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Managementsamenvatting 

Softsensor voor flocculatie: computermodel voorspelt zuiveringscondities op basis van 

gemakkelijk te meten input en bespaart experimenteerkosten 

Auteurs dr. Jasper N. Immink, dr. ir. Martin Korevaar. 

Bij de waterzuivering wordt al eeuwenlang coagulatie-flocculatie ingezet: een flocculant (vaak ijzer- of 

aluminiumchloride) wordt aan water wordt toegevoegd en vormt grote, poreuze clusters, waaraan onzuiverheden 

adsorberen. Deze clusters zakken naar de bodem en kunnen worden verwijderd. Optimaliseren van dit proces is 

een tijdrovend en duur proces vanwege de vele variabele procesparameters. Om deze optimalisatie te 

vergemakkelijken, hebben we voor coagulatie-flocculatie een softsensor ontwikkeld. Dit is een computermodel dat 

de omstandigheden van het proces kan voorspellen op basis van de toegevoegde flocculantconcentratie en 

gemakkelijk te meten waterparameters. De softsensor kan in plaats van kostbare en tijdrovende experimenten 

worden ingezet en helpen om sneller en goedkoper een optimale flocculantdosis te bepalen.  

 

 

 

Flowchart van de softsensor zoals nu geïmplementeerd. Oranje cirkels zijn inputparameters, paarse 
cirkels zijn berekende outputparameters, en groene rechthoeken zijn modelmodules. 

 

Belang: flocculatiecondities voorspellen zonder 

dure experimenten 

Coagulatie-flocculatie is een waterzuiverings-

methode waarin een flocculant (vaak ijzer- of 

aluminiumchloride) aan water wordt toegevoegd en 

dan grote, poreuze clusters vormt. Onzuiverheden in 

het water adsorberen vervolgens aan deze clusters. 

Onzuiverheden kunnen zo uit de watermatrix 

worden verwijderd, want de flocculantclusters 

groeien tot ze zo groot zijn dat ze naar de bodem 

zakken, waarna ze met onzuiverheden en al 

eenvoudig kunnen worden verwijderd. Flocculatie 

wordt al eeuwenlang ingezet, maar het bepalen van 

de optimale flocculantdosis bij variabele 

procesparameters (zoals chemische samenstelling, 

zoutconcentratie van het influentwater en 

roersnelheid) blijft een uitdaging voor 

waterbedrijven omdat al deze parameters de 

proceseffectiviteit soms beïnvloeden in moeilijk te 

voorspellen manieren. Experimenten doen en 

parameters testen is duur vanwege materiaalkosten, 

manuren en tijdsinvesteringen. Computermodellen 
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zouden hierbij een grote meerwaarde kunnen 

hebben, omdat modelvoorspellingen veel goedkoper 

zijn.  

Aanpak: mechanistisch modelleren 

Flocculatie is een fysisch-chemisch proces waarin 

verschillende wetenschappelijke disciplines 

samenkomen. Door de verschillende onderliggende 

processen en hun onderlinge interactie in kaart te 

brengen, kunnen we het gedrag tijdens flocculatie in 

wiskundige formules vatten. Door die formules in 

computermodellen te brengen en te voeden met 

inputparameters als zoutconcentratie en 

watertemperatuur kunnen de condities in het 

flocculatieproces worden voorspeld zonder fysieke 

experimenten. 

Resultaat: een werkende en gevalideerde 

softsensor 

De in dit werk ontwikkelde softsensor 

(computermodel) blijkt in staat het experimentele 

werk voor onderzoek naar optimale flocculatie-

parameters deels te kunnen vervangen en zo de 

waterbedrijven kosten te kunnen besparen. De 

ontwikkelde softsensor voorspelt condities in een 

coagulatie-flocculatieproces aan de hand van een 

aantal parameters voor onder andere waterkwaliteit. 

Alle parameters zijn gemakkelijk te meten.  

Implementatie: softsensor inzetten om 

flocculatiemethoden goedkoper te optimaliseren 

Inzetten van de softsensor kan helpen om de 

zuiveringscondities van een full-scale coagulatie-

flocculatieproces te optimaliseren zonder dure 

experimenten te hoeven doen. Daarnaast kan het 

gebruik van een softsensor leiden tot een verlaagd 

gebruik van dure chemicaliën en een betere 

waterkwaliteit. Verdere investering in de softsensor 

kan deze helpen tot accuratere voorspellingen te 

komen voor een breder scala aan watercondities. 

Rapport 

Dit onderzoek is beschreven in het rapport 

Softsensor flocculatie (BTO-2022.343)
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1 General introduction 

Water treatment companies often deal with ever-changing intake water quality, updates in water quality 

regulations and changes in material costs used in drinking water. To be able to anticipate these unpredictable 

changes, engineers would like to predict the effects of such changes: what happens should the chemical 

composition of inlet water change, can the costs of chemicals be lowered with a more efficient use of these 

chemicals, or how should processes be designed to achieve a certain level of purification? The answer to these 

questions can be answered using experimental work, both on laboratory, pilot or full scale, but these are often 

costly in terms of both time and money. Using a model that predicts certain physical or chemical conditions, within 

a given uncertainty range, would be able to lighten the need for such costly experiments.  

 

One of the processes which would benefit from a model or softsensor is the coagulation-flocculation process. This 

process is a widely used treatment process for the production of drinking water or treating waste-water. The 

process itself has been known for many centuries, with the ancient Egyptians and Romans using versions of the 

technique. [1] Nowadays, the process is performed by adding a flocculant (often iron or aluminum chloride salts) to 

water. The flocculant then precipitates, forming large, open structures with a large surface area exposed to the 

water. Impurities such as dissolved organic carbon (DOC) or phosphate ions adsorb to this surface and are thereby 

removed from the water. The size of these flocculant clusters allows them to be easily separated from the water: 

through sedimentation, flotation or filtration. [2] 

The ease of operation and the low energy consumption has made coagulation-flocculation ubiquitous, but even 

though it has been studied for centuries, scientists and engineers still struggle with understanding and predicting its 

removal efficiencies. [3] In this report, we present and describe a softsensor for this process: a program that 

interprets the flocculation process, and help to understand and predict removal outcomes. The softsensor takes as 

input easily accessible measured parameters such as the salt concentration or electrical conductivity of the feed 

water, iron dosing concentration in the coagulation-flocculation and zeta potential of the created clusters. The 

softsensor is based on a Population Balance model method, where the size of the clusters is tracked over time by 

interpreting the different physico-chemical processes that occur during growth and breakdown of these clusters. 

