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A B S T R A C T

Pathogen intrusion in drinking water systems can pose severe health risks. To better prepare in planning and
responding to such events, computational models that capture the intrusion and health impact dynamics are
needed. This study presents a novel benchmark testbed that integrates current knowledge on pathogen transport
and fate in chlorinated systems and can assess infection risk from contamination events. The model considers
organic matter degradation, chlorine decay mechanisms, pathogen inactivation kinetics, as well as stochastic
water demands.

We studied modeling of wastewater intrusion events that can occur anywhere within a chlorinated and non-
chlorinated network. We applied the Quantitative Microbial Risk Assessment framework focusing on three path-
ogens: enterovirus, Campylobacter, and Cryptosporidium, and their respective dose-response models. Synthetic
household-level water demand time series were used to model the individual water consumption timing and
calculate the infection risk (exposure via ingestion).

Model outcomes indicate that while chlorination aids mitigation, larger contaminations can still lead to in-
fections due to chlorine resistance (for Cryptosporidium) and chlorine depletion at the contamination point. In our
example scenarios, chlorine-susceptible pathogens infected 0.78 –26.6 % of the downstream population, while
chlorine-resistant ones infected the entire downstream population. Enterovirus infection risk is higher, despite
the concentrations in the contamination source being lower, due to the lower susceptibility to chlorine than
Campylobacter. In non-chlorinated networks, the modeled wastewater contamination events led to 11 –46 %
infection risk in the total population, depending on the contamination location. Hydraulic uncertainty had a
limited influence on infection risk. Furthermore, Campylobacter’s infection risk is more sensitive to the initial
concentration in the contamination source whereas enterovirus infection risk to the inactivation rate. The model
further indicates that the time window for effective mitigation of the magnitude of a waterborne outbreak is
short (within hours).

1. Introduction

Safe drinking water is crucial for society, impacting health and well-
being. Drinking water distribution networks (DWDN) are critical in-
frastructures, recognized by USA’s Presidential Policy Directive 21 and

the European Union’s Directive (EU) 2022/2557. This requires plans to
enhance water suppliers’ resilience against natural, accidental, and
malicious threats (Teixeira et al., 2019). One such threat is wastewater
intrudes into the DWDN. This can expose thousands to contaminated tap
water, causing acute health effects from pathogens (Hrudey and Hrudey,
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2004). Proper DWDN operation and maintenance ensures hygiene and
hydraulic integrity, preventing pathogen intrusion (Medema et al.,
2013). In systems with residual disinfectants, high disinfectant con-
centration can maintain safety when standard conditions are not met
(Lechevallier, 1999). However, outbreaks have been linked to fecal
contamination in (chlorinated) networks, often due to cross-connection
between sewage- and drinking-water pipelines or intrusion during main
breaks (Craun and Calderon, 2001; Hrudey and Hrudey, 2019). Specif-
ically, van Lieverloo et al., 2007) note that 26% of the outbreaks in the
UK from 1911 to 1995 were caused by failures in the DWDN. Addi-
tionally, 18–20% of outbreaks in Nordic countries from 1975 to 1991
and 18% of outbreaks in the USA from 1971 to 1998 were attributed to
similar failures. Notable incidents such as the wastewater contamination
in Nokia, Finland with 8453 cases (Laine et al., 2011), or the wastewater
infiltration events in Italy (Giammanco et al., 2018) and in Denmark
(Kuhn et al., 2017) resulting in 25 and 63 cases respectively, highlight
the vulnerability of those systems to contamination. During a contami-
nation event, authorities must assess health impacts and respond quickly
and effectively. Accurate representation of contamination type and site,
demand-driven hydraulics, understanding of contaminant transport,
and the effect of a residual disinfectant as a mitigation are crucial for a
comprehensive assessment and rapid, efficient response.

An approach to assess the risk during contamination in the DWDN is
to perform a Quantitative Microbial Risk Assessment (QMRA). This es-
timates customers’ exposure to enteric pathogens through ingestion.
Studies have combined hydraulic modeling and QMRA for evaluating
health risks after wastewater intrusion in DWDNs. For instance, Teunis
et al. (2010) examined the risk of norovirus intrusion from sewers into
DWDNs due to negative pressure transients. They used the EPANET-MSX
hydraulic model and Monte Carlo simulations for random virus entry
and dilution estimation. Their study considered the coincidence of virus
presence and tap water usage, finding that this factor significantly af-
fects the calculated infection risk level and distribution in the popula-
tion. Another effort described by Yang et al. (2011) involved surge
modeling and hydraulic simulations to model a virus intrusion in a DWN
again due to pressure transients. The authors employed EPANET-MSX to
integrate a Chick-Watson model that accounted for the inactivation ki-
netics of selected pathogens and chlorine decay. They concluded that the
factors influencing the risk of viral infection were the duration of the
negative pressure event and the number of affected nodes, without
incorporating stochastic water demand or other water quality parame-
ters. Blokker et al. (2018) developed a QMRA model for contamination
events after main repairs in non-chlorinated DWDNs. They discovered
that pathogen concentration greatly influences the ingested dose and
that the infection risk varies notably between pathogens due to different
dose-response relationships.

Controlling pathogens in the DWDN heavily relies on residual dis-
infectants. Over the past 25 years, there’s been increasing interest in
modeling chlorine (Cl) transport and decay due to reactions with total
organic carbon (TOC) in DWDNs. Frankel et al. (2023) assessed the
uncertainty of drinking water quality in DWDNs, specifically focusing on
monochloramine decay. They focused on quantifying the effects of hy-
draulic and chemical uncertainties on water quality predictions. They
conducted a sensitivity analysis and Monte Carlo simulations to identify
the most influential chemical parameter and explore the impact of both
chemical and hydraulic uncertainty. Their findings were that mono-
chloramine uncertainty is significantly influenced by hydraulic vari-
ability and increases as water age increases. Their study emphasized the
importance of accounting for these uncertainties to make accurate
model-based decisions for managing water quality in DWDNs. Pelekanos
et al. (2021) applied a parallel first-order bulk and wall chlorine decay
model to evaluate a network’s vulnerability to deliberate contamination
attacks, using nominal water demands. They found that contamination
location significantly affects the size of the exposed population. Abhijith
and Ostfeld (2021) examined a chlorinated (and chloraminated) net-
work’s response to arsenic contamination using second-order kinetics,

based on competing reactions in water. This study emphasized the
critical role of disinfectant residual. Lastly, Fisher et al. (2017a) used a
two-reactant model with fast and slow agents, incorporating tempera-
ture as it greatly affects bulk chlorine decay. Eliades et al. (2023) pro-
vided a detailed review of contamination event diagnosis tools,
emphasizing the need for realistic physical and virtual testbeds to
simulate contamination emergencies and assess their impact, consid-
ering uncertainties. However, most models use generic contamination
approaches, lacking tools to accurately represent pathogen dynamics-
and failing to consider all important modeling parameters together. To
the best of the author’s knowledge, there has not been any other attempt
to model all the different reactions that occur in a DWDN simultaneously
during a wastewater contamination event, while also using stochastic
water demands and assessing the infection risk using QMRA.

