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A B S T R A C T

Advancements in high-resolution mass spectrometry based methods have enabled a shift from pure target
analysis to target, suspect and non-target screening analyses to detect chemicals in water samples. The multitude
of suspect chemicals thereby detected needs to be prioritized for further identification, prior to health risk
assessment and potential inclusion into monitoring programs. Here, we compare prioritization of chemicals in
Dutch water samples based on relative intensities only to prioritization including hazard information based on
high-throughput in vitro toxicity data. Over 1000 suspects detected in sewage treatment plant effluent, surface
water, groundwater and drinking water samples were ranked based on their relative intensities. Toxicity data
availability and density in the ToxCast database were determined and visualized for these suspects, also in
regard to water relevant mechanisms of toxicity. More than 500 suspects could be ranked using occurrence/
hazard ratios based on more than 1000 different assay endpoints. The comparison showed that different
prioritization strategies resulted in significantly different ranking, with only 2 suspects prioritized based on
occurrence among the top 20 in the hazard ranking. We therefore propose a novel scheme that integrates both
exposure and hazard data, and efficiently prioritizes which features need to be confidently identified first.
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1. Introduction

The ever increasing production and use of chemicals augments their
occurrence in drinking water and its sources to an extent that mon-
itoring using targeted chemical analyses alone is no longer sufficient
[1–3]. Complementary non-target screening (NTS) methods are re-
quired to detect a multitude of chemicals simultaneously [4]. However,
identification of all detected chemicals is not yet feasible. Instead,
suspect screening based on the matching of a detected peak with the
exact molecular mass and also the retention time of a so called suspect
chemical in a suspect list or database can be applied [5]. To safeguard
drinking water quality, in particular the suspect screening for (emer-
ging) chemicals with potential relevance to human and environmental
health has been a key addition to research and policy focusing on target
chemicals [6]. Once suspects are detected in environmental samples,
they need to be confidently identified [7]. As this is still a labor and
time intensive task, suspects need to be prioritized for structural iden-
tification prior to risk assessment and potential inclusion in monitoring
programs [8,9].

Risks of chemicals are a function of both the exposure to the che-
mical and its intrinsic hazardous properties. Accordingly, three main
strategies are possible for prioritization: a strategy based on exposure –
be it modelled or measured, based on hazard, and based on exposure to
hazard ratios. In an earlier study the exposure/hazard based strategy
was used to prioritize> 1000 suspects detected in 151 water samples
including sewage treatment plant effluent, surface water, groundwater
and drinking water using relative intensities [5]. These suspects had
been tentatively identified through matching against a curated suspect
list of> 5000 water relevant chemicals. The suspects were prioritized
when their exposure levels exceeded water type specific prioritization
thresholds based on the threshold of toxicological concern (TTC)
[10,11] corrected for dilution and removal during the water cycle.
These generic thresholds conservatively represented exposure levels at
which health risks were unlikely.

Alternatively, chemical-specific toxicity information of suspects can
be used. Databases comprising detailed health risk assessments such as
the International Toxicity Estimates for Risk (ITER) database which
includes information from the WHO International Programme on
Chemical Safety (IPCS), the U.S. EPA, the Agency for Toxic Substances
and Disease Registry (ATSDR), Health Canada, IARC, and RIVM, or
other sources such as European Food Safety Authority (EFSA),
European Medicines Agency (EMA) and the U.S. EPA Integrated Risk
Information System can be searched chemical-by-chemical for estab-
lished acceptable daily intake levels. Also, in vivo toxicity databases
such as the TOXNET databases from the US National Institute of Health
(NIH) or the databases provided by the European Chemical Agency
(ECHA) can be consulted. However, for many emerging chemicals
sufficient toxicity data are lacking [12]. To efficiently prioritize the
multitude of candidates generated by suspect screenings, toxicity da-
tabases allowing automated approaches and including information on
many emerging chemicals are needed. The U.S. EPA’s ToxCast database
is a publicly available database in which high throughput in vitro
toxicity information is collected for over 8000 different en-
vironmentally relevant chemicals and over 1000 biological endpoints
[13,14].

