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The digital twins concept enhances modeling and simulation through the integration of real-time data
and feedback. This review elucidates the foundational elements of digital twins, covering their concept,
entities, domains, and key technologies. More specifically, we investigate the transformative potential of
digital twins for the wastewater treatment engineering sector. Our discussion highlights the application
of digital twins to wastewater treatment plants (WWTPs) and sewage networks, hardware (i.e., facilities
and pipes, sensors for water quality and activated sludge, hydrodynamics, and power consumption), and
software (i.e., knowledge-based and data-driven models, mechanistic models, hybrid twins, control
methods, and the Internet of Things). Furthermore, two cases are provided, followed by an assessment
of current challenges in and perspectives on the application of digital twins in WWTPs. This review serves
as an essential primer for wastewater engineers navigating the digital paradigm shift.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As an essential resource common to all cities, water and its
management are closely related to the quality of life in urban envi-
ronments. Water management significantly impacts other urban
services and their management, making it an essential part of the
United Nations’ description of smart cities: ‘‘inclusive, safe, resili-
ent, and sustainable cities.” As part of smart city initiatives, smart
water management brings multiple benefits to cities facing risks
such as water shortages, water quality deterioration, and security
challenges, which are aggravated by aging infrastructure, lack of
investment, growing urbanization, and climate change. Therefore,
accelerating the water industry’s digitalization is imperative, with
the adoption of digital twins [1] being a key element. The focus of
this paper is on wastewater treatment engineering, which is an
essential element of the urban water cycle [2].

Currently, the Fourth Industrial Revolution (Industry 4.0) is in
the process of integrating digital technologies and industrial pro-
cesses to bring about innovative solutions in manufacturing [3],
enhancing its dependence on real-time feedback. As part of this
revolution, the application of digital twins has been extended from
the manufacturing sector to a variety of fields such as medical
interventions and virus response [4], biomanufacturing [5], earth
system simulation and environmental monitoring [6], climate
change mitigation and transportation (specifically smart electric
vehicles) [7], food processing and manufacturing [8], energy pro-
duction (particularly in enhancing methane production through
anaerobic co-digestion) [9], and urban planning and development
[10]. Along with the application of modeling, simulations, and dig-
ital threads, digital twins will accelerate progress in the planning,
design, and management of wastewater treatment engineering
[11].

As the connection between digital twins and smart water man-
agement becomes increasingly evident, there is a growing impera-
tive for wastewater treatment plants (WWTPs) to adapt and
optimize their wastewater treatment strategies accordingly
[12,13]. This review synthesizes research and applications of digi-
tal twins across various facets of WWTPs and sewage networks,
aiming to offer insights and guidance for enhancing operational
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efficiency and advancing sustainable wastewater treatment engi-
neering. Section 2 presents a definition of digital twins in the con-
text of wastewater treatment engineering. Section 3 showcases
several advances in integrating and implementing digital twins
in WWTPs and sewage networks, highlighting the potential of dig-
ital twins to significantly enhance these facilities by utilizing the
former’s core technologies. Section 4 describes two cases that
exemplify the capacity of digital twins to elevate operational effi-
ciency and decision-making. Finally, Section 5 summarizes the pre-
sent challenges, future prospects, and conclusions from this study.
2. Digital twins

2.1. Concept

In the early stages of a budding technology or concept, the clear
definition of relevant terms is pivotal. While the digital twins con-
cept bears some resemblance to modeling, simulation, cyber–
physical systems, and the Internet of Things (IoT), it has unique
characteristics and applications [14], which play a crucial role in
the intelligent oversight of WWTPs—a topic that will be delved into
in Sections 2.3 and 3.

Originally developed by Grieves in 2005 [1], the digital twins
concept was initially devised for industrial and space technologies.
Various adaptations have led to a spectrum of definitions catering
to different professional needs [5]. Table 1 [11,15–23] presents
these definitions chronologically, offering a lens into the diverse
interpretations borne from different sectors’ requirements.

Today, the concept of digital twins is a dynamic, all-
encompassing model, integrating elements such as personnel,
products, assets, and processes. This concept fits seamlessly into
the wastewater treatment landscape, where the aim is to enhance
the development and management of WWTPs. Although the water
sector lacks a precedent for a specific digital twins definition,
developing a clear definition is crucial to facilitating the extension
of digital twins into this arena. Accordingly, we propose the follow-
ing description within the context of wastewater treatment
engineering:

Definition: Using digital models of wastewater treatment
structures, digital twins analyze real-time data to predict and
adjust their conditions. As they evolve, digital twins enhance envi-
ronmental decision-making, effectively streamlining control, data
use, and integration between the wastewater industry and
socioenvironmental interactions.
2.2. Entity

Digital twins serve as a digital counterpart for various entities,
including manufacturing assets and production networks. The sys-
tems and processes involved in the digital twins paradigm are
detailed in Fig. 1.

In this context, a system is a network of interrelated entities fos-
tering enhanced decision-making throughout different life cycles,
integrating a digital model with an actual entity through well-
structured subsystems such as control and security mechanisms
[24]. This integration has two main categories: physical entities
and abstract entities.

A physical entity is present in the real world and stems from
human-made elements such as vehicles and products. As each dig-
ital twin advances, it encompasses broader scopes such as supply
chains, farms, and agriculture [25–28]. These entities are further
subdivided into artifact, natural, and social entities, each with its
own distinctive roles and origins. An artifact entity is a traditional
human-made physical entity resulting from the transformation of
22
a natural entity for a particular purpose. A social entity refers to
social groups.

In contrast, an abstract entity is formed by isolating universal
characteristics from specific entities, serving functions such as
scheduling and health monitoring. These entities, which include
conceptual models and theories, have the ability to interact and
collaborate harmoniously [29].

An integral component of the digital twins concept is process,
which refers to a chain of interlinked activities or continuous phe-
nomena undertaking a series of changes to achieve desired out-
comes [17,28]. These encompass diverse simulations and
analyses and fall under categories such as physical processes and
virtual processes, each facilitating a transition between the real
and virtual realms. These transitions involve meticulous connec-
tions comprising different stages to simulate and realize physical
and virtual attributes [28].

2.3. Domain

The digital twins framework encompasses several domains:
namely, the user domain (UD), the digital twin domain (DTD),
the sensing and controlling domain (SCD), and the physical domain
(PD). The cross-domain functionalities and their relationships are
illustrated in Fig. 2.

In the UD, elements such as human interaction, interface design,
application software, and co-intelligent digital twins work in har-
mony, facilitating the optimal utilization of digital twins [11].
The DTD is responsible for representing the characteristics of phys-
ical entities through three vital functions: modeling management,
simulation services [30], and twin co-intelligence [31]. These func-
tionalities enable detailed visualization, dynamic simulation, and
safe resource accessibility, aiding in data flow and transfer with
assured security. The SCD plays a critical role in establishing
real-time communication between the DTD and the PD [32]. There
are two primary components: the sensing domain and the control-
ling domain. The sensing domain helps gather vital data from
physical objects, whereas the controlling domain effectively imple-
ments strategies devised in the DTD. The industrial IoT is leveraged
to perceive and convey physical world data. The PD is the realm of
tangible components—that is, people, equipment, and processes,
where the actual subjects of the digital twin models exist [33].
Cross-domain functionalities ensure a seamless and secure
exchange of information across all these domains, promoting the
integrated functioning of the system.