This size will at a later stage be used to calculate the amount of contaminant molecules that interacts with the 

coagulant material. 

This work builds on previous work by KWR, where specifically the coagulation process itself was studied (BTO 

2021.) In this work, a softsensor is built that predicts cluster size and distribution in a coagulation-flocculation 

treatment technique. The input that this softsensor needs are input parameters that are measurable and readily 

available to water companies. The softsensor is validated using scientific literature to show that it works as 

intended, and some output of the softsensor is shown. This softsensor is a great starting point for predicting the 

conditions and output of a coagulation-flocculation process, and is the necessary foundation for a digital twin of 

coagulation-flocculation treatment. 
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2 Relevant physico-chemical processes 

In this chapter we discuss the coagulation-precipitation process from a physico-chemical point of view, to give the 

necessary background for understanding the softsensor implementation. 

In water treatment technology, coagulation and flocculation are terms that are used to describe a range of 

phenomena that end with large aggregate clusters to which contaminants adsorb. However, in colloid science and 

physico-chemical literature, coagulation and flocculation have somewhat different definitions. To avoid any 

confusion, we will in general use the terms coagulation and flocculation as is understood in water treatment 

technology. We refer to coagulation when we discuss the process of formation of precipitated material from 

dissolved material, and we refer to flocculation when already precipitated material encounters other precipitated 

material, and clusters together through some process. 

Overview of precipitation processes  

Generally, precipitation and the coagulation-flocculation process occurs through a multi-step process, going 

through nucleation, growth and aggregation stages. Before any of these stages, the added coagulant material is 

added and dissolves. [4] This dissolved material immediately hydrolyzes and subsequently is in a metastable state 

and would energetically favor a solid, often in a crystalline state. In the first stage of the precipitation process 

(nucleation) the initial crystallites or nuclei form; in the growth stage, dissolved material will deposit molecule by 

molecule onto a crystallite, growing it larger; and during the aggregation stage, particles encounter other particles, 

binding to each other, forming clusters until ultimately, the cluster is big and heavy enough to precipitate (or light 

enough to float out of suspension). Below, we will discuss each of these subprocesses in some detail, taking the 

example of iron chloride precipitation. 

Pre-nucleation: hydrolyzation of iron chloride 

Before the process of precipitation occurs, or the zeroth step of a coagulation-flocculation process, the iron 

chloride is added to the to be treated water. Upon addition, the following chemical reactions take place: 

���� + 3��� → ��(��)� + 3��, 
( 1 ) 

���� + 3��� + 3����
� → ��(��)� + 2����� 

( 2 ) 

 

Which specific reaction takes place depends on the pH and the presence of carbonate ions. However, in general all 

iron is almost instantaneously hydrolyzed to ��(��)�. These ferrihydrite-molecules are poorly solvable, with log K-

values of -40. [5] With the strong tendency of ferrihydrite to precipitate (out of solution), the iron(III) hydrolysis and 

subsequent transformation to solid material occurs on a very rapid time scale, on the scale of nanoseconds. [6] 
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Nucleation and growth 

With the formation of (dissolved) ferrihydrite, the nucleation process starts. It comprises of the coagulation of 

individual and dissolved atoms or molecules into small crystallites, generally starting at 10-100 molecules. [7] It is 

broadly energetically unfavorable to form such initial nuclei spots, but the subsequent nucleus growth to clusters 

larger than 10-100 molecules is energetically favorable. The initial nucleus formation is an interplay between water-

ferrihydrite interactions and ferrihydrite-ferrihydrite interactions. [8] The latter is much more energetically 

favorable, and the system will always try to maximize the amount of ferrihydrite-ferrihydrite interaction as 

compared to water-ferrihydrite interactions. If a ferrihydrite molecule exists in the interior of a crystal, it has 

maximized its ferrihydrite-ferrihydrite interactions (expressed as bulk free energy in Figure 2), but when it exists at 

the surface of a crystal, it still has water-ferrihydrite interactions (expressed as surface energy in Figure 2). This is 

one of the driving forces behind nucleus growth, graphically represented Fig. 1: a crystallite will try to maximize the 

amount of interior molecules, as they have the most ferrihydrite-ferrihydrite interactions. In the meantime, it will 

minimize the amount of exterior molecules, as they experience more water-ferrihydrite interactions. This results in 

nanoparticles that experience a drive to maximize the volume/surface ratio, which can be achieved by growing in 

size.  

 

These energies together lead to what is graphically represented in Fig. 2: it costs energy to make a crystallite until it 

overcomes a critical radius; after which growth becomes energetically favorable. There often is a minimum nucleus 

size, specific for the material and system, due to binding energies being specific to the materials present in the 

system. 

Figure 1: Graphic representation of a crowing crystallite, as the crystallite grows its volume-

to-surface ratio increases. 
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Because this process possesses an energy barrier, it either needs energy or a catalyst. A typical catalyst is a 

heterogeneous species in solution onto which crystals can grow, such as a speck of dust, an added seed crystallite 

or a large, irregular object like a tank wall. In the case that formation of a nucleus does not cost a lot of energy, 

random thermal fluctuations are enough to form a crystallite. In the case that enough catalytic particles are present 

in solution, or when crystallite formation does not cost too much energy, nuclei will form homogeneously 

throughout a sample volume (called a spinodal process). In general, feed waters for drinking water treatment 

(surface, ground water) contain a sufficient amount of material that can act as seeding material or heterogeneous 

catalysts, [9] and ferrihydrite is such a poorly solvable molecule that its nucleation is likely spinodal. [10] 
 

If the critical size is reached, dissolved ferrihydrite molecules will deposit onto the now large nucleus, growing it in 

size. This process continues until there is no more dissolved material left, and until the particle is stable at its 

current size, or until the particle becomes so big that it sediments/floats (out of solution).  