Despite current developments in physiology based kinetic modelling
to calculate oral intake associated with effective in vitro concentrations
[15–17], it is still challenging to use in vitro toxicity data for human
health risk assessment. However, the use of in vitro toxicity data to
compare the hazardous properties of chemicals in prioritization ap-
proaches is less disputed, in particular as cellular and molecular re-
sponse are the critical initiators of adverse health and population effects
[18]. For instance, Rager et al. used ToxCast data to prioritize suspect
chemicals in house dust [19], and Blackwell et al. prioritized relatively
well-known target chemicals in surface water through a combination of
chemical occurrence and toxicity data based on calculated exposure -

activity ratios [20].
Here, we extend this integrated prioritization strategy to other

water matrices and a broader set of water relevant suspect chemicals,
thus advancing its application on target chemicals to suspects detected
in an NTS dataset [5]. We expand the previous prioritization by Sjerps
et al., and compare it to a prioritization using chemical-specific ex-
posure/hazard ratios. To this end, we first assess and visualize ToxCast
data availability and density for the detected suspects, also in regards to
water relevant mechanisms of toxicity. We then rank suspects based on
their concentrations at half maximal activity (AC50 values), and com-
pare the differences in prioritized chemicals between the two strategies.
Ultimately, a synergistic prioritization workflow is presented that effi-
ciently ranks suspect chemicals detected in NTS analyses, enabling
subsequent confirmation of the suspects’ identity and ultimately in-
clusion into monitoring programs and regulation.

2. Experimental

2.1. Exposure data

The suspect candidates presented in this study are based on the
HRMS non-target screening data described in [5]. In brief, this data set
consisted of 151 Dutch water samples including waste water effluent
(19), surface water (73), ground water (39) and drinking water (20)
collected as described by Hogenboom et al. [21] in the period 2007-
2014. Following LC-HRMS analysis, a suspect screening was performed
against an in-house curated suspect list of anthropogenic chemicals
authorized on the market via various European regulatory frameworks
(SI Table 1, sheet SI Sjerps 2016 suspect list). 1461 suspects corre-
sponded to 927 features detected in positive (1037 suspects from 619
features) and negative (424 suspects from 308 features) ionization
mode (SI Fig. 1). Suspect concentrations were expressed as internal
standard equivalents (ISeq) of atrazine-d5 or bentazone-d6 equivalents
in the positive or negative ionization mode, respectively. ISeq were
used to prioritize suspects detected in the different water matrices
based on thresholds derived from the most conservative TTC for che-
micals in drinking water, expected generic drinking water treatment
efficiencies and expected generic dilution within the water cycle;
1.0 mg/L ISeq for effluent, 0.1mg/L ISeq for surface water and
0.01mg/L ISeq for ground-and drinking water. To allow for comparison
between exposure and toxicity based prioritization approaches, sus-
pects were also ranked based on their exposure according to water type.
The full list of suspects and ISeq is provided in SI Table 1, sheet ``SI
suspect prioritization’’. Suspects prioritized based on their exposure are
listed in bold.

2.2. Toxicity data

AC50 values in uM were retrieved for all active and tested chemical-
assay combinations from the U.S. EPA’s online ToxCast data repository
(https://doi.org/10.23645/epacomptox.6062479.v1, provided in the
INVITRODB_V2_SUMMARY files oldstyle_ ac50_Matrix_151020.csv and
Chemical_Summary_151020.csv), including information on the number
of assays in which a chemical was tested, and the number of assays in
which a positive response was observed, In this file, inactive and tested
chemical-assay combinations were represented by 10e6, not tested by
NA. The ToxCast assay endpoint coverage of relevant toxicity me-
chanisms for water-relevant chemicals described previously was eval-
uated based on ToxCast annotations [22,23]. Water-relevant endpoints
were related to xenobiotic metabolism, modulation of hormone sys-
tems, reactivity, stress response, reproduction and development. Addi-
tional water relevant endpoints included general cell viability, thyroid
toxicity, neurotoxicity, and PPAR receptor activation [24–26]. The full
list of assay endpoints and assigned mechanisms can be found in SI
Table 1, sheet “SI water-relevant mechanisms”. To evaluate the data
availability for prioritization, AC50 values of detected suspect chemicals
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were extracted from the ToxCast database using their CAS numbers as
chemical identifiers. Retrieved ToxCast data is included in SI Table 1,
sheet “SI suspect prioritization”. For 788 CAS numbers there was no
match in ToxCast, which could be due to faulty CAS numbers and/or
lack of ToxCast data of a given chemical. These contain NA values in SI
Table 1. For all available ToxCast assay endpoints in a hypothesis free
approach and for water-relevant mechanisms, ToxCast data availability
was evaluated and AC50 values were visualized in heat maps. AC50

