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Abstract: For the design of water distribution networks (WDNs), a multitude of factors must be
considered to achieve a resilient and robust system, given the long lifespan of these systems. Designers
face challenges such as climate and demographic changes, fluctuating water demand, policy shifts,
and evolving stakeholder preferences. Traditional models, including both deterministic and various
stochastic approaches, often encounter difficulties when dealing with the profound uncertainties
present in these variables. As a result, they frequently fail to predict long-term performance accurately.
The recent literature has indicated a shift towards non-deterministic methods that embrace these
uncertainties, especially through scenario generation techniques. In this paper, we delve into these
alternative methodologies, specifically focusing on scenario generation techniques that effectively
incorporate deep uncertainties into the design process of WDNs. We aim to identify, categorize, and
analyze these methodologies, highlighting their strengths, limitations, and areas for improvement.
Finally, we also suggest new research directions for scenario-based planning in WDNs to improve
their adaptability and resilience against uncertain futures.
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1. Introduction

Water Distribution Networks (WDNs) represent a critical component of societal in-
frastructure, necessitating careful design processes to address the uncertainties impacting
system performance. Given the significant role of WDNs in enhancing quality of life and
development, a designer must consider all possible climate, socio-economic, technological,
and political changes when designing the system. Addressing these uncertainties, also
referred to as “Deep” in the literature [1], can be quite challenging for the designer.

Traditional deterministic but also many stochastic models commonly cited in the exist-
ing literature are typically limited by not handling uncertainty or handling only statistical
uncertainty, and they cannot account for long-term system performance under complex and
dynamic conditions. The fundamental approach to managing such uncertainties involves
exploring multiple plausible futures and then designing a system that is able to perform ef-
fectively across a majority of the possible futures. The effectiveness of these systems cannot
be measured using traditional reliability indexes, which can be suitable for systems that are
designed with probabilistic approaches. Instead, the effectiveness should be focused on
robustness, valuing strategies and planning that ensure the optimal performance for a vari-
ety of future conditions [2]. The optimization that takes these uncertainties into account in
the form of scenarios is called scenario-based robust optimization (RO). The main goal of it
is to come up with solutions capable of performing well, even when faced with unforeseen
changes. This type of design optimization operates under a framework that can adapt to
new information while considering the risks associated with the decision-making process.
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In the available literature, RO has been applied to different aspects of WDNs, en-
compassing design, quality, and operations. This paper aims to consolidate the various
methods that have been employed to create plausible future scenarios for WDNs.

2. Literature Review

In the research field of WDNs, the term “scenario” is used differently among different
authors, depending on the approach being followed. The most common use for scenarios
is to describe future states of the system. In [3], the authors generated water demand
scenarios at the node level using a beta probabilistic model. Their methodology was flexible
enough to capture small and large demand aggregation in terms of all statistical properties.
In [4], nodal demand scenarios were generated by modeling nodes as correlated stochastic
variables. This allowed the same model to generate demands at different aggregation
levels (in space and time), and the probability of each scenario could be drawn from a
multivariate normal distribution. Another bottom-up approach for generating snapshots
of water demand is described in [5], which used Latin Hypercube Sampling with a Gamma
marginal probability distribution. Similar to the previous approach, the model considered
all statistical properties to be dependent on the number of users, thereby allowing the
application of scaling laws. A similar approach, which is presented in [6], first generated
demand patterns using Monte Carlo sampling. A Normal or Log Normal distribution was
then used to create the demand coefficients that were subsequently used to generate water
demand scenarios, by multiplying them with the hourly mean of the historical data.

Clearly, the methods that have been mentioned rely on historical data to infer the
statistical parameters. The critical question that arises, when pursuing a robust design, is
the following: How well can past values help us predict non-stationary events like climate
and social changes for the distant future? For this reason, some authors use a different
approach when it comes to water demand forecasting. In [7], the authors generated future
scenarios for population growth. Each scenario represented a distinct population increase
pattern, and each scenario was assigned with an equally likely probability of occurrence.
In [8], a decision tree outlined the potential futures, where each branch represented a
scenario. These scenarios described changes in the demand, land use, and the introduction
of new pumps. The likelihood of each scenario was provided by the best guess of an
expert. In [9], scenarios reflecting different drivers of water demand, such as population
change, people’s behavior, and climate change were generated. These scenarios were then
transformed to water demand patterns using a demand simulator.