 

LaMer nucleation/growth mechanism 

The ferrihydrite precipitation reaction mechanism as it is applied by water treatment facilities is generally accepted 

to follow the LaMer mechanism, which slightly deviates from the pathway that has been described in the previous 

paragraph. In the LaMer mechanism, a chemical is added to a solution, which then reacts and is transformed into a 

nucleus precursor molecule. The LaMer mechanism is typified by bringing a small volume of a highly concentrated 

precursor in a larger volume. [8] In our case, ferric chloride is brought into a large volume of water which 

hydrolyzes into ferrihydrite. The dissolved ferrihydrite concentration is then locally above a certain concentration 

necessary for spontaneous nucleus formation, known as the critical limiting supersaturation. In these conditions 

nuclei are formed spontaneously. Quickly after this nucleation process, the dissolved ferrihydrite concentration 

drops below the critical limiting supersaturation, prohibiting nucleation from being formed. This process leads to 

nuclei that are very homogeneous in size. Furthermore, in the case of ferrihydrite, the hydrolyzation and nucleation 

formation is so fast that practically all monomeric ferrihydrite coagulates into nuclei before the system has the 

opportunity to homogenize in space: the movement speed due to stirring is much slower than the time needed to 

Figure 2: Graphic representation of the interplay between energies in a crystallite. On the y-axis 
the energy, on the x-axis the radius of the crystallite. As the crystallite grows, the energy gained 
from the ferrihydrite-ferrihydrite interactions overtakes the energy input from building the 

ferrihydrite-water surface. From Polte et al. 
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form all nuclei. [5] This effectively causes all nuclei to nearly instantaneously form upon entering the feed water, 

and with a negligible amount of ferrihydrite remaining in solution. 

 

Aggregation 

When two particles encounter each other, their interaction depends on their material properties and the system 

surroundings. In general, they interact in two main ways via: i) van der Waals-attractive forces and (ii) electrostatic-

based repulsive forces. The interplay between the two determined whether the two particles will attract or repel. 

This is graphically depicted in Fig. 3. The van der Waals interaction is constant for a given material and solvent. The 

electrostatic interaction depends on the charge density on the particles and the salt concentration of the solvent: 

the higher the surface charge, and the lower the solvent salt concentration, the stronger the repulsion. [11] 

 

 

 

 

Calculating the interaction magnitude between two particles is often done by a DLVO-type potential (DLVO stands 

for the four scientists Derjaguin, Landau, Verwey en Overbeek). Using this DLVO potential, one can calculate an 

energy barrier that has to be overcome for two particles to aggregate. [12] [13] 

 

Since the van der Waals attraction for a material-medium combination is largely constant, [14] the strength of the 

attraction between two ferrihydrite-nanoparticles in water is (predominantly) determined by the magnitude of the 

electrostatic repulsion. This is in turn predominantly determined by the surface charge density on the particles and 

the salinity of the solvent.  

The magnitude of the electrostatic repulsion strongly affects the shape and openness of a final cluster, as 

graphically represented in Fig. 4. In the case that two particles experience a strong an der Waals attraction, and 

thus a small electrostatic repulsion, any particle that encounters a cluster will encounter a strong force binding 

itself to that cluster. It will experience a low mobility after approach, and will likely remain on the position that it 

initially encountered the cluster. However, is the van der Waals attraction weaker (and the electrostatic repulsion 

stronger), then the binding energy between particle and cluster is weaker, and the newly aggregated particle has a 

Figure 3: Three different representations of what can happen when two particles encounter. A) The particles have no charge, and no 
electrostatic repulsion is present. The attractive van der Waals interaction pulls the particles together. B) A small charge is present on the 
particles, and a weak electrostatic repulsion is present. However, the van der Waals interaction is strong enough to overcome the repulsion. C) 

A high charge is present, and electrostatic repulsion is strong. The repulsion cannot be overcome by van der Waals attraction. 
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higher degree of mobility. This particle will then be able to move across the surface of that cluster, and find a spot 

to “nestle” itself into. Clusters with weak electrostatic repulsions will form more open structures, whereas more 

dense structures are formed with stronger electrostatic repulsions. Finally, should the electrostatic repulsion be too 

strong, a particle will not be able to approach a cluster, and cluster will not grow at all. [15] 

  

Small electrostatic repulsion Large electrostatic repulsion Medium electrostatic repulsion 

Figure 4: Graphical representation of the aggregative process of a particle encountering a cluster. In the case of small electrostatic repulsions, 
new particles will remain on the cluster where they found the cluster; with medium electrostatic repulsion, the particle has a degree of mobility 
after encountering the cluster, allowing rearrangement into a more dense cluster; and with large electrostatic repulsions, no particles will 

approach the cluster and growth will be inhibited. 
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The magnitude of the electrostatic repulsion thus governs the structure of the final cluster. Aggregation with weak 

electrostatic repulsions on particles is also typically described by a Diffusion-limited Cluster Aggregation (DLCA)-

process, whereas aggregation with stronger electrostatic repulsions on particles is typically described by a 

Reaction-limited Cluster Aggregation (RLCA)-process, as seen in Fig. 5. [16] The final shape of the cluster is different 

for the two types, with DCLA-processes yielding more open clusters and RCLA-processes more compact clusters. 

[17] This observation is often quantified by a fractal dimension, a measure of the openness of the structure. The 

fractal dimension has its extremes at 1 (all particles clustered in a one-dimensional line) and 3 (all particles 

clustered to form a perfectly filled sphere). It can be calculated as follows: [18] 

 

� = �
��

��

�

��

 

( 3 ) 

with the following parameters: 

 �   Number of particles in an aggregate  [-] 

 ��    Diameter of the aggregate    [m] 

 ��  Diameter of the monomeric particle  [m] 

 ��  Fractal dimension    [unitless] 

 

One can define the aggregate diameter in various ways, and often the hydrodynamic diameter is used: [19] 

1

��

=  
1

��
〈�

1

���
���

〉 

( 4 ) 

 

with the following parameters: 

 ��   Hydrodynamic diameter (Aggregate diameter) [m] 

 �   Number of particles in an aggregate  [unitless] 

 ���    distance between particle i and j   [m] 

 

 

 

The physical meaning of the hydrodynamic radius is that, should the entire cluster be replaced with a solid spherical 

particle with diameter ��, the diffusivity of the cluster and replacement particle would be identical. The reason 

that we use hydrodynamic sizes instead of other definitions is twofold: (i) we will be using a model where we need 

Figure 5: An graphical representation of clusters formed through a more DLCA-
dominated mechanism (left) and RCLA-dominated mechanism (right).  
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to define the diffusive and mobility behavior of individual clusters; (ii) the hydrodynamic radius is not sensitive to 

very long structures extending outward, and other radius definitions are more sensitive to this behavior. [20] 

It has been found that, using the above definition, fd = 1.7-1.8 for DCLA and fd = 2.0-2.2 for RCLA. [21] [22] [23] 

Energetic barriers to aggregation and rearrangements after initial aggregation, such as induced by shear, are 

related to a rise in fd. [24] 
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3 Model 

The model that was chosen to represent the coagulation/flocculation process is the Population Balance model. [25] 

This is a model that is essentially a table, where the current distribution of clusters is recorded and updated as they 

change over time. Each table column counts the number of clusters in a certain size range. These columns are often 

referred to as bins, with a bin being like a bucket: each bin is defined by a minimum and maximum size (bin size), 

and all clusters in the system within that size range are counted in that bucket. The bin value counts how many of 

these clusters exist in the system.  