values of previously prioritized suspects based on their relative in-
tensities and water type were compared to those of non-prioritized
suspects with a Student’s t-test. Data handling and visualization were
performed in R version 3.4.1. R-scripts in R markdown format and the
input files with the CAS numbers of the suspects detected in Sjerps et al.
(Sjerps_suspects_CAS.csv) and the water relevant assay endpoints (tox-
cast_waterRelevant.csv) are provided in the SI.

2.3. Priority score

The 5th percentile rather than the minimum AC50 values was used
to reduce the potentially disproportionate impact of sensitive assay
endpoints. The relative intensities of suspect chemicals were combined
with ToxCast toxicity information to calculate a synergistic priority
score by dividing the ISeq corrected for the water type by the 5th per-
centile AC50 values. Priority scores are included in SI Table 1, sheet “SI
suspect prioritization”.

3. Results & discussion

3.1. ToxCast data availability for suspect chemicals detected in drinking
water and its sources

The US EPA’s ToxCast database provides high throughput in vitro
toxicity information on more than 8000 environmentally relevant
chemicals for more than 1000 biological endpoints, covering a wide
range of biological processes [14,27]. To evaluate the aptitude of the
ToxCast database for prioritization of suspect chemicals detected in
water samples assay endpoints were screened for mechanisms pre-
viously described as water relevant, related to xenobiotic metabolism,
modulation of hormone systems, reactivity and adaptive stress re-
sponses [22,23]. Both endocrine disruption and DNA reactivity may
underlie carcinogenesis and be related to reproduction, developmental
effects, and health effects with considerable impact on quality of life

[24]. Additional water relevant endpoints include neurotoxicity [25]
and PPAR receptor activation [26]. The list of mechanisms and their
respective assay endpoints can be found in SI Table 1. In total, 631
ToxCast assay endpoints from a total of 21 pathways were related to the
water relevant mechanisms, illustrated in Fig. 1. As emerging chemicals
might be associated with alternative mechanisms-of-action, con-
servatively all available ToxCast assays were included in the following.

For roughly half of the 1461 suspects detected in Dutch water
samples (673) toxicity data was included in ToxCast. The number of
assays in which a chemical was tested varied widely; on average, a
chemical was tested in 443 distinct assay endpoints (range: 45–1090;
median: 337). ToxCast data density for suspects in regards to water
relevant mechanism is illustrated in Fig. 2. 418 suspects were tested in
water-relevant assays. None of these assay endpoints covered the ca-
tegories “Reproduction” and “Development”.

A heat map further illustrates the density of all ToxCast data for the
suspect chemicals and their toxicity (see SI Fig. 2 for a zoom-in of this
heat map), showing significant differences between the suspect che-
micals’ activity and indicating that a prioritization based on toxicity can
be effective. The chemicals with the largest number of observed re-
sponses and with the highest toxicity i.e. lowest AC50, included plant
protection chemicals and industrial chemicals (SI Table 1). The assay
endpoints for which the lowest AC50 values were reported related to
p53 activation, the PPAR receptor, estrogen receptor alpha and the
thyroid hormone receptor representing the earlier defined water re-
levant mechanisms and pathways (Fig. 1).

3.2. Comparison of prioritization based on exposure and toxicity

Next, it was evaluated whether the toxicity based prioritization of
suspect chemicals corresponded to the exposure based ranking. To re-
duce the disproportionate impact of sensitive assay endpoints, the 5th
percentile of AC50 values was used as a measure of toxicity for a given
suspect instead of its minimum AC50 value. 5th percentile AC50 values
of the suspects that had been prioritized earlier according to their semi-
quantitative concentrations and water type were compared to non-
prioritized suspects. The median 5th percentile AC50 of all exposure
based prioritized suspects was significantly higher (p-value< 0.05) in
the positive ionization mode, and significantly lower for chemicals
detected in negative ionization mode (Fig. 3). 5th percentile AC50

toxicities of prioritized and non-prioritized suspect chemicals based on
semi-quantitative exposure levels spanned the same 7–8 orders of

Fig. 1. Presence of water relevant mechanisms and related pathways in ToxCast database.
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magnitude, ranging from mM to sub-nM. This indicates that relevant
hazardous chemicals could be missed when prioritizing solely on semi-
quantitative exposure levels and generic toxicity thresholds.

