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A B S T R A C T

Ensuring the provision of safe drinking water necessitates thorough monitoring of microbial water quality. While 
traditional culture-based enumeration of bacterial indicators has served as the gold standard in compliance 
monitoring since the late 19th century, recent advancements in microbial sensor technology, driven by auto
mation and digitalization, are revolutionizing on-site monitoring capabilities. These innovations offer unparal
leled potential for automated, high temporal frequency monitoring with remote, real-time data transmission.

With regulatory frameworks increasingly favouring risk-based approaches to microbial risk management 
throughout the drinking water supply chain, we are witnessing a paradigm shift towards the adoption of mi
crobial sensors. This review offers a comprehensive examination of the latest developments and accomplishments 
in automated on-site monitoring of microbial water quality.

Beginning with an elucidation of key terminology and an overview of available sensor technologies, we 
explore how these cutting-edge tools can enhance our understanding of microbial dynamics in the sourcing, 
treatment, and distribution of drinking water, and how this knowledge can be translated into operational 
management. Despite the promise of microbial sensors, significant challenges remain. Drawing from insights 
gathered from an international online survey targeting drinking water utilities, we discuss the analytical, eco
nomic, and legal barriers that must be overcome for the implementation of automated on-site monitoring of 
microbial water quality.

This review serves as a vital resource for researchers, utilities, and policymakers operating in water micro
biology and sensor technology. While it is addressing drinking water more specifically, the presented concepts 
and tools can be extrapolated to recreational waters or wastewater management, with the shared goal to ensure 
sustainable management of water resources and protection of public health.

Abbreviations: AOM, Automated on-site monitoring; ATP, adenosine triphosphate; ALP, alkaline phosphatase; CCP, critical control point; DWTP, drinking water 
treatment plant; FCM, flow cytometry; FIB, faecal indicator bacteria; GAC, granulated activated carbon; GUS, ß-D-glucuronidase; GLU, ß-D-glucosidase; GAL, ß-D- 
galactosidase; HABs, harmful algae blooms; HPC, heterotrophic plate count; HNA, high nucleic acid; HLF, humic like fluorescence; ICC, intact cell count; LNA, low 
nucleic acid; PC, phycocyanin; SAC254, specific ultraviolet absorbance at 254nm; TCC, total cell count; TLF, tryptophane-like fluorescence.
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1. Introduction

Safeguarding microbial quality of drinking water is at the core of 
human wellbeing. Across the world, drinking water is sourced either 
from groundwater or surface water resources, or from desalination of 
seawater in some regions with limited freshwater resources. In addition, 
(in)direct water reuse is increasingly becoming a supplementary source 
of drinking water due to the escalating challenges to the integrity and 
sustainability of natural water supplies. For any of these water re
sources, the microbial quality and safety of treated and distributed 
drinking water must always be assured to avoid consumer exposure to 
waterborne or opportunistic pathogens, or to algae toxins (WHO, 2023). 
Waterborne outbreaks associated with drinking water have continued to 
occur despite economic mandates and knowledge resources to prevent 
them (Hrudey and Hrudey, 2019). While the implementation of water 
management policies has globally led to reduced disease burden, out
breaks have notably been attributed to catchment and 
distribution-associated deficiencies (Ligon and Bartram, 2016). In 
catchments, sewage contamination or rainfall-induced runoff impair 
microbial water quality by introducing bacterial, viral, and protozoan 
pathogens of faecal origin (Burnet et al., 2014; Gibson, 2014; Kirschner 
et al., 2017; Kistemann et al., 2002). Microbial quality can also deteri
orate within the drinking water supply system due to excess nutrients 
and subsequent shifts in the native aquatic microbial community. This 
can lead to taste and odour issues, and excess growth of microorganisms 
including opportunistic pathogens such as Legionella pneumophila and 
Pseudomonas aeruginosa (Bédard et al., 2016; Favere et al., 2021a; Park 
et al., 2021). Drinking water quality impairments are expected to be 
promoted by climate change due to increased temperatures, more 
frequent droughts, floods and other extreme events threatening drinking 
water supplies and infrastructures (Landsman et al., 2019; Leveque 
et al., 2021; Tang et al., 2022).

According to the World Health Organization (WHO), the most reli
able means of ensuring safe drinking water is achieved through the 
implementation of Water Safety Plans (WSPs) (WHO, 2023). This 
risk-based approach aims to identify, manage, and control hazards 
across the drinking water supply chain to meet health-based targets by 
identifying and characterizing critical control points (CCPs). From the 
point of view of microbial safety, these objectives are achieved through 
(1) system assessment, including the identification of contamination 
sources and measures to control them, (2) operational monitoring to 
control these measures during operation, and (3) a final verification of 
the quality of the produced drinking water to ensure regulatory 
compliance. System assessment comprises the characterisation of the 
raw water resource using microbial and non-microbial information, 
depending on system specificities. It also comprises the definition of 
control measures, such as source protection and water treatment 
(pathogen log-reduction targets). Operational monitoring controls the 
performance of individual components of the drinking water system at 
CCPs. It is currently performed using sensors for high frequency mea
surements of physicochemical water quality parameters (such as pH, 
conductivity, turbidity, flow rate, chlorine concentration, UV trans
mission and UV radiation). Final verification is undertaken at all three 
above-mentioned levels including the final product, using a panel of 
microbial and non-microbial parameters, as required and/or recom
mended by the local legislation.

Microbial measurements are therefore an integral part of all three 
WSP levels. Current investigative and monitoring approaches rely on 
discrete sampling at fixed frequencies using cultivation-based parame
ters that involve long sample-to-result times, typically 1 – 3 days (E. coli, 
enterococci, heterotrophic plate count at 22 ◦C) up to 7 days (Legionella). 
More frequent microbial measurements can greatly enhance system and 
process understanding, especially because of inherent fluctuations in 
microbial water quality that occur over short time scales (days to hours 
or even minutes) (Kistemann et al., 2002; Lautenschlager et al., 2010; 
Nescerecka et al., 2014; Stadler et al., 2008; Zamyadi et al., 2012). High 

frequency measurements of physicochemical proxy parameters only 
indirectly identify potential microbial hazardous events (Jung et al., 
2014).

The need for rapid, automated microbial water quality monitoring 
has therefore been repeatedly emphasised over the years as illustrated 
by previous literature reviews, which identified promising technologies 
for microbial water quality sensing, but considered them not yet ready 
for deployment within existing operations (Lopez-Roldan et al., 2013; 
Rompré et al., 2002; Storey et al., 2011). Tatari et al. (2016) provided an 
updated overview of commercially available, under development, and 
research-level sensors for drinking water and highlighted the difficult 
and slow process of new sensor development and manufacturing. The 
authors concluded that automated near-real time monitoring of total 
bacteria in drinking water was feasible, but that the ‘ideal sensor’ as 
defined by drinking water utilities (focusing on total coliforms, and 
E. coli) was not yet available. The International Water Association 
explored various interdisciplinary aspects of sensing technology, 
including business, legislation, and educational needs (IWA, 2018).

With the rapid market growth of automated on-site technologies, 
end-users can be overwhelmed with commercial information regarding 
the anticipated performance of new emerging technologies. Critical 
analysis of the requirements of each end-user is thus essential before 
investing in additional monitoring capability. The present critical re
view is based on an analysis of the concerns and challenges expressed by 
water utilities regarding the implementation of automated on-site 
monitoring (AOM) of microbial water quality. Its primary objective is 
to provide critical insights into capabilities and constraints of these 
technologies to enable informed decision-making and their effective 
adoption towards enhanced water safety management. This review 
commences by proposing a standardised terminology to facilitate com
parisons between various concepts, technologies, and microbial targets. 
It then examines recent implementations of AOM of microbial water 
quality across the drinking water supply chain, addressing their ad
vantages and limitations in filling critical knowledge gaps. Lastly, the 
review discusses the challenges associated with AOM of microbial water 
quality considering perspectives from both the research community and 
water utilities. Although the primary focus is on drinking water, the 
insights presented in this review extend to other contexts (e.g., recrea
tional water) where timely microbial quality data is essential.

2. Terminology

Consistent, clear terminology allows avoiding misconceptions and 
ambiguity between disciplines. Table 1 defines recurrent terms found in 
scientific peer-reviewed literature to harmonise usage and support 
consistency. Within this context, a microbial sensor is a device that 
measures, converts, and transmits microbial-related signals automati
cally and it conducts on-site measurements that can be either at-line 
(sub-samples taken from the water stream) or in-line (in the water 
stream). Most microbial sensors to date (presented in Table 2) conduct 
at-line monitoring per se as they automatically withdraw a sub-sample 
from the water stream (water resource or drinking water pipe). Some 
technologies enable real-time monitoring of microbial water quality 
(results within <1 min) (Besmer et al., 2017b; Fujioka et al., 2019), but 
the majority of investigations to date report near real-time measure
ments (results within 10 and 15 min) at sampling frequencies that vary 
depending on the studied system and microbial target (Besmer and 
Hammes, 2016; Burnet et al., 2019b; Buysschaert et al., 2018; Ender 
et al., 2017; Højris et al., 2016; Prest et al., 2021; Ryzinska-Paier et al., 
2014; Stadler et al., 2016). In addition to the in-situ, automated and high 
frequency nature of this monitoring approach, the term “online” refers 
to the automated transmission of generated data to a server for remote 
visualization (and possible control of the instrument). Not all automated 
on-site instruments are necessarily online. Also, some on-site technolo
gies are only partially automated. Nevertheless, they complement 
existing fully automated ones with a shared goal of delivering more 
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rapid microbial water quality results. In this review, we are adopting the 
term “automated on-site monitoring”, abbreviated “AOM”, which en
compasses both fully- and semi-automated in situ technologies that 
measure microbial parameters at high temporal frequency (see Table 1
for additional definitions). Other authors have used automated high fre
quency monitoring (AHFM) (Marcé et al., 2016) or continuous water 
quality monitoring (CWQM) (Carmi, 2019) to describe similar concepts.