Then, we define a certain time step (time for which the system is allowed to evolve for one calculation step), and 

calculate the number of clusters being formed or destroyed during this specific time step. We then update the 

table using this calculation. Then, using the newly updated table, we determine a new time step, update the table, 

and so forth. 

 

Since we expect the largest clusters to comprise upwards of 1012 nuclei-sized particles, we cannot have one bin per 

individual cluster size. [26] Therefore, we use a model with logarithmically increasing binning: the range of the 

number of particles (or cluster size, as the cluster size increases monotonically with number of particles) increases 

logarithmically with increasing bin, that is: clusters in bin i+1 consist of twice as many particles as clusters in bin i.  

It has been shown that ferrihydrite nuclei formed through the LaMer mechanism are around 2-8 nm in diameter. 

[27] [28] We initialize our system by assuming that all iron added to the system reacts to form ferrihydrite nuclei of 

this size, which homogeneously distributes through the sample volume. We can make this assumption as we know 

the formation mechanism is a LaMer mechanism, and as we described above, formation occurs on a very short 

time scale, much shorter than stirring time scales. [6] [29]  

We can calculate the number of nuclei added to the system by considering that: 

���(��)�
=  �� ∙

4

3
��� 

( 5 ) 

���(��)�
=

���(��)�

���(��)�

 

( 6 ) 

���(��)�
= ���(added) ∙

���(��)�

���

 

( 7 ) 

with the following parameters: 

 ���(��)�
  Volume of ferrihydrite added    [m3] 

 ��   Number of ferrihydrite particles formed   [-] 

 �  Radius of ferrihydrite particles formed  [m] 

 ���(��)�
 Mass of ferrihydrite formed   [kg] 

 ���(��)�
  Density of ferrihydrite    [kg m-3] 

 ���(added) Added mass of iron (via iron chloride)  [kg] 

 ���(��)�
 Molar mass of ferrihydrite    [kg mol-1] 

 ���  Molar mass of iron     [kg mol-1] 
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Here, the only inputs are the amount of iron added and the radius of formed ferrihydrite particles. Both of these 

will be input parameters in the softsensor, and we set a default ferrihydrite nanoparticle radius at 2-8 nm. 

 

 

Population Balance equation 

Knowing our initial conditions, we can now fill in the initial state of the population balance model. In most cases, 

this will be a situation where the first bin will be filled with the amount of particles as calculated by the previous 

equations, and all other bins are empty. To calculate the development of the system, the model calculates the 

evolution over a number of timesteps: a given amount of time, where the system develops according to an 

evolution equation. Here we calculate how many clusters would grow or break up in a certain amount of time given 

an initial situation and the kinetics of the coagulation-flocculation process. We update the Population Balance table 

every timestep, which is then used as the initial state for the new timestep. 

For the equation, we use the Population Balance equation, which relates how many clusters grow or break up in a 

given amount of time. [26] We run a simulation for a given number of timesteps, and the model outputs the a 

Population Balance table where all intermediate and final states are found. As we define the size of the timestep, 

we can relate the amount of timesteps to the distribution to a certain real time. The Population Balance equation is 

defined as follows: 

 

���

��
= � 2�����

���

���

�����,������� +
1

2
�����,�������

�  

− �� � 2���

���

���

���,��� − �� � ���,���

����

���

 

+ � ��,�����

����

���

 

−����  
( 8 ) 

 

 

with the following parameters: 

 ��    Number of clusters with size i   [-] 

 ��    Number of clusters with size j (other bin)  [-] 

 �   Time       [s] 

 �  Collision efficiency    [-] 

 ��,�  Collision frequency between clusters of bins i and j [m3 s-1] 

 ��,�   Breakage distribution function of bins i and j [-] 

 ��  Breakage frequency of bin i   [m3 s-1] 
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Equation 8 is also graphically represented in Fig. 6. The first two terms of the equation (the first row of equation 8) 

govern the “birth” of clusters of size i due to aggregation of two species smaller than i; the third and fourth term 

(second row) govern the “death” of a cluster of size i due to it aggregating with any another cluster, the result of 

which will end up in a bin larger than i; the fifth term governs the birth of a cluster of size i due to a larger cluster 

breaking up into one or more clusters of size i, and the sixth term governs the death of an aggregate due to it 

breaking up. 

There are several assumptions that are made in a population balance model. The first is that all clusters have the 

same “shape”, that is, all clusters of size i have the same fractal dimension. This is a reasonably safe assumption, as 

all clusters evolve via the same path and in the same conditions. It also assumes that the system which is described 

(in this case, the flocculation growth basin) is homogeneous and all clusters are homogeneously distributed 

throughout the system. This is a relatively safe assumption, but breaks down at very large cluster sizes, as particles 

will sediment. There are several methods to compensate for this, but since this is not expected to have a large 

effect, these effects will be addressed in future iterations of this model. It’s also assumed that no fractionation 

occurs: with fractionation we mean that a single clusters breaks up into three or more clusters in a single timestep. 

This means that we assume that all fractioning processes occur via a break-up into two clusters and subsequently 

break up into two further clusters. This assumption has been shown to be safe and valid as long as the timestep 

duration is small enough. [26] 

The basic building block of a floc is the ferrihydrite particle of 2-8 nm, and to be able to calculate the model using 

the population balance equation, we need to determine four parameters: the collision efficiency �, the collision 

frequency ��,�, the breakage distribution ��,�  and the breakage frequency ��. We will discuss these four terms here 

below.  