Another popular use of the term “scenario” is in reference to potential failures, fre-
quently termed as “Failure Scenarios”. This term is used when the consequences of an
unexpected failure in the system need to be investigated. The type of consequences can
vary depending on the study, including economic, resilience, and health impacts. In [10],
the authors investigate the economic impact on the pumping costs resulting from system
failures and explore how pump relocations can mitigate these economic consequences
during a failure. In terms of water quality, failure scenarios can be utilized to explore
possible consequences in the quality of the water in the network.

3. Discussion

From the literature that was reviewed, a graph can be drawn that classifies different
scenario types.

As shown in Figure 1, scenarios can be categorized based on the followed approach.
The two most common types of scenarios, that have already been mentioned above, are
as follows: (i) speculative scenarios, which aim to forecast or explore the future, and (ii)
failure scenarios, which seek to replicate potential failures in the system. In Figure 1, they
are referred to as “Future” and “Failure” scenarios. The biggest difference between these
scenario types is the uncertainty that is assigned to them. Failure scenarios are finite in a
system while future scenarios are not. This explains why a majority of the authors have
the luxury to brute force all possible combinations of failure scenarios when optimizing
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for failures in a system. For future scenarios, a further distinction is made, separating
probabilistic and expert-driven scenarios. Probabilistic scenarios are generated using
probability distributions based on past observations, while expert-driven scenarios are
developed based on considerations of the external factors of the system, such as population
and social changes. This separation helps to address the varying levels of uncertainties
these scenarios can capture. Probabilistic scenarios are based on historical data and are
therefore incapable of describing phenomena that have never occurred and cannot account
for radical PESTEL (political, economic, social, technological, ecological, and legal) changes
that can happen in the future. In contrast, scenarios that include PESTEL factors are more
likely to anticipate higher levels of uncertainty [2]. However, the ability to anticipate higher
levels of uncertainty comes with some challenges, e.g., the designers have to be aware of
potential PESTEL changes in the future, which can be tough even for experts.
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In the field of foresight studies, there are numerous methodologies for future scenario
generation, each being useful in specific areas of interest. A common methodology for
scenario generation is Intuitive Logics (IL). The difference between IL and other scenario
generating methodologies lies in the search for plausibility. Other methods prioritize
different objectives such as preferred or probable futures. According to the literature,
several criteria must be met for a described phenomenon to be classified as a scenario
in the IL tradition, which the scenario maker must consider. Another requirement for
this approach is that a large number of scenarios are needed to fully capture a good
representation of possible future states. While this can be carried out very easily with
stochastic models, it is very challenging for manual methodologies. Finally, while most of
the literature cited in this paper are about water demand, they overlook the other types of
uncertainties that designers have to anticipate. Based on this review, there has been limited
work performed for human-related uncertainties like stakeholders’ preferences. All these
facts give space for a framework that can generate plausible scenarios for the uncertainties
that a designer has to anticipate during the design process.

4. Conclusions

Scenarios are a crucial tool for exploring uncertainties about the future in a coherent,
consistent, and plausible manner. By presenting alternative future states that can affect
water distribution systems, managers and decision-makers can develop robust decision
and management strategies that are able to cope with a wide range of future conditions.
This paper showcases all the possible ways scenarios have been utilized when aiming for
robustness. A significant number of articles are utilizing stochastic (probabilistic) methods
for generating possible future outcomes. However, stochastic modelling has limitations
in describing uncertain systems like WDNs. Conversely, several studies have utilized
scenarios that take into account external parameters. The scenarios generated like that can
compensate for higher levels of uncertainty as they take into account PESTEL factors. While
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this method has the potential to generate more appropriate future scenarios, the procedure
to generate the scenario is quite complex. The generated scenarios must meet specific
requirements like plausibility and distinctiveness. Experts from different areas can help in
the crafting procedure, but generating large numbers of scenarios can be time-consuming
and expensive. Based on these points, a framework will be developed to automate the
process of scenario generation, considering all the PESTEL factors.
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