3. Technologies for automated on-site monitoring of microbial 
water quality

Diverse technologies have been developed, tested, and deployed for 
AOM of microbial water quality in the last 15–20 years involving inter- 
disciplinary expertise in microbiology, chemistry, engineering, and 
electronics. Signals report on microbial communities (essentially bac
teria and cyanobacteria) either directly (e.g., flow cytometry) or indi
rectly via a specific biochemical parameter (e.g., ATP-metry, 
enzymatics, phycocyanin sensing) (Table 2). Physicochemical variables, 
such as turbidity, are also suggested as proxies for microbial parameters 
based on habitat-specific associations.

3.1. Which technologies are available?

Microbial water quality monitoring and control is currently under
going a paradigm shift in data acquisition enabled by on-site measure
ment through automation of some or all the steps (sampling, 
cultivation/direct detection, and results reporting). Innovations in 
“sensing” technologies are ever evolving, and the dynamic sensor mar
ket spans a continuum of technologies with new ones continually being 
introduced while others are discontinued. Whereas most of the existing 
technologies rely on the high sensitivity of fluorescence-based mea
surements, luminescence and optical sensors have also been developed 
(Table 2). A summary of sensor technologies is presented in Table S1, 

Table 1 
Definition of main terms commonly used in the field of automated on-site 
monitoring of microbial water quality.

Term Definition

Microbial 
sensor

A sensor is an automatic measurement device which continuously 
(or at a given frequency) gives an output signal proportional to the 
value of one or more determinants in a solution which it measures (
ISO, 2003). A microbial sensor is an analytical device that interacts 
at varying degrees of specificity with a compound (e.g., ATP, DNA, 
enzyme) of a microorganism, converts that interaction into an 
(electrical) signal and amplifies it. It can further process, display, 
(and transmit) the signal.

Real-time Shown/communicated at the same time as events happen (
Cambridge Dictionary, 2025).

Near real-time Shown/communicated within seconds-to-minutes as events 
happen.

On-site On-site measurement of microbial water quality involves samples 
that are not removed from the premises prior to measurement. The 
measurement is carried out within seconds (e.g., phycocyanin or 
TLF sensing), multiple minutes (e.g., FCM or enzymatics) or hours 
(e.g., automated cultivation-based assays). On-site measurement 
can be conducted either in-line or at-line (see definitions below).

Online Online measurements are on-site measurements that involve 
immediate transmission of generated results. The device is 
connected to the internet for results visualization and can 
sometimes be controlled remotely too.

In-line In-line measurements involve sensors that are placed directly in 
the path of the water (Ramsay, 2018). (e.g., phycocyanin or TLF 
sensor)

At-line At-line measurements involve sub-samples that are removed from 
the mainstream but measured automatically on the premises (
Ramsay, 2018). (e.g., FCM, enzymatics)

Automated Carried out by machines or computers without needing human 
control (Cambridge Dictionary, 2025).

Proxy 
parameter

A parameter that is used as an indicator of the presence of another 
parameter in the absence of a direct measure (Demeter et al., 
2020).

Table 2 
Characteristics of existing technologies for fully automated on-site microbial water quality monitoring. Semi-automated methods are also mentioned, although they 
need further development until full automation. Given their usefulness in microbial water quality monitoring, they are mentioned alongside fully automated ones to 
provide a more global picture on current methodologies.
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including references to scientific studies that demonstrate their benefit 
for microbial water quality monitoring. For several years, AOM tech
nologies based on FCM, enzymatics, and optics demonstrated their 
added value over traditional methods by providing microbial water 
quality data at unprecedented temporal resolution and with results 
being delivered remotely and in (near) real-time (Besmer et al., 2016; 
Burnet et al., 2019a; Demeter et al., 2020; Højris et al., 2016; Sorensen 
et al., 2018b; Zamyadi et al., 2014).

From a regulatory point of view, microbial methods may be cat
egorised as standardised, alternative, or complimentary (Zibuschka 
et al., 2017). Currently, all technologies for AOM of microbial water 
quality are complimentary methods. While standardised parameters (e. 
g., cultivation-based detection of E. coli) form the basis of nationa
l/international regulations, alternative methods are methodological 
equivalents to standardised methods. Complimentary methods can 
provide supplementary insights and a more comprehensive under
standing of the water resource and supply system (Zibuschka et al., 
2017). However, certain AOM technologies have likely the potential to 
become new standards in the future (and maybe legally binding) based 
on convincing scientific facts, practical and economic experience, and 
conscientious standardisation processes.

This section and the information summarized in Table S1 provide a 
detailed overview of AOM technologies commercialised for the (drink
ing) water industry and their measured parameters, microbial features, 
and detection methods. Given the usefulness of some semi-automated 

methods that accelerate in situ enumeration of culturable faecal indi
cator bacteria (FIB), the section also features such assays.

3.2. What are the detection targets?

Automated on-site technologies primarily target prokaryotes (bac
teria and cyanobacteria). Recent recommendations from WHO and new 
EU guidelines increasingly emphasize the need for virological in
dicators, such as somatic coliphages, to assess water quality because 
pathogenic viruses do not necessarily correlate with standard bacterio
logical indicators (EU, 2020). Consequently, new rapid on-site methods 
for coliphage detection in water have been developed (Muniesa et al., 
2018; Rames and Macdonald, 2019). These methods show promise but 
are not yet as mature as current sensing technologies commercialized for 
bacteriological water quality monitoring. Current automated on-site 
instruments predominantly target bacteria through various detection 
methods based on cultivation, cell, or biomolecule detection to measure 
the presence, abundance and/or population activity (Fig. 1). Some 
technologies provide insights into the entire microbial community using 
parameters such as total cell count (TCC) or adenosine triphosphate 
(ATP). Others focus on specific subpopulations of the microbial com
munity using parameters such as intact cell count (ICC) or enzymatic 
activity measurements (e.g., beta-d-glucuronidase (GUS) activity asso
ciated with faecal contamination) (Table S1). Lastly, operational 
monitoring practices commonly involve physicochemical parameters for 

Fig. 1. Microbial targets for automated on-site monitoring of microbial water quality.
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tracking water quality changes that may or may not be related to mi
crobial contamination during drinking water treatment and supply. The 
section therefore starts with an overview on these proxy parameters.

3.2.1. Physicochemical proxy parameters for water quality changes
Microorganisms commonly share similar sources and transport 

pathways with particulate and dissolved matter, making certain physi
cochemical parameters suitable proxies of microbial contamination. For 
example, turbidity is easily measured with automated optical methods, 
and it is frequently used by utilities for online water quality monitoring. 
Deviations from baseline values reflect changes in raw water quality, 
variations in treatment performance, or ingressions into the distribution 
network (WHO, 2017). The parameter Specific Ultraviolet Absorbance 
at 254 nm (SUVA, SAC254, or UV254) (Weishaar et al., 2003) enables 
the automatic, online monitoring of a specific fraction of dissolved 
organic matter concentration. Given its correlation with faecal pollution 
under certain field conditions at alpine karst springs, it is used in the 
management of such springs for drinking water supply (Page et al., 
2017; Stadler et al., 2010). More recently, fluorescence parameters at 
specific excitation/emission wavelength pairs, such as for tryptophan 
and humic-like fluorescence (TLF and HLF, respectively), have been 
suggested as proxies of wastewater-derived contamination (Corsi et al., 
2021; Sorensen et al., 2018a, 2015). Physicochemical proxies for mi
crobial contamination always need prior knowledge on the pollution 
sources and their dynamics within the catchment for correct online 
signal interpretation (Stadler et al., 2010).

3.2.2. Automated detection of microbial targets
Cultivation-dependent detection
The ever-growing interest in rapid results for faecal indicator bac

teria (FIB) led to the development of semi to fully automated technol
ogies (Table 2) based on enzymatic activity measurements combined 
with a prior cultivation step using selective media (Angelescu et al., 
2019; Bramburger et al., 2015; Tryland et al., 2015). Given the simi
larity of both the selective cultivation step and the specific enzymatic 
activity assay to the one used in standardised FIB enumeration methods 
(e.g., Colilert), these rapid cultivation-dependent methods represent the 
closest alignment with regulated FIB parameters. Nevertheless, 
sample-to-result times still exceed several hours (Table S1). In these 
instances, only 1–2 measurements per day can be performed thereby 
missing possible peaks of fecal contamination.

