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Managementsamenvatting 

Spectral Quality- Kwaliteit van tandem massaspectra van milieu-relevante verbindingen 

voorspellen met hulp van machine learning  

 

Authors Svetlana Codrean (VU), Benno Kruit (VU), Nienke Meekel, Dennis Vughs, Frederic Béen. 

De toepassingsmogelijkheden voor suspect (SS) en non-target-screening (NTS) met massaspectrometrie zijn sterk 

uitgebreid door de het gebruik van tandemmassaspectrometrie (MS2) in combinatie met steeds betere en 

volledigere bibliotheken massaspectra. Hoge resolutie massaspectrometrie (HRMS) is een vrijwel onmisbaar 

instrument geworden voor het monitoren van opkomende verontreinigingen in het milieu. Door een data-analyse 

workflow te ontwikkelen, gebaseerd op machine learning, kan de kwaliteit van tandem massaspectra nu objectief 

en automatisch worden beoordeeld. Het ontwikkelde algoritme kan gemakkelijk worden toegepast door 

drinkwaterlaboratoria om de kwaliteit van de verkregen SS- en NTS-gegevens te evalueren. Uiteindelijk zal dit 

leiden tot efficiëntere en minder tijdrovende gegevensanalyses en kan het aantal voorheen onbekende chemische 

stoffen dat wordt geïdentificeerd mogelijk toenemen.  

 
Bijschrift: Schema van de bepaling van kwaliteit van massaspectra. 

 

Belang: Tandem-massaspectra van goede kwaliteit 

zijn essentieel voor HRMS-analyses 

Hoge-resolutie massaspectrometrie (HRMS) in 

combinatie met vloeistof- (LC) of gaschromatografie 

(GC) is een vrijwel onmisbaar instrument geworden 

voor het monitoren van opkomende 

verontreinigingen in het milieu. Met name de 

verwerving van tandemmassaspectra (MS2, waarbij 

verbindingen worden gefragmenteerd om informatie 

over hun structuur te verkrijgen) in combinatie met 

de steeds toenemende kwaliteit en uitgebreidheid 

van bibliotheken van MS2-spectra van stoffen (zoals 

MassBankEU, MoNA) hebben de mogelijkheden voor 

suspect- (SS) en non-targetscreeninganalyses (NTS) 

sterk uitgebreid. Toch zijn er nog veel meer 

potentieel relevante verontreinigingen in 

milieumonsters dan stoffen waarover spectrale 

informatie beschikbaar is in bibliotheken. 



Verbetering van de kwaliteit van MS2-spectra kan 

zowel de annotatie van kenmerken verbeteren (wat 

meer succesvolle identificaties kan opleveren) als de 

totale verwerkingstijd van analyseresultaten 

verkorten. Daarnaast zijn MS2-spectra van hoge 

kwaliteit nodig voor toepassing van de 

prioriteringsstrategieën op basis van voorspellende 

modellering met MS2-gegevens als input. Er zijn 

steeds meer van dergelijke prioriteringsstrategieën 

en die kunnen een paradigmaverschuiving 

teweegbrengen van een identificatiegedreven 

toepassing van HRMS naar een situatie waarin men 

eerst informatie probeert te verkrijgen over de 

relevantie van een onbekende verbinding (bv. 

toxiciteit, polariteit, verwijderingsrendement) en pas 

later, indien nodig, probeert deze formeel te 

identificeren. 

Benadering: Machine learning inzetten om de 

kwaliteit van tandem massaspectra te bepalen 

Om een aanpak te ontwikkelen waarmee de kwaliteit 

van MS2-spectra automatisch en objectief kan 

worden beoordeeld, werd een algoritme voor 

machine learning gebruikt. Meer in het bijzonder 

werd een Random Forest (RF) classificator getraind 

op een set MS2-spectra van 204 

referentiestandaarden van milieu-relevante 

verbindingen. Daarnaast werden verschillende 

wiskundige kenmerken uit de ruwe spectra 

geëxtraheerd en gebruikt als input om het model te 

trainen. Door deze extractie konden de uitdagingen 

die gepaard gaan met de heterogeniteit van MS2-

spectra worden overwonnen en werden meer 

homogene en gestructureerde gegevens verkregen, 

die essentieel zijn voor algoritmen voor machine 

learning.  

