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ABSTRACT: Nontarget screening (NTS) with liquid chromatog-
raphy high-resolution mass spectrometry (LC-HRMS) is com-
monly used to detect unknown organic micropollutants in the
environment. One of the main challenges in NTS is the
prioritization of relevant LC-HRMS features. A novel prioritization
strategy based on structural alerts to select NTS features that
correspond to potentially hazardous chemicals is presented here.
This strategy leverages raw tandem mass spectra (MS2) and
machine learning models to predict the probability that NTS
features correspond to chemicals with structural alerts. The models
were trained on fragments and neutral losses from the experimental
MS2 data. The feasibility of this approach is evaluated for two
groups: aromatic amines and organophosphorus structural alerts.
The neural network classification model for organophosphorus structural alerts achieved an Area Under the Curve of the Receiver
Operating Characteristics (AUC-ROC) of 0.97 and a true positive rate of 0.65 on the test set. The random forest model for the
classification of aromatic amines achieved an AUC-ROC value of 0.82 and a true positive rate of 0.58 on the test set. The models
were successfully applied to prioritize LC-HRMS features in surface water samples, showcasing the high potential to develop and
implement this approach further.
KEYWORDS: nontarget screening, structural alerts, machine learning, prioritization, toxicity, mass spectrometry

■ INTRODUCTION
Drinking water sources globally are increasingly under pressure
due to drought, salinization, and contamination by chemicals,
etc., where part of the chemical contamination is caused by
organic micropollutants.1 This umbrella term covers a wide
variety of substances present at trace levels, i.e., μg/L range or
lower, and originating from a wide range of anthropogenic
activities.2 Some of these organic micropollutants are
monitored intensively using liquid chromatography coupled
to high-resolution mass spectrometry (LC-(HR)MS). Yet
many chemical contaminants and their transformation
products are still unknown.3,4 Nontarget screening (NTS),
often combined with suspect screening, is increasingly used to
detect these unknown chemicals.5,6 NTS of surface water
samples, which can be regarded as relatively simple compared
to other matrices like soil or blood, often results in the
detection of up to a few thousand LC-HRMS features.7 It is
extremely laborious to identify all of them, and a substantial
proportion is probably naturally occurring, so only the most
relevant LC-HRMS features should be prioritized for further

investigation or identification. Commonly used prioritization
strategies leverage feature intensity, occurrence, trends/pattern
analysis, removal rate, transformation products, source, usage
data, and available metadata.8−11 Recent studies12,13 have
shown that toxicity is crucial for prioritization, given that this is
one of the main aspects of interest in environmental screening.
Prioritization on toxicity can be done on either suspect
candidates (i.e., structures), for example,12,14 or on unknown
features. The latter is more challenging since there is no
information available on the chemical structure of the feature.
To address toxic effects and hazards in the prioritization of
unknown features, several in vitro and in silico tools have been
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developed lately. Examples of these tools are in vitro effect-
directed analysis15,16 or risk-based using available (semi)-
quantitative and toxicity information.17 Furthermore, in silico
tools to aid the prioritization of hazardous substances have
recently been developed. For instance, MS2Tox18 and
MLinvitroTox19 machine learning tools use SIRIUS +
CSI:FingerID fingerprints20 of tandem mass spectra (MS2)
to predict fish lethal concentration 50% (LC50) values for an
unknown substance and toxicity values (active/not active) on
selected bioassay endpoints, respectively. MS2Quant21 uses the
same fingerprints to predict ionization efficiency values that
can be used to estimate the concentration of the detected
substances. These studies have shown that MS2 spectra can be
used to obtain valuable information for risk-based prioritiza-
tion of chemical features detected during monitoring with
NTS. However, intermediate steps such as autoencoders22,23

or fingerprint prediction tools are required to describe MS2

spectra. Commonly applied techniques to encode information
into descriptors based on MS2 spectra make use of
fragmentation trees, machine learning techniques such as
latent Dirichlet allocation,24 CLERMS,25 or a combination of
both like in CSI:FingerID,26 where fragmentation trees and
multiple kernel learning are combined.27 Arguably, predicted
fingerprints or molecular descriptors might lead to information
loss and increased uncertainty due to error propagation.28