In line with this, to enable responsible authorities to prepare for and
respond effectively to contaminations, we have developed a novel, open
benchmark testbed named BeWaRE (Benchmark for Water network and
Risk Evaluation). This testbed integrates all current relevant knowledge
regarding the transport and fate of pathogens in chlorinated systems in
one model and is capable of estimating the health impacts of such
events. With BeWaRE, responsible authorities can model various
contamination events. These events vary from minor, where negative
pressure transients cause slight wastewater entry, to major accidents
with significant wastewater influx. The benchmark can be used for
developing new software and decision support tools for monitoring,
control, and management of contamination emergencies, as well as
creating datasets for machine learning research.

BeWaRE integrates the findings of previous studies, accounting for
bulk and wall chlorine decay, various pathogen inactivation kinetics,
TOC degradation, and realistic water demands and consumption distri-
bution, incorporating QMRA.

The contributions of this work are summarized below:

• Introduction of an open-access testbed designed for comprehensive
simulation of contamination by waterborne pathogens under various
disinfection regimes.

• Integration of realistic household consumption profiles improving
daily consumption pattern accuracy and health impact calculations
for waterborne pathogens using QMRA.

• Investigation of a wastewater contamination event and evaluation of
the importance of the input parameters.

Specifically, this paper presents a benchmark hydraulic and water-
quality model to assess the health impact following a large wastewater
contamination in a chlorinated and non-chlorinated network and eval-
uate chlorine’s mitigating effect. The model was tested using a modified
version of L-Town, a benchmark network from the BattLeDIM (Battle of
the Leakage Detection and Isolation Methods) competition (Vrachimis
et al., 2022), featuring 782 junctions, 905 pipe segments, and serving
approximately 28,000 citizens. In our example, we investigated a single
contamination event originating from three distinct locations using
Campylobacter, enterovirus, and Cryptosporidium as reference pathogens.
Hydraulic uncertainty was addressed to account for the dynamic, un-
certain nature of water demands and examine their influence on the
model outcome. Water quality uncertainty was included to examine the
effects of variability of input parameters on the model outcome. The
model outcome is the expected health impact over time and space,
expressed as the expected number of infections, and the infection risk,
following the QMRA steps.

2. Benchmark model development

The benchmark model developed is depicted in Fig. 1. The hydraulic
modeling includes stochastic water demands that determine the hy-
draulics of the entire network. This involves modeling different water
end-uses, from which we isolate the tap water end-use. As shown in the

S. Paraskevopoulos et al. Journal of Cleaner Production 479 (2024) 143997 

2 



figure, we generate individual tap water consumption events that will
later be used for the risk assessment. The hydraulic modeling is also
integrated with the water quality modeling component. The water
quality modeling includes simulating reactions between different agents
of interest, eventually leading to the calculation of pathogen concen-
tration. This concentration, combined with the volume calculated from
the consumption events, is used to determine the dose. The dose is then
integrated into the QMRA part to assess the infection risk. All the
different components of the BeWaRE model are described in detail in the
following chapters.

2.1. Network graph

The topology of the DWDN is modeled by a directed graph denoted as
G = (V ,E ). Here, V is the set of nodes such that V ⊂ Z× Θv. The set
Z = {1,⋯, nv} indicates the positive integers representing the index of
the i-th node, vi ∈ V , and |V | = nv is the total number of nodes. Nodes
represent pipe junctions and consumer (water demand) locations, res-
ervoirs, and tanks. The set Θv associates each node with parameters (real
numbers) detailing the network’s physical properties that affect water
flow and quality, such as node elevation. Each node vi is associated with
a time-varying consumer water demand, denoted by di(t). The set E

represents edges (links) defined as E ⊂V × V × Θe. An edge e(i,j) ∈ E

connects nodes vi and vj where i, j ∈ Z and i ∕= j. The total link count is
|E | = ne. Links represent pipes, pumps, and valves, with pumps and
valves being the main hydraulic control elements in a DWDN. The set Θe
associates the edge with its parameters (real numbers). Depending on
the edge type, parameters vary. For instance, a pipe might have length,
diameter, and roughness as parameters, while a pump’s parameters
might be polynomial coefficients defining its characteristic curve. In this
work, both Θv and Θe parameters are considered time-invariant since
they refer to characteristics of pipes and nodes that may change slowly
over time (e.g., years), while we consider wastewater contamination
events lasting from hours to days.

2.2. Consumer demand modeling

The main driver of water network hydraulics is consumer demand at
nodes, represented as di(t) for the time-varying demand at node vi.
Typically, demand is modeled by an average or base demand compo-

nent, multiplied by a daily or weekly consumption pattern. Approxi-
mations of base demand data can be deduced from the utility’s billing
records, while patterns are usually rough approximations (Vrachimis
et al., 2019). We employ the STochastic Residential water End-use Model
(STREaM) tool, to generate synthetic household-level water demand
time series. STREaM uses a large dataset with observed and dis-
aggregated water end-uses from over 300 single-family U.S households
(Cominola et al., 2018). The associated water end-uses are toilet, faucet,
bathtub, clothes washer, and dishwasher. Each water end-use has
distinct consumption patterns and probability distributions for water
use volume, use duration, daily frequency, and time of use during the
day. This gives a realistic residential demand profile for the L-Town
network, ignoring non-residential demands such as industries. To derive
a daily demand time-series di(t) per node, we use the L-Town network’s
base demand to calculate the population associated to node vi, defined as
Pop(i), assuming an average consumption of 150 L/day per person.
Multiple simulations of the STREaM tool are employed with different
household occupancy to allow for variations in consumption patterns
until the total occupancy equals Pop(i). The demand profile for node vi,
indicated by di(t), is the combined household consumption at each time
instant. Note that, using this demand modeling approach, different daily
tap water end-uses per individual can be distinguished at each node and
used in the exposure assessment (part of QMRA as discussed in chapter
3).