Direct cell counting
Flow cytometry (FCM) is a direct detection method able to 

discriminate between particles (bacteria, protozoa, viruses, cell frag
ments, inorganic debris, etc.) by both light scattering and fluorescence. 
Fluorescence-based detection is typically facilitated by direct staining of 
nucleic acids with fluorescent dyes (Safford and Bischel, 2019; Van 
Nevel et al., 2017a). FCM offers insights beyond TCC, including infor
mation on cell size, nucleic acid content (high nucleic acid, HNA, and 
low nucleic acid, LNA content cells) and cell membrane integrity (intact 
cell count, ICC) using specific fluorescent stains or gating. The usage of 
multiple stains requires colorimetric compensation to prevent cells dyed 
with different stains from being counted similarly. Flow cytometry can 
also reveal microbial community patterns through phenotypic finger
printing that consist in statistical analyses of multivariate FCM data (e. 
g., size, fluorescent colour, fluorescence intensity) which represents the 
distribution of raw data in the whole flow cytometric signal space (De 
Roy et al., 2012; Favere et al., 2020; Sadler et al., 2020). Evaluation 
studies have demonstrated the high reproducibility of FCM compared to 
epifluorescence microscopy, the standard cell counting method as 
reviewed in (Safford and Bischel, 2019) and fully automated on-site 
FCM enables near real-time enumeration of bacteria in water (Besmer 
et al., 2014). However, differences in the settings (gating, staining, etc.) 
may yield different results and thereby prevent direct comparison of 
results from different methods and applications. Also, automated 
wide-spread application of fingerprinting is not yet possible. Besides 

FCM, bacteria may also be enumerated using reagentless 3D imaging 
coupled to image-processing algorithms to distinguish bacterial cells 
from abiotic particles (Højris et al., 2016).

Biomolecule detection
Of the many potential biomolecular targets like nucleic acids or 

lipids, the measurement of ATP by rapid manual assays was a pioneering 
development for drinking water. ATP is the energy carrier of the cell and 
has long been considered an indicator of viable microbial biomass 
(Hammes et al., 2010). Methods can differentiate between total ATP and 
intracellular ATP, the latter often being correlated with ICC and intact 
biovolume (cell size) parameters measured by FCM in various types of 
water matrices (Hammes et al., 2010; Van Nevel et al., 2017a; Zhang 
et al., 2019). In recent years, ATP measurement has been automated for 
on-site monitoring purposes but only a few studies have demonstrated 
its feasibility in real-world conditions (de Vera and Wert, 2019; Favere 
et al., 2021b; Hansen et al., 2019) (Table S1).

Nucleic acids can be detected on-site using automated PCR. These 
systems have been explored particularly in coastal waters, but they are 
still in research and development phases (Fernández-Baca et al., 2021; 
Sepulveda et al., 2020; Yamahara et al., 2015). Recent developments 
demonstrate the feasibility of an automated on-site qPCR biosensor for 
high frequency monitoring of Legionella pneumophila in cooling towers 
(Trigui et al., 2024), however, there is currently no scientific literature 
available to substantiate its capability in drinking water contexts.

Real-time detection of specific algal pigments such as phycocyanin 
(the phycobilisome pigment of blue-green cyanobacteria) or chlorophyll 
a can be achieved by submersible in situ fluorometers to indirectly 
monitor cyanobacterial cells in water without sample pre-treatment like 
incubation or labelling (Brient et al., 2008; Henderson et al., 2015; 
McQuaid et al., 2011). While fluorescence measurements can be affected 
by various sources of interferences, simultaneously generated 
physical-chemical parameters can be applied by users to improve those 
measurements (Rousso et al., 2021; Zamyadi et al., 2016).

Enzymatic activity measurement
Methods for enzymatic activity detection have been automated for 

over a decade (Demeter et al., 2020). Using the same fluorogenic or 
analogous substrates as the ones used in selective media for 
culture-based detection of FIB, they rely on fluorometric measurements 
of enzymatic activity without the need for prior amplification of the 
signal (Table S1). The most common automated enzymatic method 
targets β-d-glucuronidase (GUS), present in many human gut bacteria 
(Pollet et al., 2017), including E. coli. It can be measured directly as ecto- 
and extracellular enzyme activity rate (Farnleitner et al., 2002). Other 
enzymatic targets include β-d-galactosidase (GAL), β-d-glucosidase 
(GLU) and alkaline phosphatase (ALP) expressed by total coliforms, 
intestinal enterococci, and all metabolically active bacteria, respectively 
(Favere et al., 2021b; Fiksdal and Tryland, 2008). Although possible 
interferences with non-target bacteria or algae have been reported 
(Baudart et al., 2009; Davies et al., 1994), and the relationship with 
cultivation-based fecal indicator bacteria varies widely among different 
water resources, GUS was suggested as a conservative biochemical 
surrogate to bacterial faecal pollution (Demeter et al., 2020). ALP ac
tivity, just like ATP concentration, is considered a viable 
biomass-associated parameter.

3.3. Where and why are they implemented?

The introduction of new automated on-site technologies for rapid 
microbial water quality assessment and monitoring has revolutionised 
data acquisition, greatly enhancing our ability to comprehend and 
manage microbial hazards and potential risks, particularly within the 
framework of water safety planning. It is important to note that 
reporting for legislative compliance currently remains unattainable 
without corresponding regulatory frameworks for sensors, but that AOM 
does effectively complement conventional culture-based assays.

In general, two main microbial hazards define at least two primary 
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application areas for AOM technologies. The first area is concerned with 
detecting external microbial ingress that could introduce intestinal 
pathogens or toxigenic cyanobacteria into the drinking water supply 
chain. These technologies are primarily deployed in monitoring raw, 
source water quality (e.g., surface water) and target FIB (E. coli, intes
tinal enterococci, faecal coliforms) or cyanobacteria (phycocyanin) 
(Burnet et al., 2019b; Ender et al., 2017; McQuaid et al., 2011; Ryzin
ska-Paier et al., 2014; Sylvestre et al., 2020). In some water sources such 
as karstic groundwater supplies, they can also target the entire microbial 
community using for instance automated on-site FCM (Besmer et al., 
2016; Page et al., 2017). For DWTPs abstracting water from sources 
prone to cyanobacterial blooms, there is a risk for accumulation and 
breakthrough of cells and toxins through the water treatment processes, 
which prompts the use of phycocyanin sensors to identify CCPs and 
adopt appropriate control strategies (Ma et al., 2023; Zamyadi et al., 
2014, 2012).

The second application area involves technologies that monitor 
changes in microbial water quality resulting from internal processes 
such as regrowth or release of biofilm-associated microorganisms during 
drinking water treatment and distribution (Prest et al., 2021).

Within these two application areas, technologies offer information 
on microbial risk to varying degrees, depending on their target (specific 
bacterial communities), and whether they measure metabolic activity, 
viability, or total cells. Some technologies deployed for the former 
application area currently do not enable reliable detection of external (e. 
g., faecal) microbial inputs in treated and drinking water because of too 
low sensitivities. Decisions regarding microbial targets and the desired 
endpoints (total, active, viable cells) thus play a pivotal role in choosing 
the appropriate technology.

4. Automated on-site microbial water quality monitoring from 
source to tap - recent applications

The following sections follow the source-to-tap continuum to illus
trate how automated on-site technologies can enhance water safety 
planning by advancing our understanding on microbiological water 
quality dynamics (Fig. 2). We also highlight specific use cases where 
existing monitoring strategies already support effective drinking water 

supply management, thereby making the additional benefits of micro
bial sensors less obvious.

4.1. Source water quality and water abstraction

Source water protection and selective water abstraction are critical 
first steps in ensuring a high-quality water supply (WHO, 2019). 
Drinking water is primarily produced from groundwater and surface 
water. These resources vary widely in terms of microbiological quality 
and dynamics, and they range from pristine, oligotrophic groundwater 
resources (including protected, deep aquifers) to shallow or fractured 
aquifers vulnerable to infiltration, as well as surface waters impacted by 
wastewater discharges, surface runoff, and/or harmful algal blooms. 
The unique characteristics of each water resource determine which 
microbial parameters, physicochemical proxies, or a combination 
thereof is ideally suited to describe system dynamics and identify 
microbiological hazards.

4.1.1. Faecal pollution
Given the health risks associated with microbiological faecal 

contamination (i.e. waterborne pathogens) and water supply, moni
toring is strictly regulated and traditionally accomplished using stand
ardised cultivation-based enumeration of FIB such as E. coli and more 
recently, the viral faecal indicator somatic coliphages (EU, 2020).

Cultivation-dependent AOM technologies follow similar principles, 
relying on the selective cultivation and subsequent sensitive detection of 
specific enzymatic activity such as GUS or GLU for enumeration of E. coli 
and intestinal enterococci, respectively (Tables 2 and S1). Fully auto
mated on-site systems such as ColiFast ALARM (Tryland et al., 2015), 
ALERT Fluidion (Angelescu et al., 2019) as well as semi-automated ones 
(e.g. TECTA) (Bramburger et al., 2015) have been employed for in situ 
enumeration of E. coli in drinking water supplies and in recreational 
water bodies (Table S1). Despite streamlining and accelerating the 
enumeration of FIB, sample-to-result times still exceed several hours (up 
to 15 h), limiting same-day decision-making.

The first account of cultivation-independent AOM based on specific 
enzymatic activity determination in water raised questions about the 
performance of GUS activity. At an alpine karst spring impacted by 

Fig. 2. Application areas for automated on-site monitoring of microbial water quality along the source-to-tap continuum.
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ruminant faecal input, long-term GUS activity correlated stronger with 
UV254, turbidity and discharge rate than with E. coli by standard 
methods (Ryzinska-Paier et al., 2014). In contrast, Frank et al. (2022)
found that GUS activity showed equally high correlations with E. coli, 
total organic carbon, small particle size fractions, and turbidity at two 
alpine karst springs. At a drinking water intake from a river in the 
Greater Montreal Area, Canada, Burnet et al. (2019b) reported a direct 
association between faecal pollution and GUS activity over 2.5-years of 
monitoring and identified a wastewater treatment plant among many 
upstream sewage releases as the primary source of faecal pollution 
(Fig. 3A). These and other studies highlight the faecal indication value of 
GUS activity at higher contamination levels (especially from point 
sources) but also emphasise potential location-specific differences or 
limitations, especially for diffuse or remote faecal sources (Demeter 
2020).