Fig. 4 depicts the 5th percentile AC50 values and the ISeq of the
respective suspects, distinguishing classes of suspect chemicals ranging
from the combination of high toxicity and high exposure, to the com-
bination of low toxicity and low exposure. Over 20 suspect chemicals
exhibited high toxicity, i.e. 5th percentile AC50 values in the sub-na-
nomolar range (SI Table 2). Only 4 of these chemicals were prioritized
based on exposure, emphasizing the complementarity of the two
prioritization strategies.

A synergistic priority score seemed optimal to address this com-
plementarity, where semi-quantitative exposure levels in water would
be divided by the 5th percentile AC50 values, comparable to the ex-
posure− activity ratios described by Blackwell et al. [20]. The cumu-
lative distribution of these priority scores (ratio of ISeq occurrence/5th
% AC50) is illustrated in SI Fig. 3. It shows that the priority scores of
sewage treatment plant effluent and surface water are roughly 100x and
10x higher, respectively, than those of groundwater and drinking
water. When the semi-quantitative exposure levels in surface water and
effluent were corrected for the expected dilution in the water cycle and
drinking water treatment efficiencies, i.e. scores were divided by 10 and
100, this generated a priority score across water types ranging from
10−7 to 104 for all water types in both positive and negative ionization
mode (SI Fig. 3).

3.3. Prioritized chemicals differ across prioritization strategies and water
types

Per suspect chemical, calculated priority scores corrected for water
type were ranked (SI Table 1, sheet “SI suspect prioritization”). Ranking
based on priority in drinking water is shown in Table 1. Only 2 of the
highly ranked suspect chemicals, i.e. UT-637 and vinyltoluene, had
been prioritized based on occurrence only [5].

The identity of the prioritized suspects should now be confirmed,
starting with methyl benzoate, used as a solvent and fragrance with a

Fig. 3. Comparison of toxicity (5th percentile AC50 values) of suspects prior-
itized (+) or not (-) based on their semi-quantitative concentrations, detected
in positive (left) or negative (right) ionization mode. Dots represent individual
5th percentile AC50 values, bars indicate the median.

Fig. 2. AC50 values from water relevant ToxCast assay endpoints for detected suspect chemicals (left), and number of assays per mechanism (right) are shown.
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phenolic type odor (CAS: 93-58-3), 1-ethyl-2-pyrrolidinone, used as a
fragrance and in protein research (CAS: 2687-91-4), and 2,4,4-tri-
methylpentene, used as a chemical intermediate for paints, lacquers
and varnishes (CAS: 25167-70-8) [28]. These chemicals are all included
in the REACH Registry List of chemicals (echa.europa.eu) with a pro-
duction volume of> 100 ton per year in the case of methyl benzoate,
and>1000 ton/year for 1-ethyl-2-pyrrolidinone, and 2,4,4-tri-
methylpentene. 2,4,4-Trimethylpentene is also listed on ECHA’s Can-
didate List of substances of very high concern for Authorization (iPBT
list) as candidate chemical that needs to be evaluated for its persistence,

bioaccumulation, and toxicity properties.
Standardization of prioritization schemes for the results of non-

targeted screening approaches may be needed to obtain a legislative
basis for non-target screening methods for water quality regulations
such as the EU Water Framework Directive including the Groundwater
Directive and the Drinking Water Directive [3,29,30]. The prioritization
strategies developed here can be useful for the risk-based monitoring
framework as demanded by the EU Drinking Water Directive (Annex II),
which requests to repeatedly evaluate which individual chemicals to
include in monitoring efforts [31]. Following confirmation of these