2.3. Hydraulic dynamics

The key hydraulic quantity associated with each node vj is the hy-
draulic head, denoted by hj. The main hydraulic quantity associated with
a link e(i,j) is the water flow, denoted by q(i,j) (Boulos et al., 2006). The
overall hydraulic state xh ∈ Rnh of a DWDN is defined by the head at
nodes and flow in links, thus nh = nv + ne. These states are calculated
using a hydraulic model of a DWDN, which is a set of equations derived
from the laws of (i) conservation of mass; and (ii) conservation of energy
in the network. In this work, we use the EPANET modeling software
(Rossman, 2000) to solve these equations, which uses the pipe formula-
tion as proposed by Todini (1987).

Fig. 1. The flowchart of BeWaRE model with the integration of all components.
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2.4. Water-quality dynamics

Water quality characterizes the concentration of key variables in
water, while water quality dynamics describes changes in the concen-
tration of physical, chemical, and biological agents within the DWDN
over time and space. Agents in a DWDN either react with others altering
concentrations over time or maintaining a constant concentration. Both
types of agents are diluted and transferred within the water, thus their
concentration at a particular network location changes over time.

Let W ∈ Rnw be a vector indicating the concentration of nw agents of
interest in a DWDN, at a certain location and time, with w(i) being the
i-th agent. We focus on certain agents because they either need to be
controlled or because they may react with these controlled agents.

Reaction dynamics explain how agent concentrations change due to
reactions or decay. Single-species reaction dynamics, commonly used in
water quality modeling literature, describe the decay rate of an agent
(Clark et al., 2010), representing the concentration of a single agent,w(i),
while neglecting others. This simplification is convenient since we
typically don’t know all reactions and agents present in water.

During normal operation, hydraulic dynamics in a water network
influence the water quality dynamics through agent transport along
pipes and dilution at pipe junctions. The change in agent concentration
over time t and space, coupled with reaction dynamics in bulk water and
on pipe surfaces (axial dispersion neglected for simplicity), is repre-
sented by a first-order hyperbolic partial differential equation (Eliades
et al., 2023):

∂W(i,j)(z, t)
∂t +

q(i,j)(t)
α(i,j)

∂W(i,j)(z, t)
∂z = fr

(
W(i,j)(z, t),Θr

)
+B(z)u(i,j)(z, t)

+ B(z)ϕ(i,j)(z, t) 1

where W(i,j)(z, t) is the agent concentrations vector in water at contin-
uous time t and at distance z along a pipe corresponding to the edge e(i,j),
with water flow q(i,j)(t) and pipe cross-sectional area α(i,j) ∈ Θe. The
function fr( ⋅) denotes concentration changes due to reactions with other
agents in the water or οn pipe walls, considering the pipe parameter
vector Θr. The function u(i,j) ∈ Rnw represents controlled agent input (e.
g., disinfectant addition). The function ϕ(i,j)(z, t) ∈ Rnw corresponds to
the uncontrolled injection of contaminants that can occur at any loca-
tion in a DWDN (e.g., wastewater intrusion). The matrix B(z) specifies
the injection location and agent type. Note that, if a new agent is added
to the network, this needs to be included in W, and suitably modify
function fr( ⋅) if this reacts with other agents.

In general, this hyperbolic partial differential equation cannot be
solved analytically, however, a numerical solution is possibly by using a
suitable discretization method. One approach is to segment the network
into finite volumes, and model multi-species reactions (Shang et al.,
2008a) as coupled sets of differential and algebraic equations solved for
each finite volume of the network, summarized by:

dW(t)
dt

= fr(W(t),Θr) 2

fg
(
W(t),Θg

)
=0 3

where W is a vector of average concentrations of nw agents of interest
within a finite volume, fr( ⋅) is a vector field denoting concentration
change due to decay reactions between agents, fg( ⋅) corresponds to the
algebraic equations for mass balance, and Θr, Θg are the coefficients of
the reaction kinetics.

In this work, we used EPANET for the hydraulic modeling and
EPANET-MSX for multi-reaction modeling, chosen for their open-source
tool ecosystem, for instance, the EPANET-MATLAB Toolkit for effective
scenario simulations in MATLAB (Eliades et al., 2016). Regarding
advection dynamics, this benchmark model employs the EPANET-MSX
simulator with the following core assumptions:

a) Advective transport in pipes: agents move with the fluid’s average
velocity and interact with other species and pipe walls.

b) Mixing at pipe junctions: Inflows from multiple links are assumed to
mix completely and instantly.

c) Mixing in storage nodes: all inflows to tanks mix completely with
existing contents, subject to possible bulk phase reactions, with
alternative schemes available to model plug flow.

2.5. Agents of interest during wastewater intrusion

Water quality dynamics largely depend on the chosen agents W and
the differential equations fr( ⋅) that describe their reactions. For
example, contaminants may react with disinfectants, reducing disin-
fectant concentration.

Table 1 lists the reference pathogens that were modeled, each rep-
resenting a pathogen group (bacterium, virus, protozoon) with varying
Cl resistance and infectivity. The selection of these pathogens is pri-
marily due to their frequent occurrence in wastewater, differences in
chlorine resistance, and high infectivity. Their data availability and use
in existing literature, offers a comparative and well-established basis for
their inclusion in our analysis (Betanzo et al., 2008; Laine et al., 2011;
Odhiambo et al., 2023). For modeling, we denote pathogens as the
agents of interest, represented by w(1) = CP (organisms /L). They enter
drinking water during a large wastewater intrusion event, i.e., the first
contaminant input ϕ(1) = P (organisms).

