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Managementsamenvatting 

Environmental Forensics: stoffen die gelijk variëren in concentratie linken aan 

stofeigenschappen, omstandigheden en mogelijke emissies, geeft inzicht in vervuiling 

Auteur(s)  Dr. ir. Tessa Pronk, dr. Elvio Amato 

In de Nederlandse oppervlaktewateren komen veel verschillende stoffen voor. Metingen tonen dat hun 

concentraties variëren. Het is vaak onduidelijk waarom een bepaalde stof op een bepaald moment op een bepaalde 

plek in een hoge concentratie wordt gemeten. Gebeurtenissen reconstrueren die leiden tot verhoogde 

concentraties kan met technieken uit het vakgebied ‘Environmental Forensics’. In dit rapport is gekeken naar 

concentraties van stoffen in samenhang. Met clustering-technieken zijn voor verschillende locaties in Rijn en Maas 

groepen van stoffen (‘clusters’) vastgesteld. In deze clusters variëren stoffen in metingen op eenzelfde manier in 

concentratie. Door de stoffen als cluster te linken met 1) stofeigenschappen 2) gemeten omstandigheden 3) 

aanwezigheid van stoffen die emissiebronnen, stoftypen, of type gebruik vertegenwoordigen in het cluster, kunnen 

hypothesen worden geformuleerd rond de oorzaak van de clustering. Door op deze manier clusters te 

interpreteren kunnen drinkwaterbedrijven de concentraties van stoffen op een bepaalde locatie doorgronden en 

dat geeft de mogelijkheid hierop te anticiperen. Met de hypothesen rond gevonden clusters kan nader onderzoek 

worden gedaan en kunnen zo nodig verantwoordelijke partijen tot maatregelen worden gemaand.  

 

  
 

Overzicht van de drie factoren zoals geanalyseerd in dit rapport die gelinkt worden aan groepen van stoffen 

(‘clusters’) met gelijke variaties in concentratie in oppervlaktewateren. 

 

Belang: Anticiperen op- of aanpakken van 

vervuiling 

Oppervlaktewateren in Nederland bevatten veel 

verschillende stoffen. Deze worden regelmatig 

gemeten en worden daarbij in verschillende 

concentraties aangetroffen. Het is vaak onduidelijk 

waarom een bepaalde stof op een bepaald moment 

en op een bepaalde plek een in een hoge 

concentratie wordt gemeten. Is het een gevolg van 

een recente lozing of zorgen tijdelijke 

omstandigheden voor een hoge concentratie? En 

waarom worden dan slechts specifieke stoffen 

aangetroffen? Waterbedrijven hebben behoefte aan 

meer inzicht in de oorzaken van deze variërende 

concentraties om in de toekomst te kunnen 

anticiperen op verwachte concentraties en daarnaast 

noodzakelijke maatregelen te formuleren en uit te 

voeren.  
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Aanpak: Clusters linken aan stofeigenschappen, 

omstandigheden en referentie-stoflijsten  

Met technieken uit het vakgebied ‘Environmental 

forensics’ is een methode opgezet om nader te 

kunnen kijken naar concentraties van stoffen in 

samenhang. Met clustering-technieken zijn voor 

verschillende locaties in Rijn en Maas groepen van 

stoffen gemaakt op basis van historische 

concentratiedata (2017-2021) van 

oppervlaktewaterlocaties in de Rijn en de Maas. 

Binnen deze clusters variëren de stoffen op 

eenzelfde manier in concentratie. Door de stoffen als 

cluster te vergelijken met stofeigenschappen zoals 

oplosbaarheid, omstandigheden zoals regenval en 

referentielijsten van stoffen die wijzen op een 

bepaalde emissieoorzaak (bijvoorbeeld stoffen die 

gebruikt worden in aardappelteelt of stoffen die als 

biocide in bouwmateriaal worden gebruikt) kan een 

hypothese worden geformuleerd rond de oorzaak 

van de concentraties van stoffen in het cluster.  

Resultaten: 180 clusters op 18 locaties in Rijn en 

Maas 

Er werden meerdere clusters per locatie gevonden: 

in totaal 180 clusters op 18 locaties in Rijn en Maas. 

Sommige clusters waren uniek voor een locatie. Ook 

waren clusters af en toe geïsoleerde ‘incidenten’ 

waarin een aantal stoffen in een enkele meting 

plotseling hoog waren. Een achttal verschillende 

clusters werden op meerdere locaties in ongeveer 

dezelfde samenstelling gevonden. Deze ‘herhalende 

clusters’ zijn in meer detail geanalyseerd om 

oorzaken te achterhalen. Een herhalend cluster met 

met PCB’s werd bijvoorbeeld gekenmerkt door 

stoffen met de eigenschappen hoge persistentie en 

lage mobiliteit en was daarnaast gelinkt met hoge 

waterstanden en een hoog zuurstofgehalte: dit kan 

mogelijk duiden op resuspensie uit slib. Een cluster 

met farmaceutica was afhankelijk van rivierafvoer, 

dat zorgde voor verdunning dan wel concentratie 

van de stoffen. Niet alle stoffen werden in clusters 

geplaatst. Hun concentratie varieerde niet op 

eenzelfde manier als die van andere stoffen. 

Toepassing: Gedetailleerde interpretatie per locatie 

Met de resultaten uit dit project kan in 

vervolgonderzoek verder tot in detail bekeken 

worden hoe de gevonden clusters kunnen worden 

geïnterpreteerd. Met de vervolgens te formuleren 

hypothesen rond oorzaken kan nader onderzoek 

gedaan worden en kunnen zo nodig 

verantwoordelijke partijen tot maatregelen worden 

gemaand. De resultaten vergroten nu al het begrip 

rond gevonden concentraties van stoffen en de 

mogelijkheid hierop te anticiperen. De methoden die 

ontwikkeld zijn kunnen ook op andere, meer lokaal 

beïnvloede oppervlaktewateren worden toegepast 

wanneer een historische meetreeks uit een 

uitgebreid monitoringsprogramma beschikbaar is. 

Rapport 

Dit onderzoek is beschreven in het rapport 

Environmental Forensics, signatures of pollution (BTO 

2023.039) 

 

Bijbehorend datapakket: 

•    https://doi.org/10.5281/zenodo.8220952   

Via een ‘R Shiny-app’ kan de associatie van een 

individuele stof met de gevonden clusters opgezocht 

worden. Bijbehorende applicatie: 

•    https://tessaepronk.shinyapps.io/ShinyEnvFor/  

Andere relevante rapporten: 

BTO 2016.105 Verbetering prognose waterkwaliteit 

bij innamepunten van oppervlaktewater voor de 

drinkwatervoorziening: 

https://library.kwrwater.nl/publication/55745874/   

 

Peer reviewed publicatie: 

 

Pronk et al., 2024 Linking Clusters of Micropollutants 

in Surface Water to Emission Sources, Environmental 

Conditions, and Substance Properties: 

https://doi.org/10.3390/environments11030046 

https://doi.org/10.5281/zenodo.8220952
https://tessaepronk.shinyapps.io/ShinyEnvFor/
https://library.kwrwater.nl/publication/55745874/
https://doi.org/10.3390/environments11030046
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1 Introduction 

The presence of anthropogenic substances in freshwater sources poses a challenge to the drinking water sector. 

Information on the sources and emission routes of contaminants in surface water and groundwater is often lacking, 

which makes it difficult to define measures to reduce or prevent emissions. However, environmental forensic 

approaches have shown to be useful for linking chemicals to sources of contamination. In broad terms, environmental 

forensics involves the reconstruction of the chain of events that lead to episodes of contamination in the 

environment. Investigations typically aim at understanding the links between contamination sources and release in 

the environment, and in some cases may also involve the establishment of the legal responsibility of the 

contamination event in a regulatory context. Typical investigation techniques include chemical fingerprinting, 

chemical fate and transport modelling, hydrogeological investigation, and reconstructing operational histories. These 

techniques have been applied in many different scenarios, including urban and remote areas, and using varying 

environmental matrixes (e.g., water, sediment, soil, biota). For instance, the occurrence of one or multiple chemicals 

with respect to their background concentrations, spatial and temporal distribution, can be used to reconstruct 

contamination events (Warner et al., 2019; Yang et al., 2020). Or, chemical indicators can be used to investigate 

connectivity of waterbodies, e.g., between urban, agriculture and natural environments (Pascual-Aguilar et al., 2013). 

In Appendix VII a more extensive literature review on techniques can be found. 

Compliance with water quality regulations requires extensive monitoring campaigns to be carried out, which 

result in large datasets of chemical measurements. Since the list of monitored substances is constantly growing, the 

size of monitoring datasets also consistently increases. The use of these datasets is generally limited to the 

comparison with water quality guidelines, and, in case of major contamination episodes or calamities, to applications 

for forensic investigations. In contrast, little effort is dedicated to mining of underlying information that may likely 

exist in such datasets. For instance, statistical techniques that detect specific signatures, associations, and co-

occurrence of substances can be used to investigate patterns and relationships between substances in such datasets, 

and contribute to revealing underlying information that is not immediately evident, and thus often overlooked.  

In this study, we investigate the aspect of ‘chemical context’ for applications in environmental forensics 

investigations by clustering analysis. The co-occurrence of substances in monitoring data can be exploited to create 

associations with specific sources of pollution. Similarly to words in a text, the meaning of the presence of a substance 

may be interpreted in the context of other substances in the same measurements. To give a hypothetical example; 

permethrin is commonly used as an insecticide for wood preservation treatments (Arip et al., 2013) and also as an 

antiparasitic for veterinary medicine (Carabajal et al., 2021). If at a location more wood preservatives are found with 

permethrin, it can be inferred that this location is affected by activities related to wood treatment or construction 

activities. In contrast, if other veterinary-related substances are found, the occurrence of permethrin may indicate 

emissions linked to animal farming. In other words, the context of measured substances can assist with interpretating 

the occurrence of individual substances. Moreover, the cooccurrence of substances can potentially be linked to 

substance properties that substances have in common, and/or common environmental circumstances that are 

associated with the found substances. 

With regard to the analyses, firstly statistical methods are performed to identify groups of substances that 

frequently occur together in large scale datasets – i.e. clusters – using large sets of structural monitoring data of 

surface water over several years. Consequently it is investigated 1) How clustered measurement data can be 

interpreted by looking at the presence substances in ‘reference lists’ of substances that are linked to specific emission 

sources (such as an industry type) or emission causes (such as use of insecticides) 2) If specific substance properties 

can be linked to the identified clusters. 3) If specific environmental conditions can be linked to the clusters. Then, it 

is possible to form a hypothesis on why the substances occur in the identified cluster.  



 

 

 

BTO 2023.039 | August 2023  Environmental Forensics, signaturen van vervuiling 7 

 

2 Methods 

2.1 Environmental monitoring data 
The basis for the analyses are monitoring data from RIWA-Rijn and RIWA-Maas (Table 1). This data contains 

concentrations of a wide range of contaminants in surface water for a spectrum of locations along the river Rhine 

and Meuse. We consider data for the years 2017-2021. Parameters are, for the most part, measured every 4 weeks.  

 

Table 1. Data used for exploratory analyses 

 

 RIWA-Rijn RIWA-Maas 

Temporal spread 2551 unique sampling events over 

5 years (by date) 

2323 unique sampling events over 

5 years (by date) 

Spatial spread 9 locations 13 locations 

Monthly aggregated data for 

clustering 

 539 samples, 854 substances (with 

a CAS-number) 

646 samples, 1008 substances 

(with a CAS-number) 

Weekly aggregated data for 

clustering 

1128 samples, 854 substances 

(with a CAS-number) 

2315 samples, 1008 substances 

(with a CAS-number) 

 

 

The RIWA datasets contain measurements for a large number of substances. In many measurements substances 

occur at concentrations below the reporting limit (RL) and these were indicated in the dataset using the symbol “<”. 

Concentrations measured <RL were replaced by zeros. This helps to recognise these values later and remove all 

substances that were never measured above RL. Not all substances were measured in all samples (i.e., not all 

substances were always included in the method used to analyse samples). As a result, the datasets are populated by 

many ‘missing values’, which indicate that a given substance is not measured in a sample. This is a problem for 

clustering algorithms. Aggregation to weekly measurements was performed to create a more complete dataset.  

Weekly aggregation was chosen because enough samples and substances remained after weekly aggregation, and 

aggregation by month has some disadvantages. Namely, combining measurements per month will result in 

parameters appearing as a single measurement while these were not necessarily measured in the same sample or at 

the same date. Also, if multiple measurements are done in a month, these need to be condensed into a single value 

by taking for instance the average value. Weekly aggregated data had, on average, four extra samples per location 

compared to monthly aggregated data. The number of substances per location decreased on average 5% and this 

was worst for the locations with less measured parameters (up to 19% loss). Nevertheless, these results indicate that 

the monthly measured substances are for the most part all measured within the timeframe of the same week. 