Physicochemical parameters may also offer insights into external 
microbial inputs. At an alpine karstic spring, Stadler et al. (2010) found 
UV254 to be an early warning proxy of E. coli, with its signal increasing 
three to six hours earlier. Fluorescent dissolved organic matter peaks 
such as TLF and HLF have further been proposed as proxies for detecting 
faecal contamination (Baker et al., 2015; Fox et al., 2022; Sorensen 
et al., 2015). In a study of groundwater supplies in the UK, both TLF and 
HLF correlated more strongly to E. coli and total bacterial cell count than 
to turbidity (Sorensen et al., 2018b). More recently, Bedell et al. (2022)
developed and validated an on-site TLF sensor for continuous moni
toring of faecal contamination in river water. Using an integrated ma
chine learning model that accounted for fouling and improved noise 
reduction, TLF levels of four sensors installed at one location predicted 
faecal contamination levels (based on WHO E. coli-based risk categories) 
with an overall accuracy of 64 %. UV254, TLF and/or HLF are 
reagentless sensor technologies (no complex liquid handling) and thus 
are cost-effective and require low maintenance. Nonetheless, a wide
spread use requires addressing optical interferences (light absorption 
and scattering), biofouling, inference with other molecules, and stand
ardisation (Bedell et al., 2022; Offenbaume et al., 2020; Ward et al., 
2021).

Although AOM offers unprecedented data resolution thanks to the 
technical maturity of such systems, further research is needed to better 
understand the indicator capacities of above discussed parameters and 
to establish catchment-type specific relationships with i) faecal 

pollution, ii) waterborne pathogen occurrence and iii) infection- or 
health risks in drinking water supplies (Demeter et al., 2020). Never
theless, AOM has great potential to provide key information on micro
biological pollution dynamics within natural systems that complement 
or surpass traditional approaches (e.g., Fig. 3A), bringing water safety 
management to a new level of continuous system monitoring and 
understanding.

4.1.2. Surface runoff, aquifer vulnerability and system characteristics
Water resources harbour their own natural water microbiomes, and 

shifts or fluctuations can serve as sensitive indicators of potential 
microbiological water quality changes (Farnleitner et al. 2005; Savio 
et al. 2018). However, the type of information is of indirect nature, i.e. 
microbiome changes are not necessarily linked with a general water 
quality deterioration but must be set into the context of the water 
resource characteristics and specific situation. Automated cell counting 
via on-site FCM has been applied in rivers as well as alluvial and kar
stic/fractured groundwater systems for several weeks, revealing both 
periodic and aperiodic fluctuations in TCC at most sites (Besmer et al., 
2016, 2014; Besmer and Hammes, 2016; Page et al., 2017) (e.g., 
Fig. 3B). Periodic, diurnal patterns observed in a river were likely driven 
by autochthonous aquatic processes (Besmer et al., 2014), while diurnal 
patterns in an alluvial aquifer were attributed to changes in hydrological 
conditions due to intermittent water abstraction (Besmer et al., 2016). 
Sporadic fluctuations were observed at all sites in response to rainfall 
events, signifying allochthonous inputs of microbial cells. Page et al. 
(2017) combined TCC data with high-resolution time series of physi
cochemical parameters (turbidity, electric conductivity, temperature, 
discharge and UV254), providing a more nuanced picture of system 
dynamics. AOM of the entire bacterial community (i.e., total cell counts, 
intact cell counts, etc.) holds great promises for source water moni
toring. However, further scientific investigations are needed to better 
understand the specific indicator value(s) of microbiome shifts (quan
titatively and qualitatively) in relation to catchment type, pollution 
characteristics, and background conditions of the water resource.

4.1.3. Harmful algal blooms
Climate change is fuelling the development of harmful algal blooms 

(HABs) compelling water authorities worldwide to adopt strategies for 
managing and controlling toxin exposure, including establishing public 

Fig. 3. Automated on-site monitoring of microbial water quality in the source. (A) Recurrent daily GUS activity fluctuations (hourly measurements) in an urban river 
illustrate continuous discharge of UV-treated effluents at an upstream sewage plant (adapted from Burnet et al. (2019b)). The contamination peaks observed after the 
rainfall in early April matched those observed for culturable E. coli (hourly samples) whereas turbidity peaks (or river discharge rate) did not. (B) Similar daily 
fluctuations of total cell count (TCC) were measured by online FCM in groundwater in an extraction well, but they were caused by the daily regional groundwater 
extraction. A TCC peak of higher amplitude was observed following a rainfall episode (event 1), indicating the vulnerability of the groundwater to riverbank filtrate 
(adapted from (Besmer et al., 2016)).
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safety alert levels (Chorus and Welker, 2021). Given that cyanobacteria 
biomass and community composition exhibit highly variable spatio
temporal patterns, effective monitoring of threshold exceedances 
require analytical tools that confidently capture fluctuations at (ideally) 
sub-daily to hourly resolution. Traditional methods like microscopy or 
molecular assays cannot fulfil these requirements as they rely on peri
odic grab samples, are resource-intensive, and require significant tech
nical expertise. In contrast, fluorescence spectroscopy offers high 
measurement frequencies (< 1 min), low cost and operational 
simplicity. It has therefore been increasingly adopted by the water in
dustry to monitor HABs in drinking water supplies (Bertone et al., 2018).

Many studies have demonstrated the value of commercial 
fluorescence-based sensors in measuring phycocyanin concentrations to 
estimate cyanobacterial biomass (Brient et al., 2008; McQuaid et al., 
2011; Zamyadi et al., 2014). Fluorescence probes can be installed on 
submersible (multi-parameter) sondes for near real-time AOM of cya
nobacteria dynamics over long periods (Rome et al., 2021), for depth 
profiling (Brient et al., 2008; Wilkinson et al., 2020) or HAB monitoring 
in large water bodies (Chaffin et al., 2018; Qin et al., 2015). Typically, 
the sensors measure chlorophyll a alongside phycocyanin, providing 
insights into the relative dynamics of cyanobacteria and other phyto
plankton communities (green algae, diatoms, etc.). Coupled with phys
icochemical sensors (e.g., temperature, dissolved oxygen, pH, turbidity, 
conductivity), fluorescence sensors offer high-resolution data revealing 
hourly and daily variations of key environmental variables, which 
would remain unseen using traditional grab-sampling approaches (Khac 
et al., 2018; Ma et al., 2024; Qin et al., 2015; Rome et al., 2021). 
However, significant uncertainties and variations in the correlations 
between taxonomic cell counts and fluorescence probe readings can be 
associated with the type of fluorescence probe, taxonomic composition, 
light exposure history, and water matrix-related interferences (Choo 
et al., 2018; Ranjbar et al., 2024; Zamyadi et al., 2016). This strongly 
suggests that site and instrument-specific calibrations must be estab
lished for phycocyanin probes to be used within a response framework 
for cyanobacteria risk management (Ma et al., 2024).

4.2. Drinking water treatment

Water treatment plants play a major frontline role in protecting 
public health. Each treatment step contributes to the removal or inac
tivation of microorganisms and to shaping the microbial community 
entering the distribution system (Li et al., 2017; Pinto et al., 2014). 
Treatment processes are validated using cultivation-based microbial 
indicators (e.g., bacterial spores, phages) or reference pathogens, while 
their technical performance is ensured using online physicochemical 
parameter monitoring (e.g., disinfectant concentration, discharge, UV 
transmission, UV-radiation). However, offline FCM and ATP have 
demonstrated their efficacy and value in the operational monitoring of 
drinking water treatment plants (DWTPs) (Helmi et al., 2014; Van Nevel 
et al., 2017a; Vital et al., 2012). AOM offers potential further benefits for 
several applications and can serve various purposes for plant operators 
(Ramsay, 2018).

4.2.1. Selection of operational parameters and monitoring frequency
For DWTPs treating deep groundwater or spring water with stable 

water quality, AOM using microbial sensors can be applied temporarily 
to identify operational (proxy) parameters for use as indicators of mi
crobial contamination risks (Sinreich and Pochon, 2023). The appro
priate frequency for laboratory-based microbial water quality 
monitoring (hourly/daily/weekly) in these stable environments can also 
be defined using such a temporary deployment of a microbial sensor 
(Besmer et al., 2016). For water treatment processes characterised by 
predictable operations, such as regular backwash cycles of rapid sand 
filters or granular activated carbon (GAC) filters, short-term studies 
employing AOM offer insights into normal operation variability in mi
crobial parameters. Fig. 4 provides two application cases of AOM during 

short-term studies to establish the effect of switching between two rapid 
sand filter treatment trains (Fig. 4a) or the effect of backwash cycles of 
ceramic microfiltration membranes (Fig. 4b), and highlights cases where 
a microbial sensor did (or did not) provide additional value compared to 
physicochemical sensors. Similarly, Favere et al. (2021b) showed that 
during a GAC filter backwash, microbial signals (TCC, ATP concentra
tion, ALP activity) increased in comparison to filtration cycle concen
trations and temporarily exceeded a defined baseline level typically for 
less than an hour (based on 30-minute measurements). This finding 
confirms common knowledge by operators about post backwash 
breakthrough of turbidity and/or pathogens. In practice, the filters are 
put back into production based on turbidity limits, others after a given 
time limit. In some cases, turbidity is thus already used as an operational 
(proxy) parameter, but AOM can help identify the time required for the 
microbiological parameter to return to a normal level after a backwash 
event and/or the corresponding turbidity level that can serve as a 
reference value to put the filter back in production.