2.4. Key technologies

Leveraging the surge in data across diverse fields, digital twins
create virtual replicas of physical entities and use cutting-edge
tools such as artificial intelligence (AI) and virtual reality (VR) to
digitally control and optimize these entities. The architecture of
digital twins hinges on model-based system engineering (MBSE),
which encompasses modeling, simulation, and digital threads as
its core technologies, supported by the IoT as the foundational
technology. Cloud computing, machine learning (ML), big data,
and the blockchain constitute the ancillary technologies enhancing
the capabilities of digital twins. Fig. 3 describes the interrelation-
ships between these technologies.

Modeling, which is foundational to digital twins, simplifies the
understanding of the physical world and its problems by portray-
ing the causality or interrelations within a system through a model
[34–37]. This critical process involves creating detailed digital rep-
resentations of physical entities, encompassing their three-
dimensional (3D) geometric structure and shape, operational
mechanisms, interfaces, and the software and control algorithms
they incorporate [38]. These digital twin models can vary



Table 1
Concept of digital twins in different periods.

Time Proposer Concept Ref.

2016 Air Force Research Laboratory, USA An airframe digital twin is an integrated system of data, models, and analysis tools that represents an airframe
over its entire life cycle to provide actionable information for making decisions now (diagnosis) and for the
future (prognosis) on a fleet-wide and individual-tail-number basis, considering all sources of uncertainty

[15]

2012 National Aeronautics and Space
Administration, USA

A digital twin is an integrated multi-physics, multiscale, probabilistic simulation of a vehicle or system that
uses the best available physical models, sensor updates, fleet history, and so forth, to mirror the life of its flying
twin

[16]

2011 Michael Grieves A virtual product is a use-specific informational or bit-based representation and its associated rule-based
environment of a physical or atom-based product and its natural behavior. Virtualization: creating an
informational or bit-based representation of a physical or atom-based product. The IMM is a framework for
conceptualizing PLM and exploring the implications of the duality of physical and virtual products. The ability
to use virtual products in place of their physical counterparts drives the value of the IMM

[17]

2013 Air Force, USA A digital twin is a virtual representation of a system as an integrated system of data, models, and analysis tools
applied over the entire life cycle on a tail-number unique and operator-by-name basis

[18]

2015 General Electric Aviation, USA Digital twins are software representations of assets and processes used to understand, predict, and optimize
performance to achieve improved business outcomes. Digital twins consist of three components: a data model,
a set of analytics or algorithms, and knowledge

[19]

2015 Parametric Technology Corporation,
USA

A digital twin is a function of things (the devices and products generating data), connectivity (working to bring
networks together), data management (cloud computing, storage, and analytics), and applications. As such,
they likely will figure heavily into the construction and logic of IoT platforms

[20]

2017 Michael Grieves and John Vickers The digital twin is a set of virtual information constructs that fully describes a potential or actual physical
manufactured product from the micro atomic level to the macro geometrical level. At its optimum, any
information that could be obtained from inspecting a physically manufactured product can be obtained from
its digital twin. Digital twins are of three types: digital twin prototype, digital twin instance, and digital twin
aggregate. Digital twins are operated in a digital-twin environment

[21]

2019 CIRP Encyclopedia of Production
Engineering, France

A digital twin is a digital representation of a unique active product (real device, object, machine, service, or
intangible asset) or unique product-service system (a system consisting of a product and a related service) that
comprises its selected characteristics, properties, conditions, and behaviors employing models, information,
and data within a single or even across multiple life-cycle phases

[22]

2021 ISO CD 23247, International
Organization for Standardization

Digital twin: fit-for-purpose digital representation of some realized thing or process with a means to enable
convergence between the realized instance and digital instance at an appropriate synchronization rate

[23]

2020 Ansys, USA Based on the digital model(s) of one or more viewpoint(s) of the existing or future physical entity, the
measured data from the physical entity is analyzed and processed through one or more algorithm engine(s) to
perceive, diagnose, or predict the state of the physical entity, and then to synchronize the states between the
digital model(s) and the physical counterpart, eventually to generate controlling information that optimizes
the behavior of the physical entity

[11]

IMM: information mirroring model; PLM: product life-cycle management.

Fig. 1. General entity architecture of digital twins. (a) The entity is divided into two
parts: system and process. The system is the twin of the physical and abstract
entities, while the process is the twin of the steps. (b) The relationship between the
system and the process.
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significantly depending on the distinctive characteristics of
different physical entities. Currently, tools such as computer-
aided design (CAD) and MATLAB are used for foundational
modeling, Revit is employed in building information modeling
(BIM) [39], and CATIA is leveraged for advanced product life-
cycle management (PLM) endeavors [40].

Virtual models are central to the digital twins concept, facilitat-
ing high-fidelity digital representations of physical entities across
multiple dimensions and scales [33]. This core part of digital twins
seeks to represent physical entities accurately and enhance their
functionality through an immersive integration of the virtual and
real. This necessitates visual and real-time depictions, supported
by technologies such as VR [41], augmented reality (AR) [42,43],
and mixed reality (MR) [44]. VR serves as a foundational technol-
ogy, employing computer graphics and dynamic environment
modeling to depict the various attributes, behaviors, and rules of
physical entities as vividly and realistically as possible. Building
upon VR, AR and MR introduce real-time data acquisition, scene
capture, and real-time tracking to synchronize and fuse virtual
models with physical entities, effectively enhancing the detection,
verification, and guidance functionalities. Moreover, the metaverse
concept represents an evolved and expansive virtual environment
that integrates AR, VR, and MR technologies and content [45].

Technically, modeling and simulation are intertwined. Model-
ing articulates our comprehension of the physical world or specific
challenges, while simulation validates the accuracy and relevance
of this understanding [36,46,47]. In industry, simulation employs
software to replicate the physical world based on models that inte-
grate both deterministic rules and comprehensive mechanisms, as



Fig. 2. General domain architecture of digital twins (the figure is adapted from Ref. [11]).

Fig. 3. General key technology architecture of digital twins. BIM: building information modeling; FMI: functional mock-up interface; FMU: functional mock-up unit; AR:
augmented reality; MR: mixed reality; ROM: read-only memory.
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well as stochastic, knowledge-based models in some cases. If the
model is accurate and the input data are complete, the simulation
effectively mirrors the attributes of the physical world.

Traditional WWTPs were not conceptualized with digital twins
in mind. To modernize these plants for enhanced wastewater
treatment efficiency, it is crucial to incorporate both two-
dimensional (2D) and 3D model information into one digital
model. However, many of these plants currently operate with 2D
designs rather than the more advanced BIM model, making graph
matching and model reuse challenging.

The functional mock-up interface (FMI) was introduced to
address issues such as fragmented simulation tools, limited model
reusability, and intellectual property protection [48]. The FMI
offers a universal interface standard for model reuse, focusing on
both model exchange and the co-simulation of functions and per-
formance. The adoption of FMI makes model integration straight-
24
forward. Files exported using the FMI standard are labeled with a
‘‘.fmu” extension (functional mock-up units).

Digital threads act as connective bridges between entities, serv-
ing as an adaptable enterprise-level communication framework
[49]. This structure enables a comprehensive perspective, encom-
passing cross-level, cross-scale, and multi-view models that span
the entire system life cycle and value chain. The primary function
of digital threads is to guide system activities throughout their
lifespan and aid decision-makers. Essentially, digital threads
ensure timely and appropriate information delivery to the right
stakeholders throughout the system’s life cycle [50].