Furthermore, an alternative approach to prioritize LC-
HRMS features belonging to potentially toxic chemicals
involves the use of so-called structural alerts. Also known as
toxicophores, these are molecular substructures that are related
to the toxic effects of a molecule. In a previous study,29 we
demonstrated that some fragments and neutral losses in MS2

spectra can indicate the presence of a structural alert in the
corresponding substance. A similar approach was used in
another study by Lo Piparo et al.,30 where they found
characteristic fragments in MS2 spectra of substances with a
pyrrolizidine alkaloid structural alert that has been associated
with genotoxicity. Similarly, Meng et al.31 found characteristic
fragments for organophosphate esters in MS2 spectra of
atmospheric pressure chemical ionization (APCI) and used
these to detect novel organophosphate ester substances using
NTS. Mayer et al.32 derived diagnostic fragments of
trichothecenes in their ESI MS2 spectra, and Pu et al.33 used
diagnostic fragments and neutral losses in experimental ESI
MS2 spectra to study N-nitrosamines. The above-described
approaches take advantage of the fact that similar molecules or
molecules with similar functional groups might show
similarities in MS2 spectra.34 This principle is also used in
tools like MS2Query,35 which is used for analog search. In
particular, fragments and neutral losses are commonly used for
the prediction of structural characteristics from MS2

spectra24,36 and can be used to assess structural similarity.37

Here, we present a novel offline prioritization strategy using
HRMS data that relies on the concept of structural alerts and is
based on raw MS2 spectra without the use of fingerprints or
autoencoders. This study explored whether the presence of
various drinking water-relevant hazardous substances could be
predicted based on the experimental MS2 of LC-HRMS
features detected in NTS. We used fragment masses, hereafter
referred to as “fragments”, and neutral losses to explore their
predictive power for the presence of structural alerts. Two
classifier models were developed to predict the presence of
aromatic amine and organophosphorus structural alerts based

on the composition of the MS2 spectrum. Last but not least,
the approach is tested on environmental surface water samples.

■ MATERIALS AND METHODS
For model development, all data preprocessing, machine
learning, and validation were conducted using R38 version
4.2.1, RStudio39 and the caret package.40 Calculations were
performed on an HP Z6 G4 workstation with two Intel Xeon
Gold 6134 CPUs at 3.20 GHz. For the application to NTS
data, all data analysis was performed using R38 version 4.3.3
and the patRoon41 package on an HP ProBook with one Intel
Core i7-8565U CPU @ 1.80 GHz. Visualization was done
using the ggplot2 package.42

Structural Alerts. The online web server ToxAlerts43 was
used for the selection of structural alerts related to toxicity
endpoints previously selected for their relevance to drinking
water,29 i.e., endocrine disruption (n = 35, i.e., the number of
structural alerts for this endpoint), developmental and
mitochondrial toxicity (n = 12), nongenotoxic carcinogenicity
(n = 23), and genotoxic carcinogenicity and mutagenicity (n =
117). The 187 alerts were examined manually, and related
alerts were aggregated based on expert knowledge, using
similarities in their carbon skeleton, heteroatoms, general
structure, and functional groups and their positions relative to
each other. This resulted in 32 groups (Table S1) and a
remaining set of ungrouped alerts (Table S2). Two structural
alert groups were selected for the development of the
approach. The rationale for choosing these two alert groups
is presented later in the results section. The first group, made
up of 10 of the 187 initial structural alerts, was the aromatic
amine, associated with genotoxic carcinogenicity and muta-
genicity. The second group, consisting of 2 structural alerts,
was the organophosphorus alert, associated with endocrine
disruption.