Cl (mg) is a key agent of interest, as it impacts pathogen concen-
tration. We denote the concentration of chlorine as w(2) ≡ CCl (mg /L),
while the injected concentration of chlorine is a controlled input
u(1) ≡ CCl (mg /L). Wastewater carries organic and inorganic com-
pounds reacting with chlorine in a chlorinated network. We designated
TOC as an indicator of all chlorine-reducing agents (CRA) in water that
includes both Natural Organic Matter (NOM), typically considered as
slow chlorine-reducing agents (SRA), and the inorganic compounds
(such as ammonia and iron), that are typically fast chlorine-reducing
agents (FRA), as seen in other studies (Vieira et al., 2004; Monteiro
et al., 2014; Fisher et al., 2017a). The use of TOC as an indicator is
convenient since it is measurable, however, it is important to note that
not all TOC contributes directly to chlorine demand, since it includes
both reactive and non-reactive compounds. FRA and SRA from waste-
water are denoted by w(3) ≡ CFRA(mgCl-equiv /L),
w(4) ≡ CSRA(mgCl-equiv /L), and modeled as contamination inputs
ϕ(2) ≡ FRA (mgCl-equiv), ϕ(3) ≡ SRA (mgCl-equiv). CRA is found at
lower levels in drinking water than in wastewater and mostly consists of
SRA. We account for this by inserting additional SRA at DWDN entry
points, denoted by u(2) ≡ CSRA(mgCl-equiv /L).

The complete state, control input, and contamination input vectors
for this benchmark model are then given by:

W= [CP,CCl,CFRA,CSRA]⊤,U= [CCl,CSRA]⊤,Φ= [P, FRA, SRA]⊤ 4

2.6. Modeling reactions

The water quality dynamics cover concentrations of four agents:
Chlorine CCl (mg/L), fast and slow reducing agents CFRA, CSRA (mgCl-
equiv/L), and various reference pathogens CPi in Colony Forming Units
(CFU/L), plaque-forming units (PFU/L) and oocysts/L, all assumed

Table 1
Waterborne pathogens and their significance in water supplies. Adapted from
WHO. Guidelines for drinking water quality (World Health Organization, 2017).

Pathogen Health
significance

Persistence in
water supplies

Chlorine
resistance

Relative
infectivity

Campylobacter High Moderate Low Moderate
Enterovirus High Long Moderate High
Cryptosporidium High Long High High
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viable/infectious at intrusion. Fig. 2 shows processes in a pipe during
wastewater intrusion into the DWDN. Chlorine decay is modeled in both
the bulk water and near the pipe wall. In the bulk phase, chlorine reacts
with SRA at DWDN entry points. From the intrusion point (in the
DWDN), it reacts with both FRA and SRA, causing bulk chlorine decay.
In the wall phase, chlorine reacts with the biofilm on the network pipe
walls, leading to further chlorine decay. The equation for bulk and wall
chlorine decay is described as:

dCCl
dt

= fCb(CFRA,CSRA,CCl) + fCw(CCl) 5

where CCl is the total chlorine concentration (mg/L) at time t (time
notation omitted for simplicity), fCb ( ⋅) and fCw ( ⋅) are functions
describing chlorine (mg/L) reactions in the bulk and wall phase
respectively. The reaction of chlorine with FRA, SRA, and pathogens P,
results in the degradation of the first two, and the inactivation of the
latter.

The proposed model was applied on a real network, on which the L-
Town benchmark was based. The parameters of chlorine decay (see
following sections) were calibrated using real chlorine measurements
from sensors installed in that network. Parameters that could not be
validated from the calibration process, were based on the literature.
More details on the calibration process are provided in the following
sections and in the supplementary material.

2.6.1. Bulk chlorine decay
The parallel second-order model is commonly used for bulk chlorine

decay, accounting for fast and slow reactions with reactants (Monteiro
et al., 2014; Fisher et al., 2017a). In the fast phase, chlorine reacts with
inorganic compounds and highly reactive organic compounds, repre-
sented as FRA. In the slow phase, it is consumed by less reactive organic
compounds, modeled as SRA. Chlorine’s reactions with pathogens are
insignificant compared to those with FRA and SRA, thus they’re
neglected. The two-phase equation is shown below:

fCb(CFRA,CSRA,CCl)= − kFRACFRACCl − kSRACSRACCl 6

Where kFRA, kSRA (L/mgh) are the decay rate coefficients for fast and
slow reactions respectively.

We adopted chlorine decay parameter values from Monteiro et al.
(2014) as they also examined chlorine decay in a DWDN under similar
conditions of water temperature, organic material, and chlorine levels to

our contamination scenario. For the value of slow reaction decay rate
coefficient (kSRA), we verified that the predicted values of chlorine
concentration aligned with the observed sensor data. The high value of
fast reaction decay rate coefficient (kFRA) reported by Monteiro et al.
(2014) is assumed to be suitable for our model, since high concentra-
tions of ammonia and other inorganic compounds are expected in
wastewater.

2.6.2. Wall chlorine decay
We followed the work of Monteiro et al. (2020) where the authors

used the EXPBIO wall decay model by Fisher et al. (2017b) to study
chlorine decay from biofilm activity in a full-scale DWDN, using
first-order kinetics:

fCw(CCl)= −
4
D

(
Ae− BCCl

1 + Ae− BCCl/(km)
CCl

)

7

where D is the pipe diameter (dm), km the mass transfer coefficient (dm/
h), A an amplification factor (dm/h), and finally B the rate coefficient
(L/mg).

In the real network (the basis of L-Town), six chlorine sensors were
installed to record chlorine concentrations at 5-min intervals. To cali-
brate the proposed water quality model, the network with calibrated
hydraulics and known chlorine input was first simulated for one week.
The wall decay parameters A and B were then adjusted to minimize the
error between the model predictions and actual measurements from the
chlorine sensors and ensure that the simulated chlorine residual closely
resembles reality. After calibration, the parameter B was held constant
at 14 (L/mg) while the A value ranged between [0.01,1], as it is related to
the pipe material. Specifically, we linked A values to pipe roughness,
since it is expected to correlate with the level of biofilm formation
(Douterelo et al., 2016). The amount of biofilm differs across pipes, with
areas that have high biofilm thickness exhibiting high chlorine demand,
and areas with low thickness having lower chlorine demand. PVC pipes
with roughness coefficient > 140 (Hazen-Williams), less prone to bio-
film, got A = 0.01. Cast/galvanized iron pipes with roughness < 140,
more prone to biofilm formation and wall chlorine decay, got A values
between [0.01,1], with A ∈ R.

