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Abstract: Effectively planning the design of a water distribution network for the long term is a
challenging task for water utilities, mainly due to the deep uncertainty that characterizes some of
its most important design parameters. In an effort to navigate this challenge, this work investigates
the potential of reinforcement learning in the lifecycle design of water networks. To this end, a deep
reinforcement learning agent was trained to identify a sequence of cost-effective interventions across
multiple construction phases within a network’s lifecycle under both deterministic and uncertain
conditions. Our approach was tested on a modified benchmark of the New York Tunnels problem
with promising results. The agent achieved comparable performance with the baseline heuristic
algorithm in the deterministic setting and devised a flexible design strategy when multiple future
scenarios were considered. These preliminary findings highlight the potential of reinforcement
learning in the lifecycle design of water networks and represent a step towards the integration of
more adaptive planning approaches in the field.
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1. Introduction

Effectively planning the design of water distribution networks (WDNs) for the long
term is an essential but challenging task for water utilities. Construction interventions need
to be carefully planned within budget constraints and designed to meet both present and
future needs, despite uncertainties in variables such as population growth and climate
change. These uncertain variables, which are essential for describing the WDN in the
future, are characterized by “deep uncertainty” [1]. This introduces an additional layer
of complexity to the problem. To better navigate these challenges, it is essential to move
towards adaptive planning techniques that adjust to emerging information.

Reinforcement learning (RL), a subfield of machine learning focused on sequential
decision-making within uncertain and dynamic environments, could be a promising solu-
tion to the problem. Unlike heuristic approaches, RL offers a more dynamic framework for
decision-making under deep uncertainty as it can adapt to emerging information [2].

This work builds upon our prior research demonstrating RL’s feasibility in the single-
stage WDN design [3]. Here, we explore the more challenging staged optimization prob-
lem [4]. To this end, a deep RL agent was trained to identify a sequence of cost-effective
interventions across multiple construction phases within a network’s lifecycle. Our ap-
proach was tested on a modified benchmark of the New York Tunnels (NYT) problem,
under deterministic and uncertain conditions. By comparing the performance of our agent
with heuristic algorithms, we discuss the potential of RL in the lifecycle design of WDNs.
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2. Preliminaries
Staged Design Approaches

Staged design is a dynamic approach for the lifecycle design of WDN, in which the
planning horizon is divided into multiple construction stages, each one with its own
requirements. Within each stage, a set of specific upgrades are identified and implemented
to meet immediate demands while also optimizing an overall objective—typically the total
present cost of the network—across the entire planning horizon. This phased approach
allows water utilities to prioritize current needs without neglecting the network’s future
growth [4]. Additionally, by deferring some costs to later stages, utilities can manage
investments more effectively, avoiding both high initial expenditures and costly, reactive
interventions needed to cope with unforeseen future demands.

In the literature, there are three staged design variations [4]: (1) deterministic ap-
proaches, which assume that demands are known for the whole planning horizon; (2) robust
approaches, aiming to identify a solution that works well enough for a range of scenarios;
and (3) flexible approaches, focusing on identifying a set of initial interventions that will
allow the network to adapt to different scenarios with few modifications.

3. Materials and Methods
Using RL for Lifecycle Design of Water Distribution Networks

We explore the feasibility of RL in the lifecycle design of WDNs, focusing on the single-
objective staged optimization problem. The problem involves optimizing pipe diameters
across multiple construction stages (k ∈ K) in a network of n nodes and m pipes to minimize
the total cost while meeting stage-specific demands and pressure requirements.

We start by formulating the problem as a Markov Decision Process (MDP) defined by
the tuple (S, A, T, R). The problem is mapped to an MDP as follows:

• State: A vector st containing the pressure at each node and the diameters of the pipes.
• Action: A tuple at = (a1t , a2t) where a1t ∈ A1, a discrete set of all network pipes, and

a2t ∈ A2, a discrete set of all commercially available pipe diameters.
• Transition function: T is deterministic when analyzing a single scenario and stochastic

when designing for multiple future scenarios simultaneously.
• Reward function: A combination of two terms: (1) the cost of the design and (2) a

penalty term proportional to the total pressure deficit in the network.

We express the staged cost-minimization problem as a sequential decision-making
task. An agent, starting with an initial network design, takes L = ∑K

k=1 lk number of
actions, where lk is the number of upgrades at construction stage k, to determine an optimal
sequence of interventions that minimize the total cost while pressure requirements are met.
For this task, we use the Proximal Policy Optimization (PPO) algorithm [5].

4. Case Study

We apply our methodology in an adapted case study of NYT. The original problem
involved reinforcing the network to meet demands with enough pressure and under a
single demand condition [6]. In the adapted version of this problem, Cunha et al. [7]
transformed the problem into a staged optimization problem considering a 60-year lifespan
and three construction stages (every 20 years). At each stage, there is a uniform demand
increase (0–10%) and the Hazen–Williams coefficient decreases by 2.5 every decade. The
goal is to minimize the total intervention cost assuming a 4% discount rate.