Resultaten: Model kan automatisch bepalen of een 

MS2-spectrum van goede kwaliteit is  

Verschillende combinaties van kenmerken 

(wiskundige variabelen berekend uit ruwe MS2-

spectra) zijn geëvalueerd om de beste prestaties te 

vinden. Het verkregen model werd vervolgens verder 

geoptimaliseerd om de hoogste precisie te 

verkrijgen. Daarbij werd het aanvaardbaarder 

(minder tijdrovend) geacht wanneer een MS2-

spectrum van goede kwaliteit ten onrechte als slecht 

werd bestempeld dan omgekeerd. Het ontwikkelde 

algoritme streeft ernaar de verwerkingstijd te 

minimaliseren, zodat het investeren van tijd en 

middelen om een verbinding te identificeren 

waarvan de MS2-gegevens van slechte kwaliteit zijn 

moet worden vermeden. Het geoptimaliseerde 

model was in staat 85% van de goede spectra als 

zodanig correct te labelen, zodat slechts 15% van de 

spectra van goede kwaliteit als slecht werden 

bestempeld. Deze resultaten zijn in 

overeenstemming met andere algoritmen die zijn 

ontwikkeld op het gebied van proteomics, wat de 

robuustheid van de ontwikkelde aanpak verder 

onderschrijft.  

Implementatie: Aanpak die verwerking suspect- en 

non-targetscreeningdata vergemakkelijkt 

Vanuit het perspectief van een 

drinkwaterlaboratorium kan het binnen dit project 

ontwikkelde model gemakkelijk worden toegepast 

om de analyse en interpretatie van zowel suspect 

screening (ook vaak bibliotheekscreening genoemd) 

als NTS-gegevens te vergemakkelijken. Het 

ontwikkelde algoritme moet met name de 

nabewerking van gegevens vergemakkelijken door 

een betere prioritering waarbij alleen aandacht gaat 

naar kenmerken met MS2-gegevens van goede 

kwaliteit. Ook kan het objectieve informatie 

verschaffen om te beslissen of specifieke monsters 

opnieuw moeten worden geanalyseerd (bijvoorbeeld 

wanneer kenmerken die prioriteit hebben gekregen 

MS2-data van lage kwaliteit blijken te hebben) en 

moet het de kansen op succesvolle (voorlopige) 

identificatie via bibliotheekonderzoeken vergroten. 

Om de ontwikkelde aanpak te gebruiken hoeven 

laboratoria alleen de MS2-gegevens die ze tijdens 

hun analyses hebben verkregen te exporteren en het 

ontwikkelde script te gebruiken om het model te 

trainen en hun gegevens te evalueren. 

 

Rapport 
Van dit onderzoek wordt verslag gedaan in het 
rapport Spectral Quality - Quality prediction of 
tandem mass spectra of environmentally relevant 
compounds using machine learning (BTO2023.017). 

.   
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1 Introduction 

High-resolution mass spectrometry (HRMS) coupled with either liquid (LC) or gas chromatography (GC) has become 

an almost essential tool to monitor emerging contaminants in the environment (Hollender et al., 2017). In 

particular, the acquisition of tandem mass spectra (MS2) combined with the ever growing quality and 

comprehensiveness of spectral libraries (e.g., MassBankEU (Neumann et al., 2022), MoNA (Fiehnlab, 2022)) have 

greatly expanded the possibilities offered by suspect and nontarget screening analyses (Mohammed Taha et al., 

2022; Oberacher et al., 2019). Despite continuous improvements, large discrepancies still exist between the 

number of potentially relevant contaminants present in environmental samples and those for which spectral 

information is available in libraries (Oberacher et al., 2020). Moreover, despite the development of workflows to 

automatically improve the quality of records added to these libraries (Stravs et al., 2013) and the acquisition of 

multiple spectra per compound to account for specific fragmentation curves, some issues regarding quality 

assurance and control (QA/QC) of the information contained in these databases still exist, including insufficiently 

curated tandem mass spectra (Oberacher et al., 2020; Schulze et al., 2020). In the field of proteomics, where 

database searches and de novo sequencing approaches are used to identify peptides from complex mixtures of 

proteins (Gholamizoj and Ma, 2022; Ma, 2017; Nesvizhskii et al., 2006),quality of tandem mass spectra and how to 

assess it has been the subject of various researches. Spectra of good quality consist of spectra which contain 

diagnostic information about the fragmented parent ion. Specifically, they should have enough peaks (i.e., m/z 

values) spread across the whole mass range (relative to the mass of the parent ion) and with sufficient intensity, as 

well as little to no noise. In fact, for for library-based peptide identifications, poor MS2 data quality is considered to 

play a major role in the occurrence of false negatives (Gholamizoj and Ma, 2022). For this purpose, already in the 

early 2000s, algorithms have been devised to try to automatically assess the quality of MS2 spectra acquired in 

proteomics experiments (Bern et al., 2004). Recently, more advanced machine and even deep learning algorithms 

have been developed to automatically assess the quality of acquired MS2 signals, reduce the occurrence of false 

negatives and decrease overall processing time of large datasets (Ding et al., 2009; Gholamizoj and Ma, 2022; Zou 

et al., 2009). The proposed classifiers showed very promising results. For instance, the approach developed by Bern 

et al (Bern et al., 2004) was able to eliminate over 75% of spectra considered as being of bad quality and, at the 

same time, would only lose 10% of spectra deemed as being of good quality. Using more advanced machine 

learning algorithms (e.g., support vector machine (SVM) and k-means), Zou et al. (Zou et al., 2009) and Ding et al. 