Because of the increased accuracy of weekly aggregated data, the weekly aggregated data was chosen for further 

analysis.  
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Figure 1. Meuse and Rhine locations with water quality measurement locations, used in this project (also see Table 2). 

 

2.2 Identifying clusters in environmental monitoring data  

Cluster analysis (CA) or clustering is a collection of different methods to group observations in such a way that 

observations in the same group (a ‘cluster’) are more similar to each other than to those in other groups (clusters). 

In our case, observations were the concentrations of parameters. For finding clusters (which we can also call 

‘signatures’, or ‘fingerprints’) of parameters having similar concentration patterns over the samples in monitoring 

data, we perform a hierarchical clustering. Hierarchical clustering (also called hierarchical cluster analysis or HCA) is 

a specific method of cluster analysis which seeks to build a hierarchy of clusters. There is no prior information on 

group membership needed for the clustering. Only the values for the observations are used to compute a measure 

of similarity. The clustering can be performed both on the parameters (i.e. the chemicals), as on the samples 

(measured on different locations at different times). In a HCA, dendrograms that illustrate a hierarchy are used to 

show relationships between parameters. Parameters that fall into another cluster only towards the bottom of the 

hierarchy are more similar than parameter that fall into other clusters higher up in the hierarchy (see Figure 2). The 

vertical length of the branches is an indicator for similarity, the shorter the branches the more similar the parameters 

are. 
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Figure 2. Dendrogram example. Splits at the top of the dendrogram indicate (in this report) large differences in 

substance concentration patterns. Splits towards the bottom indicate greater similarities. 

2.2.1 Distinguishing water sample types 

Prior to determining clusters of substances in historical data with HCA or any other CA method, it is important to see 

if there are different sample types. For the RIWA data, samples may differ based on the location and sampling date 

(i.e., season or year). This is important for the identification of clusters. Patterns can be disrupted if substances are 

emitted by one particular source (with accompanying substances) in one sample type, and by another source (with 

accompanying substances) in the other sample type. If the sample types are not distinguished and analysed 

separately, this will weaken the correlation between substances and will fail to uncover the correlation that is only 

present in one type of samples. 

 

Determining if there are different sample types can be achieved by unsupervised clustering. We investigated if the 

samples of the RIWA dataset were very different between years, seasons, or locations. We perform the analysis by a 

principal component analysis (PCA). PCA is a statistical procedure that summarizes the information in large data 

tables by a smaller set of “summary indices” that can be more easily visualized (as points in a 2D or 3D plot) and 

analyzed. The points (representing the information in samples) in the 2D or 3D plot can be colored according to the 

factors years, months or locations to see if any groups have appeared in the PCA that corresponds to these factors. 

If we know sample types can be distinguished and split the data accordingly before analyses, we know that we have 

a good chance to find patterns of structurally co-occurring substances with HCA. 

2.2.2 Pre-processing data for clustering 

No missing values are permitted in clustering. Because in our case there is no accurate way to replace values with 

estimated values, especially with possibly highly varying concentration data, we choose to remove missing values. To 

efficiently remove missing values while maintaining as much data as possible, an algorithm was applied that 

automatically removes either the parameter or a sample with relatively high fraction of missing values. This is 

repeated until the dataset no longer contains missing values. Locations that had only a few samples (<20) with 

measurement data were omitted from the analyses. Additionally, parameters without any measurements above the 

reporting limit were removed. 

 

The concentrations of the substances in a sample influence the result of the clustering. By scaling the data, the actual 

height of the concentrations will not influence the results and only the relative concentration will induce a difference. 

To achieve this, data per parameter was scaled to a ‘Z-score’. The Z-score is the number of standard deviations a 

given data point lies from the mean. For data points that are below the mean, the Z-score is negative. The formula 

for calculating the Z-score is z = (x-μ)/σ, where x is the concentration of a given substance, μ its mean concentration, 

and σ its standard deviation. Typically, Z-score values are between -3 and 3. This small interval makes the influence 
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of different substances more comparable. Prior to clustering, samples that had overall high Z-scores for the 

substances were excluded as ‘outliers’. This is because regular patterns in the clusters can be disrupted by the 

influence of such deviating samples. This was done based on visual inspection. These samples are separate from the 

other samples in a dendrogram (e.g. see Figure 2, a ‘substance’ would be a ‘sample’).  

 

In order to generate clusters, an appropriate metric (a measure of distance between pairs of observations/ 

parameters) and a linkage criterion which specifies the dissimilarity of sets as a function of the pairwise distances of 

observations/parameters in the sets is used. For the analysis in this report, ‘Euclidean distance’ was used as a 

similarity measure in the HCA, to estimate the distance or (dis)similarity of each pair of observations. ‘Ward’ was 

used as the linking criterion. This manner of clustering minimizes within-cluster variance. This is in agreement to used 

settings in genomics analyses, another field where clustering is often used to find signatures and genetic 

resemblance.  

 

Unfortunately, there is no such thing as the objectively best clustering. Different methods are better or less suited to 

bring different patterns to the surface. These settings produced visually concise clusters for the various locations and 

therefore were chosen as the clustering settings of preference. 

 

2.2.3 Assigning Cluster significance 

For our purpose to select clusters of substances that change in concentration together, we want to only select 

clusters that look consistent in a heatmap (e.g. Figure 8) and are consistent throughout the dendrogram towards 

the bottom where these would in a random situation increasingly split up in separate clusters (e.g. Figure 2). To 

determine such clusters a ‘cluster significance’ (ClusSig) method was developed. More details can be read in 

Appendix III. 

 

In short, the ClusSig method works with the simple assumption that any relatively large found cluster compared to 

an expected randomly occurring size is extraordinary and points to a real (not random) cluster. It works as follows. At 

every level of the hierarchy a distribution of randomly drawn cluster sizes is simulated. Some cluster sizes will be very 

rare and others common. At a determined level in the cluster hierarchy (where the overall significance of substances 

is highest) the size of the real, actual cluster sizes in the data are compared to the random distribution. If the size of 

any cluster at this level is very rare (less than 10 percent of simulated random clusters have this size) it is considered 

significant.  

 

2.3 Linking extra information clusters of substances 

Once clusters are established, other information is linked to these clusters of substances. Three types of 

information are considered (see Figure 5) and this is explained below. 

2.3.1 Associating emissions via reference lists of substances to clusters. 

If the substances in the cluster consist of substances that are typically associated with one specific use, source or 

other origin, this provides a hypothesis on why the substances are found as a cluster. For instance, cluster could 

consist of substances that are typically used in potato cultivation. This could mean that the cluster is caused by pest 

control in potato cultivation. In this report we refer to lists of substances with a commonality in use or origin as 

‘Reference lists’. Reference lists were compiled using literature data and (public) lists of chemicals (Table 2). For an 

overview, see the Table in Appendix I. For all chemicals in all Reference lists, see the data package 

(https://doi.org/10.5281/zenodo.8220952, 2023). 

The sources for these lists included: chemicals used in different agricultural activities in certain quantities for the 

production of fruit, chemicals used in agriculture for the production of vegetables (Dutch Central bureau of statistics, 

https://doi.org/10.5281/zenodo.8220952
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CBS), chemicals measured in effluent of Dutch sewage treatment plants (Watson database), chemicals measured in 

close proximity of different agricultural activities (“Landelijk meetnet Gewasbeschermingsmiddelen”, LM GBM), 

chemicals consistently measured in the trans-border rivers Meuse and Rhine (database RIWAbase), biocide product 

types (ECHA website), parameter groups used in the database of substances of RIWA-Rijn 2022, a review of 

substances and emissions published by Warner et al. (2019), substances listed in the European Environmental Agency 

(EEA) industrial emissions database (limited to emissions in water), a list of veterinary pharmaceuticals found in 

manure (Rakonjac et al., 2022) or illicit drugs (RIVM, 2022) and several lists such as ‘veterinary pharmaceuticals’ as 

listed in the ‘Comptox chemical lists’. In these lists a total of 1968 unique substances are included. 

Most substances are relatively unique, present in one reference list, while others are associated with many different 

reference lists. The list that contains many substances is ‘Crop sectors, total’ (170). Substances that occur in relatively 

many lists are Glyphosate (29), Thiacloprid (19), Deltamethrin (18), Azoxystrobin (18). This has partly to do with the 

fact that these chemicals are applied, both in agriculture (crop protection), in household setting (gardening, pest 

control) and by municipalities (remove weeds, control insects) which leads to membership in different Reference 

lists. Overlapping lists were merged (see Appendix I for a more in depth explanation). This resulted in 164 separate 

reference substance lists. The overall similarity of the Reference lists (expressed as the % remaining overlap in 

substances) is visualised as a hierarchical clustering in Appendix I. Some lists are still more related than others. 

 

For matching substances found in clusters with substances present in Reference lists we use a ‘hypergeometric test’. 

This method tests significant overlap (‘enrichment’) of two lists. Any two lists can be compared, resulting in a p-value 

for significance of the overlap (see Figure 3). This technique is frequently used in genomics research, to link gene 

expression patterns to known gene expression pathways (Hermsen et al., 2013). The information that is required as 

input for this method is: 

• M, the total number of relevant chemicals (in all reference lists and monitoring data)  

• n, the chemicals in a reference substance list  

• N, the number of chemicals found above the reporting limit in a cluster of monitoring substances (or a 

monitoring sample) 

• X, the size of the overlap 

We can then compute a probability of drawing X chemicals out of N from a measurement containing n reference 

chemicals out of all chemicals M in the following way: p-value = hypergeometric test (x-1, M, n, N).  

 

 

 
 

Figure 3. Visualisation of the hypergeometric test for significance of enrichment of Reference list substances in 

clusters. If the overlap (X) between a given Reference list and a given cluster is larger than a random expected overlap, 

a low p-value is generated (indicating significant overlap). 
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If two lists N and n are very small compared to the total number of relevant chemicals M, it is arguably rare that these 

two have overlapping substances. A small overlap X will be significant. In contrast, if both lists n and N are big, the 

overlap is to be expected. Only a big overlap X will be significant. The significant score is considered and reported in 

the current analyses only if two or more substances overlap between the measured data in a sample and the 

reference list.  

 

2.3.2 Associating substance properties to found clusters  

To test if any detected clusters can be linked to substance properties, several substance property values were 

calculated by (open source) models. These were ‘EpiSuite’ models via the EpiSuite software and ‘Opera’ models via 

the Batch mode in the CompTox Chemical Dashboard. Inorganic substances were not suitable for these calculations, 

and therefore excluded from the analysis. We made boxplots of these substance property values, per cluster (see 

Appendix IV). 

2.3.3 Associating environmental conditions to found clusters 

The influence of environmental conditions on clusters (inclusive inorganic substances) was analysed. These included 

conditions measured in the RIWA-Rijn and RIWA-Maas datasets, such us oxygen, river discharge, pH, dissolved 

organic content (DOC) and temperature. Additional conditions that were included like precipitation, sunny hours per 

day and evaporation potential. These daily measurements were downloaded from the Dutch knowledge for weather, 

climate, and seismology KNMI. Each weather station was linked to the closest monitoring location in Rhine and Meuse 

and data were aggregated per week by taking the mean.  

The influence of environmental conditions on clusters was evaluated in a similar way to that of substance properties. 

This resulted in a rather complex analysis to link environmental conditions to substance concentrations. First, it was 

identified in what samples substances had relatively high (top ten percent) concentration values. This was done for 

Rhine and Meuse separately. If the concentration of a substance was structurally higher in one location within the 

same river system, a correction by normalisation of the concentration values was applied. This lead to an equal 

chance for locations to contribute to relatively high concentration values, and all locations could be represented. The 

value of the environmental condition was administrated for samples in that high ten percent of the substance 

concentrations. Then, per substance, the mean was taken of the ‘condition’ in the samples where the substance had 

those high concentrations. This resulted in a mean value of the condition that is associated with high concentrations 

of a substance. We made boxplots of these values of conditions per cluster, and Meuse and Rhine separately (see 

Appendix IV).  