Data Set. MassBank Europe44,45 was used as a dataset for
the model training. The dataset (90,398 unique mass spectra of
19,712 unique SMILES) was filtered for MS2 spectra recorded
with electrospray ionization mass spectrometry, identification
level 1, and available SMILES identifiers.46 This resulted in
7334 unique SMILES, which were screened for the presence of
all 187 structural alerts. To this extent, the online tool
“ToxAlerts”43 was used (v. 4.3.327). All spectra were labeled
with “none” in case no alert was present or with the alert
code(s) representing the alert(s) present in the corresponding
molecule. Only spectra obtained with HRMS (i.e., with
instrument code ESI-QTOF or ESI-ITFT) in positive
ionization mode and obtained from adducts [M + H]+ were
selected for further analysis. To simplify model training and
development, we set the focus on [M + H]+ adducts. The
number of unique substances and MS2 spectra per alert group
is shown in Tables S1 and S2. For the model development,
only the aromatic amine and organophosphorus alert groups
were considered. An individual and tailored binary classi-
fication model was trained for each of them.

Preprocessing. Fragment m/z or neutral losses computed
from the spectra were used as input variables for model
training. Neutral losses were calculated by subtracting each
fragment with a relative intensity >50 (out of 999) from the
precursor ion m/z. Only neutral losses >0 m/z were retained,
as neutral losses <0 m/z were caused by fragments with larger
masses than the precursor ions. Fragments with a relative
intensity >50 and an m/z value below the precursor ion m/z
were kept. All neutral losses and fragments were binned by
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rounding to the nearest tenth, i.e., 0.1 m/z. Spectra without
neutral losses and fragments were removed from the data sets.
The data sets were arranged in two binary matrices: one matrix
with 3531 unique fragments (ranging from 26 m/z up to
1229.6 m/z) and another matrix with 4408 unique neutral
losses (ranging from 0 m/z up to 1155.1 m/z), both
corresponding to the same 23,387 unique spectra. Every
instance (row) represented a spectrum, and every feature
(column) represented a fragment or neutral loss. The presence
of a fragment or neutral loss in the spectrum was coded as ‘1′,
while absence was coded as “0”.

Specific subsets of spectra were made for the two alert
groups, containing spectra with the alert and a random sample
of 7600 MS2 spectra without the alert of interest. Fragments or
neutral losses that were absent in all of these spectra in the
subset were removed from the data set. Some fragments or
neutral losses were always occurring together; therefore, these
were removed to avoid having correlated predictors in the data
set. An additional preprocessing step was applied, involving the
removal of predictors in which only one instance differed from
the others (i.e., all zeros and only one “1” value); these were
considered as near-zero variance predictors.

Training and Test Set. The MS2 data set contains
multiple spectra of the same chemical or stereoisomers;
therefore, it was necessary to avoid including the same
chemicals in the training and test set, as this would lead to a
positive bias in model performances. The division of the
training and test set was done based on the first 14 characters
of the corresponding InChIKey, as this reflects the bond
connectivity and avoids having stereoisomers in both test and
training sets.47 The data sets were slightly imbalanced, with
more instances without an alert than with an alert (Table 1);

therefore, the createDataPartition() function from the caret
package was used to create balanced splits of the data for the
training (70%) and test set (30%) to have a similar proportion
of substances with the alert in the training and test set. The
data set for the organophosphorus structural alert was highly
imbalanced, with only 7 unique substances with an alert
(corresponding to 47 spectra) in a test set of 582 substances in
total (corresponding to 2198 spectra). Training models on
extremely imbalanced data sets is challenging and likely to
hamper the prediction accuracy. Hence, 628 additional MS2

spectra of 40 substances with an organophosphorus alert
retrieved from NIST2348 were included, thereby reducing the
imbalanced nature of the data set (Table 1). These additional
ESI HRMS NIST23 spectra were collected by using the same
filter criteria as described above for the MassBank spectra. For
both the training and test sets, more spectra were present than
unique substances, indicating that multiple spectra were
present for the same chemical. Nevertheless, no further spectra
were removed to avoid a loss of data.