4.2.2. Operational control monitoring
In challenging environments characterised by diverse sources of 

sanitary risks that cannot be directly linked with specific plant opera
tional parameters, AOM can function as a strategic approach for 
detecting microbial events and compromised water quality and safety. 
For instance, while ALP activity or intracellular ATP concentrations are 
extremely low directly after chlorination (Appels et al., 2018; Prest 
et al., 2021), an increase in the microbial signal can be an instant 
indication of disinfection failure. In such cases, appropriate measures 
could be taken immediately to manage the risk upon notification on a 
given threshold being exceeded. At a facility treating surface water by 
pre-chlorination and rapid sand filtration, followed by either ozonation 
and GAC filtration or ultrafiltration and reverse osmosis, Appels et al. 
(2018) observed shifts in ALP activity following rapid sand filtration in 
response to the raw water source. These changes were linked to a 
transition from river water to groundwater prompted by the degradation 
of river water quality due to contamination by sewage overflows from a 
nearby wastewater treatment plant. In such cases, when risks are asso
ciated with the raw water used in drinking water production, priori
tizing monitoring efforts at the source is advisable. If source monitoring 
is impractical, surveillance should be conducted at the earliest treatment 
stage possible. This allows for the assessment of potential attenuation, 
contributing to more effective risk assessment considerations along the 
treatment train. Using automated on-site FCM, Besmer and Hammes 
(2016) provided strong evidence of diverse microbial dynamics within 
drinking water treatment systems. The study concurrently analysed 
microbial dynamics in raw (spring) water and after multi-barrier treat
ment involving flocculation, ultrafiltration, ozonation and GAC filtra
tion. Treatment could buffer and hence mitigate the short-term 
microbial peaks in raw water following rainfall. Unexpected periodic 
fluctuations were identified after GAC filters and attributed to fluctu
ating water abstraction rates impacting detachment and dilution pro
cesses. High-frequency monitoring revealed these dynamics and thereby 
highlighted mitigation opportunities through improved management if 
appropriate. Buysschaert et al. (2018) and Fujioka et al. (2019) also 
demonstrated the capability of on-site FCM in monitoring ultrafiltration 
and reverse osmosis membranes, highlighting that such AOM technol
ogies can provide more comprehensive information for system integrity 
than traditional monitoring methods such as turbidity. In some cases 
though, a microbial sensor may not be the most suitable choice, as other 
physicochemical sensing devices such as particle counters, may provide 
(at least) similar information (Fig. 4b).

Cyanobacteria risk management relies on alert levels that are based 
on total cyanobacteria cell biovolumes considered to be the best indi
cator of the potential health risks associated with cyanobacteria and 
their toxins (Chorus and Welker, 2021). Semi-continuous monitoring of 
cyanobacteria biomass using phycocyanin probes has enabled to observe 
trends in raw, clarified, filtered, chlorinated and sludge supernatant in 
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DWTPs and provided near real-time log removal efficacy of the treat
ment barriers (Almuhtaram et al., 2018; Henderson et al., 2015; Ma 
et al., 2024; Zamyadi et al., 2014). Strong correlations between cyano
bacteria biovolume and phycocyanin log removal efficacies have been 
established for the clarification process and they are unrelated to 
turbidity removal (Ma et al., 2024). Using multi-flow systems and a 
single fluorescence probe for high frequency monitoring, raw water risk 
as well as short-term treatment breakthrough and daily mean efficacies 
of processes can easily be assessed at low cost, allowing for the identi
fication of periods of vulnerability and disfunction, rapid treatment 
adjustment and the prevention of cyanobacteria and toxin breakthrough 
into treated water (Ma et al., 2023; Zamyadi et al., 2012). In view of 
microbial safety, AOM should thus be considered as a complimentary 
tool for operation monitoring of treatment steps, where failure can cause 
a direct sanitary threat and where an early warning system is essential.

4.3. Drinking water distribution

The hygienic quality of drinking water in a drinking water distri
bution system (DWDS) can be influenced by various sources of pressure 
transients in the pipes, potential accidental intrusions but also by the 
growth of bacterial communities (biological instability) within the sys
tem (Courtois et al., 2018). Drinking water leaving the treatment plant 
should remain stable in terms of microbial community characteristics 
(abundance, viability, and composition) throughout the entire DWDS 
(Favere et al., 2021a). In practice, this is difficult to achieve because of 
the complex dynamics within large-scale DWDSs (El-Chakhtoura et al., 
2015). Instability can lead to esthetical (taste and odour), technical 
(corrosion, biofouling) and sanitary (growth of opportunistic pathogens) 
issues. Although no specific guidelines exist to define acceptable 
changes in the biological stability of drinking water (Prest et al., 2016), 
guideline values have been established in the Netherlands for biologi
cally stable (unchlorinated) water to prevent regrowth in the DWDS 
(van der Wielen et al., 2023). In the European Drinking Water Directive 
stability was recently defined as ‘no abnormal change’ (EU, 2020).

Changes in heterotrophic plate counts, bacterial cell concentrations, 
ATP concentrations or bacterial community composition have been 
observed with increasing residence times in both chlorinated (with 
decreasing disinfectant residual) and non-chlorinated distribution sys
tems (Schleich et al., 2019; van der Wielen and van der Kooij, 2010). 
Generally, changes in biostability can be examined and monitored 
through conventional monitoring programs involving grab samples 
collected at different distribution locations over time (Lautenschlager 
et al., 2010; Nescerecka et al., 2014; Vital et al., 2012). More recently, 
studies have demonstrated the usefulness of AOM systems to shed new 
light on the fine-scale variations in bacterial concentrations and 

community composition within DWDSs (Farhat et al., 2020; Gabrielli 
et al., 2021; Prest et al., 2021).

4.3.1. Monitoring microbial water quality at strategic locations: treatment 
outlet and intermediate reservoirs

Strategic places of the distribution system such as treatment plant or 
intermediate reservoir outlets are the primary places for the deployment 
of microbial sensors for microbial water quality monitoring. Water 
quality at the treatment outlet is critical and AOM can be considered 
both to safeguard microbial safety and to provide a reference microbial 
water quality baseline over time (seasons, years) of the water entering 
the DWDS. At the outlet of a storage reservoir at a Dutch drinking water 
utility, Prest et al. (2018) used FCM to monitor TCC and ICC. Before 
entering the reservoir, treated water underwent secondary disinfection 
with chlorine dioxide. The results showed how ICC responded to the 
residence time in the reservoir: during low water consumption at night, 
elevated water levels in the storage reservoir and extended residence 
times correlated with a reduction in ICC. In contrast, TCC did not show 
any daily pattern (Fig. 5a).

Intermediate reservoirs and water towers are also critical points in 
DWDSs, where settling of particles and growth of micro- and macro- 
organisms may occur in addition to prolonged residence times. For 
instance, using online 3D scanning of bacteria in a Danish intermediate 
reservoir where water enters and exits through the same pipe, Højris 
et al. (2016) observed a noticeable shift in bacterial cell counts before 
and after water passage through the reservoir. Intermediate reservoirs 
are occasionally used to blend waters from different sources, to ensure 
sufficient capacity and a reliable drinking water supply in case of source 
shortage or contamination. At a water tower where drinking water 
produced from two different sources (surface water and groundwater) is 
mixed, Favere et al. (2020) revealed discernible changes in cell counts 
with the transition from a mixed to a single source water stream 
(Fig. 5b). The study further demonstrated the value of FCM fingerprints 
for early detection of shifts in microbial populations. Similar approaches 
could also prove useful in situations where contamination occurs in 
reservoirs due to poor infrastructure maintenance (Říhová Ambrožová, 
2020). It should be kept in mind though that such community shifts do 
not necessarily imply sanitary risks for consumers.

4.3.2. Ensuring distribution of safe drinking water
Operational issues in drinking water distribution systems, such as 

pipe burst, leakages, low pressure leading to intrusion of surrounding 
groundwater, backflows, unintentional cross-connection with lower 
quality water, or poor practices during maintenance work on distribu
tion pipes, can lead to contamination of drinking water with pathogenic 
microorganisms (Hrudey and Hrudey, 2019). Water quality checks after 

Fig. 4. Automated on-site monitoring of microbial water quality during water treatment. (A) Effect of changing treatment train (RSF, rapid sand filtration) on treated 
drinking water at Pipda utility, Belgium, where operation change (RSF 1 to RSF 2) caused an increase in bacterial cell counts measured by 3D-scanning of bacteria 
coupled to image-processing algorithms (BACMON), while no change in non-bacterial counts was monitored. Turbidity (black line) did not fluctuate during the 
operational change (van Bel et al., 2020). (B) Automated on-site monitoring of total cell concentrations after ceramic membranes throughout several backwash 
cycles. Particle counts provide the same information as total cell counts, questioning the added value of the microbial parameter in this case (Prest, Besmer et al., 
unpublished data).
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interventions on distribution pipes (or when a contamination event is 
suspected) are done with sample-to-result times between one (e.g., using 
qPCR) to several days (plate counting) (Brown and Hussain, 2003). This 
approach provides limited means to water utilities to detect the cause of 
the contamination event, while in the meantime the consumer is given a 
boil water advisory or urged to drink bottled water. There is thus a need 
for more rapid and on-site methods as to improve the detection of 
contamination events.