3 Results: Statistics 

3.1 Sample types in environmental monitoring data 

The first analysis focused on the identification of specific sample types. In Figure 4 we show results of unsupervised 

clustering of four locations of the RIWA-Rijn data (aggregated per month, missing values removed) with a 3D PCA 

plot. The samples in Figure 4 are colored by location (left) and years (right). In Figure 4 it can be observed that the 

clusters are highly defined by location. This observation remains if the plot is made for all locations of the RIWA-Rijn 

data (not shown) and also the RIWA-Maas data (not shown). If the samples are colored by season, no obvious 

clustering appears (data not shown). This shows that we can take the location as a starting point to derive clusters.  

https://comptox.epa.gov/dashboard/batch-search
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
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Figure 4. Similarity between RIWA-Rijn time/place samples with a PCA score. Samples from the same place are alike 

(left). In contrast, the period (year) has no noticeable influence on clustering (right). Colors in the left plot refer to 

Andijk (blue), Nieuwersluis (green), Nieuwegein (red) and Lobith (orange). The colors in the right plot refer to years 

2017-2021. 

 

3.2 Clusters in Meuse and Rhine locations 

Relevant clusters were identified with the ClusSig approach. There are about ten ‘significant’ clusters per location. 

The average size of the clusters is 6 substances. There is a clear positive link between the number of substances in a 

location and the number of clusters identified. Also, the more clusters, the smaller on average the cluster size (from 

6.5 to 4.5 substances). This may indicate that the ‘optimal level of cluster number’ is chosen more towards the bottom 

of the hierarchy when a lot of substances are involved. Determining the ‘optimal level’ may have to be reevaluated 

in future applications. 

 
Table 2. Overview of clusters per location, identified with the ClusSig approach.  

 

Location 

code 

Location 

name 

Year / 

months / 

week 

Substances Clusters  Substances 

in clusters 

Average 

cluster 

size 

River 

AND Andijk 62 168 13 64 4.9 Rhine 

LOB Lobith 52 193 18 100 5.6 Rhine 

NGN Nieuwegein 63 201 22 102 4.6 Rhine 

NSL Nieuwersluis 64 139 10 68 6.8 Rhine 

BRI Brienenoord 62 121 8 52 6.5 Rhine 

KAM Kampen 64 109 10 53 5.3 Rhine 

KMW Ketelmeer-

West 

61 102 10 59 5.9 Rhine 

MMM Markermeer-

Midden 

60 94 8 51 6.4 Rhine 
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VWZ Vrouwezand 

(IJsselmeer) 

61 88 6 37 6.2 Rhine 

BRA Brakel  53 164 16 75 4.7 Meuse 

HEE Heel 52 163 18 76 4.2 Meuse 

EYS Eijsden 60 111 6 48 8 Meuse 

HAV Stad aan 't 

Haringvliet 

53 166 11 67 6.1 Meuse 

HEU Heusden 60 62 6 26 4.3 Meuse 

ROO Roosteren 12 89 9 52 5.8 Meuse 

NAM Nameche 64 40 3 20 6.7 Meuse 

TAI Tailfer 49 39 4 21 5.3 Meuse 

STV Stevensweert 62 114 10 75 7.5 Meuse 

KEI Keizersveer 54 177 13 68 5.2 Meuse 

LUI Luik 63 57 4 17 4.3 Meuse 

 

Each cluster was given an unique identifier, consisting of the name of the location and the number of the cluster. The 

occurrence of a cluster with specific substances proved, in some cases, unique for a location. Other clusters are 

recurring in multiple locations, such as the clusters shown in Table 4. These clusters are termed ‘Recurring clusters’. 

Some of the clusters are based on a single measurement in which the substances were suddenly unexpectedly high. 

These clusters could indicate ‘incidents’. Several individual substances that are measured in Rhine and Meuse 

locations never occurred in a cluster, like acetaminophen (paracetamol) and trichloroacetic acid (not shown). This 

points to erratic emissions for such substances. Other substances were always member of a cluster, in any location, 

such as titanium or indeno(1,2,3-cd)pyreen (not shown). The file with all clusters and the substances can be found in 

the data package (https://doi.org/10.5281/zenodo.8220952 2023 ) associated with this report. 

These results provide a benchmark for clustering analyses. If a clustering analyses is done in a new location, it can be 

compared to the results above. Questions can be asked with regard to the percentage substances in clusters 

(indicative of the structural influences in the location on the substances) or the number of ‘incidents’ to quantify 

unexpected short episodes of pollution. Also the specific composition of substances in clusters can be compared. 

3.3 Associating extra information to clusters 

The fact that substances are present in clusters means they do not vary in concentration at random. Some underlying 

cause must result in their similar varying concentrations. To find such causes, the clusters are linked to three possibly 

determining factors: emissions or uses (by finding overlap with Reference lists), environmental conditions at times 

when concentrations are particularly high (e.g., heavy rainfall, temperature, river discharge, windspeed), and 

substance properties (e.g. solubility, Kow) (see Figure 5, and Table Appendix IV).  

https://doi.org/10.5281/zenodo.8220952
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Figure 5. Clusters of substances and information that could lead to the causes of the substances’ concerted presence 

at any time in any place. 

 

3.3.1 Linking substance properties to clusters 

Properties of substances, such as summarized in Table Appendix IV, influence the likelihood of finding substances in 

surface water at any time or place. For instance, the tendency of a substance to migrate from water to air via 

volatilization will depend on its water solubility, vapor pressure, Henry’s law constant and its concentration. In 

contrast, the tendency of a substance to enter the water system via overland flow depends on Koc and solubility. 

The tendency of a substance to bind to sediment in water depends on solubility, Kow, Koc and density (Agency for 

Toxic Substances and Disease Registry). This may also influence the tendency of the substance to accumulate on 

river banks. 

 

For all clusters with more than 4 substances, not being organic (because no properties could be retrieved via the 

prediction softwares), we investigated if the clusters can be linked to the properties (see Table Appendix IV) of the 

substances in the cluster. The results of these analyses are in the figures in Appendix IV. Figure 6 is shown here as an 

example. In Figure 6 the log Solubility values of all relevant clusters of all locations are shown. Several clusters are 

clearly associated with very low log Solubility, compared to the log Solubility that is average for all substances (both 

in and out of clusters) which is indicated in the green boxplot. Solubility is an important indication of a contaminant’s 

mobility in the aquatic environment, and its ability to reach drinking water sources such as groundwater. A low 

solubility makes a substance less mobile. From Figure 6 it can therefore be derived that some clusters are specifically 

associated with the low solubility of the substances in the cluster. 

 

 
 

https://www.atsdr.cdc.gov/pha-guidance/conducting_scientific_evaluations/exposure_pathways/environmental_fate_and_transport.html
https://www.atsdr.cdc.gov/pha-guidance/conducting_scientific_evaluations/exposure_pathways/environmental_fate_and_transport.html
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Figure 6. The association of clusters with log Solubility. The green box indicates the average log Solubility value of all 

the substances, also those that do not appear in a cluster. Every blue box indicates one cluster of substances, named 

on the x-axis by a location code and a cluster number. See Table 2 for the abbreviations of the cluster location codes.   

 

Other results in the Figures in Appendix IV show that in several clusters consist of substances that:  

- have remarkably low solubility compared to average values of substances in the dataset 

- have remarkably high Koc compared to average values of substances in the dataset 

- have remarkably high half-life compared to average values of substances in the dataset 

- have remarkably high or low volatility-related properties such as Volatility and Henry’s constant. 

- have remarkably high atmospheric hydroxylation constant (AOH)  

 

This indicates that these are important properties that influence the fate of substances; these may contribute to the 

similar concentration patterns of substances in some clusters. Other properties (see Appendix IV) may possibly 

incidentally cause a cluster. The density, for instance, is a property of a chemical in its pure form, and is less relevant 

when a substance is dissolved in water. It is relevant however for liquids that can float on water because of this 

property.  

 

In contrast, if a single cluster consist of substances that display a wide range of a property, it can be an indication 

that the emission is a current and repeating emission. For instance, LOB_cluster_30 has a wide range of solubilities 

(Figure 6). It consists of two anti-epileptics (primidone and lamotrigine), two high blood pressure regulators that also 

aid in kidney function with diabetes (telmisartan and candesartan), one antibiotic (Sulfamethoxazole) and an artificial 

sweetener (sucralose). These could be caused by a regular emission from a sewage treatment system with either 

patients or a health care center near the monitoring point.  

3.3.2 Linking environmental conditions to clusters 

For all clusters (again, only those with four or more substances) it was investigated if high concentrations in the 

clusters can be linked to environmental conditions. The results of these analyses are in the figures in Appendix IV. 

Figure 7 is shown here as an example. In Figure 7 the river discharge values associated with the highest 

concentrations of substances per cluster are shown for the river Meuse. Several clusters are clearly associated with 

very high discharge in the Meuse. Others are associated consistently with low discharge, compared to river 

discharge that is average for high concentrations of all substances (both in and out of clusters) which is indicated in 

the green boxplot.

 

 

Figure 7. The association clusters with river discharge (m3/s) in the Meuse. The green box indicates the average river 

discharge value of all substances when their concentration is high (top 10 percent), also those that do not appear in 

a cluster. All blue boxes indicate one specific cluster, indicated on the x-axis by a location code and a cluster number. 

See Table 2 for the abbreviations of the cluster location codes.   
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The figures in Appendix IV show that several clusters are associated with one or more environmental conditions:   

- Specific clusters were associated with relatively high or very low temperatures. The substances in those 

clusters had high concentrations at high or low temperatures in both Rhine and Meuse. Likewise, these 

clusters were associated with sun hours and a high or low evaporation potential. This latter condition is 

dependent on sun irradiation and temperature and this is also dependent on season. This association can 

be attributed to seasonal use of these chemicals or seasonal differences in degradation / mobilisation of 

these chemicals leading to seasonal deviations. 

- For river discharge as a condition, the patterns differed between Rhine and Meuse. For Rhine the association 

between clusters and river discharge was weak, whereas for the Meuse some clusters have high 

concentrations at high discharge levels and low discharge levels. The same goes for e-coli and daily 

precipitation, i.e., the substances in the Meuse are highly affected, while this is less the case for the same 

substances in the Rhine. The Rhine river carries a lot more water than the Meuse river and effects may be 

dampened for that reason. The Meuse is rain river whereas the Rhine is also affected by meltwater from 

glaciers. The dynamics of the Rhine are usually a factor 5 at Lobith (1000-5000 m3/s) while the Meuse has 

a factor 100 at Eijsden (10-1000 m/s).  

- The relation of some clusters to oxygen level is quite reproducible between the Meuse and the Rhine. The 

solubility of oxygen is very temperature dependent. There is more oxygen solved in water in colder 

conditions. Alternatively, with higher flow speeds in the river systems, more oxygen may be dissolved in the 

water. This will typically be the case in high river discharge conditions. In addition, oxygen content may drop 

at high oxygen use for instance by bacteria in summer conditions.  

 

Other environmental conditions did, overall, not associate clearly with clusters according to the analyses:  

- For pH anything between 7 and 8 is considered ‘normal’. pH in the rivers did not extend beyond such normal 

values. No clusters had obvious relations with higher or lower pH values.  

Box 1. Influence of varying river discharge The clusters are made based on normalized measured substance 

concentrations. The unit ‘concentration’ (µg/l) has toxicological relevance, so this makes sense. Another 

approach to quantify a substance in a water system is the load (µg/s), which is calculated by taking the product 

of the concentration and the associated river discharge (l/s). A varying discharge typically results in variations in 

the measured concentrations of substances due to dilution effects. If the load is constant, at a very low 

discharge a concentration is expected to be higher due to low dilution, and vice versa. In this report, we 

consider this as simply one of the potential causes for the clustering of substances. 

Some naturally occurring substances are dissolved in run-off water and this counteracts their dilution; their 

concentrations may remain constant with increasing precipitation and associated higher discharge (Ying et al., 

2022) (Sjerps et al., 2017). Some substances like chloride can have both natural and anthropogenic origins 

(Pronk, 2021) with different emission pathways and a mixed relation to discharge. Moreover, other processes 

can influence the concentration of a substance with discharge. Substances can, for instance, build up when rain 

is infrequent and have increased run-off at a rain event. This counteracts the effect of dilution in the waterbody 

only in such situations.  

As an example, in Appendix II the Spearman correlation of river discharge with parameters’ concentrations can 

be viewed for an example location. The plot with correlations between parameter loads and discharge indicates 

that generally loads increase with increasing discharge (indicated by the mostly positive correlations). However, 

the correlation of concentrations of substances with discharge can vary from positive to negative. 
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- The spread in ‘normal’ dissolved organic carbon (DOC) values associated with high concentrations of 

substances was large, and no clusters had obvious relations with high or low DOC values.  

 

So, the results indicate that particular conditions may influence the occurrence of substances as clusters. This will be 

via an interplay with the influence of the properties of the substances in the clusters. Clusters associated with 

temperature could point to current (non-legacy) emissions.  