2.6.3. CRA degradation
A CRA concentration of 140 mg/L based on TOC concentration in

wastewater was taken from (Metcalf et al., 1991), representing all

Fig. 2. Schematic showing processes during wastewater intrusion. P (ϕ(1)), FRA (ϕ(2)) and SRA (ϕ(3)) are the pathogens, the fast and the slow chlorine-reducing
agents respectively entering from wastewater intrusion. Cl (u(1)) and SRA (u(2)) are the controlled chlorine input and the slow reducing agents respectively
entering through entry points.
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chlorine-reducing agents. Based on Fisher et al. (2017a), the concen-
trations of chlorine-reducing agents that react fast (FRA) is approxi-
mately 40% of the total chlorine-reducing agents’ concentration
(expressed as mgCl-equiv/L) while SRA constitute around 60%. Simi-
larly, in the paper of Vieira et al. (2004), chlorine decay follows a similar
40%–60% pattern, indicating that the fraction of chlorine that reacts fast
is approximately 40%, while the rest is 60%. This approximation serves
as a practical baseline for modeling the reactive fractions of CRA. To
estimate the amount of CRA entering the DWDN at its entry points, we
used the SRA concentration from Monteiro et al. (2014). This refers to
the CRA naturally present in the DWDN. The formula that describes the
degradation of FRA and SRA is given by Monteiro et al. (2014):

dCFRA

dt
= − kFRACFRACCl 9

dCSRA

dt
= − kSRACSRACCl 10

2.6.4. Pathogen inactivation
Pathogen inactivation by chlorine is commonly modeled as Chick

Watson kinetics (Teunis et al., 2010; Betanzo et al., 2008):

dCP
dt

= − kp(T)CPCCl 11

where CP is pathogen concentration (CFU or PFU or oocysts/L) at time t
(time notation omitted for simplicity), kp(T) is the temperature-
dependent inactivation rate (L/mg h), and T is the temperature in de-
grees Celcius. The inactivation rate for Campylobacter was taken from
Betanzo et al. (2008), as they also modeled microbial intrusion in a
chlorinated network. Enterovirus inactivation rates were derived from
Rachmadi et al. (2020), who studied chlorine inactivation of coxsackie
virus, using the rate calculated from required CT values of 4 log inac-
tivation at 5 ◦C.

2.6.4.1. Temperature dependence. Using the Arrhenius equation, we
defined the pathogen inactivation rate kp(T) for enterovirus and
Campylobacter at a given temperature:

kp(T)=Ae(− Ea/R(T+273)) 12

where A is the frequency factor (L/mg h), Ea the activation energy (J/
mol), and R the gas constant (J/K mol). For Cryptosporidium, we assumed
a zero inactivation rate due to its chlorine resilience. We used

Fig. 3. The individual daily tap water consumption and the total tap water consumption for a specific node in L-Town. Each rectangle in the heatmap represents an
individual consumption event, while the color indicates the volume of water consumed. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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inactivation rates at two different temperatures to calculate A and E
(Betanzo et al., 2008; Rachmadi et al., 2020).

3. Quantitative Microbial Risk Assessment

3.1. Exposure assessment

We assume that exposure to pathogens occurs only through the
ingestion of tap water. We also assume that an individual person con-
sumes 1 L of drinking water per day, divided into several consumption
(exposure) events of 0.25 L or less. From all the end-uses generated by
the stochastic demand generator, we isolated the tap water end-use
(faucet), and considered the opening of the kitchen tap as the event
that people drink water. Fig. 3 illustrates an example of multiple daily
consumption events by 126 individuals in a node, where each rectangle
represents an individual consumption event, while the color indicates
the volume of water consumed. The plot shows the cumulative tap water
consumption for the day. From this, the variability and distribution of
tap water consumption behavior throughout the day for each individual
is evident. Some individuals drink 1 L using only four consumption
events, while others use six or seven consumption events. This vari-
ability reflects the different levels of exposure of each individual
throughout the day. Pathogens ingested per consumption event are
found by multiplying consumed water volume with pathogen concen-
tration at each timestep. The daily dose per individual sums up the
number of pathogens from all daily consumption events.

3.2. Health effects assessment

Each pathogen is characterized by a unique dose-response, reflecting
their individual levels of infectivity. Dose response of enterovirus
(coxsackie) is commonly calculated with an exponential model utilizing
a value of 0.14772 for the probability of microorganism survival r
(Chigor et al., 2014). For Campylobacter and Cryptosporidium, we follow
Teunis et al. (2018) and Sterk et al. (2016), using the Beta-Poisson
dose-response model with the hypergeometric (1F1) function for the
probability of infection from outbreak studies. The parameters α and β
are 0.38 and 0.51 for Campylobacter, and 0.106 and 0.295 for Crypto-
sporidium respectively.

3.3. Risk characterization

Integrating exposure and health effects data, we can calculate the
infection risk for a specific contamination scenario. The infection
probability is first calculated per individual ind, at a node vi, at each time
step k, considering a number of exposure events Eind for each individual.
Following WHO’s approach (World Health Organization, 2016), we
calculate infection probability from multiple exposure events over time
as follows:

Pinf (ind)=1 −
∏Eind

1

(
1 − Pinf (E, ind)

)
13

where Pinf (ind) is the infection probability of a single individual over the
course of the contamination scenario given Eind exposure events, and
Pinf (E, ind) is the probability of infection from a single exposure event
E ∈ {1,…,Eind}, derived from the dose-response function of the relevant
pathogen. Note that exposure events vary per individual. The number of
expected infections per node vi is then given by the sum of probabilities
of infection for each individual at the node:

Ninf ,i =
∑Pop(i)

ind=1
Pinf (ind) 14

The infection risk for the total population in the network, given a
contamination scenario, is the ratio of the total expected infected

population to the total population Pop =
∑nv

i=1 Pop(i), as follows:

R=
1
Pop

∑nv

i=1
Ninf ,i 15

In addition, we also evaluate the infection risk for the population at the
downstream nodes of the contamination source. Let Popexp < Pop be the
number of individuals at contaminated nodes; then, the infection risk of
the exposed population Rexp is:

Rexp =
1

Popexp

∑nv

i=1
Ninf ,i 16

4. Contamination scenarios

Both chlorinated and non-chlorinated networks began the contami-
nation at 08:00 a.m. with a temperature of 12 ◦C. A constant SRA in-
jection of 1.85 mgCl-equiv/L was introduced from the entry points. The
chlorinated network also received a constant chlorine injection of 0.5
mg/L from the entry points.

Initial pathogen concentrations were selected as mean values based
on typical concentrations in raw wastewater assuming all culture-based
data represent infectious pathogens (Pitkänen and Hänninen, 2017;
Betancourt and Shulman, 2016; Betancourt, 2019). The contamination
duration was set at 8 hours, with a wastewater injection rate of 100 L/h
to represent large contamination, while dilution was calculated from the
water flow at the node where the intrusion of wastewater was modeled.