Model Training. Model training was run on multiple cores
using the parallel38 and doParallel49 packages. At first, four
machine learning algorithms were implemented for model
training: a random forest classifier (rf), a single-layered feed-
forward neural network (nnet), extreme gradient boosting
(xgbTree), and a radial-kernel support vector machine
(svmRadial). These algorithms were chosen because of their
suitability for binary classification problems, their successful
application for mass spectrometry data50 and similar
tasks,19,21,51 and their accessibility in the caret package. The
area under the receiver operating characteristic curve (AUC-
ROC) was used as an optimization metric in the model
training, which is suitable for binary classification purposes.
The models were trained using 10-fold cross-validation. The
performance of the different models was assessed using the
AUC-ROC values, allowing us to take into account the true
positive rate and false positive rate. The true positive rate and
false positive rate were considered the most important metrics
here, as the number of true positives should be as high as
possible, whereas the number of false positives should be
preferably as low as possible. Figure 1 gives a schematic

overview of model development. Recursive feature elimination,
using the rfe() function from the caret package with 10-fold
cross-validation, was applied to the best-performing models to
potentially enhance performance and robustness as well as
reduce model complexity. To reduce computing time, it was
decided to perform recursive feature elimination on the top
25% most important variables only while discarding the
bottom 75%.

Application to Samples. Samples spiked with compounds
containing aromatic amines and organophosphorus groups
were used to evaluate the performance of the trained models.
More specifically, the aromatic amine model was applied to
samples (ultrapure water, drinking water, and surface water)
spiked with 27 aromatic amine-containing chemicals at a final
concentration of 1 μg/L (Table S5). These samples had earlier
been analyzed using the LC-HRMS method described in Been
et al.17 Using the patRoon workflow described below, MS2 data
for 25 out of 27 compounds could be retrieved. The
organophosphorus model was applied to six spiked QC
samples and four dust samples from the study by Belova et

Table 1. Specifications of the Different Training and Test
Sets used for Model Training Per Structural Alert Group

training set test set

structural alert data type total with alert total with alert

aromatic amine spectra 8697 3362 3485 1256
chemicals 1447 291 619 124

organophosphorus spectra 6044 595 2326 175
chemicals 1379 36 590 15

Figure 1. Schematic overview of the different steps taken for the
generation of the training and test set, validation, and application to
surface water samples.
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al.,52 which contained 8 organophosphorus-containing chem-
icals at a final concentration of 0.1 ng/μL (Table S6). Using
the patRoon workflow described below, MS2 data for 7 of the 8
compounds could be retrieved. Furthermore, to evaluate the
models on actual samples, reversed-phase liquid chromatog-
raphy (RPLC)-HRMS NTS data of three surface water
samples from the river Rhine and three surface water samples
from the river Meuse collected in The Netherlands during a
previous study were used.17 In this previous study, the samples
were analyzed using an Orbitrap Fusion Tribrid mass
spectrometer (Thermo Fisher Scientific) with electrospray
ionization. The full scan ranged from 80 to 1300 m/z with a
resolution of 120,000 fwhm. MS2 spectra were recorded using
data-dependent acquisition with higher-energy collisional
dissociation in the stepped collision energy mode. The raw
RPLC-HRMS files, acquired in positive ionization mode, were
converted into the open-source format .mzML using the
msconvert tool of ProteoWizard.53 They were analyzed using
patRoon54 (v 2.3.3), and features were obtained and grouped
using the OpenMS55 algorithm (v 3.0.0). After grouping, peak
qualities were calculated, and feature groups with a Gaussian
Similarity score below 0.3 were removed. Basic filtering was
applied for a retention time between 2.7 and 27 min and a
minimum intensity of 10,000. Feature groups that were not
present in two of the three replicates were removed, and
feature groups present in the blank were removed as well if
their intensity was <10 x blank intensity. The best-performing
models were applied to the obtained MS2 spectra of the feature
groups. Formula candidates and fingerprints were generated
using SIRIUS20 (v 5.8.2), CSI:FingerID26 and GenForm.56