Cunha et al. generated 50 possible scenarios and their objective was to find a robust
staged solution that worked well enough for all of them. To achieve that, they first identified
the cost-optimal solutions for 10 reference scenarios. Then, they evaluated and ranked each
solution under all generated scenarios using multicriteria decision analysis.

For our experiment, we focused on the 10 reference scenarios and their corresponding
deterministic solutions to assess our agent’s ability to solve staged optimization problems.
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We then further challenged the agent by testing its ability to develop a flexible strategy that
can adapt to all 10 scenarios. The results are presented in the next section.

5. Results
5.1. Staged Optimization

Table 1 compares the RL agent’s performance with the heuristic algorithm across the
10 benchmark scenarios. The agent achieved comparable total cost performance throughout
the network’s lifecycle, successfully identifying feasible and cost-effective solutions. The
agent’s designs were slightly more expensive compared to the designs generated by the
heuristic algorithm (0.6% to 5.1%). However, it is also worth noting that for scenario 10, the
agent was able to find a marginally more cost-effective solution.

Table 1. Cost comparison of staged solutions. Baseline heuristic algorithm [7] vs. PPO agent.

Scenario Demand Increase (%) Total Demand
Increase (%)

Cost (Heuristic [7])
(×107 USD)

Cost (PPO Agent)
(×107 USD)t = 0 t = 20 t = 40

1 0 0 0 0 4.09 4.17
2 0 3 4 7.12 4.54 4.64
3 0 5 1 6.05 4.63 4.71
4 5 1 1 7.11 5.14 5.40
5 4 3 3 10.33 5.26 5.29
6 3 3 9 15.64 5.34 5.51
7 9 1 3 13.39 6.07 6.31
8 8 6 1 15.62 6.25 6.44
9 6 9 9 25.94 6.42 6.46

10 10 10 10 33.10 7.55 7.48

5.2. Flexible Optimization

Finding a flexible design that can adapt to several scenarios with few modifications
requires a common starting point. Given that the 10 reference scenarios had different initial
demands, we added a common initial stage for all scenarios with demand equal to the
demand of the original NYT problem (Table 2). During training, the agent encountered
each scenario an equal number of times but in a random order. As a result, the agent
developed a flexible and cost-efficient strategy that applies to all scenarios.

Table 2. Cost comparison of scenario-optimal solutions against the flexible ones.

Scenario Demand Increase (%) Deterministic Cost
(×107 USD)

Flexible Cost
(×107 USD)t = 0 t = 20 t = 40 t = 60

1 0 0 0 0 4.33 4.92
2 0 0 3 4 4.57 4.97
3 0 0 5 1 4.51 5.01
4 0 5 1 1 5.00 5.15
5 0 4 3 3 5.07 5.12
6 0 3 3 9 4.87 5.08
7 0 9 1 3 5.44 5.73
8 0 8 6 1 5.34 5.78
9 0 6 9 9 5.36 5.51

10 0 10 10 10 5.93 6.08
Avg. Cost - 5.33

The agent began with a common network design for all ten scenarios, and then
progressively adapted the network to meet the demand requirements of each scenario.
Interestingly, in the early construction stages, when the uncertainty about future demand
was higher, the agent divided the scenarios into subgroups and applied the same actions
for each subgroup. Then, as the planning process progressed and the scenarios began
to diverge more significantly, the agent’s strategy became more tailored to each scenario.
For instance, instead of implementing one unique intervention for each scenario at each
stage, the second stage had just two possible interventions; one for scenarios with demand
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increases below a certain threshold and another for those above it. The third stage had
7 unique actions, and then finally, the fourth stage had 10 (1 for each scenario).

Table 2 compares flexible solutions with the scenario-optimal ones. Flexible solutions
are more expensive than deterministic ones, but the cost difference tends to be higher for
designs with a lower baseline cost. This indicates that the flexible design approach may
require a higher initial investment to enable the WDN to adapt to a range of future scenarios.

6. Conclusions

This work explored the potential of RL in the lifecycle design of WDNs, under de-
terministic and uncertain conditions. Our experiments, conducted on an adapted NYT
benchmark, yielded promising results.

In the deterministic setting, the RL agent had comparable performance to that of the
baseline heuristic algorithm and found a cost-effective upgrade strategy for the whole
planning horizon despite demand increases and the deterioration of the pipes in the
network. Under uncertain conditions, the agent was capable of devising a flexible strategy
that could adapt to multiple possible scenarios, an outcome which showcases RL’s potential
in the lifecycle design of WDNs under deep uncertainty.

While our current results are promising, further validation is needed. Future work
will involve applying RL to larger, more realistic networks, incorporating a wider range of
future scenarios and exploring how the agent can adapt to emerging information.
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