Considering the relatively high costs and maintenance requirements 
of microbial sensors, implementation of AOM of microbial water quality 
or early warning of system failure (e.g., pipe burst) is not realistic in 
DWDSs that typically represent hundreds to thousands of pipe kilo
metres. However, one could envision the use of such sensors locally and 
for short time periods e.g., after a pipe burst, shock chlorination or 
maintenance work to test for potential contamination and evaluate 
when the water is safe to be delivered to the consumers. Props et al. 
(2018) proposed an advanced FCM fingerprinting approach using mul
tiple community FCM metrics and various statistical tools, which 
enabled to detect various contamination events at laboratory scale. Van 
Nevel et al. (2017b) also showed that FCM cell count, and fingerprinting 
can be used to evaluate when the water quality is back to its reference 
level upstream of the maintenance work. The latter study was performed 
by taking one sample per hour before and after the maintenance action 
and analyses were performed in the laboratory within 2 to 9 h after 
sampling. This approach provided faster results than the traditional 
culture-based one, but it could be even more efficient in case of auto
mated on-site FCM. A recent paper also pointed to ATP as a potential 
alternative method to heterotrophic plate count testing for 
release-to-service after scheduled or emergency repairs, yet additional 
research needs to identify ATP concentrations or thresholds matching 
heterotrophic plate count outcomes (van der Waals et al., 2024). On 
laboratory scale, Besmer et al. (2017b) demonstrated the feasibility of 
using automated FCM to follow the efficiency of shock chlorination after 
a contamination event and the subsequent wash-in by regular drinking 
water. Microbial sensors can further be used for short periods of time for 
identification of the origin of non-compliance events. For example, the 
use of automated 3D scanning of bacteria helped identify a daily release 
of bacteria in the morning that led to routine plate count analysis 
exceeding the drinking water guideline values at a Danish cattle 
slaughterhouse (Højris et al., 2016). Once the origin is identified, the 
cause of the non-compliance can be targeted and solved more efficiently. 
Additional (semi)-automated on-site technologies providing informa
tion on the presence/absence or the activity of indicator organisms (e.g., 

total coliforms, faecal coliforms, E. coli, intestinal enterococci) 
(Table S1) offer the opportunity for added assurance that water can be 
safely put back into operation. Before this can be implemented though, 
semi-automated culture-based technologies need to reduce 
sample-to-result times while fully automated technologies still require 
higher sensitivities to detect FIB in drinking water.

5. Challenges ahead

In view of the conservative evolution of legislations in the water 
sector, the implementation of relatively recently available commercial 
AOM technologies reflects a proactive initiative by utilities or water 
management authorities to improve microbial hazard assessment, sys
tem performance understanding and operational insights. This was 
shown in an online survey conducted by the authors in 2019 across 75 
utilities in 18 countries (see supplementary tables S2-S4 and figures S1- 
S3), which revealed a growing interest in the drinking water industry for 
deploying AOM technologies. At the same time though, it emphasized 
the multiple challenges to widespread adoption. Most (>75 %) of util
ities had already tested/implemented AOM of microbial water quality 
(Fig. S1), either for specific microbial communities (e.g., GUS activity) 
or for total microbial community (e.g., FCM, ATP-metry). A high pro
portion of respondents represented large utilities in industrialized 
countries, which are typically more inclined to engage in testing new 
technologies. However, a substantial number of smaller utilities were 
also surveyed, revealing that most had not yet been involved in AOM of 
microbial water quality. Among those that had not tested AOM, half 
indicated no plans to do so in near future (Fig. S2).

For survey respondents, the three main barriers to implementation of 
AOM of microbial water quality were financial constraints, followed by 
analytical issues and absence of a regulatory framework. Other concerns 
challenging the overall acceptance of these new tools within the in
dustry were raised within the remaining 26 % of responses (Table 3).

5.1. Capital and operating costs

The capital and operational costs of implementing AOM systems 
were identified as the primary barrier particularly for smaller water 
utilities. Survey respondents revealed that substantial upfront (CAPEX) 
and recurring costs (OPEX, i.e., reagents, software subscription and 
updates, instrument maintenance) deter implementation despite the 
potential for long term savings and improved efficiency. A common 
issue is a lack of understanding as to whether AOM systems and higher 

Fig. 5. Automated on-site monitoring of microbial water quality during drinking water distribution. (A) Effect of residence time and chlorination on the signal of the 
intact cell count (ICC). Total cell count (TCC) did not show any daily pattern associated with residence time (adapted from (Prest et al., 2018). (B) Continuous 
monitoring of TCC in the effluent of an intermediate reservoir shows clear signal shifts when the proportions of either surface water or groundwater increase 
(blue-shaded or yellow-shaded area, respectively) (Favere et al., 2020).
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temporal resolution data provide enough value to offset these costs. A 
quantitative cost-benefit analysis by Seifert-Dähnn et al. (2021) for raw 
sourced drinking water suggests that the benefits of automated 
high-frequency monitoring often outweigh the costs under site-specific 
conditions, particularly for systems frequently and severely affected 
by environmental changes with detrimental consequences for human 
health.

Unfortunately, the advantages of AOM are often only evident after 
installation, making pre-investment justification challenging. Budget 
constraints and increasing scrutiny over expenditures typically neces
sitate cost-benefit evaluations before funds are allocated. This creates a 
paradox where utilities are hesitant to commit to technologies that could 
mitigate risks and reduce the (long-term) costs of managing microbial 
hazards. By facilitating the detection of short-lived, extreme and un
predictable events that conventional low-frequency monitoring often 
misses, AOM systems can provide cost savings compared to manual 
sampling programmes (McBride and Rose, 2018) and reduce investi
gation costs for non-compliance of drinking water supplies which are 
often dominated by staffing expenses (Ellis et al., 2018). Whalen et al. 
(2018) estimated the potential cost savings associated with anticipating 
the location and extent of a microbiological contamination in a distri
bution system. Such early information could lead to savings in chemical 
disinfectant or flushing (or both), limit massive expenses from boil water 
advisories, and improve infrastructure life by preventing corrosion and 
delay costly infrastructure investments. Altogether, an average utility 
serving 10,000 customers could reduce annual costs by >500,000 USD 
(Whalen et al., 2018).

Understanding the niche application of AOM based on system scale 
and risk level can provide valuable guidance for strategic installation. 
Scalability is a concern for utilities managing numerous drinking water 

service deliveries. Early warning systems may indeed require greater 
spatial coverage, especially in densely populated or vulnerable areas. 
While the benefits of AOM may scale linearly with the number of people 
served, costs may increase non-linearly due to economies of scale. 
Overcoming financial constraints therefore requires a comprehensive 
evaluation of lifetime costs against accrued benefits tailored to specific 
contexts, demonstrating the tangible value of AOM for risk manage
ment, regulatory compliance and operational improvements. Clearer 
cost-benefit insights are needed to support strategic investment in 
scalable, site-appropriate AOM technologies and a shift toward proac
tive data driven approaches that safeguard public health and ensure 
sustainable water management.

5.2. Analytical performance

The analytical performance of AOM systems also emerged as a crit
ical concern reflecting scepticism about the reliability and accuracy of 
AOM systems to effectively monitor microbial water quality compared 
to existing culture-based methods. The survey highlighted that re
spondents are wary of discrepancies noting that correlations between 
AOM and culture-based methods are inconsistent particularly for tech
nologies like flow cytometry (FCM) and enzymatic assays, making the 
transition to new technologies challenging. However, while it is 
tempting to think of a microbial sensor as the rapid equivalent of a 
standard culture-based assay, the scientific basis for microbial detection 
and the output signal often differs (Section 3.2.2), thereby challenging 
the validation process. For instance, while HPC is a useful operational 
tool for monitoring general bacteriological water quality throughout the 
treatment process and within the distribution system, it only detects a 
very small fraction (0.001–8.3 %) of the total bacterial population in 
drinking water. In contrast, newer methods like FCM which enumerate 
all bacterial cells, consistently report higher bacterial counts, making 
direct comparisons with culture-based methods problematic (Hammes 
et al., 2008; Van Nevel et al., 2017a). Similar challenges are observed 
with other automated monitoring technologies. In a validation study 
demonstrating the high precision and robustness of automated GUS 
activity measurements, Burnet et al. (2019a) reported significant cor
relations with culturable E. coli at concentrations above 1,000 CFU/100 
mL. However, correlations were weaker at lower concentrations, which 
the authors hypothesized was attributable to a larger proportion of 
viable but non-culturable E. coli cells undetected by culture-based 
assays.

The direct application of validation procedures for traditional 
cultivation-based techniques to microbial sensors is thus inadequate due 
to fundamental differences between the two approaches. The use of 
AOM is also not without its own issues. Anomalies identified by AOM 
can result in unnecessary interventions, reduced operational efficiency, 
and diminished trust in the technology. This may undermine risk man
agement strategies, divert resources from genuine hazards, and poten
tially disrupt service delivery. Sensitivity and specificity are thus critical 
to detecting target microbial populations without interference from 
background communities or compounds. For instance, fluorescence- 
based sensors are subject to various sources of matrix-related in
terferences that can affect measurement results (see Section 3.2.2). Also, 
detecting abnormal changes in microbial water quality using FCM can 
be challenging in source or non-disinfected drinking water with high 
background levels of naturally occurring bacteria.

Few studies have compared the performance of different microbial 
sensors for water quality monitoring (Adomat et al., 2020; Prest et al., 
2021; Stadler et al., 2016). A recent investigation by Favere et al. 
(2021b) evaluated six commercially available devices in a DWTP after 
activated carbon filtration. Under normal operating conditions, all de
vices demonstrated high sensitivity and responsive detection to abrupt 
changes such as filter backwash events. For simulated rain- and 
groundwater contamination scenarios, enzymatic analysis, ATP-metry 
and flow cytometric fingerprinting outperformed standard plate 

Table 3 
Major barriers to implementation and possible solutions identified by drinking 
water utilities. The latter were asked to list three main barriers and three main 
solutions to the identified barriers (see suppl. mat. for methods).