(Ding et al., 2009) were able to develop binary classifiers having true positive rates (TPR) of 92.1% and 90% while 

keeping the true negative rate (TNR) at 89.6% and 92%, respectively. These methods often relied on a range of 

“features” (to be understood here as descriptors, or independent variables, rather than HRMS-based features) 

derived from peptide fragmentation patterns, such as b- and y-ion peaks (Choo and Tham, 2007) or amino acid 

sequence tags (Nesvizhskii et al., 2006).  

Only more recently, a deep learning method was developed which takes the entire MS2 spectrum (after pre-

processing and normalisation) to assess spectral quality (Gholamizoj and Ma, 2022). The fact that most models 

developed so far used features derived from specific peptide fragmentation patterns, combined with the difficulty 

to objectively establish criteria to define an MS2 spectrum of good quality, might explain why these approaches 

have not been implemented in other fields. In fact, in the specific case of (small) environmentally relevant 

molecules, the issue of MS2 spectral quality has not been addressed thoroughly, besides in the general context of 

curating spectral libraries and the development of search and matching algorithms (Oberacher et al., 2020). Yet, 

obtaining MS2 spectra of good quality would both improve feature annotation and reduce overall (post-)processing 

time in environmental analyses. However, the importance of obtaining high quality MS2 spectra is not limited to 

annotations and library searches. In fact, in recent years, an increasing number of computational tools have been 

reported which make use of MS2 data to improve post-processing and prioritisation (e.g., molecular networking 

strategies (Oberleitner et al., 2021; Watrous et al., 2012)), predict molecular structures (Dührkop et al., 2015) or 
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even in vivo toxicity of unknowns (Peets et al., 2022). Given that these methods rely on MS2 spectra, their 

performances would greatly benefit from having input data of high(er) quality. Furthermore, algorithms to 

automatically assess MS2 quality could in future be integrated in HRMS acquisition methods as additional criteria to 

trigger further fragmentation of ions selected during MS1 survey scans in data-depended acquisition (DDA) mode. 

More specifically, if an ion is for instance isolated and fragmented because its intensity is above a certain threshold, 

but the obtained MS2 spectrum is classified as of insufficient quality by the algorithm, then an additional 

fragmentation (e.g., with a different CE) can be triggered. Whilst for data independent acquisition (DIA), such 

information could be useful during post-processing to prioritise MS2 spectra rich in information.  

Building on the promising results obtained in the field of proteomics and the added value that automated 

prediction of MS2 quality would have in the field of small molecules, this work focused on the development of a 

machine learning pipeline to automatically assess the quality of mass spectra of environmentally relevant 

compounds. For this purpose, a dataset of 204 reference standards of environmental contaminants acquired with 

different collision energies (CEs), corresponding to almost 1400 MS2 spectra, was used. Initially, focus was set on 

finding relevant and non-redundant descriptors which could be used for machine learning purposes and that 

provided a sufficiently accurate representation of the raw input data. Specifically, three different feature sets were 

computed, and their performances were evaluated using a Random Forest (RF) Classifier with cross-validation. 

Computed descriptors were then further filtered to select those which explained most of the available data. Finally, 

the optimised feature sets were evaluated against the test set and a final classification model was optimised to 

discriminate between MS2 spectra of good and bad quality.  

 

From a drinking water quality perspective, the ultimate goal of this project consisted in developing an algorithm 

that can be readily implemented by drinking water laboratories to evaluate the quality of the acquired suspect (SS) 

and non-target screening (NTS) data. In particular, the developed algorithm is supposed to facilitate data post-

processing (i.e., after actual acquisition) through an improved prioritisation (i.e., focus only on those features which 

have MS2 data of good quality), provide objective information to decide whether to reanalyse specific samples (i.e., 

should features that have been prioritised for one or another reason have MS2 data of poor quality) and, last but 

not least, increase chances of successful (tentative) identification via library searches. The latter would eventually 

reduce time spent on trying to identify features as well as reduce cost associated with purchasing reference 

material (as one would ideally focus on features with a high chance of being successfully identified).  

2 Materials and methods 

2.1 Dataset 

The dataset used in this work consisted of fragmentation mass spectra (MS2) of 204 reference standards of known 

environmental contaminants (obtained in the BTO project 402045-151 Non-target screening op tijd en kwantitatief) 

which were analysed by liquid chromatography (LC) coupled to an Orbitrap Fusion Tribrid high-resolution mass 

spectrometer (HRMS, Thermo Fisher Scientific). Separation was achieved using a generic chromatographic method 

using an XBridge BEH C18 (2.5 μm, 2.1 × 100 mm Column XP, Waters) column as described in Been et al. (2021). 