4.1. Contamination location

The study expects contamination location to significantly impact
health risks, as network nodes have varying hydraulics and affect
different population levels over time (Pelekanos et al., 2021). We
divided the network into three zones, choosing three contamination
locations for the main scenario (Fig. 4) based on their downstream
population. The first location could affect about 50% of the population
(Loc-L), the second around 30% (Loc-M), and the third a smaller
segment at 10% (Loc-S).

4.2. Hydraulic uncertainty

Most modeling studies simplify water network hydraulics by using
nominal demands, overlooking the dynamic, uncertain nature of water
demands. To address this, we vary the average (base) demand of each
node randomly between ±10 % of the nominal value, and then generate
a stochastically determined water demand for every node using
STREaM. This procedure is reiterated 100 times generating 100 unique
demand profiles for each node. The goal is to ascertain whether hy-
draulic uncertainty influences the model outcome for each of the three
contamination locations using the pathogen Cryptosporidium.

4.3. Quality dynamics variability and uncertainty

Modeling quality dynamics requires considering input parameter
variability or uncertainty. For both enterovirus and Campylobacter,
various inactivation rates and concentrations exist in wastewater under
different conditions. To understand the impact of these uncertainties on
the model outcome, we conducted a nominal range sensitivity analysis
on 1) Pathogen inactivation rate (using only lower rates as higher rates
eliminate all pathogens), 2) Initial contaminant concentration (consid-
ering only the highest reported concentration), and 3) Contamination
duration (ranging from 2 to 24 h). Table 2 summarizes the quality pa-
rameters and initial conditions for the contamination scenario and
sensitivity analysis.
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5. Results and discussion

5.1. Chlorinated network

Fig. 5 shows the average chlorine distribution in the L-Town network
under normal operation. A chlorine concentration of 0.5 mg/L is added
at the two entry points, to maintain adequate residual chlorine. While
this goal is mostly achieved, a concerning area arises in the northwest
where chlorine levels drop critically. This area is characterized by a

flow-controlling pump that fills a tank during nighttime hours, which is
then used for the morning water demand, affecting the chlorine levels.

Table 3 evaluates contamination scenarios in the chlorinated
network. At the Loc-L and Loc-M locations, near the chlorinated entry
points of the DWDN, chlorine residual hinders pathogen spread,
resulting in fewer infections and lower infection risk for both Campylo-
bacter and enterovirus.

Despite the higher Campylobacter concentration in wastewater
compared to enterovirus (Table 2), the infection risk from enterovirus is

Fig. 4. The three selected contamination locations for the main scenario with small (Loc-S), medium (Loc-M) and large (Loc-L) potential impact on the population.

Table 2
Quality parameters and initial conditions incorporated into the benchmark model.

Parameter Units Contamination
scenario

Sensitivity analysis Notes Reference

CCl (u(1)) mg/L 0.5 0.5 Initial chlorine concentration –

FRA (ϕ(2)) mgCl-equiv 0.4CRA 0.4CRA Fast chlorine-reducing agent
Fisher et al. (2017a)

SRA (ϕ(3)) mgCl-equiv 0.6CRA 0.6CRA Slow chlorine-reducing agent
Fisher et al. (2017a)

CSRA (u(2)) mgCl-equiv/
L

0.6CRA 0.6CRA Slow chlorine-reducing agent from
reservoir Fisher et al. (2017a)

kFRA L/mgh 0.28 0.28 decay rate coefficients for fast reactions
Monteiro et al. (2014)

kSRA L/mgh 0.007 0.007 decay rate coefficients for slow reactions
Monteiro et al. (2014)

T Celsius 12 5 (Correlated with inactivation
rate)

Temperature –

CP1

(
ϕ(1)) PFU/L 1.39e+ 06 2.08e+ 07 Enterovirus initial concentration

Betancourt and Shulman (2016)

CP2 (ϕ(1)) CFU/L 9.02e+ 06 6.2e+ 07 Campylobacter initial concentration
Pitkänen and Hänninen (2017)

CP3 (ϕ(1)) oocysts/L 3.54e+ 07 5.4e+ 08 Cryptosporidium initial concentration
Betancourt (2019)

TOC mg/L 140 250 TOC concentration in wastewater
Metcalf et al. (1991); Henze et al.
(2002)

kp1 L/mg h 92.3 -/ 19.4 Enterovirus inactivation rate
Rachmadi et al. (2020)

kp2 L/mg h 265.8 -/ 157 Campylobacter inactivation rate
Rachmadi et al. (2020)

kp3 L/mg h 0 0 Cryptosporidium inactivation rate –
Duration Hours 8 2/24 Contamination duration –
A dm/h 0.01 − 1 0.01 − 1 Amplification factor –
B L/mg 1 4 14 Rate coefficient –
Km Ft/h 1.5826e −

04*RE(0.58/D)
1.5826e − 04*RE(0.58/D) Mass transfer coefficient

Shang et al. (2008b)
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higher in both Loc-L and Loc-M. This is due to Campylobacter’s higher
inactivation rate, reducing its concentration (upon chlorine reaction)
more than enterovirus. This occurs even though the dose response
relationship suggests that Campylobacter is more infectious than
enterovirus when both are present at the same concentration (Fig. 6).

At the Loc-S location, low chlorine levels are due to both bulk and
wall decay. Extended travel time causes more chlorine decay before
chlorine reaches Loc-S. During wastewater intrusion, less dilution leads
to higher FRA levels entering the network causing rapid chlorine decay.

Simultaneously, less diluted pathogen concentrations increase the
number of initial and surviving pathogens, raising the exposure to all
pathogens downstream. This is causing higher number of infections and
infection risk. Figs. S2–S7 in the supplementary material show a 24-h
chlorine residual profile along with Campylobacter and enterovirus
concentration for a node downstream of each of the three contamination
locations.

Among the three pathogens, Cryptosporidium poses the greatest risk,
showing the highest infection risk in Loc-L and Loc-M locations. This

Fig. 5. The average chlorine residual in the L-Town network under normal operation.

Table 3
The results for the three pathogens in the chlorinated network. Ninf is the total infections, R is the infection risk for the total population, and Rexp is the infection risk of
the downstream affected population.