Potential compounds were annotated in patRoon using
MassBank release version 2024.06.57 The NTA Study
Reporting Tool (SRT) was used in the preparation of this
manuscript.58,59

■ RESULTS AND DISCUSSION
Structural Alerts. Many of the 187 structural alerts in

ToxAlerts that were selected for this study had similar
structures or contained similar SMARTS patterns. Similar
structural alerts were grouped to reduce the number of classes
that needed to be assessed and thereby improve performance.
In total, 32 structural alert groups were assigned (Table S1),
some of which are present in well-known potentially hazardous
chemicals, e.g., organophosphorus being common in pesti-
cides60 or flame retardants61 and carbamates in pesticides.60

Other structural alert groups are more general, such as
epoxides, azo groups, and aliphatic halides.

The success of training classification models depends on the
availability of training data, here, MS2 spectra. The number of
substances and relevant MS2 spectra in MassBank with a
structural alert varied largely between different structural alert
groups, as can be seen in Table S1 and Figure S1. In the
MassBank data set, 99 of the 187 individual alerts were found,
and some substances contained multiple alerts, resulting in 375
unique combinations of structural alerts. Here, we focused on
ESI positive ionization mode only; therefore, the number of
substances with the structural alert available in the MassBank
data set also depends on the chemical properties of the
substances with the alert. If a specific alert is hardly present in
substances that have been measured and deposited in
MassBank, then fewer spectra will be available. Furthermore,
measurement bias affects the availability of training data: more
fragmentation spectra are available for (groups of) substances

that have been more intensively studied. Any MS2 database,
including MassBank, is a biased data set as it contains known
substances of interest to (environmental) chemists. Therefore,
it is a biased reflection of the chemical space measurable with
LC-HRMS and further.4,62

The structural alert group with the largest number of unique
substances (n = 415) and relevant MS2 spectra (n = 4582) in
MassBank was the aromatic amine group. Aromatic amines are
commonly used in the industrial synthesis of dyes, rubber, and
drugs63 and are subsequently released into the environment via
industrial effluent.64,65 They have been detected in surface
waters and groundwater, among others.65 While aromatic
amines are a very broad group of structural alerts, the
organophosphorus group is smaller, with 142 relevant MS2

spectra of 16 unique substances, but has a more specific
structure. Organophosphorus pesticides like methyl parathion,
parathion, isocarbophos, and quinalphos have been detected in
surface waters as well.66 Based on these considerations, the
most abundant aromatic amine structural alert and the more
specific organophosphorus structural alert were used as a case
study to investigate the possibility of predicting structural alerts
directly from the MS2 spectra.

Curating Tandem Mass Spectra. The fragments and
neutral losses were rounded to 1 decimal to yield binned data
with a bin size of 0.1 m/z. Spectral binning reduces the number
of variables; thereby, the resulting models become more robust
toward alignment errors.28 After preprocessing, where only
duplicate, empty (i.e., all instances equal to 0), and near-zero
variance predictors were removed, the number of predictors
varied per alert and data type. For the organophosphorus alert,
1661 unique fragments and 2098 unique neutral losses were
used for model training, while for the aromatic amine alert,
there were 1754 fragments and 2119 neutral losses. The fact
that more bins of neutral losses compared to bins of fragments
are computed could potentially be due to neutral losses having
two sources of variability, namely the m/z of the fragments and
the m/z of the precursor. On the other hand, with fragments,
the only source of variability is the m/z of the fragment itself.
MS2 spectra of different instruments (orbitrap and quadrupole
time-of-flight, QTOF) were combined to obtain a data set of
sufficient size for training purposes. Although Orbitrap and
QTOF MS2 spectra are comparable within specific collision
energy ranges,67,68 it is possible that training separate models
for each type of instrument could lead to higher performance,
as these are expected to be more robust against deviating
collision energies. However, this approach would require
sufficient training data for each specific mass analyzer.
Moreover, the primary goal of our work was to develop a
universal approach that can accommodate data generated by
different instruments, ensuring broad applicability and enabling
a wide range of uses for this method for prioritization
purposes.