Acquisition was performed in data-dependent acquisition (DDA) mode with high collision dissociation (HCD) and 

graded collision energy (CE) of 10, 20, 35, 50, 65, 80 and 100%. MS2 spectra obtained were then searched using the 

retention time of each reference standard and by retrieving the scan corresponding to each of the CEs used. 

Spectra were acquired in profile mode but where then converted to centroids to facilitate comparison with existing 

spectra libraries. The final dataset consisted of 1399 MS2 spectra. 
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2.2 Initial labelling of MS2 spectra 

Initially, labelling of acquires MS2 spectra was carried out automatically. More specifically, matching spectra were 

searched in MassBankEU (Schulze et al., 2021) using the SpectrumSimilarity function from the OrgMassSpecR 

package developed by Dodder and Mullen (2017). Spectra eliciting a high score (≥ 0.75) were initially labelled as 

being of “GOOD” quality while spectra with lower quality were labelled as “BAD”. However, due to the differences 

in both fragmentation approaches and collision energies (CEs) used, inconsistencies were observed in the labelling. 

In particular, spectra were incorrectly labelled. Because of the difficulty of defining quantitative criteria which could 

be used to automatically label MS2 spectra, it was decided to rely on expert judgement and to manually label all 

spectra. In particular, the number of fragments, their distribution across the m/z range (with respect to the mass of 

the molecular ion) and intensity with respect to the molecular or base ion were used as criteria to define whether a 

spectrum could be considered of GOOD or BAD quality. 

2.3 Pre-processing 

Prior to calculating features (i.e., descriptors), MS2 spectra were scaled both with respect to their intensity and m/z 

range. Specifically, relative intensities (i.e., range [0,1]) were computed by dividing individual intensities by the 

intensity of the base peak (i.e., the most intense peak in the MS2 spectrum). Similarly, the m/z range of each 

spectrum was normalised by dividing individual m/z values by the m/z value of the precursor. Finally, noise was 

removed by filtering all m/z ratios whose intensity was ≤ 5% of the base peak. An overview of the distribution of the 

pre-processed MS2 spectra is shown in Figure 1. Results show that the distribution of relative m/z values in BAD 

spectra appear to be slightly more skewed towards lower values compared to spectra labelled as GOOD.  

 

 
Figure 1: Distribution of m/z and intensities in MS2 spectra labelled as GOOD (left) and BAD (right). 

 

2.4 Feature transformation 

To develop a machine learning algorithm that can efficiently classify tandem mass spectra based on their quality, 

three different set of features were computed from pre-processed spectra. It should be noted that in the context of 

this work, the term feature is used to refer to mathematical variables computed or extracted from MS2 spectra and 

not features as used in the context of suspect and non-target screening (i.e., accurate mass, retention time and 

peak intensity).  
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2.4.1 Distance features 

The first set of features which were computed consisted of statistics derived from the calculation of Euclidean 

distance between the centroid of each spectrum and the remaining m/z after pre-processing. The centroid c was 

defined as follows  

� = (
∑ ��

�
���

�
,
∑ ��

�
���

�
)  eq.1 

 

where mj are the m/z values in the spectrum, ij are the corresponding intensities and n is the number of m/z values 

in the spectrum. For every m/z value (p) in the spectrum, the Euclidean distance d to the centroid c is calculated by 

the formula  

� = �(��  −  ��)� + (��  −  ��)� eq.2 

 

where mp and ip are the m/z and corresponding intensity of the pth m/z value in the spectrum. Using the distance 

vector, the count, mean, median, standard deviation, minimum, maximum, first, second and third quartiles were 

calculated and used as distance features for data processing.  

2.4.2 Handcrafted features 

The second set of features computed from MS2 spectra consists of a collection of the most common features 

found in the literature together with some empirically selected features. Among these is the number of m/z values 

in the spectrum which has been commonly used in previous works (Bern et al., 2004; Nesvizhskii et al., 2006; Tabb 

et al., 2001; Zou et al., 2009). Furthermore, the average (Nesvizhskii et al., 2006), sum (Tabb et al., 2001) and 

standard deviation of intensities in each spectrum were computed. Additionally, the dot product between m/z and 

intensity values was computed and used as feature. The number of peaks with relative intensity greater than 0.1 

(Zou et al., 2009) and 0.2 were also considered. Two other features used were the standard deviation of the 

consecutive mass gaps between all peaks and the average number of peaks in a 2 Dalton (Da) interval (Nesvizhskii 

et al., 2006). The intensity balance was calculated by dividing the m/z axis into a number of bins of equal width and 

subtracting the total intensity of the first bin from the sum of the intensities of the remaining bins (Bern et al., 

2004). Finally, the Shannon entropies for the m/z vector and the intensity vector were calculated.  