MBSE is a structured approach for developing digital twins
[51–53]. As the cornerstone of digital threads, MBSE leverages
IoT data to ensure that simulations can detect potential failures,
thus facilitating continuous improvements in existing operating
systems.
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The IoT acts as the foundation for digital twins [54], gathering
information from the Internet, traditional telecommunications,
and various tools such as sensors, radio frequency identification
(RFID) [55], Global Positioning Systems (GPSs) [56], and laser scan-
ners. This allows standalone objects to be transformed into a con-
nected network, enabling seamless interactions between objects
and people. The IoT allows for the intelligent recognition and man-
agement of items and processes, facilitating the timely, depend-
able, and efficient transmission of twin data.

Read-only memory stores fixed programs and data that can be
read but not altered, working in a non-destructive readout mode.
This system has a simple structure and offers stable data storage,
ensuring that data remain unchanged even in the event of a power
outage, making it both reliable and user-friendly.

The scalability of digital twins varies based on the demands.
While unit-level digital twins might function on a local server,
system-level and complex digital twins demand more computa-
tional and storage power. Cloud computing [57] caters to these
needs by offering extensive resources and data centers, allowing
digital twins to adapt to diverse computing, storage, and opera-
tional requirements. Fog computing [58] extends cloud computing
by distributing resources across numerous decentralized nodes,
thereby bringing data processing closer to the edge of the network.
This approach enhances operational speed and efficiency by lever-
aging localized processing. Complementarily, edge computing
directly processes data at or near its source, further optimizing
real-time data analysis for improved perception, calculation, and
control at edge nodes [59]. In tandem with cloud computing, edge
computing forwards intricate twin data to the cloud for advanced
processing. This cloud–edge collaboration addresses varied
requirements, boosts data processing speeds, minimizes the cloud
data burden, and curtails data transmission lags. In this way, the
real-time functionality of digital twins is significantly enhanced.
Notably, system-level digital twins are well aligned with fog com-
puting, given their primary concentration within manufacturing
enterprises and specific geographical locales.

Data are a dynamic and rapidly changing asset, requiring inno-
vative processing techniques to enhance decision-making, insight,
and optimization. Big data [60] leverages the voluminous data
created by digital twins to elucidate and forecast real-world out-
comes and processes, thereby extracting precious information. As
a complement to this, ML [61] facilitates the automatic analysis of
data to derive rules that can be used for predictions. Digital twins
use ML to forecast future states and behaviors through data har-
vested from the PD through the IoT, offering valuable (albeit
potentially imprecise) insights. Hence, big data and ML are invari-
ably linked, working in tandem to provide a rich analytical
foundation.

Digital twins represent digital assets and participate in digital
transactions. Leveraging blockchain technology [62] has the poten-
tial to enhance the security of digital twins by preventing unautho-
rized alterations that could result in errors and deviations. This
Table 2
Application of digital twins in WWTP facilities.

Facility Specific facility Year Location

Structure Secondary settling tanks 2020 Europe
Packed-bed up-flow anaerobic sludge blanket 2016 Egypt

Water pump Single-channel pump 2016 Republic of
Two-vane pump 2020 Republic of

Air blower Aeration installation 2020 Spain
Sludge pump Sludge pump 2012 Czech Repu
Mixer Submersible mixer 2011 China

CFD: computational fluid dynamics.
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fosters a safer environment that promotes innovation. Further-
more, the decentralized trading mechanisms facilitated by the
blockchain ensure secure, distributed, and real-time digital asset
transactions, thus providing an optimal medium for digital twins’
asset trading and fostering user trust in the services provided by
digital twins.

In conclusion, the successful implementation and application of
digital twins hinge on support from emerging technologies [63].
Through deep integration with these technologies, digital twins
can achieve an authentic and comprehensive perception of physi-
cal entities. This involves the precise creation of multidimensional,
multiscale models, extensive data fusion, customizable service
usage, and full-scale, dynamic, real-time interaction.

3. Applications for WWTPs and sewage networks

3.1. Facilities

With advances in digital twins, accompanied by progress in
modeling and simulation techniques, WWTPs have seen significant
improvements in their facilities (Table 2 [64–70]). These develop-
ments have been observed in structures such as secondary settling
tanks, biological aerated filters, and primary clarifiers, enhancing
their treatment efficiency to a considerable extent. Advances have
been driven by the use of ML to optimize the operation of essential
equipment such as water pumps, air blowers, sludge pumps, and
mixers in the trial stage, fostering their readiness for real-world
applications.

In recent years, substantial advances have been made in various
aspects of water treatment technology. For example, in terms of
settling techniques, the amended Vesilind function for hindered
settling has been developed and validated, leading to a new expo-
nential function addressing the compression settling velocity [64].
This theme of refinement has continued with the verification and
simulation of critical parameters (including the hydraulic loading
rate, organic load rate, and surface area of packing materials) used
in a packed-bed up-flow anaerobic sludge blanket followed by a
biological aerated filter—a project undertaken by the Water
Research Department at the National Research Center in Cairo,
Egypt [65].

Progress has also been observed in pump technology. In 2016,
Kim et al. [66] enhanced the hydrodynamic performance of single-
channel pump impellers using a contemporary design approach.
Building upon this, in 2020, the same team improved the hydraulic
performance and prediction accuracy of two-vane pumps through
the resolution of steady Reynolds-averaged Navier–Stokes equa-
tions [67]. In parallel, work spearheaded by Lozano Avilés et al.
[68] capitalized on advanced flow modeling techniques to address
deficiencies in fluid distribution and mixing, successfully reducing
the necessary airflow to the reactor by over 3%.

Adding to the wave of innovations, advances facilitated by com-
putational fluid dynamics (CFD) calculations in Ansys Fluent have
Application Method Ref.

Lab Settling column sensor, full-scale data, CFD [64]
Lab Hydromantis GPS-X, modeling, simulation [65]

Korea Lab CFD, Bezier curve [66]
Korea Lab ML-based surrogate modeling [67]

Lab Flow modeling, simulation, CFD [68]
blic Lab Ansys Fluent, CFD [69]

Industry Reverse engineering, three-coordinates
measuring machine, 3D solid model

[70]
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underscored the improved applicability of vortex impellers in
sludge pumps, marking a significant step in this domain [69]. These
developments, which are characterized by enhanced mixing,
propulsion, and abrasion resistance of the impellers, have been
successfully implemented in Zhenjiang, China, demonstrating the
real-world impact of this research [70].
3.2. Pipes

The evolution of water management has been deeply influenced
by the integration of digital technologies, especially in the model-
ing and management of underground pipe networks. The advent of
2D and 3D pipe network models, developed with the help of CAD,
Ansys computational fluid dynamics X (CFX), BIM, geographic
information systems (GISs), and integrated catchment modeling
(ICM) software, has paved the way for a unified standard in infor-
mation digitization. This comprehensive approach not only
enhances the monitoring and simulation of water flow and quality
but also bolsters the prediction and verification of pollutants and
streamlines the management of these intricate underground net-
works (Table 3 [3,71–79]).

In a notable application, China successfully launched a digital
management platform for urban sewage networks in Sanya, Hai-
nan Province. This innovative system integrates a sewage informa-
tion control center with digital management, dynamic simulation,
and emergency grid management. The system’s prowess lies in its
ability to perform dynamic simulations of drainage networks,
employ GIS spatial management and analysis, and conduct metic-
ulous sewage network grid management [71].