 

 

3.3.3 Linking emissions via Reference lists to clusters  
The occurrence of clusters can be partly explained by the overlap with Reference list substances as well. As stated 

before, the Reference lists hold lists of substances associated with a particular use, emission source, or substance 

type. Overall, 63 (out of 164) Reference lists (see Appendix I) were significantly overlapping with one or more clusters 

in the Meuse and Rhine. Table 3 shows the top 5 overlapping Reference lists. Most of the clusters overlapped, as 

expected for these rivers, with ‘waste water processing’ -type of reference lists. It is known that the rivers are 

influences by wastewater. Also ‘Dutch rivers’ was found often and this is expected because the list is comprised of 

substances that are structurally found in the Meuse and Rhine. Another Reference list that is often found to overlap 

is ‘Polycyclic aromatic hydrocarbons (PAHs)’ and ‘Herbicides based on a triazine group’. It appears that both rivers 

are for the larger part similarly affected by any of the circumstances that result in the presence of these substances 

(Table 3).  

 

Table 3. Top 5 significantly overlapping Reference lists for clusters from both Meuse and Rhine locations. The Meuse 

has 11 locations, Rhine has 9 so the Meuse has more clusters in total. 

Reference lists Meuse clusters 

overlapping 

Rhine clusters 

overlapping 

Dutch Rivers 52 45 

Waste water treatment plant 54 38 

Installations for waste processing or landfills or refinery 23 21 

Polycyclic aromatic hydrocarbons (PAHs) 17 15 

Industrial chemicals (containing PCBs) 8 10 

Herbicides based on a triazine group 12 8 

 

The dendrogram of Reference list similarities In Appendix I can be used to see how alike reference lists are in the 

substances that they contain. Based on their distance in the dendrogram, reference lists in Table 3 ‘Industrial 

chemicals (containing PCBs)’ and ‘Herbicides based on a triazine group’ are, for instance, quite different reference 

lists from the waste water processing-type of reference lists. This means these may be two separate emission 

sources or pathways. 

Some Reference lists were uniquely (twice or more) overlapping only in clusters of the Meuse, such as substances 

that are members of lists associated with Corn/silage maize cultivation, Seed onions and onion sets, Greenhouse 

potted plant (Gerbera and Chrysanthemum, Orchids), Fruit and decorative trees culture, Herbicides. For the Rhine 

these were Herbicides based on anilides, Organochlorine-based insecticides, and Nutrients. Of course, nutrients are 

present in the Meuse, however these apparently do not cluster together to the extent that they do in the Rhine.  

Overall, the impression is that clusters in the Meuse are overlapping more often with agricultural type reference lists. 

Clusters in the Rhine are overlapping more with pharmaceuticals and industry type reference lists. All overlap 
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between clusters and Reference lists can be found in the data package (https://doi.org/10.5281/zenodo.8220952, 

2023). 

All in all, linking the reference lists to clusters in Rhine and Meuse for the most part confirmed already known and 

general influences (wastewater, industrial compound lists, agriculture). These techniques presumably will work 

better (to be more specific) in smaller, locally influenced waters. 

 

4 Results: Interpretation 

4.1.1 Analyzing recurrent clusters in Rhine and Meuse 
Recurring (found in multiple locations) clusters in Rhine and Meuse, are of particular interest. Either there is a 

common emission source of substances in the recurring clusters in all locations, or some other factor 

(environmental conditions, substance properties) cause the same substances to occur together in several locations. 

Eight clearly recurring clusters were identified. The clusters in Appendix IV can be linked to the recurring clusters in 

Table 4 by their cluster ID (e.g.  “BRA_28” is one instance of the recurring herbicide cluster). One remarkable feat is 

that the recurring clusters consist of similar substances like all metals, all pharmaceuticals, all PAHs, etcetera. 

 

Table 4. Recurring clusters in the Meuse and Rhine. Clusters are considered recurring if they contain similar substances 

in at least 4 locations. Clusters are ranked from very consistent (23 other clusters are similar) to less consistent (4 

clusters are similar) (top to bottom). See Table 2 for abbreviations of locations. 

 

Recurring 

cluster 

number 

Substances (substances in other than the example 

cluster between parentheses) 

Example 

clusters 

(number) 

in 

locations 

Description 

RC 1 Aluminium, barium, beryllium, cadmium, cesium, 

chroom, ijzer, kobalt, koper, kwik, lithium, lood, 

mangaan, rubidium, thallium,tin, titaan, vanadium, 

zink, (nikkel, arseen) 

MMM_5 

AND_6 

LOB_20 

NGN_18 

Metals  

Sometimes combined with 

PAH cluster substances 

RC 2 Boor, calcium, chloride, kalium, lithium, Magnesium, 

molybdeen, Natrium, rubidium, strontium, sulfaat, 

uranium, (bromide, silicaat als Si) 

BRI_1 

KEI_28 

KAM_14 

KMW_11 

Salts and reactive (alkali) 

metals 

RC 3 benzo(a)antraceen, benzo(a)pyreen, 

benzo(b)fluorantheen, benzo(ghi)peryleen, 

benzo(k)fluorantheen, chryseen, 

dibenzo(a,h)antraceen, fluoranthene, indeno(1,2,3-

cd)pyreen, pyreen, (fenantreen, antraceen) 

BRI_17 

EYS_8 

LOB_20 

 

Polycyclic aromatic 

hydrocarbons (PAHs) (fossil 

fuel burning)  

 

In some clusters together 

with PCBs  

RC 4 Cyanazine, desethyl-terbutylazine, dimethenamide, 

dimethenamide-p, metolachloor, terbutylazine, 

(ethofumesaat, metobromuron, linuron) 

BRA_28 

NGN_28 

NSL_20 

Herbicides 

https://doi.org/10.5281/zenodo.8220952
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HEU_22 

RC 5 2,2',3,4,4',5'-hexachloorbifenyl (PCB 138), 

2,2',4,4',5,5'-hexachloorbifenyl (PCB 153), 

2,2',4,5,5'-pentachloorbifenyl (PCB 101), 

2,2',5,5'-tetrachloorbifenyl (PCB 52), 

2,3',4,4',5-pentachloorbifenyl (PCB 118), 

2,3,4,5,2',4',5'-heptachloorbifenyl (PCB 180), 

2,4,4'-trichloorbifenyl (PCB 28) 

NGN_6 

KAM_4 

KMW_4 

BRA_38 

Polychlorinated Biphenyls 

(PCBs) (industrial and 

commercial applications) 

RC 6 1,2-dimethylbenzeen (o-xyleen), 1,2,4-

trimethylbenzeen, Benzeen, Ethylbenzeen, 

methylbenzeen (tolueen), (1,2,3-trimethylbenzeen, 

1,3,5-trimethylbenzeen, 2-ethyltolueen, 

Ethenylbenzeen, n-propylbenzeen) 

KAM_2 

BRA_1 

HEU_6 

KEI_1 

NGN_2 

Aromatic hydrocarbons 

(petrol oil and fuel) 

RC 7 10,11-dihydro-10,11-dihydroxycarbamazepine, 

carbamazepine, oxazepam, primidone, 

sulfamethoxazool, temazepam 

NGN_4 

AND_2 

BRA_16 

NSL_17 

Pharmaceuticals 

RC 8 Amidotrizoïnezuur, ethyleendiaminetetra-ethaanzuur 

(EDTA), jopamidol, jopamidol, joxitalaminezuur 

(jopromide, johexol) 

NGN_19 

AND_1 

BRA_14 

Contrast-agents  

 

 

For the recurring clusters of Table 4, the substance properties and conditions in Appendix IV provide insight and a 

possible explanation why substances in clusters have a similar pattern.  

 

• Clusters consisting of PAHs and PCBs (see Table 4) all have low aqueous solubility and very high Koc (see 

Appendix IV). In other words, the PAH and PCB substances are not mobile and tend to bind to soil and 

sediment. This means the substances at the stage of their emission are likely not transported for long 

stretches over land or through the soil, and probably bound to sediment soon after reaching water. A small 

difference between PAHs and PCBs is in their persistence in the environment. The half-life, a measure for 

stability and persistence in the environment is high for both PAHs and PCBs, but highest in PAHs according 

to the model calculations. The atmospheric hydroxylation rate (AOH) is low for PCBs and high for PAHs. Both 

cluster types are associated with low temperatures and medium to low evaporation potential and high river 

discharge and daily precipitation (mostly apparent in the Meuse), although PAH are associated with the 

highest discharges compared to PCBs. Both cluster types are clearly associated with high oxygen content in 

the river, which is expected to increase with high river discharge or colder temperatures. This points to 

regular recurrence of these substances due to resuspension of sediment (Friedman et al., 2011; Guigue et 

al., 2017; Schneider et al., 2007) caused by high water levels in winter. Increasing levels of PAHs and PCBs 

are also associated with increasing metal concentrations, which is consistent with the sediment being a 

repository of metals entering aquatic environments. While release of organic matter into the water column 

may be expected upon sediment resuspension (Guigue et al., 2017; Komada and Reimers, 2001), the general 

relation between measured dissolved organic carbon (DOC) and high concentrations of any cluster are not 

very strong (Appendix IV). It is unclear why this is the case.  

• Aromatic hydrocarbons in the recurring cluster (see Table 4) have normal range solubility, Koc and half-life. 

Calculated biodegradation is relatively high. Also, these substances have a high vapor pressure and low 

octanol–air partition coefficient (KOA). The density is also low, which means that if the substance in these 

clusters are in a liquid state (e.g. oil) will float on the water. Combined with the high volatility, the substances 



 

 

 

BTO 2023.039 | August 2023  Environmental Forensics, signaturen van vervuiling 21 

 

will tend to partition to the air. No specific environmental conditions are associated with the occurrence of 

high concentrations of these clusters, although precipitation is relatively low when measured concentrations 

of substances in these clusters are high (see Appendix IV). 

• Pharmaceuticals and contrast agents in the recurring clusters (see Table 4, RC 7 and RC 8) have properties 

like solubility and persistence in a broad range (Appendix IV). Volatility is relatively low. Contrast agents have 

a relatively low Koc and half-life. This means these are mobile, relatively persistent substances. The clusters 

are most clearly related to environmental conditions of low to medium river discharge and low precipitation 

(see the figures of Appendix IV). This means that these clusters emerge when water levels are low and 

probably a lack of dilution increases concentration levels in these recurring clusters. This would indicate that 

the load (and thus emissions) of the substances in these clusters is generally rather constant. Namely, 

constant emissions are independent of river discharge and thus will dilute at high discharge and rise with 

low discharge. That would fit a constant emission, not dependent on season, via treated wastewater (Paíga 

et al., 2016). This makes sense as many pharmaceuticals are consumed in stable volumes over the year, 

while for some there are seasonal trends in consumption such as antibiotics and pharmaceuticals related to 

seasonal infectious diseases (Azuma et al., 2012).  

• Herbicides in the recurring cluster (see Table 4) have all substance properties within average values 

(Appendix IV). Also the river discharge and precipitation when the concentrations of substances in these 

clusters is high, is in the normal range. The clusters are associated strongly though with high temperatures, 

evaporation potential, sun hours and low oxygen levels in the river. This points to seasonal reoccurrence in 

summertime (Gusmaroli et al., 2019; Hladik et al., 2014).  

For all the recurring clusters of substances with average/high solubility and average/low Koc the route from point of 

emission to monitoring may be long, because the substances are relatively mobile and do not tend to bind strongly 

to sediment. These substances may be caused by ‘current’ emissions that do not linger but pass by. Recurring clusters 

containing substances with varying or short half-lives could be current. This is because in a ‘legacy’ cluster some 

substances with short half-lives will have disappeared already. 

4.1.2 Analyzing a location for apparent clusters of pollution 

Individual locations can be analyzed on substances in clusters. These are not necessarily the recurrent clusters (Table 

4) but can be specific for a location. As an example we analyze a location in the Rhine catchment: Nieuwegein.  

Firstly, the monitoring samples in Nieuwegein seem to cluster according to both season and years (Figure 8). This 

implies that in addition to effects of season, the pollution pressure has changed between years. Secondly, many 

clusters were identified as one of the recurring clusters in Table 4. Thirdly, Nieuwegein was characterized by a 

relatively large number of clusters that may be associated to incidents, these are indicated in red in Figure 8. Some 

of these clusters – mainly associated with agricultural applications (i.e., pesticide, insecticides, herbicides, and 

fungicides (clusters 31, 49 and 50) – did not result in a significant overlap with any Reference list. In contrast, cluster 

28 significantly overlapped with the lists “Herbicides based on amides” (for controlling weeds in specific crops like 

potatos) and “Herbicides based on a triazine group” (controlling particular plants’ growth by photosynthesis 

inhibition). This cluster resembles the recurring cluster RC 4 (Table 4), recurring more frequent in locations like 

Nieuwersluis and Heusden. This cluster has relatively high concentration in summer (Chidya et al., 2022; Pan et al., 

2023; Rodríguez-Bolaña et al., 2023).  