2.4.3 Grid features 

The last set of features used was inspired by previous work from Logan et al. (2004) and consisted in dividing the 

spectra in 1 or 2 dimensional (1D or 2D) grids and counting the number of points (i.e., m/z) in each grid cell. In 1D 

grids, between 1 and 20 bins were unevenly distributed along the intensity (y) axis to have more granularity (i.e., 

more frequent bins) at lower intensities compared to higher ones. In the case of 2D grids, between 1 and 20 bins 

were considered both for the m/z (x) and the intensity (y) axis (i.e., yielding N x N matrices).  

2.5 Statistical modelling 

Given a transformed MS2 spectrum Xj = Fi(��), according to the feature extraction method Fi (as described above), 

the goal consisted in modelling the target �� ∈ {0,1}, namely a quasi-Bernoulli random variable, representing the 

quality of an MS2 spectrum (referred to as BAD or GOOD, respectively) conditionally dependent on X. To predict y it 

was hence necessary to estimate �(�|�). To simplify the statistical assumptions imposed by Bernoulli-like random 

variables and common statistical learning methods, we assumed independently, identically distributed samples, 

which is reasonable given the previously described data acquisition process. In the context of this work, a RF 

algorithm (Liu et al., 2012) was used to estimate �(�|�) given its widespread use in the context of binary 

classification (Ali et al., 2012; Ham et al., 2005) and the fact that it is often considered the method of choice with 

expected highly non-linear relationships. The RF algorithm works by first bootstrapping the dataset and fitting 

individual classification trees to the bootstraps. While individual trees are weak learners due to their high variance, 

combing their predictions (i.e., majority vote) yields a substantially stronger performance (ensemble learning). 

When compared to more classical methods like Logistic Regression or Naive Bayes, it typically performs well “off-
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the-shelve” (i.e., its hyperparameters do not need to be adjusted exhaustively to work reasonably). This is a 

favourable property of the random forest and the reason it was chosen as main model estimator as the focus is on 

evaluating the predictive power of different feature sets. Also note that the RF is in fact well suitable for 

parameterization of ℙ (�) since in the context of binary classification, a random forest can be used as a pseudo-

density-estimator for which one can simply use the ratio of trees with positive predictions to negative predictions 

(i.e., the probability of success). Data processing, analysis and machine learning were performed in Python and the 

code can be found on GitHub (Codrean, 2022).  

2.6 Validation and testing 

The initial dataset of 1399 MS2 spectra was divided into two parts, namely 949 (67.8%) observations for training 

and 450 (32.2%) observations were kept for final testing. Both sets had 44% instances labelled (based on expert 

judgement) as GOOD and 56% labelled BAD, as described in 2.2. Feature groups were evaluated individually and 

then results were compared. Stratified 10-Fold Cross-Validation (Purushotham and Tripathy, 2012) was used over 

the 949 instances provided for training purposes, ensuring that the same class proportions were maintained at 

each split. This resulted in 854 instances for fitting and 95 samples for prediction. Metrics used to evaluate model 

performances were the iteration accuracy, average precision, Area Under the Receiver Operating Characteristic 

Curve (ROC AUC) score and the log loss of the model. The accuracy indicates the proportion of correctly identified 

samples. A more important metric is precision, which is the ratio of correctly classified high-quality spectra to all 

spectra classified as GOOD. In this case, the cost of classifying a BAD spectrum as GOOD is higher than the other 

way around. This type of misclassification leads to useless further analysis of an inferior spectrum that is considered 

of high quality, and time is wasted trying to find a match of the spectrum in the MS databases. Similarly, should this 

kind of classification algorithm be implemented during acquisition (i.e., determining whether an additional MS2 

spectrum needs to be acquired in a DDA experiment), a conservative approach would involve the collection of an 

additional MS2 spectrum, despite it being already of sufficient quality, rather than having only a spectrum of low 

quality. For this reason, focus was set on improving precision. After evaluating the different models (i.e., different 

feature sets, their combination and feature-specific configurations), the best performing candidate feature sets 

were tested on the holdout (test) set containing the remaining 450 MS2 spectra (not used for training and 

validation). This is necessary to avoid "over-tuning" during cross-validation and allow a fair comparison between 

methods and ultimately get a realistic impression of the capabilities of the proposed method(s).  