Barriers to implementation
Categories Number of 

responses
Frequency

Cost (Capital expenditures, operating expenses) 42 28 %
Analytical performance 36 24 %
Absence of regulation 33 22 %
Acceptance 13 9 %
Lack of information, understanding 7 5 %
Reporting, unnecessary warnings 6 4 %
New responsibilities 3 2 %
Expertise (technical and data-related) 7 5 %
Logistics (monitoring spots, integration in 

existing schemes)
3 2 %

Technical support 1 1 %
TOTAL 151 100 %
​ ​ ​
Solutions ​ ​
Categories Number of 

responses
Frequency

Further technology validation and/or 
developments

42 25 %

Cost reduction & funding 24 14 %
Accreditation/acceptance 18 11 %
Demonstrate clear needs/benefits 15 9 %
Capacity building & education 13 8 %
Data interpretation & management and 

communication
11 6 %

Adaptation of legislation 10 6 %
User-friendliness 8 5 %
Involvement of government/regulator 6 4 %
Pilot studies 6 4 %
Outreach 5 3 %
Improve fundamental knowledge 5 3 %
Change in mentalities 4 2 %
Upskill suppliers 3 2 %
TOTAL 170 100 %
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counting methods in sensitivity and speed of detection. These findings 
emphasize the importance of aligning technology selection with specific 
applications, and should be balanced between sensitivity, cost, and 
maintenance.

Sensitivity, specificity, accuracy, precision and representativeness 
are essential features of the ideal microbial sensor. Whereas such 
analytical features have been demonstrated for offline technologies such 
as FCM (e.g., BAG, 2012), their automated on-site versions need further 
validation under various relevant deployment conditions. Establishing 
these standards is critical for their integration into routine water quality 
monitoring and enhancing the ability of utilities to manage risks effec
tively. Moreover, when the primary goal of AOM is to detect elevated 
microbial health risks, pathogen testing or epidemiological in
vestigations should ideally be involved to provide a clearer under
standing of the sensor’s indicator value for microbial hazard detection 
and its practical relevance to compliance monitoring for risk 
management.

5.3. Absence of regulatory frameworks

The absence of regulatory guidelines or thresholds for new microbial 
water quality parameters constitutes a further significant barrier to 
practical implementation of robust sensors as these frameworks dictate 
industry standards and monitoring practices. The survey revealed that 
current monitoring methods were often (too) deeply rooted in estab
lished patterns of action (Fig. S3). Without regulatory acceptance, util
ities may face uncertainty in deploying AOM systems and hesitate to 
adopt these technologies due to apprehension of future non-compliance 
or the need to retrofit systems to meet eventual standards. Integrating 
automated technologies with legacy systems can be complex and may 
require significant modifications to existing infrastructure. Further
more, in situations where an AOM system may report abnormal changes 
in microbial water quality while legally binding parameters remain 
below thresholds values, it remains unclear how water suppliers should 
deal with such discrepancies. Nevertheless, surveyed respondents 
believed that benefits can be gained from implementing the new 
monitoring tools and that there was room for innovation (Fig. S3). Given 
that most FIB in regulatory standards were developed and used over 
several decades, it will be challenging to overcome the regulatory bar
rier for the use of AOM data to demonstrate compliance with microbi
ological standards. The adoption of AOM will therefore rather be driven 
by their integration into early warning systems that enable utilities to 
proactively control the risks to decrease the likelihood of having to 
manage failures and communicate it to the consumers (Imran, 2018).

5.4. Data handling, interpretation and communication

Other challenges identified in the survey included technical issues 
such as data management, where utilities reported difficulties in pro
cessing and interpreting substantial amounts of new data generated by 
AOM systems. Managing large volumes of data demands a robust pro
cessing infrastructure and increasingly sophisticated analytics, 
including AI and machine learning, to derive meaningful insights, 
forecast trends, and support decision-making (Pérez-Beltrán et al., 
2024). Also, there is a lack of expertise to fully capitalise on the value of 
these information data streams preventing utilities from integrating 
AOM results effectively into decision-making and operational strategies. 
Optimal monitoring schemes should thus primarily detect meaningful 
changes in microbial water quality, rather than reporting absolute 
values such as maximum cell counts, ATP concentrations, or enzymatic 
activities, as these measures may not indicate a specific health risk. 
Importantly, there are no universal upper thresholds for these parame
ters (Prest et al., 2016; Van Nevel et al., 2017a). As discussed above, the 
implementation of AOM into early warning systems will likely accel
erate the adoption of this monitoring approach by establishing 
site-specific thresholds (Sorensen et al., 2018a,b). To interpret AOM 

results for potential microbial risk, nuanced signal analysis will be 
needed requiring a thorough understanding of signal dynamics. The 
range of signal concentrations can be site-specific, and the method of 
interpreting signals should also account for context. For example, 
transient short-term signal peaks in the raw water might pose less risk 
compared to sustained elevated signals within the treatment train where 
the likelihood of pathogen (or toxin) breakthrough increases.

Finally, as the world has become hyperconnected and consumers are 
getting more informed about the products they consume, any perceived 
failure in water quality can be disseminated widely almost instanta
neously via social media. Elevated consumer awareness will therefore 
inevitably impact the amount of data, their measurement frequency and 
the subsequent reporting to consumers, which will influence regulatory 
frameworks but also add to utilities operating costs (Whalen et al., 
2018).

6. Future perspectives

6.1. Optimising monitoring strategies

The recent development of AOM systems offers new opportunities for 
the acquisition of extensive datasets on microbial water quality that can 
elucidate the multiple scales of spatiotemporal variation (Fig. 2) (Burnet 
et al., 2019b; Page et al., 2017; Rome et al., 2021; Stadler et al., 2019; 
Zamyadi et al., 2014). High resolution monitoring can help designing 
useful site-specific thresholds to observe changes in microbial water 
quality over a range of magnitudes and time intervals (Chaffin et al., 
2018; Izydorczyk et al., 2009; Sorensen et al., 2018a). Yet, as discussed 
in Section 5 above, high resolution monitoring over extended periods is 
presently impractical, notably because of the associated costs. 
System-specific fluctuations in microbial water quality therefore need to 
be captured using short intensive monitoring campaigns to e.g. increase 
the probability of detecting microbial changes induced by precipitation 
events in the source (Besmer et al., 2017a; Sylvestre et al., 2021) or to 
optimize routine monitoring of the DWDS by increasing sample repre
sentativity (Gabrielli et al., 2021). Using optimized monitoring strate
gies, meaningful data on FIB (Offenbaume et al., 2020), pathogens 
(Sylvestre et al., 2021) and microbial/chemical source tracking markers 
(Hachad et al., 2024) can be collected to support risk assessment at 
strategic points and times along the supply chain. Sample collection can 
even be automated by triggering an autosampler using a microbial 
sensor as suggested by Ryzinska-Paier et al. (2014) and demonstrated by 
Burnet et al. (2021) who proposed automated collection of samples for 
pathogens and microbial source tracking markers during an intermittent 
contamination event in an urban river.

There is also significant promise in leveraging data from conven
tionally deployed sensors to enable a tiered approach to water quality 
monitoring, providing more in-depth information and offering a more 
comprehensive understanding and characterisation of the supply chain. 
This approach allows complementary sensors (e.g., turbidity, tempera
ture, chlorine, pH or dissolved oxygen) to provide additional context 
and insights into the environmental conditions and response of the DW 
system to infer changes in microbial communities (Reynaert et al., 
2023). Integrating AOM systems with these technologies can enhance 
the reliability of monitoring to detect or predict microbial contamina
tion events to support an adaptive management strategy. A combination 
of microbial, physical and chemical sensor signals that could be opti
mized by specific AI-driven algorithms (e.g., machine learning) would 
offer tailored solutions to utilities, taking into account their objectives as 
well as site-specific considerations. This could apply to i) system 
assessment and quantitative microbial risk assessment (QMRA) by 
establishing robust log-reduction targets through pathogen measure
ment, to ii) system verification to assess for instance whether routine 
physicochemical proxies are reliably indicating microbial water quality 
challenges and to iii) linking AOM of microbial water quality to 
laboratory-based standard parameters (culture-based enumeration of 
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indicators) at critical points in time and space to assess the comple
mentarity of both systems.

6.2. Developing new AOM technologies

Whereas AOM technologies have been designed for monitoring 
bacteria and archaea (or proxies thereof), recent advancements in flow 
virometry pipelines for the quantification of viruses by FCM (Safford 
et al., 2023) could complement the AOM toolbox in the future. Also, new 
environmental DNA (eDNA) for micro- and macroorganism detection 
could help unravelling the complex dynamics and interplay of highly 
heterogeneous communities of the DWDS biome (protists, invertebrates, 
bacteria, fungi and archaea) and ultimately revolutionize microbial 
water quality monitoring (Pluym et al., 2024). AOM using amplification 
of nucleic acids (i.e., DNA or RNA) has not yet been implemented in the 
drinking water sector though due to upstream sample processing re
quirements, as well as the need for specific instrumentation and sup
porting infrastructure. Nonetheless, recent developments in nucleic acid 
detection technologies and sample processing workflows that have 
advanced their portability will likely make such monitoring feasible in 
the future. This includes miniaturization of laboratory instrumentation 
for DNA extraction and preparation for sequencing (Edwards et al., 
2022; Pomerantz et al., 2022), gene-targeted or metagenomic 
sequencing on the nanopore MinION platform (Deamer et al., 2016), as 
well as specific PCR based assays (e.g., qPCR, loop-mediated isothermal 
amplification) for other microorganisms including pathogenic ones 
(Karthe et al., 2016). Here it is important to note that nucleic acid-based 
methods could be utilized to infer viability for the whole community or 
specific microbial targets by using membrane integrity as a metric of 
viability (Fittipaldi et al., 2012), as is used in FCM. Nonetheless, such 
procedures require extensive sample treatment prior to DNA extraction 
and PCR, which themselves may compromise the membrane integrity of 
stressed cells. As a result, the implementation of such approach will 
require strategies to include internal controls to ensure results are 
reliable.