Cluster 39 significantly overlapped with the reference list “Industrial solvents”, and cluster 2 with the lists “Petrol 

additives”, “Industrial solvents”, “Motor fuel leakage”, and “Industrial chemicals”. The latter cluster resembles 

recurring cluster RC 6 (Table 4). No specific season was associated with the cluster between the different locations. 

Substances overlapping with the lists “Antidepressants and narcotics”, “Domestic wastewater”, “Pharmaceuticals”, 

and “Waste water treatment plant” were found in cluster 4, indicating a clear contribution of WWTP at this location 

(Figure 8) (Osorio et al., 2016; van der Aa et al., 2013). This is expected as the catchment of the Rhine receives 

wastewater effluents at numerous locations.   



 

 

 

BTO 2023.039 | August 2023  Environmental Forensics, signaturen van vervuiling 22 

 

Perfluorinated substances such as PFHpA, PFNA, and PFDA (cluster 75) were found to be closely related to cluster 4 

(according to the dendrogram) and suggested that these PFAS may be also associated to the same emission source 

(i.e., WWTP effluents) (Lenka et al., 2021). These two clusters showed very consistent temporal patterns indicating 

overall higher concentrations in the period 2020 - 2021 than the period 2017 - 2018. A very similar pattern was found 

also for atenolol, metoprolol, sotalol, furosemide (pharmaceuticals), jopromide (contrast agent) and imidacloprid 

(insecticide), which are substances typically associated with emissions from WWTP (Wolf et al., 2004), however, these 

compounds were not identified as a cluster (we named this cluster 01; Figure 8). The emissions were highest in early 

spring and fall of 2020-2021.  

Cluster 19 also included substances that overlapped with the list “Waste water treatment plant” (and “Contrast 

agents”), however, this cluster appeared to followed a different temporal pattern than clusters 4 and 75, i.e., higher 

concentrations were mainly observed in winter in 2017, 2018 and 2019 (but also to a lower extent in winter and 

spring in 2020 and 2021).  

Based on visual assessment, a cluster including chloridazon (herbicide), metabenzthiazuron (herbicide), fenazon 

(anti-inflammatory), aminomethylfosfonzuur (AMPA) (metabolite of glyphosate) and PFAS (PFPeA, PFHxA) was 

identified (we named this cluster 02; Figure 8). This cluster contained a mixture of different chemicals, however, their 

temporal trend appeared to be similar to that observed for clusters 4 and 75, which were linked to WWTP emissions. 

Because wastewater is emitted constantly, concentrations from those emissions are in principle expected to be the 

highest with low river discharges, that generally occur in summer and autumn. The observed pattern is opposite to 

what is expected when emissions are constant and concentration dynamics are determined by dilution. Possible 

reasons for such a deviating pattern can be seasonal use or emissions of these substances, or variable removal in by 

microbes in the wastewater treatment plants related to  temperature. This remains, as of yet, unclear and might 

even differ between the chemicals within the cluster as long as the temperature and river discharge conditions are 

closely correlated. The listed PFAS are very persistent, so variable biodegradation is not expected, making the 

hypothesis of seasonal use or emissions more suitable.



 

 

BTO 2023.039| August 2023  Environmental Forensics, signatures of pollution 23 

 

Figure 8. Heatmap obtained using data from Nieuwegein. Boxes with the same background color indicate clusters that may be combined into a larger cluster. Red boxes indicate 

a single ‘incident’.
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4.1.3 Case study: individual substance 

For individual substances, the context of other substances in their clusters can provide hypotheses towards their 

source or emission route. In this paragraph we discuss arsenic and benzotriazole, as example substances.  

- Arsenic (7440-38-2) is a member of several very general reference lists: Dutch Rivers; Installations for waste 

processing or landfills or refinery; Waste water treatment plant. Clusters containing arsenic give more 

detailed information. At two different locations, arsenic is in clusters that are overlapping with the reference 

list ‘Herbicides based on a triazine group’ (Nieuwersluis, Brakel). In one location (Lobith) arsenic is associated 

with a number of Polycyclic aromatic hydrocarbons (PAHs) which is a known common co-contamination 

(Sun et al., 2018). In another location the arsenic is associated with PCBs. In one location (Stevensweert), 

the clusters containing arsenic are associated with metals. The properties of the associated substances are 

different between the clusters. The clusters that are overlapping with herbicide lists consist of highly soluble, 

medium Koc, low half-life substances. The clusters that are overlapping with lists of PAHs or PCBs are, in 

contrast, consisting of low soluble substances with high Koc and high half-life. For the cluster with metals, 

no data on substance properties is available. The differences in substance properties within the clusters that 

contain arsenic means that there could be different conditions or emissions between the locations that 

cause a co-occurrence of the substances with arsenic. Arsenic is, for instance, a constituent of potent all-

round arsenic herbicide (Qi and Donahoe, 2008; Whitmore et al., 2008). This leads to the hypothesis that 

use as herbicide may cause the presence of arsenic in the locations where the overlap with Reference lists 

points that way. The use of arsenic herbicides has been curtailed in most developed countries, though. This 

means that it may be legacy contaminations. On the other hand, the ionization state of arsenic may be an 

alternate explanation why it occurs in different cluster types. Fakhreddine et al. (2021) describe how arsenic 

of geogenic origin can appear in surface water, for instance. 

- Benzotriazole (95-14-7) is known for its great versatility. It is used amongst others in antifreezes, heating 

and cooling systems, hydraulic fluids, vapor-phase inhibitors, as anti-corrosive and drug precursor. The 

substance is a member of several Reference lists: Treated wastewater; Dutch Rivers; Industrial chemicals 

(benzotriazoles); Chronomarker (Winter). The substance is in several clusters in Meuse and Rhine. The 

overlap of the clusters is generally with wastewater related lists (Reemtsma et al., 2010; Weiss et al., 2006), 

sometimes combined with an extra, more specific reference list such as ‘pharmaceuticals’ or ‘industry’ or 

‘benzotriazoles’. None of the clusters where benzotriazole is member contain substances with remarkable 

properties (see as an example Figure 9 for the property Koc). Moreover, none of the substances in the 

clusters have high concentrations at any particular environmental condition, although concentrations tend 

to be high at low river discharge. This leads to the hypothesis that benzotriazole is detected in the water 

system because of direct emissions by wastewater treatment plants. 

 
 

Figure 9. logKOC of substances in clusters. Red circles indicate the clusters that contain benzotriazole. None are 

remarkably different from the ‘average’ range of logKOC (green boxplot). 

https://www.msdvetmanual.com/toxicology/herbicide-poisoning/inorganic-herbicides-and-organic-arsenicals-toxic-to-animals
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5 Discussion  

In this report data tools were used to aid in the knowledge why varying concentrations of substances are found at 

any location at any time. The data tools are unbiased, they find structures based on data. Environmental scientists 

can understand, or try to understand the observations, bringing the unbiased approach and the mechanistic 

understanding based on prior knowledge together. 

Firstly, we applied statistical tests to identify clusters in datasets with concentration data. Cluster analysis revealed 

groups of chemicals that consistently occurred in multiple samples of a location, and these may be indicative of a 

specific source, origin, fate, or cause of pollution.  

Secondly, we determined overlap of substances in the cluster with emissions via Reference lists and we associated 

properties of substances to the cluster as well as environmental conditions. This aids in the interpretation of the 

clusters and in formulating hypotheses on whether the clusters were current emissions or legacy emissions, if they 

were mobile and persistent, etcetera. Overlap of clusters with Reference lists gave an indication of the possible 

source, origin, use or substance class in the cluster. The Reference lists were based on a review of the available 

scientific literature, as well as relevant national and EU documentation. This list contains 164 sub-lists of emission 

sources, substance types, or specific uses to which almost two thousand substances are associated. In the future, 

other Reference lists can be constructed. For example substances in permits of individual companies. In Appendix VII 

some other possible Reference lists or indicator substances are listed after a literature review. 

Clusters of substances with consistently varying concentration across different samples were found for each of the 

eighteen locations in the Meuse and Rhine. Many clusters could be statistically linked to a combination of substance 

properties, environmental conditions, and Reference lists. Some clusters were recurring in several different locations. 

Especially these recurring clusters were seen under specific circumstances like high temperatures (herbicides), low 

precipitation (aromatic hydrocarbons), high river discharge, high daily precipitation and high oxygen content (PCBs, 

PAHs), low to medium river discharge and low precipitation (contrast agents and pharmaceuticals). This information 

can be used in the more detailed interpretation of the occurrence of individual substances. Of course, the 

environmental conditions are not independent. For example, at low temperatures more oxygen can be dissolved in 

water.  

In addition to environmental conditions, substances in the recurring clusters had specific properties that were higher 

or lower than average values. The properties of substances are also not independent. A high solubility, for instance, 

is known to be negatively related to Koc. This should be taken into account in deriving particular conclusions on the 

role of properties in cluster formation. Nevertheless, these properties provide a possible explanation to why these 

substances in recurring clusters remain similar in concentration over the different samples under different 

circumstances. If these are ‘legacy’ substances, finding back the original emission pathway(s) is of course very 

difficult. Other clusters had substances with variable properties, these could be ‘current’ and more local emissions. 

Clusters containing substances with low Koc and high half-life could have been current emissions that traveled 

further, because the substances are persistent and mobile.  

With the clusters, the substance properties, conditions, overlap with Reference lists, and the actual temporal 

concentration variation over the samples, a hypothesis can be formed for every cluster that is found. For the recurring 

clusters with PAHs and PCBs, for instance, these factors point to resuspension from sediment. This is pointed out 

earlier in literature (Echols et al., 2008; Gomes et al., 2013; Zhao et al., 2021). For Herbicides, results point to a 

seasonal application with transport though air. 
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A challenge with the data from the Rhine and Meuse is that these waterbodies integrate many sources of pollution. 

The water flows and clusters of substances that simultaneously entered the water can become separated along the 

distance that is traveled, by degradation, differences in solubility, volatility, or the tendency to stick to organic matter. 

Also, if some substances are emitted by an industry at some point and other substances by another industry at 

another point, it would be hard to trace back what the original emission type was. The number of substances 

measured in Rhine and Meuse is relatively large and diverse, among other things because of wastewater influences 

in which many sources are integrated. Reference lists derived from wastewater emissions often overlap. By working 

with clusters we were able to split the data into groups of coherent substances, and overlap with Reference lists was 

more specific. This worked remarkably well, considering the manifold influences in these river systems. Even so, it 

can be expected that local surface waters in smaller catchments, such as contributories of the Meuse and Rhine have 

clusters that point to more specific sources, uses or substance class clusters than the Rhine and Meuse clusters.  

A point of attention in interpreting clusters from the heatmap is that the color of the sample does not indicate the 

actual concentration. A darker color indicates that the concentration was higher in that sample than in other samples. 

Incidents may theoretically be of low concentration, as long as the base concentration is even lower. This means that 

to find out if a dark color is a real ‘calamity’, a follow up is necessary by checking the actual concentrations of 

substances in clusters. This could result in the observation that a calamity is merely a relatively high concentration 

compared to what is normally measured in the location. 

For the current clusters that are found in the Meuse and the Rhine, there are several other applications possible.  

• Study the frequency and nature of calamities (episodes, regular or single occurrence of unusual high 

concentrations of combined substances).  

• The clusters themselves can be a study object. Do the same clusters occur in different waterbodies? Do 

clusters change over time? 

• Significant overlap of clusters of substances with specific Reference lists can be visualized on a map. This 

provides spatial information of potential contamination, or on a time-scale providing temporal information. 

We did not include Reference lists based on permits, or measured emissions by specific industrial 

companies. This is a possibility, though. 

• Causes for high concentrations of individual substances in the Rhine and Meuse can be evaluated based on 

the clusters they appear in, the conditions and substance properties.  

• Identification of substances that are not monitored, but that would be expected to be found based on their 

association with substances that they cluster together with (i.e., ‘guilty by association’). This can 

complement monitoring programs at particular locations. 

 

A word of caution for the interpretation of individual substances of this report is that, especially for PFAS substances 

that occur at very low concentrations, the practice of putting measurements below the reporting limit to zero may 

have introduced errors in the formation of clusters by changing the pattern of varying concentrations too much from 

actual concentrations. For most parameters though, a measurement below reporting limit can be assumed to be 

relatively low/near to zero. Also, the data was used as-is. In the Meuse data some substances are known under 

different names and this could cause substances to seem incomplete (not measured) in some locations. A thorough 

check in a follow up project will prevent those substances from being removed from the analyses because of their 

conceived incompleteness. 