3 Results and discussion 

3.1 Validation results 

3.1.1 Grid features evaluation 

Prior to evaluating model performances on the holdout (test) set, the optimal number of bins in both the 1D 

(unevenly distributed) and the 2D grids were evaluated. First, the optimal grid specification was searched, namely 

the number of bins per axis (m/z and intensity) from which the 2D distribution of the m/z-intensity pairs is 

obtained. From this distribution, specified by the number of bins on each axis, N x N features were derived, as 

described previously. Combinations of m/z and intensity bins from 1 to 20 were evaluated. It is worth mentioning 

that the pair (1, 1) means that there is only one bin for the m/z values and one bin for the intensity values and 

hence corresponds to the number of fragments in a spectrum. The heatmaps in Figure 3 show the results for all 

metrics. A first observation is that the use of a very granular grid seems to make little sense, as the heat map shows 

undesirable performance scores for more granular binning (Figure 2 and Figure 3). A closer look reveals an almost 

identical pattern in all four metrics. Areas with highest scores (i.e., darkest shades) are in two locations in the 2D 
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space. In the case of log loss, it is the opposite, as one seeks to obtain the smallest metric. Visual inspection 

indicates that the best-performing pairs are (m/z, 1), ∀x ∈ {8, 9, …, 20}, but also the pairs (m/z, intensity), m/z ∈ 

{1,2}, intensity ∈ {11,12}. These results suggest that the use of 1D histograms is preferable to 2D histograms. One 

possible explanation could be that the more granular the space becomes, the sparser the grid cells are (i.e., most 

values are equal to zero). The four best bin combinations (see Table 1) were selected for further comparisons. 

Results obtained using the 1D unevenly distributed grid are shown in Figure 2. In this specific case, no difference 

was observed as the number of bins was increased up to 20, suggesting that the granularity of the lowest layers 

does not play an important role, likely because noise (i.e., m/z values having an intensity < 5% of the maximum) was 

removed during pre-processing. Nevertheless, the best performing bin dimension was 14 (i.e., accuracy of 0.71 

(0.04), average precision of 0.68 (0.04), ROC AUC of 0.77 (0.04) and log loss of 9.93 (1.41)).  

 

 

Figure 2: Results obtained using the 1D uneven grid.  
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Figure 3: Metrics for each combination of m/z (x-axis) and intensity (y-axis) bins. Each value represents the average metric score (together with 

the standard deviation) obtained from a Stratified 10-Fold Cross-Validation for a given (#m/z, #I) combination. A Gaussian blur filter (σ = 1) was 
applied to the heatmap to facilitate visualisation of the results.  

 
Table 1: Bin number combinations providing the best metrics. Results are sorted by log loss and decreasingly by average precision, ROC AUC 
and accuracy. Standard deviations are shown between brackets.  

(# m/z bins, # intensity bins) Accuracy Average Precision ROC AUC Log Loss 

(19, 1) 0.75 (0.05) 0.73 (0.06) 0.81 (0.04) 8.77 (1.56) 

(10, 1) 

1) 

0.74 (0.03) 0.69 (0.06) 0.79 (0.04) 9.06 (1.03) 

(12, 1) 

1) 

0.73 (0.05) 0.74 (0.06) 0.80 (0.05) 9.28 (1.65) 

(2, 11) 0.73 (0.04) 0.70 (0.09) 0.79 (0.06) 9.28 (1.49) 

 

3.1.2 Features selection 

In addition to the previously described Grid features, Handcrafted and newly proposed Distance features were 

tested individually and combined, as shown in Table 2, before evaluating them with the holdout test set. It should 

be noted that grid features were not included in the correlation testing because their structure is inherently 

different, while both Distance and Handcrafted features are based on heuristics and are likely going to contain 

similar information because criteria for handcrafting were partially similar. A Spearman rank correlation test was 

applied to the combined features and results are shown in Figure 4. As expected, the number of peaks and the 

count of distances are fully correlated. It can be observed that almost all distance features form together the 

cluster to the right. Interestingly, the two least correlated features are the precursor m/z and the collision energy. 

In fact, one might have expected the two to be somehow correlated as larger molecules would need higher 

collision energies to obtain satisfactory MS2 spectra.  
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Figure 4: Hierarchical clustering dendrogram based on outcomes of the Spearman correlation test. The y-axis represents the degree of 
dissimilarity between the features, which is D = 1 − |ρ|, where ρ is the pairwise rank correla�on coefficient. Consequently, if the correlation is 

one or minus one (i.e. fully correlated), the dissimilarity is zero. 

 

Cross Validated Recursive Feature Elimination (RFECV) (Chen and Jeong, 2007) was used as a second approach for 

feature selection. This routine first trains a model with all features, giving each feature a rank based on its 

importance calculated by the estimator, in our case the Random Forest, so that features with low rank are 

recursively discarded until only equally important features (i.e., rank 1) remain. While this method generally 

depends heavily on the model’s estimate of feature importance and is generally not safe as a feature selector 

alone, it is useful for creating new subsets of features that are then evaluated in a separate procedure. In this case, 

ten different feature groups were selected for evaluation, in which the combination of RFECV with a correlation 

removal (applied together or separately) was tested. The validation results (in the form of the Stratified 10-Fold CV) 

are sorted by Log Loss and presented in Table 2. The Combined set refers to the Handcrafted and Distance features 

taken together. Precursor mass and collision energy were added to all 10 chosen sets. The 2D- and 1D-Grid feature 

sets were computed using the number of bins that give the highest performances (see previous subsection). 