Further advances include the creation of an urban rainstorm
model in Guangzhou’s Donghaochong Basin. This model analyzes
the interception efficacy in regard to combined sewer overflow
pollution and assesses flood mitigation levels [72]. Using hydraulic
and hydrological datasets generated by the US Environmental Pro-
tection Agency’s Storm Water Management Model (EPA-SWMM),
Sun et al. [73] explored how the flow rate, rain intensity, and pipe
length influence the outputs from total suspended solids models in
the Bordeaux region of France. On a more technical note, Fedorov
et al. [74] investigated the two-phase flow dynamics of wastewater
streams and a mixture of air and hydrogen sulfide, pinpointing
areas of intense emission. Moreover, the quality of data has been
the focus of several studies. Nie’s [75] work emphasizes the valida-
tion and refinement of semantic and topological data, ensuring
minimized data loss and fostering collaboration among various
underground construction stakeholders. In summary, the digital
transformation—manifested in the form of unified information sys-
tems [76] and web platforms [3]—underscores a pivotal shift
toward standardized digitization in underground water
management.
Table 3
Application of digital twins in WWTP pipes and sewage networks.

Project Year Location Application Method

Network 2014 China Industry GIS, IoT, wire
2016 China Industry SWMM
2020 Spain Lab SWMM
2019 Russia Lab Ansys CFX
2019 Netherlands Lab BIM, GIS, City
2019 China Lab SuperMap.Ne
2020 Europe Lab Directed grap

Flow 2014 China Industry Steady flow, k
2018 Poland Lab Quantum GIS
2020 Malaysia Lab SuperMap, GI

Water quality 2016 India Industry IoT, Wi-Fi, clo

SWMM: storm water management model; PI&D: piping and instrumentation diagram;
wireless fidelity.
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3.3. Sensors for water quality

To adapt to increasingly strict environmental regulations, future
WWTPs will require intelligent control mechanisms empowered
by AI. A core part of this progression is the development of data
collection and processing [80], which are facilitated through the
extensive deployment of water quality sensors. This makes the
establishment of centralized and standardized databases impera-
tive. These databases will not only store information for ongoing
water quality monitoring but also integrate seamlessly with IoT
software to foster online management systems, consequently
reducing the costs associated with personnel training and other
related expenses [81].

The supervisory control and data acquisition (SCADA) system is
central to this transformation, assimilating data from various sen-
sors to enable the autonomous optimization of process parameters
and overseeing the functioning of aeration systems in WWTPs
(Table 4 [81–89]). Leveraging SCADA will streamline water quality
monitoring, allowing for real-time parameter measurement with-
out the need for sampling or extensive user training, thereby sup-
porting informed decision-making in wastewater treatment [82–
84].

Another pivotal component in this landscape is metadata,
which is primarily used for data collection and storage. Platforms
such as Bluemix facilitate the acquisition and integration of both
historical and real-time water data, spanning quantitative and
qualitative metrics over extensive stream distances and thereby
enhancing real-time water quality monitoring [85]. This inclusive
database structure, underscored by a focus on metadata, ensures
easy access to standardized, centralized data, thoroughly docu-
menting all pertinent information associated with measurements
[81].

Recent initiatives highlight the fruitful application of these
technologies. In Xiamen, China, an online water quality manage-
ment system has successfully stabilized urban scenic river water
quality, leveraging data analytics to regulate the freshwater supply
from Xinglin Bay [86]. AquaSat also promises to be a rich resource
for future in situ water quality assessments [87].

The efficacy of SCADA has been demonstrated globally, includ-
ing in Romania, where it governs WWTP operations autonomously
while maintaining optimal technological parameters and recording
vital operating data [84]. Similarly, in the Republic of Korea and
China, SCADA has played a critical role in monitoring aeration sys-
tems and enhancing water quality, illustrating its crucial role in the
modernization of WWTPs [88,89].

3.4. Sensors for activated sludge

In WWTPs, sensors play an integral role in identifying and
detecting the diverse states and properties of activated sludge,
Ref.

less sensor networks, RFID [71]
[72]
[73]
[74]

Engine [75]
t, OpenSceneGraph Binary, levels of detail [76]
h from PI&D in Proteus DEXPI format, 3D CAD models in PCF format [3]
inematic wave, dynamic wave [71]
, SWMM [77]
S, Infoworks ICM software [78]
ud storage [79]

DEXPI: data exchange in the process industry; PCF: piping component file; Wi-Fi:
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and their application is set to expand in the future. Technologies
such as soft sensors, liquid chromatography–tandem mass spec-
trometry (LC–MS/MS), low-field 1H nuclear magnetic resonance,
and independent component analysis facilitate a range of assess-
ments, enabling the identification of sludge bulking [90], the detec-
tion of quorum sensing signal substances from both water and
solid sludge phases [91], and the measurement of water content
and moisture distribution within the sludge [92]. Moreover, these
tools determine the quantities of different water types in waste-
water sludge by assessing the relevant parameters [93]. Research
related to these advances has been extensively undertaken in
Poland, China, and Finland (Table 5 [90–93]).
3.5. Hydrodynamics

The design of a WWTP is predominantly influenced by the tar-
get pollution removal rate, with the efficiency largely depending
on the hydrodynamics of the bioreactors incorporated in the
WWTPs. The development of CFD, the compartment model, and
the tanks-in-series (TIS) model has enabled the modeling and pre-
diction of these hydrodynamic characteristics, which are crucial in
predicting the relevant parameter values and aiding in the removal
and degradation of pollutants (Table 6 [94–103]).
Table 4
Application of digital twins in sensors for WWTP water quality.

Project Year Location Application Method

Metadata 2013 China Industry Online water qualit
2016 India Industry Hanna Instruments
2019 — Lab Big data, Structured
2019 USA Lab Overlapping of in si

SCADA 2013 China Industry Online water qualit
2016 India Industry Real-time sensors, B
2017 India Lab Multi-parametric se
2020 Spain Industry IoT, wireless sensor
2020 China Industry Current sensors, wa
2021 Romania Industry Sensors and actuato
2022 Republic of Korea Lab Sewage wastewater

PLCs: programable logical controllers; HMI: human machine interface.

Table 5
Application of digital twins in sensors for activated sludge of WWTPs.

Year Location Application Method Measure

2020 Poland Lab Soft sensor, classification model Tempera
2018 China Lab LC–MS/MS Type and
2016 China Lab Low-field 1H nuclear magnetic resonance Directly
2016 Finland Lab Independent component analysis Water co

Table 6
Application of digital twins in WWTP hydrodynamics.

Project Year Location Application Method

CFD 2018 UK Lab An Euler–Lagrange CFD model

2021 UK Lab CFD
2020 India Lab Ansys Fluent software, Gambit

software
2021 Indonesia Lab Minitab 17, Ansys Fluent 18.1
2021 — Lab Exposure inactivation rate

expression
2021 India Lab Standard k–e turbulence model

Compartment
model

2018 Germany Lab A compartment model of
radioisotope 131I reaction flow

2019 Japan Industry SWMM, STELLA software
TIS 2005 Spain Lab TIS

2013 France Lab Stirred TIS

4-CP: 4-chlorophenol; TOC: total organic carbon.
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The use of CFD has facilitated the prediction and determination
of a range of parameters. For example, Matko et al. [94] leveraged
CFD to enhance the design of oxidation ditches and aerators by
forecasting the gas–liquid flow pattern and dissolved oxygen dis-
tribution. Similarly, CFD was applied by Elhalwagy et al. [95] to
identify the relationship between suspended solids (SS) and the
efficiency of a new disinfectant in a municipal contact tank. Other
research groups have used CFD to optimize conditions for pollutant
degradation in different reactor setups [96–99].

Complementing this, the compartment model and TIS model
have further refined the prediction accuracy. Hormann and Fischer
[100] improved the forecasts of radioiodine movement in public
sewer systems, while Ng [101] focused on predicting the transport
of urban radiocesium during wet weather events. Moreover, stud-
ies have examined the qualitatively the reactor’s mixing regime
[102] and quantified accurate values of mobile volume and immo-
bile volume [103].