We recommend further work focusing on potential implementation at drinking water companies. This could be in 

the shape of a workflow or application for extracting and visualizing information useful for environmental forensic 

applications, i.e., tracing back the causes of pollution. This could, in a later stage, be combined with environmental 

fate modeling tools developed to not only explain where a contaminant came from (i.e., its emission source or 

emission cause), but also how the substance ended up in a given water body (i.e., emission path). The map of 

contaminated locations can in addition be overlapped with a map of industrial, agricultural and commercial activities 
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in the Netherlands to find links between contaminated samples and physical sources causing pollution. In such a 

follow up a definite list of substances that are of high importance can be selected. The clusters, conditions, substance 

properties and reference lists can be used to find out in detail why each of these substances is present at locations 

at specific times. It should even be possible to make prediction models. Brunsch et al. (2019, 2018) showed that it is 

possible to explain concentration variations of substances in water systems. 

 

Future applications including clustering may also include coupling with non-targeted screening (NTS) analysis to 

perform 'retrospective screening'. The frequent and simultaneous occurrence of unknown (and known) substances 

may be used to identify clusters linked to pollution sources and prioritize unknowns for further identification. Another 

future application would be to quantify the correlation between substance concentrations and environmental 

conditions and predict the fate of the substance. Or, the concentrations of a substance of interest that was not 

measured could perhaps be predicted from the concentrations of substances that are clustered with the substance 

of interest.  

 

Another future application is groundwater. Groundwater is less affected by chemical pollutants than surface water, 

and is rather stagnant compared to surface water. Therefore, overlap with reference lists will assumably be more 

specific for each location. It is known that groundwater pollution with substances is not random. McMahon et al. 

(2022) for instance was able to predicted PFAS concentrations in groundwater using conditions and the 

concentrations of other parameters. That is why it seems feasible to also look for clusters of substances in 

groundwater. 

 

6 Conclusions 

Monitoring data contain far more information than simply concentration levels that are used for assessing 

compliance with water quality guidelines. Clustering and the cooccurrence of certain types of chemicals and 

differences and similarities between locations provide a wealth of information for building and testing hypothesis on 

sources, emissions and impact of conditions on concentrations and loads. This helps us to formulate new hypothesis 

and thereby establish better knowledge. It provides an important piece in the iterative puzzle towards understanding 

sources and their contributions.  

In this investigation we focused on monitoring datasets for surface water. We have reviewed, tested and identified 

statistical tools that are potentially useful for performing environmental forensic investigations that aim at extracting 

valuable (and often overlooked) information from existing datasets. We have applied these tools to monitoring 

datasets from surface water and assessed their suitability for the different types of datasets.  

Based on the results obtained in this preliminary investigation, statistical analysis and clustering appeared to be useful 

for processing existing datasets and extracting information that would otherwise remain concealed within their 

datasets. Although currently only the first steps are taken, this report shows that current monitoring data and applied 

techniques already provide several leads for ultimately understanding and possibly predicting concentrations of 

substances. Thereby results can, in the future, support the formulation and evaluation of mitigation strategies. 
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I Reference lists 

In the original collected Reference substance lists, a total of 232 separate lists are present. In these lists a total of 

1968 unique substances are included. Some of the lists overlap to an extent. This poses a practical problem because 

a cluster of substances may overlap with several reference lists that are in essence very similar. To avoid this, 

overlapping lists were merged. Two lists were considered overlapping if the sum of the percentage overlap between 

the two lists was greater than 130%. For instance, a case where there was 40% overlap of list1 with list2 and 100% 

overlap of list2 with list1 would be calculated as 140% overlap. A case where list1 overlaps 70% with list2 and list2 

overlaps 60% with list1 is calculated as 130% overlap. All reference lists were checked for overlap against all other 

reference lists. Overlapping lists were merged and renamed by making a combination of the original list names. This 

resulted in a reduction to 164 separate reference substance lists. The overall similarity of the new reference lists 

(expressed as the % remaining overlap) is visualised as a hierarchical clustering in the figure below. Some lists are still 

more related than others. 

Table Appendix I A. Sources and sizes of the reference substances lists, before merging overlapping lists. 

 

List 

source 

ID 

List source name Source # sub-

lists 

# sub-

stances 

L1 Chemicals used in 

agriculture types 

CBS  58 1715 

L2 Chemicals measured near 

agriculture 

LM GBM (data obtained from Deltares) 8 63 

L3 Sewage treatment plants 

(STP) 

Watson database (data driven, substances found 

>0.1 ug/l in >25 STP effluents)  

1 83 

L4 Trans-border Meuse RIWA database (data driven, substances in 

samples of location Eijsden on average >0.1 ug/l) 

2 47 

L5 Trans-border Rhine RIWA database (data driven, substances in 

samples of location Lobith on average >0.1 ug/l) 

2 71 

L6 Biocides per product type ECHA database  20 656 

L7 Distinguished groups 

(diverse) 

RIWA-Rijn 89 1714 

L8 Micropollutants as source 

and process indicators 

Warner et al. (2019) 17 71 

L9 EU emissions by industries EEA Industries Reporting Database  20 128 

L10 Veterinary 

pharmaceuticals in 

manure slurries 

Rakonjac et al. (2022) 2 28 

L11 Sources of PFAS in Dutch 

surface water 

Rijkswaterstaat (2020) 11 13 

L12 Typical substances in 

untreated wastewater 

Watson database (data driven, substances found 

abundantly (>25 STP, at least 0.1 ug/l) in influent, 

not in effluent, and are well removed (>80%))  

1 9 

https://www.cbs.nl/nl-nl/onze-diensten/methoden/onderzoeksomschrijvingen/korte-onderzoeksbeschrijvingen/bestrijdingsmiddelengebruik-in-de-landbouw
https://data.emissieregistratie.nl/watson
https://echa.europa.eu/nl/information-on-chemicals/biocidal-active-substances
https://www.riwa-rijn.org/wp-content/uploads/2021/10/RIWA-2021-EN-Anual-Report-2020-The-Rhine.pdf
https://www.eea.europa.eu/data-and-maps/data/industrial-reporting-under-the-industrial-4
https://www.vemw.nl/l/library/download/urn:uuid:83d1972b-6a35-41a5-99d1-5f0e9c0437be/2020-078-14+rapport+i%26w+bronnen+van+pfas+voor+het+nederlandse+oppervlaktewater.pdf?format=save_to_disk
https://data.emissieregistratie.nl/watson
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L13 Drug waste constituents RIVM report (2022)  1 62 

L14 A list of chemicals in 

fertilizers 

CompTox lists  1 22 

L15 Motor fuel leakage 

chemicals 

CompTox lists 1 27 

L16 Natural toxins CompTox lists 1 90 

L17 Veterinary drugs CompTox lists 1 124 

L18 Cyanoginosins (from 

cyanobacteria) 

CompTox lists 1 7 

 

Some substances may be highly biodegradable, volatile, or adhere strongly to soil, and thus, less suitable for the 

scope of this study, because these substances would be less relevant in reference lists for determining the overlap 

with monitoring data. We checked if there was a visible threshold were substances with high biodegradation 

(predictions in Biowin3 combined with predictions if a substance was ‘Readily Biodegradable’), high logKOC (tend to 

be immobile), high volatility or Henry’s constant (tend to volatilize to air) are not likely found in Rhine or Meuse 

water. As a source of these chemical properties we used the open source software ‘EpiSuite’. We could not find 

such a threshold that would indicate that substances are always less relevant (are seldom detected in Meuse or 

Rhine) because of any of these properties (not shown). For this reason all substances were retained in the 

reference lists. 

https://doi.org/10.21945/RIVM-2022-0104
https://comptox.epa.gov/dashboard/chemical-lists
https://comptox.epa.gov/dashboard/chemical-lists
https://comptox.epa.gov/dashboard/chemical-lists
https://comptox.epa.gov/dashboard/chemical-lists
https://comptox.epa.gov/dashboard/chemical-lists
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Figure Appendix I A. Reference list hierarchical clustering of percentages overlap. The height of the line indicates the 

dissimilarity between clusters. The sum of the percentual overlaps between any two lists does not exceed 130%. 
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II Example of spearman correlations of 

parameters with river discharge 

 
Figure Appendix II A. Correlations of substance concentrations with river discharge (‘waterafvoer’, upper right 

corner) for location Keizersveer. Significant correlations are indicated in large red circles. With more observations, 

lower correlations can become significant. Take-home message of this Figure is the wide range of correlations 

(negative to positive) of different substances. 
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Figure Appendix II B. Correlations of substances load (per second) with river discharge (‘waterafvoer’) of location 

Keizersveer. Load was calculated as: concentration (ug/L) * discharge (L/s). Significant correlations are indicated in 

large red circles. With more observations, lower correlations can become significant. Take-home message in this 

Figure is the overall positive correlation between discharge and load (more discharge, more substance). This doesn’t 

necessarily mean that the concentration of the substance is also positively related (see Figure above). So, dilution 

effects on the concentration can for some substances have higher influence than the increase in load. 
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III Comparison of cluster significance methods 

Detailed explanation of the ClusSig method 

 

When a hierarchical clustering is computed, it is a given that all substances or samples are in a cluster at any level 

of cluster numbers. This can be visualised in a dendrogram (see Figure 2 in the main text). At the top, there is only 

one cluster. One level below, there are two clusters, and so on. At the lowest level, each substance or sample is in 

its own cluster. For our analyses, the substance clusters are most relevant. Even if all substances are in a cluster at 

any level, visually some clusters look more consistent than others. Such clusters have substances that are in one 

cluster towards the bottom of the hierarchy in the dendrogram (Figure 2 in the main text). The clustered 

normalized concentrations of the substances over the samples can also be visualised in a heatmap. This confirms 

that some substances are in a cluster with a very similar and consistent pattern over the different samples (e.g. see 

Figure 8 in the main text).  

 

For our purpose to select clusters of substances that change in concentration together, we want to only select 

clusters that look consistent in the heatmap and are consistent throughout the dendrogram towards the 

bottom.(i.e. the point where all substances are in their private cluster). To determine such clusters a ‘BTO cluster 

significance’ (ClusSig) method was developed. The steps in the ClusSig method are illustrated in the figure below 

this text.  

 

The procedure in the ClusSig method is as follows. For each level in number of clusters we randomly (as many times 

as there are substances) produce a number that represents a cluster. This produces different sized clusters. For 

example, at a level of 4 clusters with 120 substances we draw the numbers 1-4 120 times. To ensure there is never 

an empty cluster (as in a real HCA) we initialize the draw with the numbers 1-4 and randomly draw the remaining 

116 numbers between 1-4. A result could be that 10 times ‘1’ was drawn, 35 times ‘2’, 45 times ‘3’ and 30 times ‘4’ 

(total 120). These are the randomly drawn cluster sizes for the 120 substances. For each level of cluster numbers we 

repeat this 1000 times. A distribution of cluster sizes emerges for each level. Some cluster sizes emerge very frequent 

(these are logically the average cluster-size for that level), some are rare (very small or very big). We express the 

distribution of sizes for each level as a ‘quantile’. A cluster size at the 90th quantile means that only 10% of all randomly 

drawn clusters have a bigger size. This means this size occurs not very often in randomly sized clusters. Then, we 

compare the actual cluster sizes at a level in the HCA with monitoring data with that of the calculated quantiles. Every 

substance in a cluster at the different levels gets assigned that quantile. Clusters at any level with a quantile-size >90 

are considered ‘significant’. This quantile level of 90 was selected by comparing the clusters that could be identified 

visually and via the ClusSig method. One difficulty remains, and that is to determine the optimal cluster number level 

at which to regard the ‘significance’ of the clusters. We argue that substances that remain in a cluster at lower levels 

in the hierarchy are very consistently clustered. At the same time, good sized useable clusters will occur at a level at 

which many substances are in a high quantile cluster. This is determined by the sum of quantiles at each level. These 

two arguments lead to the selection of an ‘optimal level’ where the sum of quantiles start to decline towards the 

bottom of the hierarchy. This is a ‘bending point’. All clusters that are significant at the level of the bending point, or 

become significant at any level below, are considered significant clusters. 
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Figure Appendix III A. Flow diagram for determining significant clusters in the ClusSig method. 

  

 

In short, the ClusSig method works with the assumption that any large cluster compared to an expected size is 

extraordinary and significant.  

 

This method is a little less sophisticated than the methods in Kimes et al. (2017) and Suzuki and Shimodaira (2006). 