 

��,� – collision efficiency 

We use DLVO theory to determine an energy barrier for aggregation: if two particles collide, this energy barrier has 

to be surmounted if a collision also leads to aggregation. From the energy barrier, we can use the Arrhenius 

equation to calculate a probability of a successful collision. [30] DLVO theory comprises the addition of (i) screened 

electrostatic potential and (ii) van der Waals attraction: 

Figure 6: Explanation of the Population Balance Model, adapted from [10]. 
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with the following parameters: 

 αi,j   Collision efficiency    [-] 

 ��    Energetic barrier for aggregation   [kg m2 s-2] 

 �   Boltzmann constant     [kg m2 s-2 K-1] 

 ����   Yukawa or screened electrostatic potential  [kg m2 s-2] 

 �  Effective colloidal charge    [A s] 

 ��  Bjerrum length     [m] 

 �  Inverse Debye length    [m-1] 

 �  Diameter of the charged particles   [m] 

 ����  van der Waals potential    [kg m2 s-2] 

 ����   Center-to-center distance between two particles [m] 

 �  Hamaker constant, defined for material/solvent  [kg m2 s-2] 

 ��  Dielectric constant of the solvent   [-] 

 ��  Permittivity of free space    [kg-1 m-3 s4 A2] 

 �  Elementary charge    [A s] 

 ��   Concentration of ion i    [m-3] 

 ��   Valency of ion i     [-] 
 

All of these parameters are known physical constants or are input parameters, with only a few input parameters 

varying. This then becomes an exercise in filling in the parameters correctly: �, �, ��, �, ��, ��, �, ��, ��  and � are all 

natural constants or specific parameters for ferrihydrite in water with a known salinity. We determine the 

potentials ����  and ���� as a function of ����, and from the combination of the two we determine ��. This is 

graphically represented in Fig. 7. From ��  we can determine ��,�  using the above Arrhenius equation. 
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Figure 7: Typical DLVO potential. On the x-axis the distance between two particles, and on the y-axis the interaction potential or energy. The 
red line is the electrostatic repulsion and the blue line is the van der Waals attraction; the combined DLVO potential is black. If summed, it leads 
to an energy barrier that can be calculated. Schematic from Guven et al. [31] 

 

It should be noted that ��  is directly defined by ����  and ����, with the energy barrier being extracted from the 

sum of the two. It is defined as the maximum of the DLVO potential (formally minus the long-distance DLVO-

potential, but this decays to zero for distances that are common in our system). [32] [11] [33] [34] [35] [36] Also, 

we note that the Arrhenius equation calculates the probability of an event with energy barrier ��  occurring, with 

�� being the energy that the system provides. �� is the energy of a random thermal fluctuation, i.e. the amount of 

energy provided if only thermal energy is present in the system. In our case, kinetic energies play a significant role 

and can cause collisions to overcome the energy barrier. It could therefore an expansion of the model to, instead of 

��, use a term that is dependent on the kinetic energies present in a collision. [37] 

��,� - collision frequency 

There are three processes that can lead to the interaction of two particles : (i) collisions due to diffusion; (ii) shear-

induced collisions; and (iii) two clusters sedimenting at different rates. [26] All of these processes are relevant to 

the process, as they happen at different moments in the coagulation-flocculation process. For each of these 

processes, we can define a collision rate based on the specific process, and add the three to get to the combined 

collision frequency. These formulas are based on literature . [38]  

��,� = ��� + ��� + ��� 
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 ��,�  Total collision frequency    [s-1 m-3] 

 ���   Collision frequency due to diffusion  [s-1 m-3] 

 ���  Collision frequency due to shear   [s-1 m-3] 

 ���  Collision frequency due to sedimentation  [s-1 m-3] 

 μ  Dynamic viscosity of the fluid   [kg m-1 s-1] 

 ��   Drag force correction    [-] 

 ��    Radius of particle i     [m] 

 �  Shear rate     [s-1] 

 ��  Fluid accumulation efficiency   [-] 

 ��  Settling velocity of a permeable cluster  [m s-1] 

These equations can be fully solved, if the shear rate and the temperature of the system are known. The drag force 

correction, fluid accumulation efficiency and settling velocities are calculated using a mathematical method known 

as Brinkman’s extension of Darcy’s law, described in Appendix I. [38] [39] The only parameters that are necessary 

for calculating ��  and ��  are monomeric particle radius, cluster radius and fractal dimension, all known or defined 

parameters as described in equations 5-7. Because of the verbosity of Brinkman’s model, it can be found in the 

appendix. 

 

��,� – Breakage distribution kernel 

The breakage distribution kernel defines how large the fragments resulting from a break-up event are, i.e. what bin 

they will fall in. There are many different options, and we have implemented that when a break-event occurs, the 

two resulting fragments end up in the bin directly below the bin of the source cluster, breaking up into two roughly 

equally-sized clusters. It is known that this simple kernel can capture real-life cluster dynamics well. [26]  

��- Breakage distribution rate 

Breakage models are exclusively empirical models, fitted to existing data since no mathematical models exist to 

predict this through first principles. [40] The reason for this is that it is a highly complex process where a large 

number of small effects can have a large influence on the final breakage event. We therefore implement an 

empirical power law model, used often in modeling ferric hydrite cluster growth in stirred chambers: 

�� = �������
��  

( 18 ) 

 ��  Breakage rate     [m3 s-1] 

 �  Shear rate (G-factor)    [s-1] 

 ��   Hydrodynamic radius of cluster   [m] 

 ��  Fit parameter 1     [-] 

 ��   Fit parameter 2     [-] 

 ��   Fit parameter 3      [-] 

Here, we fill in the three fit parameters to be 9.0 ∙ 10��, 0.71 and 0.33, respectively, according to the work by 

Pandya et al., [41] which investigated iron hydroxide clusters in stirred suspensions. 
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4 Model component validation 

In this chapter we discuss the different validation steps to show that the model are working as intended. In the next 

chapter we focus on the model as a whole. Here we will show the three biggest equation steps: (i) the DLVO 

equation, (ii) the collision frequency and (iii) the Population Balance Equation integrated.  

DLVO Equation 

We used our implementation of DLVO theory to validate the full interaction potential at different salt 

concentrations, using the parameters from the work of Liu et al. [32] This is work on polystyrene colloids, which 

only requires tuning of the Hamaker constant to make the softsensor apply to this other material. 

This results in the full DLVO plots indicated in Fig. 8. The figures A and B in figure 8 do correspond which shows us 

that our implementation of DLVO was correct. 

  

Figure 8: Plots of the full DLVO equation from A) our calculations, B) calculations from [15]. Our calculations took the parameters from their 

papers to mimic their results. 
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Collision Frequency 

The validation of the collision frequency was performed in two steps. First, we directly compared a simplified 

version of our model with scientific literature (not the model described in the previous chapter); thereafter, we 

check the differences between our simplified and our full model as described above with the scientific literature. 