Source Location Loc-L Loc-M Loc-S

Pathogens Ninf R Rexp Ninf R Rexp Ninf R Rexp
Campylobacter 318 0.95% 2.1% 83 0.25% 0.78% 3724 11.2% 100%
Enterovirus 1158 3.5% 7.8% 2793 8.4% 26.6% 3724 11.2% 100%
Cryptosporidium 15002 45.1% 97.2% 10268 30.9% 97.9% 3705 11.1% 99.6%

Fig. 6. The dose-response of the three reference pathogens.
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elevated risk profile can be attributed to Cryptosporidium’s resistance to
chlorine disinfection, showing chlorine provides no protection against
chlorine-resistant pathogens.

Fig. 7 shows the infection risk over 24 h since contamination. For
pathogens Campylobacter and enterovirus, the infection risk primarily
emerges from the Loc-S location. The identical Loc-S infection risk
profiles for these two pathogens is due to their high concentrations,
infecting the entire population.

The infection risk for Cryptosporidium differs significantly from the
other two pathogens. In the Loc-L location, infection risk rapidly esca-
lates to 25% within the first 8 hours of contamination, leveling off just
above 40% by early next morning (04:00 a.m.). The rise after 04:00 a.m.
is due to increased water demand as people start their (next) day,
causing residual pathogens to spread and infect more individuals. The
Loc-M and Loc-S locations show somewhat similar infection risks (at
15% and 10% respectively) in the first 8 hours but follow different
trends. The differing risk profiles are due to variations in dilution and
pathogen spread to downstream nodes. The Loc-M location, having
higher dilution in certain areas and a longer path for pathogens to reach
downstream nodes, experiences a gradual risk increase. Conversely, the
Loc-S location has less dilution and quicker pathogen reach to down-
stream nodes, resulting in a more immediate surge in the infection risk.
The dilution factor also influences the infection risk profile of entero-
virus for Loc-L. This is due to higher contaminant dilution, as locations
near the reservoir serve more downstream nodes and thus have
increased flow. Consequently, the contaminant dose is reduced, leading
to a lower infection risk compared to the Loc-M contamination location.

5.2. Non-chlorinated network

Table 4 shows the contamination scenario without chlorine in the
network. As expected, Campylobacter and enterovirus present a different
profile than in the chlorinated scenario, while Cryptosporidium’s results
remain the same.

Campylobacter shows slightly more infections and higher infection
risk in the Loc-L and Loc-M locations compared to enterovirus, as seen in
Fig. 8. Although Campylobacter and enterovirus seem similar initially,
they diverge after 7 hours. This behavior can be attributed to the initial
concentration and dilution. Campylobacter has an initial concentration
nearly 10 times higher than that of enterovirus, resulting in higher doses
in the dose-response (Fig. 6). Regarding dilution, it takes approximately
7 hours for the contaminated plume to mix with clean water originating
from the network’s east side. After this interplay, dilution occurs, which
reduces the dose. Referring to Fig. 6, it is evident that when the dose
shifts to the left, the probability of infection from Campylobacter exceeds
that of enterovirus at the same dose.

5.3. Hydraulic uncertainty

Fig. 9 presents the temporal progression of the infection risk over a
24-h period for the pathogen Cryptosporidium, as analyzed across 100
hydraulic scenarios. The influence of hydraulic uncertainty on the esti-
mated infection risk is highlighted in all three locations. Specifically,
both the Loc-L and Loc-M locations show approximately 3% variability,
whereas the Loc-S location’s variability remains under 1%. This 3 %
variability represents a difference of about 1000 infections. Had we
incorporated a larger degree of population uncertainty before calcu-
lating water demand we expect to have seen more variability.

5.4. Nominal range sensitivity analysis

Fig. 10 shows the infection risk profile of Campylobacter and
enterovirus in the Loc-L location for the 3 parameters of the sensitivity
analysis. Table S1 in the supplementary material presents the sensitivity
analysis outcomes for all three locations.

The reason the two pathogens have different impactful parameters is
due to their inherent characteristics in the initial contamination sce-
nario. For example, at the Loc-L location, despite high initial

Fig. 7. The distribution of the infection risk in the chlorinated network for pathogens Campylobacter (a), enterovirus (b) and Cryptosporidium (c). The dashed red
line indicates the end of the contamination. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Campylobacter concentration, chlorine’s quick inactivation leads to a
lower dose, thus lower infection probability as shown in Fig. 6. How-
ever, when the initial concentration increases even more, so does the

dose and infection probability, putting a larger population at risk and
leading to a significant rise in infection risk. For enterovirus, although
subjected to chlorine inactivation in the original scenario, it caused
more infections than Campylobacter due to its slower inactivation rate. A
further decrease in this rate allows more contaminants into the network,
substantially increasing the infection risk. Recognizing the potential
variability of these parameters is crucial. Pathogen concentrations in
wastewater vary, contamination events can last varying durations, and
factors like temperature affect pathogen inactivation rates.

5.5. Role of chlorination

The results of the contamination scenarios emphasize chlorine’s role
in controlling waterborne pathogens in DWDN. With adequate chlorine
residual, the spread of Campylobacter and enterovirus is greatly reduced,
irrespective of contamination location as the infection risk for down-
stream population is only 0.78 –26.6 %. However, areas far from chlo-
rination points may lack sufficient residual chlorine. In wastewater
contamination, pathogens, especially viruses with low inactivation
rates, pose a notable risk. Chlorine-resistant pathogens like Cryptospo-
ridium also present a threat. This demonstrates the need for a prompt

Table 4
The results for the three pathogens in the non-chlorinated network. Ninf is the total infections, R is the infection risk for the total population, Rexp is the infection risk of
the downstream affected population.

Source Location Loc-L Loc-M Loc-S

Pathogens Ninf R Rexp Ninf R Rexp Ninf R Rexp
Campylobacter 15439 46.4% 100% 10467 31.45% 99.7% 3724 11.2% 100%
Enterovirus 15041 45.2% 97.4% 10304 31% 98.2% 3724 11.2% 100%
Cryptosporidium 15002 45.1% 97.2% 10268 30.86% 97.9% 3705 11.13% 99.6%

Fig. 8. The distribution of pathogens Campylobacter (a), enterovirus (b) depicting the infection risk in the non-chlorinated
network. The dashed red line indicates the end of the contamination. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 9. Progression of the infection risk through a 24-h period for the 100
hydraulic profiles. The dashed red line indicates
the end of the 8-h contamination. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)

Fig. 10. The sensitivity analysis infection risk of Campylobacter (a) and enterovirus (b) in the Loc-L location. The solid and dashed red line indicate the end of the 8-h
and 24-h contamination respectively. We see that Campylobacter’s infection risk is more sensitive to the initial high concentration, while enterovirus, to the low
inactivation rate. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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response to such events, as within 5 − 10 hours post-contamination,
10 − 35% of the entire population could be infected.