3.6. Power consumption

The design of WWTPs necessitates careful consideration of
power consumption—a demand propelled by global population
growth, industrial advancements, lifestyle alterations, and climate
change. The surge in energy requirements poses a substantial
Ref.

y monitoring, digital data transmission, and data processing [86]
9829, IoT, Wi-Fi [85]
Query Language [81]
tu water quality monitoring, Landsat imaging schedules, Python [87]
y monitoring, digital data transmission, and data processing [86]
luemix, heatmap [85]
nsors, smartphone, Bluetooth, ad hoc network [82]
networks, ion chromatography detection, nitrate and nitrite analyzers [83]
ter quality sensors, Hydromantis GPS-X 7.0 [88]
rs, PLCs, HMI, virtual private networks [84]
monitoring system, IoT [89]

ment Ref.

ture in the activated sludge chambers, quantity and quality of wastewater [90]
concentration of acyl homoserine lactones [91]

measure [92]
ntent, nuclear magnetic resonance relaxation data [93]

Measurement Ref.

Velocity, shear rate, apparent viscosity flow patterns, and the
concentration of a non-diffusive scalar tracer

[98]

Gas–liquid flow, oxygen mass transfer, dissolved oxygen [94]
Inlet concentration of 4-CP, flow rate, bed height, and porosity [96]

Water velocity, pipe diameter [97]
SS, Escherichia coli, peracetic acid [95]

Plane of inlets [99]
Inflow and outflow radioisotope 131I [100]

Surface fixation, wash-off coefficients [101]
LiCl [102]
TOC, NaCl, DO, pH [103]
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challenge for WWTPs, especially in the context of the push for
carbon neutrality and the imposition of energy limitations. Lever-
aging data-driven soft-sensor methodologies, which incorporate
traditional time series and deep learning, enables the formulation
of power consumption predictive models for WWTPs, facilitating
the reduction of energy use during the initial stages of water
treatment (Table 7 [88,99,104–111]).

Sean et al. [88] used current and water quality data to forecast
optimal airflow rates and energy expenditure, offering a valuable
reference for the initial phase of plant operation, while Saini
et al. [99] explored the energy dynamics of pumped recirculation
in an existing anaerobic digester, focusing on the inlet planes.
Moreover, Harrou et al. [104] and Cheng et al. [105] have
attempted to predict the short-term energy needs of WWTPs using
flow rates, temperature data, and biochemical oxygen demand, fos-
tering data-driven management of these plants. In addition, De
Canete et al. [106] applied ML to determine variables affecting
influent quality, such as chemical oxygen demand (COD), total
nitrogen (TN), and total suspended solids (TSS), thus optimizing
energy consumption and minimizing violations in biological
wastewater treatment facilities. WEST, a Belgian simulation plat-
form initially created for wastewater treatment, is a versatile envi-
ronment for dynamic network modeling and long-term simulation
development [107]. Cechinel et al. [108] considered the prediction
of effluent quality, while Muoio et al. [109] identified the optimum
solid retention time of a large industrial WWTP in an attempt to
minimize the operating costs. Kovács et al. [110] modeled biofilm
reactors that contributed to a base module in SUMO. Kirchem et al.
[111] proposed a flexible demand scheme for the power sources of
WWTPs.
Table 7
Application of digital twins in WWTP power consumption.

Year Location Application Method

2020 China Industry SCADA, Hydromantis GPS-X 7.0
2020 Saudi Arabia Industry Deep learning, soft sensors, traditional t
2021 Spain Lab Machine learning-based control strategy
2021 India Lab CFD, standard k–e turbulence model
2002 — Lab WEST
2019 Italy Industry WEST, ASM1Temp
2024 Brazil Industry WEST, LSTM
2013 France Lab SUMO
2020 Ireland Lab Demand response, SUMO

The ASM1Temp model is an extension of Activated Sludge Model No. 1, which consider
LSTM: long short-term memory.

Table 8
Application of knowledge-based and data-driven models in WWTPs.

Objective Method Year Location Application Measu

Fault
detection

Control charts 2021 Brazil Lab MLVSS
tempe

2021 Ireland Lab Concen
Principal component
analysis

2021 China Lab Blowe
2021 Iraq Industry BOD5,

PLS 2021 China Lab Flow r
Neural networks 2021 Iraq Lab COD, B

Variable
prediction

Transfer function
models

2015 Republic of
Korea

Lab Inflow
treatm

Multiple regression 2020 India Lab pH, TS
N, pho

2021 Japan Lab Nitrog
matter

Neural networks 2021 Iran Industry Kerma

MLVSS: mixed liquor volatile suspended solids; SBR: sequencing batch reactor; DO: dis
BOD: biochemical oxygen demand; D-N2O: dissolved nitrous oxide.
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3.7. Knowledge-based and data-driven models

Since their introduction, data-driven models have served three
main purposes in WWTPs: fault detection, variable prediction,
and advanced control. Deeper insights into activated sludge mod-
els (ASMs) and advanced control are presented in Sections 3.8
and 3.10, respectively [112]. Section 3.7 will focus on knowledge-
based and data-driven models (Table 8 [113–123]). This approach
uses methods such as control charts, principal component analysis,
partial least-squares (PLS), and neural networks for fault detection
while employing tools such as transfer function models, multiple
regression, and neural networks for variable prediction.

The domain of fault detection, which is crucial for the smooth
operation of WWTPs, leverages various methodologies. Control
charts enabled Santos et al. [113] to monitor membrane
permeability and dictate necessary interventions, and allowed
Trubetskaya et al. [114] to identify specification limits using
industrial data. Similarly, principal component analysis has aided
in pinpointing suitable sub-period division strategies for paper mill
sequencing batch reactor (SBR) processes and performing statisti-
cal analysis of WWTP quality parameters [115,116]. Using PLS,
Liu et al. [117] detected sensor faults within processes with nonlin-
ear and dynamic features and improved the prediction perfor-
mance and stability of effluent quality indexes [118]. Moreover,
neural networks have facilitated a nuanced understanding of the
intricate relationship between raw influent and treated effluent
water quality data in Iraq [119].

Concerning variable prediction, a range of studies have
attempted to forecast elements such as sedimentation reservoir
outflow turbidity, removal efficiency of different wastewater
Refs.

[88]
ime series [104,105]
, neural networks, soft sensors, MATLAB, Hydromantis GPS-X 6.0 [106]

[99]
[107]
[109]
[108]
[110]
[111]

s carbon removal, nitrification, and denitrification with temperature correction.

rement Purpose Refs.

, sludge filterability, pH, COD,
rature

Detect membrane permeability
reductions

[113]

tration of ammonia, TN, SS, COD Determine the limits [114]
r current, level of SBR reactor, DO Investigate division strategies [115]
COD, TSS, TP, TN Analyze quality parameters [116]
ate, TSS, BOD, COD, TN, TP Detect sensor faults [117,118]
OD, TSS Capture relationships [119]
and outflow water quality,
ent flow rate

Predict turbidity [120]

S, BOD5, COD, oil and grease, NH3-
sphates

Analyze BOD removal
efficiency

[121]

en, pH, concentration of organic Predict the D-N2O
concentration produced

[123]

n’s sewage data Predict the wastewater
discharge

[122]

solved oxygen; TP: total phosphorus; BOD5: five-day biochemical oxygen demand;
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treatment technologies, and daily urban wastewater discharge,
thereby contributing to more efficient management of WWTPs
[120–122]. Moreover, detailed evaluations have been conducted
to explore periodic fluctuations in water quality parameters over
extended periods [123].