Uncorrelated refers to feature subsets which passed through the correlation analysis (i.e., features with a 

dissimilarity value below 0.3 were discarded). Recursive feature elimination (RFE) was applied only to the Combined 

set, given that none of the features were discarded for the other sets. As can be seen, best performances were 

obtained with the Handcrafted feature set, consisting of 14 features in total.  

 
Table 2: Validation performance results of combinations of feature sets. Average and standard deviation (between brackets) are shown.  

Feature groups 
Accuracy Avg 

Precision 
ROC AUC Log Loss #Feats 

Handcrafted 82.6 (2.3) 84.5 (4.1) 89.5 (2.7) 6.00 (0.78) 14 

Combined + RFE 82.1 (3.4) 83.8 (3.9) 88.6 (3.0) 6.18 (1.16) 16 

Combined 81.7 (3.9) 84.1 (4.1) 88.8 (2.9) 6.33 (1.34) 22 

Handcrafted + Uncorrelated 81.6 (3.2) 84.2 (3.8) 89.0 (2.8) 6.36 (1.10) 8 

Combined + Uncorrelated 81.4 (3.3) 84.5 (3.1) 89.1 (2.5) 6.44 (1.13) 9 

Combined + Uncorrelated + RFE 79.8 (3.6) 82.7 (3.9) 87.5 (2.8) 6.98 (1.22) 7 

Distance 78.6 (3.4) 83.4 (4.8) 87.7 (4.1) 7.38 (1.19) 10 

Distance + Uncorrelated 78.5 (4.6) 80.9 (6.1) 86.9 (3.9) 7.42 (1.57) 5 
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1D Grid (14) 78.5 (4.6) 81.3 (4.5) 86.6 (3.1) 7.42 (1.58) 16 

2D Grid (19, 1) 77.2 (3.5) 80.3 (3.0) 85.6 (2.4) 7.86 (1.22) 21 

 

 

3.2 Testing results 

The most promising sets of features from each category (Handcrafted, Distance and their combination, 1D and 2D-

Grid) based on validation results, were compared using the holdout (test) set. For this purpose, all models were re-

trained using both training and validation sets. Results are reported in Table 3 and Figure 5. As can be seen, all 

feature sets perform reasonably well, achieving on average an accuracy of about 79%, an average precision of 82% 

and a ROC AUC of about 86%. It is interesting to notice that the baseline (i.e., number of peaks) only has an overall 

10% lower performance compared to the other features. This might suggest that the number of peaks in MS2 

spectra after normalisation and noise removal is a rather good predictor of spectral quality. Regarding newly 

introduced Distance and Grid features, these showed similar results to the Handcrafted features derived from 

previous studies. These findings are also visible in Figure 5, which shows both ROC and Precision-Recall curves. 

Unlike the baseline approach, the selected feature sets provided similar performances, especially with regard to the 

ROC curve. It is noteworthy to mention that even though obtaining relevant features in the field of small molecules 

is more complex compared to proteomics, where one can rely on additional information/patterns due to the 

occurrence of repeating units (i.e., amino acids and peptides), results obtained here are consistent with 

performances reported in the literature. For instance, in the recent approach proposed by Gholamizoj and Ma 

(2022), ROC AUC ranging from 68% to 89% were obtained for the classification of MS2 spectra of peptides.  

 

 
Table 3: Performances (in %) of the models trained using the selected feature sets. 

Features Accuracy Average precision ROC AUC 
Number of 

Features 

Handcrafted 80.4 85.8 88.2 14 

Combined + RFE 79.1 82.6 87.4 16 

Distance 78.2 81.5 86.1 10 

2D Grid (19, 1) 78.2 81.1 86.1 21 

1D Grid (14) 78.9 81.1 86.0 16 

Baseline (# peaks) 69.8 64.4 76.5 1 
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Figure 5: ROC curves (left) and Precision-Recall curves (right) obtained for the models trained using the selected feature sets.  

3.3 Optimized model 

Based on the outcomes of the testing step, the model with the best performances, namely the one computed using 

the Handcrafted feature set, was further investigated, and optimized. For this purpose, the confusion matrix of the 

Random Forest Classifier was directly examined instead of assessing the metrics derived from it. Figure 6 depicts 

the confusion matrix, which reveals a precision of 
��

�����
= 162

210� = 0.771 using a standard threshold of 0.5. 