Fig. 4. Suspects detected in sewage treatment plant effluent (orange dots), surface water (SW, blue dots), groundwater (GW, green dots) and drinking water (DW,
white dots) are plotted according to their toxicity (5th percentile AC50) and exposure (ISeq, black data for GW/DW, green for SW, orange for effluent). The vertical
dashed lines indicate the exposure threshold and 10x the threshold, the horizontal lines divide the 5th percentile values into three arbitrary potency classes of
toxicity. Suspects detected in positive and negative ionization mode, respectively, are shown in the upper and lower panel.
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suspects through structural identification based on fragmentation
spectra and/or reference standards, the health risk of confirmed sus-
pects needs to be assessed in more detail based on available in vivo
toxicity data, in vitro/in vivo extrapolation and QSAR and read-across
approaches. When indeed confirmed as relevant, introduction of the
chemical in routine monitoring programs and/or risk management
measures might follow.

3.4. Future perspectives

The presented integrated prioritization does not impart relative
weights to the parameters representing exposure and toxicity. However,
mass spectrometry is not inherently quantitative and differences in io-
nisation efficiency can lead to relative intensities of compounds not
accurately reflecting their concentrations [5,32]. As illustrated in SI
Fig. 4, if a 10-fold deviation in signal is considered, the top 10 ranked
suspects detected in drinking water will still remain in the top 40 even
if their actual concentration is 10x lower. Nevertheless, it might be
beneficial to attribute less weight to the relative intensities than to the
AC50 value in a weighted final prioritization score and/or also exploit
the frequency with which a suspect is detected, as well as a change in its
intensity through water treatment steps. Besides, the number of active
assay endpoints could further refine prioritization. For instance, both
Rager et al. and Newton et al. prioritized suspects in house dust and
U.S. drinking water, respectively, based on estimated exposure and
detection frequency data from HRMS analyses, in combination with

ToxCast toxicity data, and modelled exposure data using US-EPA’s Ex-
poCast Software [19,33]. In their model, relative intensities receive
lower weight than detection frequency.

Here, the 5th percentile of AC50 values was used as a measure of
toxicity, in analogy with the 5th percentile in a species-sensitivity dis-
tribution for ecotoxicological risk assessment and the 5th percentile of
NOELs to derive TTC values [10,32]. It needs to be further evaluated
whether prioritization changes when other parameters for toxicity are
used, for example the lowest observed AC50 or the median AC50. As
relevant effects can be observed at lower concentrations, a point-of-
departure strategy, eg signal-to-noise or LOEC (lowest observed effect
concentration) instead of AC50 values could also be evaluated [33]. For
approximately half of the suspects detected in Dutch water, ToxCast
data were absent. For these, toxicological information may be available
in other databases and literature, alternatively predictive in silico tools
can be used to estimate toxic properties [34–36]. The dependency of
this method on ToxCast data availability, as well as the requirement of
an initial match to a suspect in a suspect list or compound database are
limitations of the presented method. In particular, transformation
products, although a highly relevant issue for drinking water safety, are
rarely covered by either of them and will continue to require strategies
alternative to the one presented here. However, with the increase of
compounds in suspect lists and databases – for instance the NORMAN
SusDat database increased from 14′000 to over 40′000 entries in the
last year – and the on-going efforts of the US EPA to add more com-
pounds and assay endpoints to ToxCast, we envision that the strategy

Table 1
Highest ranked suspect chemicals based on drinking water priority scores corrected for water type. DW drinking
water, GW groundwater, SW surface water. * indicates corrected for water type, i.e. divided by 10 for surface water,
and 100 for effluent.
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presented here has and will become even more useful. Moreover, with
the very recently released integration of ToxCast into the identification
software MetFrag, we predict that this strategy will become a routine
prioritization method in the future.

Finally, it has to be emphasized that ToxCast in vitro hazard data are
no replacement for health risk assessment as they are not per definition
correlated to acceptable daily intakes for humans. Accordingly, a
comparison of health-based reference values for oral exposure collected
from ECHA registration dossiers for the suspect chemicals with the 22
lowest and the 25 highest AC50 values in ToxCast, respectively, showed
no significant difference (SI Figure 5). While the use of in vitro hazard
data in prediction of potential adverse health effects in humans is
limited, its integration in prioritization strategies is highly useful and
efficient, as presented here for the prioritization of suspects detected in
Dutch drinking water and sources.
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