3.8. Mechanistic models

In the field of wastewater treatment, technological improve-
ments have fostered the evolution of mechanistic models, notably
ASMs [124,125], anaerobic digestion models (ADMs) [126,127],
and soft-sensor mechanisms [128,129]. These models are used to
simulate specific treatment processes, facilitating the prediction
of target outputs and aiding in the assessment of the entire opera-
tion, as outlined in Table 9 [90,104–106,125,127,128,130–148].

ASMs and ADMs have been instrumental in the optimization
and estimation of numerous variables. Employing these models
has allowed researchers to enhance the operational conditions of
coking WWTPs, thus reducing costs [130], as well as to gauge the
removal efficacy pertaining to antibiotics [131], explore the impli-
cations of sludge vertical stratification on the spatial and temporal
distributions of ASM components [132], and predict biogas produc-
tion in various phases within anaerobic reactors [133].

Soft sensors occupy a substantial segment of the mechanistic
model domain, with applications across a wide spectrum in
Table 9
Application of mechanistic models in WWTPs.

Method Year Location Application Measurement

ASM 2007 Sweden Lab TSS, COD, TKN, BOD

2016 China Lab COD, NH3-N

2016 Denmark Lab Sulfamethoxazole, ciprofloxacin,

2020 USA Lab A water–sludge multiphase CFD
oxidation ditch

2012 Canada Lab CO2, CH4, and N2O

ADM 2006 Sweden — —
2018 Brazil Lab Gaseous concentrations of CH4, N
2013 France Industry COD, proteins, carbohydrates, lip

concentrations, and inorganic car
concentrations

2016 Sweden Industry CO2, CH4, and N2O

Soft-sensor 2007 Denmark — —

2005 Chile Lab pH, O2

2012 Finland Lab NO3
�-N, SS, DO, PO4

�-P, TP, TOC, e
2019 Spain Lab plus Inflow rate, COD, BOD, NH3-N, an
2020 Poland Lab Temperature in the activated slu

and quality of wastewater
2020 Saudi

Arabia
Industry Flow, temperature, chloride, BOD

2021 Spain Lab Influent variables
2021 China Lab COD, NH3-N, NO3

�-N, and sludge
2020 China Lab Oxygen, alkalinity, nitrogen, flow
2021 China Lab COD, BOD, DO, NO3

�-N, NH3-N, SS
2020 China Lab SS, COD, NH3-N, flow rate
2021 China Lab BOD, COD, and TSS
2021 China Lab DO, flow rate, instantaneous SWR

Commercial
modeling
products

2020 India Lab Catechin, pentadecanoic acid, hep
octadecene, catechol, reserpine

2022 Canada Lab Nitrogen removal efficiency, rem

2017 Australia Industry Influent flow rate, total COD, TKN

TKN: total Kjeldahl nitrogen; ADM1: anaerobic digestion model No. 1; VFAs: volatile fat
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WWTPs. They aid in the forecasting of intricate variables, such as
the nitrate concentration in denitrifying post-filtration units
[134] and the emulation of weather predictions for controlling
WWTPs [135]. Various studies have leveraged soft-sensor mecha-
nisms to devise real-time control strategies for diverse parameters,
including the sludge lysate return ratio under fluctuating influent
low C/N ratios [136], total Kjeldahl nitrogen (TKN) estimation in
long-term complex wastewater treatment processes [137], and
the enhancement of soft-sensing model efficiency and precision
in predicting effluent quality [138]. In addition, soft sensors have
facilitated the prediction of challenging-to-measure yet quality-
relevant variables in WWTPs [139], the online monitoring of piv-
otal variables in wastewater procedures while capturing nonlinear
and non-Gaussian data [140], and the extraction of dynamic char-
acteristics for quality variable prediction [141].

3.9. Hybrid twins

Leveraging the digital twins concept, hybrid twins combine real
data with digital replicas, creating a complementary and supple-
mentary virtual model grounded in physical principles that encap-
sulate causality. Hybrid twin models refine their simulation
outcomes based on actual test parameters, thereby reducing the
testing costs and enhancing data precision. Within the context of
WWTPs, hybrid twins play a pivotal role in mitigating ambiguities
Purpose Refs.

Evaluate the control strategies at the
level of the whole plant

[125]

Optimize operation, reduce operating
costs

[130]

tetracycline Evaluate and measure the removal
effect of three antibiotics

[131]

model of a full-scale Investigate the effect of sludge vertical
stratification

[132]

Estimate greenhouse gas emissions
from WWTPs

[142]

Describe the development of ADM1 [127]
2, H2, and acetic acid Estimate the production of biogas [133]
ids, individual VFAs
bon and nitrogen

Better represent the bioaccessibility of
particulate organic matter

[143]

Improve the evaluation of energy
efficiency and include greenhouse gas
emissions

[144]

A systematic approach for soft-sensor
development

[128]

Estimate ammonia degradation and
nitrite accumulation

[145]

ffluent temperature Estimate nitrate concentration [134]
d N-Kjeldahl Predict the current weather conditions [135]
dge chambers, quantity Identify activated sludge bulking [90]

5 Predict energy consumption [104,105]

Optimize energy consumption [106]
concentration Establish a real-time control strategy [136]
, temperature Estimate the TKN [137]
, pH, water temperature Model and predict effluent quality [138]

Predict the quality-relevant variables [139]
Online monitor key variables [140]

, instantaneous PE Extract dynamic characteristics and
predict quality variables

[141]

tadecanoic acid, Determine biodegradability [146]

oval rate, and loading rate Assess volumetric nitrogen conversion
rates

[147]

, TP, TSS, and NO3
�-N Study the dynamic (time-dependent)

behaviors
[148]

ty acids; SWR: sludge wastage rate; PE: pumping energy.
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[149]. Furthermore, they assist in the comprehensive design of
operation variable systems tailored for multi-objective control of
the anaerobic ammonia oxidation process [150], as detailed in
Table 10 [149–151].

3.10. Control methods

Control systems in WWTPs are differentiated into four main
categories: linear control, linearizing control, nonlinear control,
and AI-based control [135]. Each category encompasses a range
of strategies, as detailed in Table 11 [152–165]. Linear control
strategies are applied to individual parameters within WWTPs to
enhance processes. For example, aeration costs have been reduced
through the efficient control of dissolved oxygen (DO) in activated
sludge process-based treatments [152–154], N2O emissions have
been mitigated during nitrification [155], and effluent quality has
been bolstered while conserving energy through the minimization
of effluent COD and organic nitrogen content [156].

Linearizing control serves to harmonize multiparty conditions
in WWTPs, thus reducing large fluctuations in influent flow rates
and concentrations, as well as uncertainties in measurement noise
and kinetics. This control strategy improves the efficiency of
WWTPs [157,158] and enhances the reliability of processes such
as denitrification and dephosphorization in anaerobic–anoxic–oxic
(A2/O) reactors [159]. Linearizing control has also been applied to
the optimization of aeration in water resource recovery facilities,
in alignment with distinct management objectives [160].

Nonlinear control facilitates the prediction and handling of
dynamic parameters. Specific applications include maneuvering
the reverse osmosis process to remove dimethylphenol from
wastewater [161], energy conservation without sacrificing aera-
tion efficiency [162], and forecasting TN peaks well in advance to
modulate airflow and maintain stringent effluent standards, while
also saving energy [163].
Table 11
Application of control method in WWTPs.