Model Training and Interpretation. The distribution of
other structural alerts for the random sample of spectra for the
training and test set, without the alert of interest, was
representative of the full data set (Figure S1). As a result, we
deemed the use of a stratified sampling strategy unnecessary.
The organophosphorus data set is imbalanced (9.8% spectra
with alert), whereas the aromatic amines data set is less
imbalanced (38.7% spectra with alert), mainly caused by the
high occurrence of this structural alert (Table 1).

The performance of machine learning models can be
assessed and optimized by various metrics, and the selection
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depends on the purpose of the model.69 Here, performance
was evaluated following a precautionary principle; i.e., the risk
of missing a potentially toxic feature should be kept as low as
possible. In terms of prioritizing toxic features, this translates
into maximizing the true positive rate (recall or sensitivity) to
reduce the risk of misclassifying potentially toxic features as not
containing an alert. On the other hand, false positives (i.e.,
features incorrectly prioritized as containing an alert) were
considered less problematic from a risk management
perspective; however, the fraction of such features should be
kept as low as possible to reduce manual interrogation of the
nontoxic features and the increased workload associated with
this. As a result, the AUC-ROC was deemed a suitable metric
for the purpose of NTS and was used to select the optimum
classification model (Figure 2).

The best-performing organophosphorus model was a neural
network using the combination of neutral losses and fragments
as input variables, with a size of 1 and a decay of 0.1. On the
test set, the model yielded an AUC-ROC value of 0.97 and
classified 114 spectra out of 175 correctly as “organo-
phosphorus alert present” (TPR of 0.65), while exhibiting a
false positive rate of 0.01 (Table S3). For aromatic amines, the
best model uses the combination of fragments and neutral
losses as input variables and is built with a random forest
algorithm, with 500 trees and an “mtry” value of 87. On the
test set, the model has an AUC-ROC value of 0.82 and
classifies 723 spectra out of 1256 correctly as “aromatic amine
alert present”, exhibiting a false positive rate of 0.14 (Table
S4). The challenges in the model training for the aromatic

amines can, among others, be explained by the lack of
diagnostic fragments.70 Although we found a diagnostic neutral
loss (17.02655 m/z, potentially corresponding to the loss of
NH3) in our previous study based on in silico MS2 data,29 the
model training results show that the best-performing model is
based on the combination of fragments and neutral losses.
Moreover, the bin size of 0.1 m/z might affect the diagnostic
power of this neutral loss because other less relevant neutral
losses might fall into the same bin. Although smaller bin sizes,
e.g., 0.01 or 0.001 m/z, might increase the diagnostic power of
some fragments and neutral losses, they will lead to a
tremendous increase in variables. Moreover, it is expected
that more MS2 data will lead to increased performance. The
promising performances obtained show that the trained
models can be included in NTS workflows to prioritize
features with structural alerts.

Variable Importance. Interpretation of the trained
machine learning models increases the trustworthiness of the
models, and it enables the discovery of new patterns in the
data; therefore, we investigated which neutral losses and
fragments exhibited high importance in the trained models.
The top 25 most important variables from the best-performing
model were compared with group-specific fragments and
neutral losses found in the literature, in particular from studies
focusing on organophosphorus pesticides71−74 (Figure S5).
For example, the fragment at 327.1 m/z was found to be the
second most important feature and corresponded to a
characteristic triphenyl phosphate ion (C18H16O4P+) fragment
with an exact mass of 327.07807 Da previously reported by Hu