Our simplified model is a model where we do not account for porosity, and correction terms such as the fluid 

collection efficiency and drag force correction. It can be found in [26], and results in the image as seen in Fig. 9. The 

figures A and B (Figure 9) are very similar which indicates a successful validation of this implementation. 

The simplified collision model assumes clusters to move as if they are completely solid inside the hydrodynamic 

radius, which is not the case with fractal-like clusters as a representation of ferrihydrite clusters. We corrected our 

model with the suggestions of [26], however: it should be noted, however, that no published articles exist where 

the implementation was done as we have described it, so we have to rely on qualitative checking and manual 

checking of the implemented values. We find that our implemented model corrects for collisions between large 

fractal aggregates, which is in line with the prediction from the paper. [26] We have calculated the differences 

between the models by hand and find that our implementation predicts the same results. Examples of plots where 

the differences are calculated can be found in Fig. 10, where the collisions of a cluster with a given size with a 

monomeric cluster is plotted. It should be noted that if particles form through a LaMer mechanism, the amount of 

dissolved monomer can be neglected. 

Figure 10: Plots for the fractal collision frequency model calculations as compared to the solid cluster model. A) The model with all subterms 

added together. B) Two models with all subterms separately plotted. The collision rate of a cluster of a given size with a monomeric precursor is 
plotted. It can clearly be seen that the larger the second particle is, the larger the discrepancies between the two models is, which corresponds 
to what is described by Jeldres et al. 

Figure 9: Plots for the simplified collision frequency model calculations. A) our calculations, B) calculations from [26]. In these plots, the collision 

rate of a cluster of a given size with another cluster of diameter 2 μm is plotted at G=18 s-1.. Three different subfrequencies are plotted, 
corresponding to the different subterms in the collision frequency.  
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Population Balance Equation 

Due to the complexity of the population balance equation, we validate it by implementing the six subterms 

separately and presenting their results with a range of testing initial states and parameters ��,� , ��,�  ��,�, ��. At the 

same time, we implement the same equations in Excel with the same dummy parameters. We then directly 

compare the output of both Excel and our program for each subterm and for the total term, for the first ten 

iterations. As soon as all subterms and the total term correspond to at least ten decimal points, we can safely 

conclude that the Population Balance Equation is correctly implemented. 
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5 Literature validation 

In this chapter, we compare the results from the complete model with literature results. We validate our models 

using experimental results from Ahmad et al. [42] Here, iron chloride is added to a tank containing 5L of water 

under continuous stirring. The salt concentration in the tank and all other parameters necessary for our model, 

except the fractal dimension, are given in Table 1. In the following, we aim to reproduce their Figure 2a. 

First, it is noted that the article deviates from the model in two distinct ways. First, the iron chloride addition to the 

reactor vat is different in the article and our model: the article describes iron chloride addition through addition of 

the solid, whereas a population balance model assumes homogeneous concentration throughout the sample. [26] 

This would mean that our model would underestimate the real cluster sizes, as higher (local) concentrations lead to 

much faster growth. It should also be noted that iron addition is very low as compared to commercial use. 

Secondly, the experimental sampling methods are different: the article describes that “collection of suspension 

samples […] which were filtered over 0.45 μm filters. […] The samples were prepared for subsequent analysis.”. We 

interpret this as samples filtered first, after which the particle size distribution was not immediately measured, and 

particles will continue to grow in the interim. As this exact sampling sequence is not modeled, our model will again 

underestimate the results. Therefore, we expect that our model predicts lower values than what is observed in the 

experiments. While we can alleviate for the first reason for discrepancy (which we will discuss later in this chapter), 

the second reason cannot be compensated for without additional information. Due to a lack of time and low 

availability of alternatives, we chose to validate our model using these results. 

Table 1: input parameters validation model 

Parameter Value 

Added iron [mg L-1] 2.8 · 10-4 

Particle concentration [m-3] 1.0 · 1017 

Particle diameter [m] 1.6 · 10-8 

Salt concentration [mol m-3] 6.6 · 100 

Zeta potential [V] -2.6 · 10-3 

Shear rate [s-1] 1.8 · 101 

Time [s] 3.6 · 103 

Temperature [K] 2.93 · 102 
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The first test using the parameters as shown in Table 1 gives the results as shown in Figure 11. With using a generic 

fractal dimension of 2.0, we observed that the cluster size results from experiment is significantly higher than the 

cluster size that the model predicts. We therefore test to see what effect the fractal dimension and iron 

concentration have on the distribution of the clusters. 

Fractal dimension 

We tested different fractal dimensions settings to mimic the cluster size distribution as reported in literature. For 

the extremes, we take a reasonable range ranging from 1.7 (diffusion-limited cluster aggregation) to 2.1 (reaction-

limited cluster aggregation). [43] While clusters made with pure ferrihydrite are reported, [44] and expected, [17] 

to have fractal dimensions close to 1.7 due to the character of the aggregation, DOC and other negatively charged 

material can increase this value far beyond 2.1. [45] [46] [47] Since the current model is based on only ferrihydrite 

aggregation, we do not go beyond 2.1 for the fractal dimension, with the most relevant value being 1.7, as theory 

and experimental literature predict this value. 

 

Figure 11: Figure 2a from Ahmad et al., and model output given similar parameters. The model prediction is off by more than two orders 

of magnitude. Note that the resolution of the model plots is rather low, the reason for this is the logarithmic scale of the bins in the 
model. This is explained in the second paragraph of Chapter 3. 

Figure 12: Model output for different fractal dimensions. 

B 
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In Fig. 12, these different fractal dimensions are plotted, and it is observed that while more open structures do lead 

to increasingly large clusters, this does not have the effect of fully alleviating the discrepancy between the 

experimental observations and model predictions.  

 

Particle concentration 

The effects of initial particle concentration have a strong effect on the final cluster distribution (Figure 13) more 

than enough to bridge the discrepancies between model output and experiment. This would imply that to obtain 

realistic floc sizes, we would need much higher concentrations. A good note to place here is that realistic systems 

often use such high concentrations, but we are trying to mimic the depicted experiment here. 

 

However, the standard version of the model disregards the fact that in reality, ferrihydrite precursor is added to the 

sample tank by adding concentrated iron chloride. This means that initially, on a local scale, the concentration of 

particles is much higher. In this locally higher concentration, the cluster size distribution will be pushed to larger 

sizes, which is expected to an impact  on the final particle size distribution. Since the particle concentration 

significantly affects the final particle distribution of particles, we implemented a method to check how an initially 

higher concentration affects the final cluster size distribution.  