Besides developments in molecular tools, the recent deployment of 
imaging-based approaches for microbial monitoring in the drinking 
water sector has been enabled by several advances in the development of 
low-cost open-source imaging platforms (Pollina et al., 2022). The latter 
may allow for high-resolution monitoring of source waters and when 
combined with the appropriate data analyses approaches (Fung et al., 
2023; Xu et al., 2022), they may allow for quantitative monitoring of 
cyanobacteria in source waters for instance. The application of such 
platforms for microbial monitoring in other parts of the source-to-tap 
continuum is less likely though due to lower cell concentrations and 
smaller cell sizes.

Overall, the feasibility of AOM may still be sample-specific and 
dictated by overall microbial concentrations as well as concentrations of 
target microbes. As those do decrease along the source-to-tap contin
uum, large sample volumes will be required to harvest microbial cells 
(and nucleic acids) above background contamination levels. A comple
mentary approach could thus be biofilm monitoring (e.g., Im et al., 
2024), which could provide critical insights into microbial activity and 
help assess the biological stability of DW supply of drinking water 
supplies. This however still needs to be demonstrated in various field 
settings.

Aside from the development and deployment of novel platforms or 
assays for AOM, there is a need for systematic studies that test the utility 
of machine learning approaches to infer microbial contamination events 
based on conventional sensor data (Housh and Ostfeld, 2015; Zhong 
et al., 2021). Such efforts will require a significant upfront investment of 
resources for the collection and curation of existing datasets for the 
training and validation of machine learning models as well as the cre
ation of new experimental datasets.

7. Concluding remarks

The future of AOM using microbial sensors in the water industry is 
set to transform water quality management through technological ad
vancements and integration with digital systems for online (real-time) 
information. As customers increasingly demand transparency about the 
quality of their water, utilities will need to adapt by implementing 
sensors and managing the information they generate to maintain their 
social license to operate. Next-generation sensors are expected to offer 
improved sensitivity and specificity enabling the detection of microbial 
contaminants at lower thresholds and in more challenging environ
ments. Advances in machine learning and AI will enhance data inter
pretation providing predictive analytics and real-time decision support 
for water utilities allowing them to respond proactively to potential 
risks. As regulatory frameworks evolve to incorporate real-time moni
toring, microbial sensors for AOM will play a pivotal role in meeting 
stringent safety standards and addressing emerging challenges such as 
climate change-induced variability in water quality to ensure delivery of 
safe drinking water and protection of public health.

CRediT authorship contribution statement

J.B. Burnet: Writing – review & editing, Writing – original draft, 
Formal analysis, Conceptualization. K. Demeter: Writing – review & 
editing, Conceptualization. S. Dorner: Writing – review & editing, 
Funding acquisition. A.H. Farnleitner: Writing – review & editing, 
Conceptualization. F. Hammes: Writing – review & editing, Conceptu
alization. A.J. Pinto: Writing – review & editing. E.I. Prest: Writing – 
review & editing. M. Prévost: Writing – review & editing. R. Stott: 
Writing – review & editing. N van Bel: Writing – review & editing, 
Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Ameet Pinto reports a relationship with Water Research Journal that 
includes: board membership. Co-author Ameet Pinto serves as an editor 
for Water Research Journal. If there are other authors, they declare that 
they have no known competing financial interests or personal re
lationships that could have appeared to influence the work reported in 
this paper.

Acknowledgements

The authors would like to acknowledge all survey respondents for 
helping advance knowledge on water industry needs and on the 
perceived barriers to the implementation of automated on-site moni
toring of microbial water quality. The authors also thank Jordi Martin- 
Alonso (Aguas de Barcelona) for initial discussions on the manuscript as 
well as Michael Besmer (onCyt) for sharing unpublished research results 
from a study funded by PWN Water utility, The Netherlands. We would 
like to dedicate the present manuscript to Professor Pierre Servais who 
has pioneered rapid enzymatic assays for faecal bacteria detection in 
water and who contributed to the initial draft of the manuscript. J.B. 
Burnet was funded by an NSERC Industrial Chair on Drinking Water and 
a Canadian Research Chair on Source Water Protection as well as the 
Luxembourg Ministry of the Environment, Climate and Biodiversity 
(SMARTWATER project, Fonds pour la Gestion de l’Eau). K. Demeter 
and A.H. Farnleitner were supported by the Vienna Water Resource 
Systems 2020+ (VIWA 20+) research cooperation.

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.watres.2025.123121.

J.B. Burnet et al.                                                                                                                                                                                                                                Water Research 274 (2025) 123121 

13 

https://doi.org/10.1016/j.watres.2025.123121


Data availability

Data will be made available on request.

References

Adomat, Y., Orzechowski, G.H., Pelger, M., Haas, R., Bartak, R., Nagy-Kovács, Z.A., 
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Pérez-Beltrán, C.H., Robles, A.D., Rodriguez, N.A., Ortega-Gavilán, F., Jiménez- 
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Stadler, P., Blöschl, G., Vogl, W., Koschelnik, J., Epp, M., Lackner, M., Oismüller, M., 
Kumpan, M., Nemeth, L., Strauss, P., Sommer, R., Ryzinska-Paier, G., Farnleitner, A. 
H., Zessner, M., 2016. Real-time monitoring of beta-D-glucuronidase activity in 
sediment laden streams: a comparison of prototypes. Water Res. 101, 252–261. 
https://doi.org/10.1016/j.watres.2016.05.072.

Stadler, P., Loken, L.C., Crawford, J.T., Schramm, P.J., Sorsa, K., Kuhn, C., Savio, D., 
Striegl, R.G., Butman, D., Stanley, E.H., Farnleitner, A.H., Zessner, M., 2019. Spatial 
patterns of enzymatic activity in large water bodies: ship-borne measurements of 
beta-D-glucuronidase activity as a rapid indicator of microbial water quality. Sci. 
Total Environ. 651, 1742–1752. https://doi.org/10.1016/j.scitotenv.2018.10.084.

Storey, M.V., van der Gaag, B., Burns, B.P., 2011. Advances in on-line drinking water 
quality monitoring and early warning systems. Water Res. 45, 741–747. https://doi. 
org/10.1016/j.watres.2010.08.049.
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Abfallwirtschaftsverband, pp. 7–33.

J.B. Burnet et al.                                                                                                                                                                                                                                Water Research 274 (2025) 123121 

17 

https://doi.org/10.1016/j.scitotenv.2023.161930
https://doi.org/10.1016/j.watres.2010.07.016
https://doi.org/10.1016/j.watres.2010.07.016
https://doi.org/10.1016/j.watres.2017.01.065
https://doi.org/10.1016/j.watres.2017.01.065
https://doi.org/10.1016/j.watres.2016.12.040
https://doi.org/10.1016/j.watres.2016.12.040
https://doi.org/10.1016/j.watres.2012.06.010
https://doi.org/10.1016/j.scitotenv.2020.141284
https://doi.org/10.1021/es030360x
http://10.2166/9781780408699_0015
https://doi.org/10.1016/j.gecco.2019.e00838
https://doi.org/10.1021/acsestwater.1c00466
https://doi.org/10.1111/lam.12432
https://doi.org/10.1016/j.watres.2011.11.012
https://doi.org/10.1016/j.watres.2011.11.012
https://doi.org/10.1039/c3em00603d
https://doi.org/10.1016/j.trac.2016.06.023
https://doi.org/10.1016/j.trac.2016.06.023
https://doi.org/10.1007/s00253-019-09774-3
https://doi.org/10.1021/acs.est.1c01339

	Automation of on-site microbial water quality monitoring from source to tap: Challenges and perspectives
	1 Introduction
	2 Terminology
	3 Technologies for automated on-site monitoring of microbial water quality
	3.1 Which technologies are available?
	3.2 What are the detection targets?
	3.2.1 Physicochemical proxy parameters for water quality changes
	3.2.2 Automated detection of microbial targets

	3.3 Where and why are they implemented?

	4 Automated on-site microbial water quality monitoring from source to tap - recent applications
	4.1 Source water quality and water abstraction
	4.1.1 Faecal pollution
	4.1.2 Surface runoff, aquifer vulnerability and system characteristics
	4.1.3 Harmful algal blooms

	4.2 Drinking water treatment
	4.2.1 Selection of operational parameters and monitoring frequency
	4.2.2 Operational control monitoring

	4.3 Drinking water distribution
	4.3.1 Monitoring microbial water quality at strategic locations: treatment outlet and intermediate reservoirs
	4.3.2 Ensuring distribution of safe drinking water


	5 Challenges ahead
	5.1 Capital and operating costs
	5.2 Analytical performance
	5.3 Absence of regulatory frameworks
	5.4 Data handling, interpretation and communication

	6 Future perspectives
	6.1 Optimising monitoring strategies
	6.2 Developing new AOM technologies

	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	Data availability
	References