Method Controller Year Location Applicati

Linear control Proportional–integral–
derivative

2018 China Lab

Internal model control 2020 Spain Industry
Pole placement control 2012 Romania Lab
Cascade control 2017 Spain Lab
Feed-forward control 2018 Romania Lab

Linearizing
control

Adaptive control 2019 Romania Lab
Optimal control 2021 China Lab
Predictive control 2021 Denmark Lab

Nonlinear control Nonlinear geometric control 2018 — Lab
Gain scheduling control 2021 Denmark Lab
Nonlinear predictive control 2020 Italy Industry
Multivariable nonlinear control 2019 Romania Lab

AI-based control Fuzzy control 2021 India Lab
Hybrid neural network 2021 — Lab

Table 10
Application of hybrid twins in WWTPs.

Year Location Method

2021 China ASM, convolutional neural network, LSTM neural networks w
data-driven characteristics

2020 Republic of
Korea

Fuzzy-decision-making method, extended power-pinch analy

2018 China PCA-LSSVM, NSGA-II, MCSSM, least-squares support vector m

PCA-LSSVM: least square support vector machine optimized with principal componen
objective control strategy mixed soft-sensing model.
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AI-based control uses mapping models to further refine effluent
quality and reduce the frequency of plant measurements [164].
This strategy can also pre-emptively calculate outlet results to
facilitate forward planning [165].

In summary, these varied control strategies form a comprehen-
sive toolkit, enhancing the efficiency, reliability, and predictive
capabilities of WWTP operations. Overall, they are pivotal in foster-
ing improvements in both energy conservation and treatment
efficiency.

4. Case study

4.1. Boai County No. 2 WWTP

The Boai County No. 2 WWTP in Jiaozuo, China, stands as the
world’s inaugural digital twins WWTP operating on PLM technol-
ogy [166]. Designed to serve 150 000 residents, it boasts a daily
municipal wastewater treatment capacity of 60 000 t. The plant
complies with China’s stringent class-A pollutant discharge stan-
dards, as outlined in Discharge Standard of Pollutants for Munici-
pal Wastewater Treatment Plant (GB 18918—2002), treating
influent with specified concentrations of various substances,
including COD (270 mg∙L�1), five-day biochemical oxygen demand
(BOD5, 140 mg∙L�1), SS (200 mg∙L�1), NH3-N (35 mg∙L�1), total
phosphorus (TP, 4 mg∙L�1), and TN (50 mg∙L�1), to produce effluent
suitable for release into natural water bodies. This treatment
employs an A2/O process complemented by coagulation, sedimen-
tation, and filtration procedures.

Upon establishing its foundational model, the WWTP brought
together design, operational, maintenance, and real-time data to
enhance three core functionalities:

(1) Virtual inspection: Leveraging the synergy between 3D

models and real-time data, virtual inspections have been intro-
duced to address the challenges of arduous control and debugging
on Purpose Refs.

Better control DO with adaptive adjustment [154]

Control the DO and denoise the noise-corrupted measurements [153]
Control the DO [152]
Avoid peaks in N2O emissions [155]
Reduce the effluent COD and organic nitrogen content [156]
Deal with harsh conditions that act upon the process [157,158]
Improve the reliability of denitrification and dephosphorization [159]
Optimize wastewater aeration [160]
Capture the dynamics of the reverse osmosis process [161]
Save energy [162]
Predict the output TN peaks [163]
Improve plant efficiency [157,158]
Improve effluent quality [164]
Calculate outlet results in advance [165]

Purpose Ref.

ith knowledge and Reduce the influence of fuzziness [149]

sis Tackle the dynamic power loads of the WWTP [151]

achine Design the operating variations for multi-
objective control

[150]

t analysis; NSGA-II: non-dominated sorting genetic algorithm-II; MCSSM: multi-
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tasks, simplify personnel training, and facilitate multidimensional
data analysis by portraying data information accurately and com-
prehensively in real time.
(2) Digital delivery: Integrating 2D and 3D representations of

real-time data, digital delivery overcomes the issues associated
with paper delivery, such as complexity and reuse difficulty in
operations and maintenance. This strategy minimizes the mainte-
nance workload and enables automated control systems to operate
with reduced or no human supervision.
(3) Predictive analysis: By engaging simulations across input/

output, equipment, and process layers, the system can forecast
the inlet flow rate, DO fluctuations, and effluent indices. This intel-
ligent analysis uses stored data for self-diagnosis, pinpointing the
causes of any issues and issuing early warnings to preempt them.
This comprehensive approach ensures that the plant operates
effectively, maintaining a commitment to environmental
standards while streamlining operations through technological
innovation.
4.2. Nosedo WWTP

The Nosedo WWTP is the primary municipal wastewater treat-
ment facility in Milan, Italy, and is also Europe’s largest, with an
impressive capacity that can serve 1 250 000 population equiva-
lents [167]. The facility boasts a handling capacity of 432 000 ton-
nes per day and processing rates of 5 m3∙s–1 in dry weather and
15 m3∙s–1 under rainy conditions. A significant 60%–70% of the
treated water is subsequently channeled to support agriculture.
The WWTP’s operational efficiency, which has resulted in yearly
savings of approximately 630 000 EUR, spans three critical areas:

(1) Integrated operation: The WWTP has orchestrated the

seamless integration of the sewer system and its treatment pro-
cesses. This system empowers real-time decision-making, optimal
control of biochemical processes, and a marked reduction in energy
consumption, constituting 40% of the plant’s total energy use.
Aided by this system, the plant expertly manages variations in bio-
logical load, ensuring minimal manual adjustments and offering a
more comprehensive process overview.
(2) Operational savings: A strategic focus on reducing energy

use, chemical consumption, and sludge production has borne sig-
nificant savings. Breakdowns show a 25% energy reduction in bio-
logical treatment, 9% in grit chamber aeration, and an impressive
80% in FeCl3. The decrease in the usage of FeCl3 is attributed to
the enhancement of the phosphorus precipitation process. Further-
more, chemical sludge production has been reduced by 126 tonnes
per year as a result of reduced precipitation.
(3) Enhanced hydraulic capacity: The Nosedo WWTP has opti-

mized its biological processes to better manage wet weather sce-
narios. With the aid of stormwater-mode assessments using rain
gauges and sewer measurements, the plant has boosted its hydrau-
lic capacity by 20%–30% during inclement weather and rainstorms,
ensuring greater resilience and efficiency.
By honing its strategies in these critical areas, the Nosedo
WWTP has emerged as a beacon of efficiency and sustainability
in wastewater treatment. Continual optimization of its processes
has helped to safeguard the environment while maintaining eco-
nomic viability.
5. Concluding remarks

Over the years, the digital twins concept has steadily cemented
its role as a transformative force in various industries, including
31
the critical sector of wastewater treatment. As we navigate the
intricacies of its applications and developments thus far, it is per-
tinent to delineate existing challenges while casting a speculative
eye on future prospects.

The synthesis of real-time data and established models poses a
considerable technical challenge, mandating advanced control sys-
tems that are adept at handling multiple variables. These intrica-
cies have the potential to produce a steep learning curve,
complicating the task of training personnel to manage these com-
plex systems proficiently. Furthermore, the sector is grappling with
the optimization of energy and chemical consumption, where
striking a balance between efficiency and efficacy is essential. As
exhibited in practical applications, the precise prediction of
dynamic parameters requires enhanced focus and development
to secure reliable and safe effluent standards.