We do this by modelling the concentration development as follows. Initially, all particles exist in the smallest 

possible volume: the volume in which all particles reside initially is equal to the total particle volume. This is 

calculated by calculating the total volume of particles �� in the system, and then recalculating the final particle 

concentration assuming that they all reside in that ��. We then assume that the initial concentration decreases 

over time with: 

�� = ��  · ���� 

 ��  Particle concentration at time t   [m-3] 

 ��  Initial particle concentration    [m-3] 

 �  Time      [s], 

and the factor 3 being necessary for the fact that concentration is a volume-dependent variable which scales with 

the distance cubed. We then decrease the concentration stepwise, multiplying the concentration with a factor ��� 

every timestep �. This timestep is calculated using the formula: 

�� =  �� ∙ ��, 

Figure 13: Results with a varying starting particle concentration. 



 

 

BTO 2023.099 | December 2023 Softsensor flocculatie 26 

 ��   Timestep size of interval �    [s] 

 ��  Initial timestep size      [s] 

 �  Interval number     [], 

  where � is the interval number of the step taken. We can tune the steps taken by tuning ��. We can then define a 

dilution time, which is the time that is necessary for the system to fully change to the final state which is the 

particle concentration as depicted in Table 1. Before the dilution time, the concentration follows an exponential 

function with negative exponent, after dilution time the concentration is constant. Using our model with this 

method, we obtain results as depicted in Figure 14. 

 

It is immediately obvious that higher starting concentrations which dilute over time have strong effects on the final 

cluster size distribution. We see from Figure 14 that a slow homogenization process over the course of 10 seconds 

leads to a population distribution with its peak more than an order of magnitude higher. This is a relatively slow but 

not unreasonable timeframe. 

Tuning the fractal dimension and particle concentration within reasonable limits allows us to clearly approach the 

results as obtained during the experiments in [40]. Note that there exists a time difference between formation and 

measurement, which causes particle sizes to be overestimated. The results seen in Figure 14B at the highest 

dilution times are off by approximately a factor of 3 as compared to the results obtained by Ahmad et al. In the 

validation experiment, the tank size was 5L and stirring was done with a stirrer at 100 rpm, which means that 

homogenation time should be at least several seconds. Furthermore, we should keep in mind that we model the 

flocs at fractal dimensions of 2.0, and far smaller fractal dimensions of for example 1.7 are expected for DLCA-

clusters. [44] [17]  

We have approached the validation experiment as close as possible here, but several discrepancies still exist. 

Additionally, several parameters such as the influence of pH are not tested. Since no other work exists as far as we 

are aware, we believe that the next validation step should be to validate our model with our own experimental 

work, rather than further fine-tune input parameters. However, experimental work is beyond the scope of this 

specific project, and we intend to perform experiments in future projects. 

 

 

 

Figure 14: Results with progressive dilution series. A) Fractal dimension is 2.0, B) Fractal dimension is 1.7. 

A B 
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6 Typical model results 

In this chapter we discuss some typical output from our model while varying several parameters, notably fractal 

dimension, shear rate and salt concentration, that reflect industry operation. Standard parameters can be found in 

Table 2. 

Table 2: input parameters results 

Parameter Value 

Added iron [mg L-1] 10 

Particle concentration [m-3] 3.6 · 1021 

Particle diameter [m] 1.6 · 10-8 

Salt concentration [mol m-3] 1.0 · 100 

Zeta potential [V] 2.0 · 10-2 

Shear rate [s-1] 2.0 · 103 

Time [s] 1.0 · 104 

Temperature [K] 2.93 · 102 

Fractal dimension [] 2.2 

 

 

These parameters are chosen to mimic initial stages in a coagulation-flocculation reactor. Using these parameters, 

we obtain a time series as depicted in Fig. 15. Note that here we depict our results in absolute numbers (SI-units, m-

3) instead of normalized numbers. Please note also that these are results with instantaneous homogenization. 

Figure 15: Time series using parameters reflecting industry operation. 
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A first observation is that cluster size evolves towards the micrometer scale in the time span of one to several 

hours. We also observe that the evolution occurs on a logarithmic time scale: initial evolution occurs fast and slows 

down progressively. This is consistent to the timescales of coagulation-flocculation-processes during experimental 

observations in which the evolution of particle size distributions tends to plateau off over time. [48] 

In Figs. 16 we show that tuning the fractal dimension shows us that it can significantly affect the distribution of 

particles. We tune the fractal dimension between 1.9 and 2.6, values that correspond with experimental 

observation of clusters in the presence of DOC. Fig 16A shows the final distribution after 105 seconds, and we see 

that we can tune the distribution over two decades of hydrodynamic diameters using this parameter. While smaller 

fractal dimensions immediately mean larger hydrodynamic diameters, it also leads to higher aggregation rates and 

thus a larger growth. Fig. 16B shows the mean radius of all the clusters, where the same observations can be 

observed. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  In Figs. 17 we show the effects from tuning the shear rates. Fig 17A shows the final distribution after 105 seconds, 

and we can see that increasing  shear rates leads a widening of the cluster size distribution : the distribution will 

form both larger  and smaller clusters. This is due to two counteracting phenomena acting on the distribution. 

While the high shear rates lead to the more frequent break-up of clusters, the higher shear rates also bring clusters 

more often together, increasing the aggregation rates. Nonetheless, it should be said that this effect was only 

observed for unrealistically high shear rates. One can interpret this by assuming that in real systems, this type of   

behavior could only occur in localized regions of high shear, such as turbulent regions. This is, however, in our 

Figure 16: Effects from varying fractal dimension on the cluster distribution after 1 hour. A) final cluster distribution. B) average cluster 

size over time. 

Figure 17: Effects from varying shear rates on cluster distribution after 1 hour. A) final cluster distribution. B) average cluster size over 

time. 

A 

A B 

B 
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opinion, not representative behavior as the shear rates are unrealistically high, and the future incorporation of DOC 

into the model will change the shear-dependent behavior. However, since the size and charge differences between 

ferrihydrite and DOC can lead the rheological behavior of clusters (and the system as a whole) to be unpredictable, 

it is difficult to make any quantitative prediction on how the DOC incorporation will change the behavior. 