Figure 2. ROC curves on the test set data of the developed structural alert models with (A) organophosphorus and (B) an aromatic amine. The x-
axis shows the false positive rate (FPR) and the y-axis shows the true positive rate (TPR). The following abbreviations were used: rf (random
forest), nnet (single-layered feed-forward neural network), xgbTree (extreme gradient boosting) and svmRadial (radial-kernel support vector
machine).
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et al.73 Furthermore, the fragment at 265.0 m/z might
correspond to another characteristic fragment of C13H14O4P+

although its exact mass slightly deviates (i.e., 265.06242 Da,
which would result in the bin at 265.1 m/z). The same goes for
the characteristic fragment of C13H12O3P+ with an exact mass
of 247.05186 Da, which deviates slightly from the 10th most
important variable 247.0 m/z. These discrepancies between the
fragment masses could be caused by the lower resolution used
when MS2 spectra are acquired with HRMS instruments,
especially with Orbitrap instruments. Regarding aromatic
amines, the diagnostic neutral loss (17.02655 m/z) found in
our previous study29 was absent in the top 25 most important
variables. A comparison of the most important fragments and
neutral losses (Figure S6) with existing literature is challenging
because, to the best of our knowledge, such characteristic
electrospray ionization MS2 fragments or neutral losses have
yet to be reported. Therefore, findings from this study can
serve as a starting point for mechanistic investigations aimed at
discovering diagnostic aromatic amines fragments.

Application of Both Models to Experimental NTS
Data. Of the 25 aromatic amine-containing compounds with
MS2 data in the spiked samples, 23 were successfully flagged by
the developed model, with probabilities ranging from 0.651 to
1 (Table S5). For the organophosphorus model, 4 out of 7
spiked compounds with MS2 data were flagged, with
probabilities ranging from 0.993 to 0.998 (Table S6). Two
of the compounds flagged, namely, triphenyl phosphate and
tricresyl phosphate, were also positively classified in actual
(unspiked) dust samples from the study of Belova et al. (0.998
and 0.997 probability, respectively). The 3 compounds that
were not flagged by the model, namely, 2-ethylhexyl diphenyl
phosphate, resorcinol bis(diphenylphosphate), and bisphenol
A bis(diphenylphosphate), formed sodium adducts [M + Na]+,
which the model was not trained on, possibly explaining why
they were not flagged. During data processing of the LC-
HRMS data of the surface water samples, 45,647 features were
extracted and yielded, after alignment and grouping, 8,161
feature groups. Further retention time, peak quality, and
intensity (>10,000 counts) filtering alongside blank subtraction
and componentization reduced the number of LC-HRMS
features to 386, of which 352 had an MS2. Fragments and
neutral losses were calculated for these features using MS2

spectra.
Seven of the feature groups yielded a probability score >0.5

for the class “organophosphorus alert present”, indicating that
only a few features containing this substructure are present in
the considered data set. Assigned formulas, highest-scoring
candidates, and CSI:FingerID scores on the four bits of the
CSI:FingerID fingerprint representing phosphate and other
oxygen−phosphorus bonds are shown in Table S7. For six
features, one or more of the top three predicted formulas
included a phosphorus element. However, no candidate
structures could be matched in MassBank, except for one
feature group (M397_R1098_6504), which showed a match
(0.88) with fluopyram�a fungicide that does not have an
organophosphorus group but was also prioritized using the
aromatic amines model (see below). The inability to find
MassBank matches for the other flagged features underscores a
challenge already encountered during model training: the
limited availability of MS2 data for compounds with this
specific structural alert. Nevertheless, these findings suggest the
potential presence of unknown features characterized by an
organophosphorus structural alert in the surface water samples,

which should be further investigated to tentatively elucidate
their structures. Regarding the “aromatic amine” alert, 194
feature groups yielded a probability score >0.5 and were
further investigated. Assigned formulas, highest-scoring
candidates, and CSI:FingerID scores on the two bits of the
CSI:FingerID fingerprint representing a primary aromatic
amine and secondary aromatic amine are shown in Table S7.
For 11 of these feature groups, potential candidates were found
in MassBank, of which nine contained an aromatic amine,
whereas the other two contained a tertiary amine group. It is
likely that these compounds might yield similar fragment ions
and neutral losses to substances with an aromatic amine
structural alert. Nevertheless, this application shows that it is
possible to apply the developed models to nontarget screening
data of environmental surface water samples.