Kimes et al. (2017) basically test at every junction of the dendrogram if the values of elements in the cluster follow a 

single Gaussian distribution stronger than a random simulated cluster of that size with an imposed Gaussian 

distribution, and deciding if that indicates a single cluster. Suzuki and Shimodaira (2006) use a bootstrap method to 

make many instances of the hierarchical cluster under investigation, and seeing how many times a cluster appears 

from random sampled elements. If it appears often, it is a robust cluster. So, both use the actual calculated values of 

elements by the clustering methods in the hierarchy whereas the ClusSig uses only expected size distributions. The 

use of the ClusSig method instead of established methods is preferred because of the simplicity of the approach (it 

is understandable) and the flexibility to test and adjust it.  

 

We applied the two other methods for cluster significance that are available in the statistical language ‘R’, Pvclust 

(Suzuki and Shimodaira, 2006) and Sigclust2 (Kimes et al., 2017). Pvclust tends to assign significance to small clusters 

in the data. This is not practical. Sigclust2 assigns significance to both the larger and smaller dense clusters. 

Unfortunately, the predefined functions in Sigclust2 only allow to determine clusters at a level in the dendrogram 

were all substances were in significant clusters. These technical limitations made the use of Sigclust2 unpractical even 

though a very nice visualization was possible and significance seemed accurate. Appendix III provides a comparison 

of significant clusters between the three methods and a clustering on visual inspection. ClusSig fortunately generally 

performed as well as the two methods, compared to the clusters that were assigned based on the visual inspection 

of the heatmap. 
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Figure Appendix III B. Significant clusters for location EYS with the R package Sigclust2. 

 

 

Figure Appendix III C. Significant clusters for the location EYS with the R package PVclust. 

Table Appendix III A. Comparison of Cluster significance established visually, with the ClusSig method, PVclust, and 

Sigclust2. 

Location Eysden Visual 

assessment 

ClusSig Pvclust Sigclust2 

koper cluster1 

  

cluster1 

tin cluster1 

  

cluster1 

mangaan cluster1 cluster1 

 

cluster1 

titaan cluster1 cluster1 cluster2 cluster1 

aluminium cluster1 cluster1 cluster2 cluster1 

ijzer cluster1 cluster1 cluster2 cluster1 

beryllium cluster1 cluster1 cluster2 cluster1 

chroom cluster1 cluster1 cluster2 cluster1 

kobalt cluster1 cluster1 cluster2 cluster1 

zink cluster1 cluster1 cluster3 cluster1 

lood cluster1 cluster1 cluster3 cluster1 

zilver cluster1 cluster1 cluster3 cluster1 
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vanadium cluster1 cluster1 

 

cluster1 

nikkel cluster1 cluster1 

 

cluster1 

kwik cluster1 cluster1 

 

cluster1 

2,2',3,4,4',5'-hexachloorbifenyl cluster2 cluster2 cluster4 cluster2 

2,3',4,4',5-pentachloorbifenyl cluster2 cluster2 cluster4 cluster2 

2,2',4,4',5,5'-hexachloorbifenyl cluster2 cluster2 cluster4 cluster2 

2,2',4,5,5'-pentachloorbifenyl cluster2 cluster2 cluster4 cluster2 

2,4,4'-trichloorbifenyl cluster2 cluster2 cluster4 cluster2 

2,2',5,5'-tetrachloorbifenyl cluster2 cluster2 cluster4 cluster2 

fenantreen cluster3 

 

cluster4 cluster3 

antraceen cluster3 

 

cluster4 cluster3 

pyreen cluster3 

 

cluster4 cluster3 

fluorantheen cluster3 

 

cluster4 cluster3 

benzo(a)pyreen cluster3 cluster3 cluster4 cluster3 

benzo(ghi)peryleen cluster3 cluster3 cluster4 cluster3 

indeno.(1,2,3-cd)pyreen cluster3 cluster3 cluster4 cluster3 

benzo(k)fluorantheen cluster3 cluster3 cluster4 cluster3 

benzo(b)fluorantheen cluster3 cluster3 cluster4 cluster3 

chryseen cluster3 cluster3 cluster4 cluster3 

benzo(a)antraceen cluster3 cluster3 cluster4 cluster3 

zuurstof 

  

cluster5 

 

cadmium 

  

cluster5 

 

chlooretheen.(vinylchloride) 

  

cluster5 

 

hexachloorbutadieen 

  

cluster5 

 

isoproturon 

  

cluster5 

 

trichlooretheen cluster4 cluster4 cluster6 

 

tetrachlooretheen cluster4 cluster4 cluster6 

 

1,2-dichloorpropaan cluster4 cluster4 cluster6 

 

tetrachloormethaan cluster4 cluster4 cluster6 

 

1,2-dichloorethaan cluster4 cluster4 cluster6 

 

1,1,2-trichloorethaan cluster4 

 

cluster6 

 

cis-1,2-dichlooretheen cluster4 

 

cluster6 

 

diisopropylether 

  

cluster6 

 

terbutylazine 

    

bentazon 

    

2-methyl-4,6-dinitrofenol.(dnoc) 

 

cluster5 cluster13 

 

dicyclopentadieen 

 

cluster5 cluster13 

 

metolachloor 

 

cluster5 

  

2,4-dichloorfenoxyazijnzuur 

    

benzeen 

    

4-(4-chloor-2-methylfenoxy)boterzuur cluster5 

   

2,4-dinitrofenol cluster5 

   

methylbenzeen cluster5 

 

cluster15 

 

bromide cluster5 

 

cluster15 

 

pirimifos-methyl cluster5 

   

2-ethyltolueen cluster5 

 

cluster14 
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1,2-dimethylbenzeen cluster5 

 

cluster14 

 

1,2,4-trimethylbenzeen cluster5 

 

cluster14 

 

lindaan 

  

cluster11 

 

naftaleen 

  

cluster11 

 

dichloorvos 

    

barium 

    

arseen 

    

thallium 

    

pyridaben 

    

beta-endosulfan 

    

1,2,3-trimethylbenzeen 

  

cluster12 

 

1,3,5-trimethylbenzeen 

  

cluster12 

 

ethenylbenzeen 

    

tribroommethaan 

    

quinoxyfen 

    

alfa-hexachloorcyclohexaan 

    

dibutyltin 

    

tributyltin-cation 

    

dimethenamid-p 

  

cluster7 

 

metsulfuron-methyl 

  

cluster7 

 

broomdichloormethaan 

  

cluster8 

 

trichloormethaan 

  

cluster8 

 

diuron 

  

cluster9 

 

dimethyldisulfide 

  

cluster9 

 

chloorpyrifos 

  

cluster9 

 

dimethoaat 

    

glyfosaat 

  

cluster10 

 

cesium 

  

cluster10 

 

metazachloor 

    

dibroomchloormethaan 

    

propiconazool 

    

methabenzthiazuron 

    

terbutryn 

    

imidaclopride 

    

beta-hexachloorcyclohexaan cluster6 cluster6 

 

cluster6 

cis-heptachloorepoxide cluster6 cluster6 

 

cluster6 

p,p'-ddt cluster6 cluster6 

 

cluster6 

p,p'-ddd cluster6 cluster6 

 

cluster6 

o,p'-ddt cluster6 cluster6 

 

cluster6 

delta-hch.(delta-hexachloorcyclohexaan) cluster6 cluster6 

 

cluster6 

aclonifen cluster6 cluster6 

 

cluster6 

linuron cluster6 cluster6 

 

cluster6 

chloridazon cluster6 cluster6 

 

cluster6 

dibenzo(a,h)antraceen cluster6 cluster6 

 

cluster6 

atrazin cluster7 cluster7 

 

cluster4 

methyl-tertiair-butylether.(mtbe) cluster7 cluster7 

 

cluster4 
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desethylatrazin cluster7 cluster7 

 

cluster4 

waterstofcarbonaat cluster7 cluster7 

 

cluster4 

calcium cluster7 cluster7 

 

cluster4 

magnesium cluster7 cluster7 

 

cluster4 

uranium cluster7 cluster7 

 

cluster4 

strontium cluster7 cluster7 

 

cluster4 

boor cluster7 

  

cluster5 

seleen cluster7 

  

cluster5 

rubidium cluster7 cluster8 

 

cluster5 

antimoon cluster7 cluster8 

 

cluster5 

simazin cluster7 cluster8 

 

cluster5 

chloride cluster7 cluster8 

 

cluster5 

sulfaat cluster7 cluster8 

 

cluster5 

natrium cluster7 cluster8 

 

cluster5 

molybdeen cluster7 cluster8 

 

cluster5 

kalium cluster7 cluster8 

 

cluster5 

aminomethylfosfonzuur cluster7 cluster8 

 

cluster5 

fluoride cluster7 cluster8 

 

cluster5 

lithium cluster7 cluster8 

 

cluster5 

 

  



 

 

 

BTO 2023.039 | August 2023  Environmental Forensics, signaturen van vervuiling 42 

 

IV Substance properties and environmental 

conditions per cluster 

In this appendix, the property values for the substances in clusters per location are visualised (below Table 

Appendix IV). All clusters with less than 5 substances were removed. Also inorganic substances were omitted 

because the models used could not predict the substance properties for inorganic substances. Boxplots of 

environmental conditions with high concentrations of substances in clusters were made separately, one for the 

environmental values derived for the Rhine, one for the values from the Meuse.  

 

Table Appendix IV A. Examples of relation of properties and conditions to the transport and fate of substances. 

Adapted from: Agency for Toxic Substances and Disease Registry 

Substance 

property 

Definition Explanation 

Water solubility 

  

 

  

The maximum 

concentration of a 

chemical that dissolves in 

a given amount of pure 

water. 

Physicochemical parameters, such as salinity and pH, can 

influence a chemical’s solubility in water, which, in turn, also 

affects its dissolved concentration in water. Solubility 

provides an important indication of a contaminant’s mobility 

in the aquatic environment, and its ability to reach drinking 

water sources such as groundwater. 

Density of liquid  A liquid’s mass per 

volume.  

For liquids (typically organic solvents) that are immiscible in 

water, density plays a critical role. In groundwater, liquids 

with a higher density than water may penetrate and 

preferentially settle to the base of an aquifer, while less 

dense liquids will float.  

Vapor pressure  

   

A measure of the volatility 

of a chemical in its pure 

state.  

Vapor pressure largely determines how quickly 

contaminants will evaporate from surface soils or water 

bodies into the air. Contaminants with higher vapor 

pressures will evaporate more readily. 

Henry’s Law 

Constant 

A measure of the 

tendency for a chemical 

to pass from an aqueous 

solution to the vapor 

phase.  

A high Henry’s Law Constant corresponds to a greater 

tendency for a chemical to volatilize to air. It is a function of 

molecular weight, solubility, and vapor pressure. 

Organic carbon 

partition 

coefficient (Koc) 

(‘Adsorption 

The sorption affinity of a 

chemical for organic 

carbon and consequently 

the tendency for 

A high Koc indicates a stronger binding affinity to organic 

matter. In soil and sediment this may results in reduced 

https://www.atsdr.cdc.gov/pha-guidance/conducting_scientific_evaluations/exposure_pathways/environmental_fate_and_transport.html
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coefficient’) 

  

compounds to be 

adsorbed to soil and 

sediment. 

mobility, and thus, less of the chemical is available to move 

into groundwater or surface water.  

Octanol-water 

partition 

coefficient (Kow) 

The ratio between the 

concentration of a 

substance in octanol and 

water in a biphasic 

octanol/ water system 

Provides a measure of the polarity of a substance and its 

ability to partition to water. A low Kow is indicative of a polar 

substance. A polar substance is expected to be more mobile 

in the aquatic environment and typically more challenging to 

remove from water. In contrast, hydrophobic (high Kow) 

substances tend to accumulate on solid particles and as a 

result occur at lower concentrations in the aqueous phase. 

Half-life  

 

The time it takes to 

reduce an environmental 

concentration of a 

chemical by half due to 

chemical physical or 

biological processes.  

Media-specific half-life provides a relative measure of how 

persistent a contaminant might be in a particular 

environmental medium by processes that generally involve 

reactions like hydrolysis, oxidation / reduction, and 

photolysis 
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Note: Below, clusters of both locations (Rhine and Meuse) are shown for each environmental condition. This gives 

extra information and an opportunity to check whether the substances in a cluster from one river system have 

similar response to environmental conditions in the other river system. ‘High concentration’ (see y-axis) refers to 

the top 10 percent of concentrations of substances in the cluster for either Rhine or Meuse.  
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V Groundwater monitoring data 

For a proof of concept of spatial analysis with overlapping reference lists we selected a groundwater quality set 

provided by the Dutch provinces containing micropollutants concentrations for a single period across the 

Netherlands. This dataset is available on the ‘Waterkwaliteitsportaal’, however we used an in-house version with 

processed data resulting from a previous project.  

The groundwater data involves data collected between 2016 and 2018. This is summarized into a single 

measurement. Because groundwater is less variable in time, the most recent sample was selected per location. For 

most locations the same parameters were measured, so there are only a few missing values. On the contrary, because 

groundwater is in general less polluted than surface water, a relatively high number of measurements were below 

Reporting Limit.  