The future integration of digital twins in WWTPs marks a piv-
otal shift toward smarter urban water management. The pioneer-
ing cases of the Boai County No. 2 and Nosedo WWTPs exemplify
the capacity of digital twins to elevate operational efficiency and
decision-making. This innovation transcends traditional monitor-
ing, embracing advanced predictive maintenance and resource
optimization. Coupled with the IoT, the digital twins concept is
set to redefine the standards of sewage treatment and environ-
mental stewardship [89,168,169]. In the future, digital twins are
expected to seamlessly blend into broader digital water infrastruc-
tures, heralding an era of enhanced, interconnected water services
that prioritize efficiency, resilience, and sustainability.

In conclusion, we have summarized the concept, entity, domain,
and key technologies of digital twins in the context of wastewater
treatment engineering in this technical review. Digital tools have
been developed to aid decision-making across various aspects of
WWTPs and sewage networks. Furthermore, the two decision-
support digital-tool cases given herein exemplify the potential
for improving sewage treatment processes and environmental out-
comes. It is anticipated that the integration of digital twins with
emerging technologies, such as the IoT, will strengthen the moni-
toring, predictive maintenance, and adaptive strategies for
resource optimization in WWTPs. Through the use of real-time
analytics, decision-support digital tools are poised to significantly
enhance the efficiency and decision-making capabilities of
WWTPs. It is recommended that future efforts should expand dig-
ital integration, innovate data analysis techniques, and broaden the
scope of environmental applications to further augment the poten-
tial of digital twins.
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Nomenclatures

ADMs Anaerobic digestion models
ADM1 Anaerobic digestion model No. 1
AI Artificial intelligence
AR Augmented reality
ASMs Activated sludge models
BOD Biochemical oxygen demand
BOD5 Five-day biochemical oxygen demand
BIM Building information modeling
CAD Computer-aided design
CFD Computational fluid dynamics
CFX Computational fluid dynamics X
D-N₂O Dissolved nitrous oxide
DEXPI Data exchange in the process industry
DO Dissolved oxygen
DTD Digital twin domain
EPA Environmental Protection Agency
FMI Functional mock-up interface
FMU Functional mock-up unit
GIS Geographic information system
GPS Global Positioning System
HMI Human machine interface
ICM Integrated catchment modeling
IMM Information Mirroring Model
IoT Internet of Things
LC–MS/MS Liquid chromatography–tandem mass spectrometry
MBSE Model-based system engineering
MCSSM Multi-objective control strategy mixed soft-sensing model
ML Machine learning
MLVSS Mixed liquor volatile suspended solids
MR Mixed reality
MUCL Mycothèque de l’université catholique de louvain
NSGA-II Non-dominated sorting genetic algorithm-II
PCA-LSSVM Least square support vector machine optimized with

principal component analysis
PD Physical domain
PE Pumping energy
PCF Piping component file
PI&D Piping and instrumentation diagram
PLM Product life-cycle management
PLS Partial least-squares
RFID Radio frequency identification
ROM Read-only memory
SBR Sequencing batch reactor
SCADA Supervisory control and data acquisition
SCD Sensing and controlling domain
SS Suspended solids
SWR Sludge wastage rate
SWMM Storm water management model
TIS Tank-in-series
TKN Total Kjeldahl nitrogen
TOC Total organic carbon
TP Total phosphorus
UD User domain
VFAs Volatile fatty acids
VR Virtual reality
Wi-Fi Wireless fidelity
WWTPs Wastewater treatment plants
4-CP 4-chlorophenol
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[78] Kuok KK, Chen E, Chiu PC. Integration of IR4.0 with Geospacial SuperMap GIS
and InfoWorks ICM. Solid State Technol 2020;63(6):201651–62.

[79] Geetha S, Gouthami S. Internet of Things enabled real time water quality
monitoring system. Smart Water 2016;2(1):1–19.

[80] Yasin HM, Zeebaree SR, Sadeeq MA, Ameen SY, Ibrahim IM, Zebari RR, et al.
IoT and ICT based smart water management, monitoring and controlling
system: a review. Asian J Res Comput Sci 2021;8(2):42–56.

[81] Plana Q, Alferes J, Fuks K, Kraft T, Maruejouls T, Torfs E, et al. Towards a water
quality database for raw and validated data with emphasis on structured
metadata. Water Qual Res J Can 2019;54(1):1–9.

[82] Jindal H, Saxena S, Kasana SS. Sewage water quality monitoring framework
using multi-parametric sensors. Wirel Pers Commun 2017;97(1):881–913.

[83] Martínez R, Vela N, El Aatik A, Murray E, Roche P, Navarro JM. On the use of an
iot integrated system for water quality monitoring and management in
wastewater treatment plants. Water 2020;12(4):1096.

[84] Tokos A, Bartha C, Jipa M, Micu DD, Lingvay I. SCADA systems for wastewater
treatment plants. Automatica 2021;69(3):39–45.

[85] Randhawa S, Sandha SS, Srivastava B. A multi-sensor process for in-situ
monitoring of water pollution in rivers or lakes for high-resolution
quantitative and qualitative water quality data. In: Proceedings of the 2016
IEEE Intl Conference on Computational Science and Engineering (CSE) and
IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and
15th Intl Symposium on Distributed Computing and Applications for Business
Engineering (DCABES); 2016 Aug 24–26; Paris, France. New York City: IEEE;
2016. p. 122–9.

[86] Wang SM, Zhang ZJ, Ye ZL, Wang XJ, Lin XY, Chen SH. Application of
environmental internet of things on water quality management of urban
scenic river. Int J Sustain Dev World Ecol 2013;20(3):216–22.

http://refhub.elsevier.com/S2095-8099(24)00244-3/h0155
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0155
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0165
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0165
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0165
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0170
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0170
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0175
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0175
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0185
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0185
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0190
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0190
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0195
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0195
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0195
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0200
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0200
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0200
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0205
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0205
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0210
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0210
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0210
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0215
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0215
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0225
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0225
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0230
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0230
https://www.gardnerweb.com/articles/what-are-digital-twins-and-digital-threads
https://www.gardnerweb.com/articles/what-are-digital-twins-and-digital-threads
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0255
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0255
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0255
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0260
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0260
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0265
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0265
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0270
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0270
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0270
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0275
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0275
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0280
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0280
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0285
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0285
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0295
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0295
https://www.gartner.com/en/information-technology/glossary/big-data
https://www.gartner.com/en/information-technology/glossary/big-data
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0305
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0305
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0315
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0315
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0315
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0320
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0320
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0320
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0325
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0325
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0325
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0330
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0330
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0330
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0335
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0335
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0335
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0340
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0340
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0340
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0340
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0360
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0360
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0360
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0365
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0365
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0365
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0365
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0385
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0385
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0385
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0390
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0390
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0395
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0395
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0400
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0400
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0400
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0405
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0405
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0405
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0410
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0410
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0415
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0415
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0415
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0420
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0420
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0430
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0430
http://refhub.elsevier.com/S2095-8099(24)00244-3/h0430


A.-J. Wang, H. Li, Z. He et al. Engineering 36 (2024) 21–35
[87] Ross MR, Topp SN, Appling AP, Yang X, Kuhn C, Butman D, et al. AquaSat: a
data set to enable remote sensing of water quality for inland waters. Water
Resour Res 2019;55(11):10012–25.

[88] Sean WY, Chu YY, Mallu LL, Chen JG, Liu HY. Energy consumption analysis in
wastewater treatment plants using simulation and SCADA system: case study
in northern Taiwan. J Clean Prod 2020;276:124248.

[89] Kumar PM, Hong CS. Internet of Things for secure surveillance for sewage
wastewater treatment systems. Environ Res 2022;203:111899.
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