However, as discussed previously, it was decided to favour precision above the other performance parameters to 

minimize the chance of having a BAD spectrum being mislabelled as GOOD. For this purpose, the f-beta score 

(Goutte and Gaussier, 2005) was evaluated to find an optimal threshold for probability predictions. The f-beta score 

(i.e., �� = (1 + ��) ×
��������� × ������

��×����������������
) uses the beta parameter as weight for the recall. Therefore, when beta is 

less than one, recall is less important and the precision is more important in the f-score, which is the harmonic 

mean between these two scores. By moving the threshold to the right, we can create a more conservative decision 

maker, i.e. will assign less GOOD and more BAD. Using a beta parameter of 0.5, corresponding to a threshold of 

0.661 and allowing to get a final accuracy of 79%, a higher precision of 85% could be attained with a recall of 65%, 

which is in line with other quality prediction models developed in the field of proteomics. These results are also 

satisfying when considering the purpose for which this model was developed, namely to automatically evaluate the 

quality of MS2-spectra of (small) environmentally relevant compounds. Given that laboratories using NTS analyses 

detect large numbers of unknown features, of which only a small fraction can generally be identified due to, among 

other things, low quality MS2 data, having an algorithm that can automatically label features having good MS2 data 

with 85% precision is highly valuable. This could in fact be used to prioritise features (i.e., focusing only on those 

which have higher chances of being successfully identified) and/or it could be used to decide whether additional 

analyses focusing on specific features (e.g., targeted experiments or inclusion lists) are required to obtain data of 

higher quality.  



 

 

BTO 2023.017 | Februari 2023 

Spectral Quality - Quality prediction of tandem mass spectra of environmentally 

relevant compounds using machine learning 16 

 
Figure 6: Confusion matrix of the RF Classifier computed using Handcrafted features. Here the classification threshold was set to default 0.5.  

 

 

4 Conclusion and recommendations 

Acquisition and processing of high-quality tandem mass spectra has clear advantages, both for identification and 

predictive modelling purposes. However, while various applications have been reported in the field of proteomics, 

an automated approach to assess the quality of fragmentation spectra in the field of small and environmentally 

relevant molecules was still missing. In the context of this work, a RF classifier was trained capable of attaining 

comparable if not superior performances compared to approaches previously reported in the field of proteomics. 

In fact, best performing model obtained in this work provided very similar results compared to the deep learning 

model recently developed by Gholamizoj and Ma (2022) (0.88 and 0.89 ROC AUC). Similarly to the work done by 

Nesvizhskii et al. (2006), the classifier was not affected by the presence of potentially correlated features. With 

respect to results obtained using the Grid features-based model, the Random Forest classifier obtained here using a 

1D grid outperformed the Gaussian Mixed model developed by Logan et al. (2004) (0.86 and 0.76 ROC AUC, 

respectively). Similarly, the model developed here also performed slightly better compared to the one obtained 

through Boosting when using a 2D grid (0.86 and 0.85 ROC AUC, respectively). Despite being developed on what 

might be considered a rather small dataset, obtained results suggest that the sets of features tested in the context 

of this work and the optimised classifier can become a very useful tool to automatically assess the quality of MS2 

spectra of small and environmentally relevant molecules. Applications could range from improving and automating 

spectral library curation and identification, MS-based predictive modelling and even acquisition, should these 

approaches become part of acquisition parameters in DDA-methods for instance. Future work should focus on 

evaluating the performances of the obtained model on a larger dataset or use the current model in a semi-

supervised approach to label a larger dataset and eventually train a more advanced model (e.g., deep learning).  

 

From the perspective of a drinking water laboratory, the model that has been developed in the context of this 

project can be readily implemented to facilitate the analysis and interpretation of both suspect (often referred to as 

library screening) and non-target screening data. Firstly, data-dependent acquisition (DDA) data that has been 

acquired by laboratories for their yearly screening analysis of drinking water sources can be evaluated using the 

developed algorithm. Specifically, MS2 spectra of detected features can be automatically labelled as being of high 

or low quality using this model. The analyst can then focus only on those features which were scored as of high 

quality and either disregard the other ones or decide to rerun certain samples to obtain MS2 spectra of better 

quality (for instance through an inclusion list which would guarantee that one of multiple MS2 spectra of features 
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of interest are acquired). This would reduce time spent on trying to identify chemical features of low quality. 

Similarly, it is expected that this algorithm will increase the fraction of investigated features which give a higher 

similarity score with libraries used (in-house, vendor and open access ones). Similarly, laboratories can use the 

developed algorithm to screen the information included in libraries used in their workflows to determine if the data 

they compared their analysis results to is of adequate quality or not. Secondly, given that also within the practice of 

environmental laboratories, including in the water sector, predictive tools based on MS2 data there is a tendency to 

increasingly use MS2 data for predictive purposes (e.g., toxicity, semi-quantification), having an approach which 

objectively and automatically allows to determine the quality of the available data is potentially of high value. In 

fact, prioritisation of features of interest based on these predictive models will greatly benefit from having input 

data of high quality. Based on the promising results obtained in this project, we encourage laboratories to test the 

developed algorithm on their data and to evaluate to which extent it reduces NTS processing time and whether it 

has an impact on the number of features that can be (tentatively) identified. The source code to process MS2 data, 

calculate features and train the model can be shared with the laboratories.   
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