 

Table Appendix V A. Data characterization of the groundwater dataset. 

 

Groundwater, data of the Provinces 

505 parameters 

Single sampling (between 2016-2018) 

564 locations 

 

 

 
Figure Appendix V A. The ‘frequency’ on the y-axis denotes the number of parameters. Left: missing values per 

parameter. Right: values below RL per parameter. The maximum missing values / below RL per parameter is 564 (the 

amount of locations). 

 

When parameters without any measurements above RL were removed (this includes missing values), in total 176 

parameters from 505 were left for the analyses (Table a).  

Associating measurement data to sources of pollution 

Groundwater typically contains less microcontaminants than surface water. This means there are less chemicals 

detected in groundwater. Indeed, in the groundwater dataset, many measurements have only a few chemicals above 

the reporting limit. The combined occurrence of substances is quite unique for every location. There are, however, 

some substances in the groundwater dataset that were detected in many locations, and locations in which many 

substances (up to 27) are detected. Still, some potential reference substance lists can be linked to samples, and 
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plotted on a map. The linkage is done by performing the hypergeometric test and selecting samples that significantly 

overlap (with at least two parameters) with a reference substance list of choice. Figure b shows spatially explicit maps 

of reference substance lists that significantly overlap with measurement data. Many other reference substance lists 

are significant in a number of measurement data (from a lot of locations to just incidentally). We choose only four as 

an example.  

 

 

 

Figure Appendix V B. Examples of maps with significant overlap between detected substances in samples and 

reference substance lists. In the figure on the bottom-right, four known paper production plants are indicated in green 

circles. An exhaustive search for paper production plants was not done. 

When comparing the maps in Figure b, a difference in spatial distribution can be observed in samples with overlap 

for different reference substance lists. This can lead to hypotheses on the origin of some of the substances in the 

measurement sample. It could be that all of the samples that overlap with the reference substance list ‘Totaal 

bloemkwekerijgewassen’ (‘Total flower nursery crops’) are influenced by this particular type of agriculture. Similarly 

this would apply to examples in Figure b that depict samples that are overlapping in the other reference substance 

lists, e.g. samples influenced by mineral oil and gas refinery – related activity, influenced by sewage treatment plant 

effluent, influenced by paper industry- related activity. Before this type of environmental forensics analyses can be 

done, several adjustments are still needed. It is important to incorporate how (ground)water flows and what distance 

these substances may travel in time, in other words what is the age of the GW, so what period of emission diooes it 

represent. In addition this also requires data on historical activities to enable the explanation of results, for such 
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analysis ‘gebiedsdossiers’ can be of value. Similarly, substances that are rarely found but have a reason (high 

degradability, high volatility, high adsorption) need to be recognized. For naturally occurring substances (e.g., metals) 

finding a significant overlap is now still less informative because they occur nearly everywhere. With such substances 

either a more stringent selection criterium (i.e., p-value) is necessary, or these substances can be considered only if 

they exceed their background value. This will have to be addressed in a follow-up of this research. A validation of the 

detected sources of influence is also very valuable to do. This can be achieved by linking samples to actual known 

sources or activities. In this way, the validity of the overlap can be checked for some of the reference substance lists 

that have emissions via physical locations. 

Of course, for a single sample, several significant overlaps between the measured data and reference substance lists 

can be detected. This provides an overview of the potential land uses and activities that may impact a given sample. 

Table b lists some examples of significant overlap of detected substances for groundwater samples with substances 

in the reference substance lists. Aside from these examples, there are many locations without a single significant 

overlap. These samples are typically characterized by a very limited number of substances measured above the 

reporting limit.  

Table Appendix V B. Examples of locations with significant overlap with different reference substance lists. For these 

analyses, nutrients and generic parameters were not included. 

Province Ground 

water body 

CAS Substances overlapping Associated reference lists, 

significant overlap 

NOORD-

HOLLAND 

NLGW0016 15950-66-0#933-78-8#933-75-5 Industrial chemicals (with phenols) 

335-67-1#1763-23-1   Industrial chemicals (with per- and 

polyfluoroalkyl substances (PFAS)) 

NOORD-

BRABANT 

NLGW0006 2008-58-4#3984-14-3 Amide-based fungicides 

2008-58-4#6339-19-1#17254-80-7  Herbicides 

UTRECHT NLGW0012 25057-89-0#1698-60-8 Seed onions/Total floricultural 

crops/Foot and plant 

onions/Daffodils 

1698-60-8#134-62-3#93-65-2#80-05-

7#15307-86-5#25812-30-0 

Waste water treatment plant 

57-68-1#127-79-7#144-83-2 Antibiotics based on 

sulphonamides 

78-40-0#126-71-6 Flame retardants/industrial 

solvents 

2008-58-4#3984-14-3 Amide-based fungicides 

2008-58-4#25057-89-0#1698-60-8 Herbicides 

15307-86-5#60-80-0#125-33-7 Pain killers and fever reducing 

substances  

60166-93-0#125-33-7 Domestic wastewater 

15307-86-5#60-80-0 Aerobic/anaerobic conditions 
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VI Screenshots of the ‘shiny R’ app 

An R shiny app was developed to work with the many clusters found in this project in the Rhine and Meuse. In this 

Appendix, screenshots of the sheets in the app are shown, with a short explanation of the functionality. 

 

 

Sheet 1. For a CAS number of interest (left panel) some statistics are shown (right panel). The statistics are, in order 

from top to bottom: the Reference lists that the substance is a member of, the clusterID’s that contain the substance 

of interest, the overlap with reference lists for the clusters with the substance of interest, which substances occur 

together more often in clusters with the substance of interest, an overview of all substances in clusters with the 

substance of interest. 
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Sheet 2, top part. In the left panel, a list of CAS numbers can be pasted. For instance, detected in a particular sample 

or substances in a cluster. Then, the significance of the overlap with Reference lists is calculated. This is shown in the 

right panel. As an alternative, a local file with samples can be loaded. This is explained further below. 

 

 

Sheet 2, lower part. If a file is uploaded, the sample of interest can be selected in the left panel. For that sample, the 

significance of the overlap with Reference lists is calculated. This is shown in the right panel. For a sample from a 

file, missing substances can be suggested. These are substances that are not in the file, but occur together in 

clusters in locations in Meuse and Rhine. A file that can be used for upload can be found in the data package 

(https://doi.org/10.5281/zenodo.8220952, 2023). 
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Sheet 3. Show the clustering results per location. In the right panel the dendrogram with heatmap is shown. There is 

an option to zoom in. In the left lower panel a dendrogram is shown that has all substance names. 

 

Sheet 4. The information sheet with information on the version and intended use of the R shiny app. 
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VII Literature search of Environmental Forensics 

applications 
 

Besides techniques and resources as discussed in this report, there are others that can be used, for particular 

purposes. Below is a literature search for used clustering techniques and for reference substances. 

Literature on clustering techniques for monitoring data 

The following techniques have (among others) been applied for clustering substances. Cluster analysis (CA) is an 

unsupervised pattern recognition method commonly used to group variables and observations. CA has been used 

to group sampling sites showing similar PAHs fingerprints into clusters to explain the variations between sites 

(Dahle et al., 2003; Savinov et al., 2000) and to identify sources of PAHs by grouping PAHs having similar 

characteristics (Kavouras et al., 2001; Liu et al., 2009). This approach was also used in combination with principal 

Component Analysis (PCA) and forensic tools (e.g., substance ratios, speciation) for the identification of pollution 

sources in estuarine areas linked to zinc smelting, coaly particles and waste disposal (Baragaño et al., 2022).  

 

Discriminant analysis (DA) offers statistical classification of samples with prior knowledge of membership of objects 

to particular clusters (such as spatial or temporal grouping of a sample is known from its sampling sites or time). It 

is used to confirm the groups found by means of CA. In addition, DA helps in grouping the samples sharing the 

common properties (Al-Odaini et al., 2012; Kannel et al., 2007; Osman et al., 2012; Singh et al., 2005).  

 

Principal Component Analysis (PCA) is used to reduce the number of variables and to detect structural relationships 

among the variables. For instance, PCA has been used to detect relationships among variables for possible source 

identification of PAHs in air, sediment, biota and soil (Harrison et al., 1996, Larsen and Baker, 2003, Luo et al., 2006, 

Luo et al., 2008, Pies et al., 2008, Gaspare et al., 2009). PCA has also been applied together with molecular indices 

for identification of sources of PAHs in complex environmental samples (Luo et al., 2006, Luo et al., 2008, Zuo et al., 

2007, Pies et al., 2008, Liu et al., 2009).  

 

Factor scores from PCA coupled with multiple linear regression (APCS/MLR) is a popular technique for source 

apportionment of PAHs in environmental matrices (Harrison et al., 1996; Kavouras et al., 2001; Larsen and Baker, 

2003; Wang et al., 2010). The advantage of APCS/MLR is that it does not require prior knowledge on input of source 

emission to calculate source contributions (Larsen and Baker, 2003; Liu et al., 2009).  

 

Polytopic vector analysis (PVA), a multivariate technique based on a linear mixing model, was used to identify a 

dioxin dechlorination fingerprint indicative of biotic/abiotic transformations in field samples of sediments (Barabás 

et al., 2004). PVA was also applied in combination with t-Distributed Stochastic Neighbor Embedding (t-SNE) to 

identify potential point source signatures in PAHs contaminated sediments (Jordan et al., 2021).  

 

Random Forest (RF) is a more recently used machine learning method which allows to understand the individual 

role and the combined effect of explanatory variables. This approach has been applied to monitoring data to 

develop predictive models useful for investigating pollution sources in groundwater (Bindal and Singh, 2019; 

Rodriguez-Galiano et al., 2014), and biomonitoring parameters for the analysis of the biological impacts of multiple 

pressures in aquatic ecosystems (Feld et al., 2016). Variations of RF (e.g., extremely-randomized trees) (Geurts et 

al., 2006) can also be used to create decision tree methods which classify data by creating a network of choices 

based on the magnitudes of features, which have been applied for source allocation of PFAS (Kibbey et al., 2020).  
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Several studies have used logistic regression models (LRM) (Lee et al., 2009; Zhang et al., 2012) to assess the 

likelihood of As contamination greater than the predefined limit of 10 μg/L by using limited As data points along 

with auxiliary independent variables, such as geology, topography, and soil properties. A few studies used linear 

regression (LR) (Zhang et al., 2013), principal component regression (PCR) (Luo et al., 2012), Bayesian modeling 

(Cha et al., 2016) and artificial neural network (ANN)-based regression (Bonelli et al., 2017; Cho et al., 2011) for As 

prediction in groundwater and soil. 

 

Literature on the use of indicator substances 

 

Most organic micropollutants do not naturally occur in the environment and have virtually no background 

concentrations. As a consequence, these substances are ideal indicators of anthropogenic pollution. For instance, 

caffeine, ibuprofen and paracetamol can be used as indicators for contamination from untreated wastewater 

because of their high removal efficiency during waste water treatment (Warner et al., 2019). In contrast, the 

presence of chemicals that are generally poorly removed by waste water treatments, such as carbamazepine, may 

indicate contamination from treated as well as untreated waste water (Kahl et al., 2017). Tolyltriazole and 

hexamethoxymethylmelamine were suggested as suitable indicators of runoff water from roads (Seitz and 

Winzenbacher, 2017), while iodinated X-ray contrast media such as amidotrizoic acid, iothalamic acid, iomeprol and 

iopamidol were linked to wastewater from hospitals (Wolf et al., 2004). Some chemicals such as pesticides, 

personal care products (e.g., UV blockers), and pharmaceuticals (e.g., seasonal allergic reactions and infections) can 

be used to identify seasonal variation (Buttiglieri et al., 2009; Byer et al., 2011; Harman et al., 2011; Kasprzyk-

Hordern and Baker, 2012a, 2012b; Loraine and Pettigrove, 2006). Combinations of multiple chemicals can be used 

in case indicators naturally occur in the environment. For instance, the ratio between caffeine and its metabolite 

paraxanthine can be used as an indicator of wastewater in areas where caffeine may occur naturally (e.g., cocoa 

and tea plantations) (Hillebrand et al., 2012a, 2012b). Polycyclic aromatic hydrocarbon (PAH) ratios have been used 

to distinguish between contamination resulting from direct residue of smelting activities associated with mining 

and its leachate (Warner et al., 2016), or between pyrogenic and petrogenic sources (Baragaño et al., 2022). 

Similarly, the ratio between metformin and guanyl urea can be used as an indication of untreated or poorly treated 

waste water (ter Laak et al., 2014). 


