses that must be followed 
up. Unfortunately, the NPV is no longer perfect in that case and chem-
icals at harmful concentrations may be missed, which poses a trade-off 
between certainty and feasibility that may be best made at a regulato-
ry level. It can be considered to use the EBT as a threshold to ensure 
bioanalytical responses < EBT are indeed of low risk and using a higher 
hit-threshold to optimize the PPV. The presented framework provides 
insight into what to expect from bioassays in water quality assessment 
and serves as a means to select bioassays that have a relatively large 
probability of signaling harmful chemical concentrations when their 
response exceeds the EBT. This study is the first to explore the concept of 
predictive values of bioassays for chemical health risks in drinking water 
and provides the opportunity for the results to be further validated with 
case studies. 
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