Research Significance and Future Directions. The
approach developed here for predicting the presence of
structural alerts can be utilized in environmental, exposomics,
and human (bio)monitoring studies. It can rapidly highlight
potentially significant features that require further investiga-
tion, either by applying other in silico tools or through
additional experimental work like targeted analysis. Findings
from this study show that based on raw and unfiltered MS2

spectra, it is possible to predict whether detected features
potentially contain specific structural alerts associated with
toxic effects, without the need to first predict molecular
fingerprints from the data. The developed models can be used
to both prioritize features in suspect and nontarget screening,
as well as for more specialized applications such as (high-
throughput) effect-directed analysis (EDA).75 In experimental
toxicity testing with EDA or bioassays, a challenge is to
associate the observed effect in the bioassay with a relevant
feature(s), as each tested fraction still contains multiple
features. Application of the developed models can help in
narrowing the number of features potentially involved in the
observed effects. For prioritization purposes, the proposed
approach can be used to rapidly screen through a large number
of acquired MS2 spectra to highlight the features with
structural alerts and focus further identification efforts on
these features. Furthermore, given that it is complementary to
the calculation of molecular fingerprints from MS2 spectra, e.g.,
by SIRIUS,20 the proposed approach can be combined with
recently developed tools such as MS2Tox18 or MLinvitroTox19

to further reduce the number of features for which toxicity/
activity predictions need to be computed.

Results obtained here indicate that structural alerts can be
predicted from the MS2 spectra. However, this is not
necessarily the case for all structural alerts, as not all alerts
can necessarily be linked to specific fragments, neutral losses,
or combinations in MS2 data (e.g., halogens and epoxides). In
the future, multiclassifier models could be trained to detect the
presence of more structural alert groups, provided enough data
is present to train performing models. Additionally, future
algorithmic developments might improve the performance
further. In particular, the evaluation of additional classification
algorithms and more extensive feature engineering could help
improve performance. Data preprocessing could be optimized
by adjusting the bin size and using different strategies for
variable selection. However, selecting the most suitable bin size
is complex; higher resolutions result in a larger number of
variables, increase computation time, model complexity, and
require more training data. Additionally, this could lead to
more alignment errors, as fragments or neutral losses may be
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split between different bins due to mass errors.28 Larger bin
sizes and thus lower resolution overcome these problems but
will lead to information loss. These disadvantages of uniform
binning upon mass error could potentially be avoided by using
Gaussian binning, which has been applied to NMR spectros-
copy data76 but is still to be implemented on HRMS data.
Future research can explore other variables that are acquired
along the MS2 during data acquisition, e.g., signal intensity.
Moreover, ongoing advancements in the field of metabolomics
can serve as a foundation, as developed strategies can be
equally applicable to the environmental analysis of small
molecules.

This study showed that it is possible to build classification
models on experimental fragmentation spectra acquired with
positive electrospray ionization. We were able to apply the
developed models to the NTS data of surface water samples
and prioritize a set of features that potentially contain the
aromatic amine structural alert. Both models can aid in
pinpointing chemicals that are potentially hazardous to the
environment and prioritize them for identification efforts. The
possibility of predicting structural information related to the
hazard of the molecule, without the use of fingerprints, is a
valuable insight and can be used as a stepping stone for further
research into the prioritization of NTS features in environ-
mental samples. This approach could find applications in
various nontarget screening studies of environmental samples.
Overall, here we showed the potential of obtaining information
on the potential hazard of an NTS feature based on the raw
experimental MS2 data.
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