Exploring a non-chlorinated network offers a contrasting image,
where the infection risk escalates, specifically with pathogens like
Campylobacter that have typically high concentrations in wastewater. A
contamination event in a non-chlorinated network could infect 97−
100% of the downstream affected population.

5.6. Role of contamination location

In both chlorinated and non-chlorinated networks, different
contamination locations exhibit unique risk profiles. Contaminations in
larger zones, especially in non-chlorinated networks, bear more infec-
tion risk over time due to more contaminated downstream nodes.
Conversely, contaminations in smaller zones have lower infection risk
but are prone to immediate risk surges due to rapid pathogen spread to
downstream nodes. Dilution also matters; contamination near the
reservoir may lead to more dilution, reducing the contaminant mass per
node, while contamination at the network’s periphery may result in less
dilution and higher contaminant mass. This demonstrates how the net-
work’s structural characteristics influence the infection risk.

5.7. Limitations and recommendations

Our risk estimation relies on specific dose-response models. Using
different dose-response models could alter results, showing that the
computed risk is tied to the chosen dose-response model. A limitation is
the study’s focus on individual pathogen infection risk. Realistically,
wastewater carries multiple pathogens at different concentrations.
Future work should explore cumulative infection risk, considering the
dose response of all pathogens together for a holistic infection risk
assessment, especially in networks with low to no chlorine residual.

One form of limitation is the assumption that exposure to pathogens
occurs only through kitchen tap water ingestion since exposure can also
happen via showering, brushing teeth. Although our proposed meth-
odology for the distribution of daily tap water consumption provides
adequate variability of drinking water consumption over time as evi-
denced in Fig. 3, exploring variability of individual consumption vol-
umes of tap water (e.g. 0, 0.2, 0.5, 2, 3 or 4 L/p/d) could capture even
more variability in individual water consumption behavior.

Another limitation is the absence of real data for CRA concentrations
in wastewater. Our analysis uses approximations made in the literature
that considers TOC concentration as representative of CRA, assuming
chlorine mainly interacts with inorganic substances (and some organic)
during the fast phase, and mainly organics in the slow phase.

The calibration of the BeWaRE testbed was carried out using
network-specific data that enhanced the accuracy of a model. Several
components of the BeWaRE testbed are transferable and can be applied
to different networks (with different types of water systems), e.g., the
water quality model component, or the QMRA component. However, if
water utilities want to use those components in their network, they
would first need to calibrate the parameters to get realistic results.

5.8. Operational changes in water management and policy

The proposed model can potentially influence operational changes in
water management since it emphasizes the necessity of advanced
modeling tools to effectively mitigate pathogen contamination events in
the DWDN. Not many people are exposed to incidents but when they are
affected by an incident, their exposure to pathogens (or infection risk) is
high and there is a small window of opportunity for meaningful in-
terventions. We believe that our tool can also influence policy. Once
again, the results of our contamination scenario highlight the need to
integrate Water Security Plans into existing Water Safety Plans and to
develop Standard Operating Procedures for contamination emergency
responses. Finally, using such computational models to estimate (with

high resolution) health impact and adopting the use of such technologies
for decision support can optimize response strategies and improve sys-
tem resilience.

5.9. Application to real case studies

BeWaRE has been applied to real case studies in the context of the
EU-funded PathoCERT (Pathogen Contamination Emergency Response
Technologies) project. The aim of the project was to enhance the coor-
dination capabilities of first responders during pathogen contamination
emergencies. BeWaRE was integrated in a decision-support tool named
PathoINVEST (Paraskevopoulos et al., 2022) and was applied in three
European case studies, each featuring distinct characteristics. In Spain
and Cyprus, it was used to assist the response to earthquakes that led to
sewage infiltration into the DWDN. In the Netherlands, it was employed
to investigate suspected intentional contamination following customer
complaints. In each case study, emergency response teams comprising
individuals from all relevant sectors (water utilities, civil protection, and
health care). These teams incorporated their own network data into
BeWaRE, having an accurate representation of the contaminant trans-
port, as well as health impact analysis.

6. Conclusion

This study introduced BeWaRE, an open-access testbed, featuring an
integrated hydraulic and water quality model. It includes pathogen
concentration data, intrusion scenarios, chlorine (decay) effects, sto-
chastic water demands and tap water end-use within a QMRA frame-
work. We demonstrated its applicability by analyzing health
implications from wastewater contamination in a DWDN, and chlori-
nation’s role in mitigating risks from different enteric pathogens. Key
findings include:

• In non-chlorinated DWDN, the modeled wastewater contamination
events led to 11–46% infection risk in the total population,
depending on the contamination location, but irrespective of the
selected pathogen (due to the high pathogen concentration).

• In chlorinated DWDN, the same scenarios resulted in lower infection
risk for the pathogens that are susceptible to chlorine; 0.78 − 2.1%
for Campylobacter and 7.8 − 26.6% for enterovirus. Enterovirus
infection risk is higher, despite the concentrations in the contami-
nation source being lower, due to the lower susceptibility to chlorine
than Campylobacter.

• In chlorinated DWDN, the modeled contamination scenarios yielded
infections as a result of Cryptosporidium, due to its high chlorine
resistance. Contamination location plays a significant role in terms of
impact, due to the size of the affected population, but also due to the
level of dilution of the contamination in the DWDN.

• The response window after a contamination event to reduce the
health impact a is short; in these scenarios 5 − 10 hours post-
contamination.

• Campylobacter’s infection risk is more sensitive to the initial con-
centration in the contamination source whereas enterovirus infec-
tion risk to inactivation rate.

This testbed can serve as a baseline for future studies, potentially
exploring different inactivation kinetics, alternative pathogens, varied
water consumption patterns, or calibrating the model for real-world
drinking water systems. This study illuminates the profound health
implications of a large wastewater contamination in drinking water
networks. While chlorination plays an essential defensive role, a
comprehensive understanding of pathogen behavior is crucial for
enhancing protection against potential outbreaks and ensuring a safer
water supply.
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