 

 In Figs. 18 we see that tuning the ionic strength shows a rather small effect on the cluster size distribution. We 

tune the salt concentration between concentrations roughly corresponding to drinking and sea water salinities, and 

we see that neither extreme affects distribution much. This is both an interesting observation and a reflection of 

reality: the salt concentration primarily affects the aggregation probability; that is, the probability that two clusters 

stick after encounter. We currently model pure ferrihydrite, which in our conditions tends to aggregate readily [11] 

indicating that electrostatic repulsion is in this case not much of an issue. Electrostatic screening effects then do 

not affect much, and salinity does not have a strong effect. Note that upon incorporation of DOC in the model, this 

changes: ferrihydrite in the presence of DOC like humic acid can become strongly negatively charged due to humic 

acid-adsorption, and the Coulombic interaction between such clusters can become dominant again. In this case, 

salt becomes an important factor. 

 

 

Starting with a predefined distribution 

Figure 18: Effects from varying salt concentration on cluster distribution after 1 hour. A) final cluster distribution. B) average cluster size over 

time. 

Figure 19: Change of cluster size distribution over the course of 3 hours, 
given a realistic starting concentration. 

A B 
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Several tests were also done to see how the model predicts that a distribution will evolve when it is given a 

distribution of particles that corresponds to experimental results, rather than only monomeric particles. The 

starting concentration distribution was taken from earlier work from KWR, [42] with the starting parameters given 

in Table 2 (particle concentration replaced with the given distribution). 

It is immediately apparent that the evolution of cluster size distribution is rather small, with only a small increase at 

the lower end of the distribution due to breaking of larger clusters. Due to the difference in sizes between the 

particles, this only corresponds to a negligible decrease on the right side. Our model is thus able to calculate that 

systems reach a situation resembling eventual steady-state: only a very small development is observed over the 

course of three hours, meaning that cluster breakage and growth exist in relatively similar amounts. This reflects 

reality, as cluster growth tends to plateau over time. [48]  

 

7 Conclusions 

In this project, we set out to write a softsensor for the coagulation-flocculation process as is performed by water 

companies. A softsensor was developed that can predict the cluster size as a function of time during the 

coagulation-flocculation process. The input for this softsensor is readily available and measurable input data, which 

is intended for use by water companies themselves. The softsensor has been validated using data KWR published in 

scientific literature. It corresponds with the experimental findings to a certain point, but improvements can be 

made on this front. The current version of the softsensor can predict floc cluster size quite well, which is a 

necessary step for the translation into contaminant removal efficiency. This is intended to be developed in later 

iterations of this model. The necessary foundation for further iterations have thus been laid for further 

development towards practical use by water companies.  

 

The softsensor described in this report is a cost-effective method to predict the conditions and outcomes of a 

coagulation-flocculation process, using only parameters that are readily accessible for water companies as input. 

Obtaining the same information that the model provides experimentally is an expensive and time-consuming 

process, and using our softsensor uses only a fraction of the time and cost. Finally, this model is both a broad and 

essential step towards a comprehensive and generic coagulation-flocculation softsensor: it lays the necessary 

groundwork for the incorporation of effects of DOC or phosphate capture, cluster removal efficiency using 

sedimentation, flotation or filtration, or cluster growth under different pH conditions. 
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8 Future recommendations 

We believe several steps would be useful for adding functionality to the softsensor. We depict this in a flowchart of 

the model, seen in Figure 21. 

 

 

Figure 20: Flowchart of the softsensor. Orange circles are input parameters, blue circles are output parameters, and rectangles are model 
modules. Unclear lines indicate that this model has not yet been implemented. 

 

We view two steps to be the most promising gaps in our study that can be incorporated into the future model: an 

oppositely-charged compound model module, for instance by adding DOC/PO4, and a surface charge model 

module. 

Incorporating DOC in the model, and thus considering oppositely charged moieties in the system leads to complex 

but likely solvable problems. In this work we used the experimental finding that the particles are slightly negatively 

charged, but this is expected to have an effect when for instance pH is changed. However, since DOC is generally 

negatively charged and ferrihydrite tends to be positive, electrostatic effects are no longer purely repulsive. This 

affects several parts of the model, as the probability of two clusters aggregating now becomes more complex. 

Furthermore, due to for instance the long-range attractions, fractal dimensions in these systems rise to 2.7. [47] 

This need to be accommodated for as well. This last point also leads to the fact that cluster structures vary 

according to the charge balance in a cluster, which is largely determined by the DOC-to-ferrihydrite ratio. This 

means that a one-dimensional Population Balance model table might not be sufficient, with a two-dimensional 

table possibly being necessary. In practical terms, this would mean that the softsensor would be able to predict 

DOC removal efficiency, which is one of the end goals of the softsensor. The development of this functionality 

would mean that the softsensor can be used for interpreting all coagulation-flocculation processes using ferric 

chloride as flocculant. This includes the different subprocesses often described in treatment technology such as 

adsorptive or sweep coagulation. 

As for the surface charge model, it would encompass the question of how to accurately translate a measured zeta 

potential to a local surface charge density. As clusters often have irregular surfaces with uneven charge 

distributions, and the zeta potential being a measurement of the charge potential averaged over the cluster 

surface, translating one into the other is certainly possible given our structural knowledge, but not straightforward. 

As it is currently unknown how using the zeta potential instead of the surface charge density affects the final 

results, it might cause unpredictable results down the line. Understanding the link between zeta potentials for 

these clusters can therefore prevent possible problems in the future and help us develop a better-quality model. 
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We believe that these two steps would allow our softsensor to have useful predictive strength regarding 

flocculation behavior in DOC or phosphate-containing systems. 
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I Brinkman’s model 
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 Ω�   Drag force correction     [-] 

 ��  Fluid accumulation efficiency   [-] 

 ��  Monomeric (primary) particle diameter  [m] 

 ��   Aggregate particle diameter   [m] 

 �  Packing coefficient, assumed to be 1  [-] 

 �   Porosity       [-] 

 ��   Fractal dimension    [-] 

 ��  Particle density     [kg m-3] 

 �   Gravitational constant     [N m2 kg-2] 

 �   Viscosity      [kg m-1 s-1] 

This model contains a lot of parameters, each of which can be determined mathematically. By assuming a packing 

coefficient of 1, an assumption that is generally done in the scientific literature, we only need the primary particle 

diameter, the aggregate diameter and the fractal dimension to calculate the drag force corrections and fluid 

accumulation efficiencies. Other parameters are unnamed because they are simple intermediate unitless variables 

that do not have any physical meaning. 
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